
 

 

  
Abstract—Microscopic emission and fuel consumption models 

have been widely recognized as an effective method to quantify real 
traffic emission and energy consumption when they are applied with 
microscopic traffic simulation models. This paper presents a 
framework for developing the Microscopic Emission (HC, CO, NOx, 
and CO2) and Fuel consumption (MEF) models for light-duty 
vehicles. The variable of composite acceleration is introduced into 
the MEF model with the purpose of capturing the effects of historical 
accelerations interacting with current speed on emission and fuel 
consumption. The MEF model is calibrated by multivariate 
least-squares method for two types of light-duty vehicle using 
on-board data collected in Beijing, China by a Portable Emission 
Measurement System (PEMS). The instantaneous validation results 
shows the MEF model performs better with lower Mean Absolute 
Percentage Error (MAPE) compared to other two models. Moreover, 
the aggregate validation results tells the MEF model produces 
reasonable estimations compared to actual measurements with 
prediction errors within 12%, 10%, 19%, and 9% for HC, CO, NOx 
emissions and fuel consumption, respectively. 
 

Keywords—Emission, Fuel consumption, Light-duty vehicle, 
Microscopic, Modeling.   

I. INTRODUCTION 

T present, traffic-induced exhaust emission and energy 
consumption is becoming one of the severest challenges 
for urban transportation in many metropolitans, including 

Beijing, in the world. Accurately and effectively estimating 
and controlling urban traffic emissions and fuel consumption 
has increasingly attracted attentions from transportation 
professionals and decision makers. Emission and fuel 
consumption models have been widely recognized as one of 
the most effective approaches for quantifying the 
environmental impacts of traffic on air quality. However, 
some state-of-the-art macroscopic emission models, such as 
MOBILE6 [1], EMFAC2002 [2], and COPERT III [3], usually 
employ simplified mathematical formulas to calculate fuel and 
emission rates based on average drive speeds without much 
regard to the transient effects of vehicle operating conditions. 
Even some recently developed models, for example 
ARTEMIS [4] and MOVES [5], are also known as aggregate 
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emission models based on different traffic situations and road 
facilities. Oppositely, microscopic models developed based on 
instantaneous driving variables e.g. speed and acceleration can 
more accurately capture the effects of vehicle dynamic 
characteristics on emissions. In addition, microscopic 
emission and fuel consumption models can be conveniently 
combined with microscopic traffic simulation models for 
evaluating the environmental impacts of operational-level 
transportation projects. 

On the other hand, methods of vehicle emission data 
collection also deserve much concern because they 
considerably influence the prediction accuracy of developed 
models. Typically, several measurement methods, such as 
laboratory measurement [6], remote sensing [7], tunnel study 
[8] [9], and on-board emission measurement [10] [11] have 
been widely used in this research field. However, development 
of microscopic models with satisfactory prediction accuracy 
requires abundant on-road emission data. As a new data 
collection technology, Portable Emission Measurement 
System (PEMS) provides researchers with possibilities to 
gather the real-world emission and fuel consumption data. In 
recent decades, PEMS is increasingly being used in various 
transportation research projects to analyze real-world vehicle 
emissions impacts [12] [13]. Moreover, recent studies also 
proved that PEMS is reliable of measuring real-world vehicle 
emissions with high accuracy compared with laboratory 
measurements [14]. 

This paper presents a Microscopic Emission and Fuel 
consumption (MEF) model for two categories of light-duty 
vehicles (LDV) developed using PEMS measurements 
collected in Beijing, China. The MEF model is a statistical 
model constructed based on instantaneous speed and 
acceleration adopting multivariate least-square regression 
method. This paper is organized as follows. Firstly, it present 
the collection, analysis and preprocessing for the PEMS data. 
Secondly, it provides descriptions of the general form of 
existed microscopic emission models and describes the 
structures of the MEF model and other two related models, 
VT-Micro [15] and POLY [16]. Thirdly, the calibration and 
validation results of the MEF model as well as VT-Micro 
model and POLY model compared to field measurements for 
two categories of light-duty vehicles are presented. Finally, the 
main findings of our study and identify the future research 
direction are summarized. 
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II. DATA SOURCE 
The data that were utilized in this paper to develop the 

emission and fuel consumption models were collected in 
Beijing, China from 18th to 29th, November, 2007. A PEMS 
instrument, On Board Emission Measurement System 
(OBS-2200), was employed in this experiment to gather 
real-world data for 28 light-duty gasoline vehicles. OBS-2200 
consists of vibration-proof gas analyzers, a laptop PC with 
software for system controlling and data logging, accessory 
sensors, and a tailpipe attachment with a Pitot tube. CO and 
CO2 concentration can be measured by a NDIR analyzer, HC 
and NOx concentration can be measured by a FID analyzer 
and a CLD analyzer. GPS data (speed, latitude, longitude, 
altitude, etc.) and other external signals (temperature, 
humidity, atmospheric pressure, etc.) can be saved into the 
laptop PC by the data logging software [17].  

A test route was predesigned to cover different road types 
with appropriate proportions in Beijing in order to capture 
real-world driving behaviors of the typical driving population. 
Each of the 28 recruited vehicles in this experiment was tested 
twice on this route. Specifically, the first test was usually 
during the peak-hours in the morning (7:00-9:00) and the 
second test was during the off-peak hours (11:00-13:00). Each 
run of each vehicle typically lasted for about 30 ~ 40 minutes. 
The OBS-2200 system automatically recorded the real time 
emission and fuel consumption data and vehicle operation data 
second by second. 

In total 76,415 raw data records were finally obtained and 
saved into the OBS-2200 system in our experiments. For the 
purpose of convenient query, a MySQL database was 
developed to preserve the measured data. Moreover, a 
MATLAB process program was developed to be integrated 
with this MySQL database, which could be easily used to 
query the measured data from MySQL database and process 
them by MATLAB. Each data record was comprised of 
vehicle speed (m/s), fuel consumption rate (g/s), emission rate 
(g/s), relative humidity, latitude, longitude, and altitude (m) 
etc. Typically, speed values range from 0 to 30 m/s, and 
acceleration values vary from -2.8 to 1.6 m/s2. Fig. 1 illustrates 
an example of speed/acceleration distribution of driving data 
from one test vehicle. It shows that the majority of the speed 
and acceleration data takes place when the vehicles operate 
during stationary state (acceleration ranging between -0.4 and 
0.4 m/s2). 

 
Fig. 1 An example of speed and acceleration distribution of driving 

data from one test vehicle 
To ensure all the data used in our modeling are reliably 

valid, three process procedures on all raw data were 

performed. First of all, synchronization between the 
independent variables (speed and acceleration) and the 
dependent variables (emission and fuel consumption rates) is 
of importance to modeling quality in our study. Hence, a time 
offset procedure was designed to eliminate the time lag 
between emission profile and speed profile, which is resulted 
from the transport of gases from engine to the analyzers in 
OBS system. Specifically, the two profiles were shifted 
according to the time axis in a way such that the first crest of 
the emission data well match the engine start (indicated by a 
sudden increase in vehicle speed) [18]. Secondly, all negative 
emission data were removed from the database because they 
make no sense. Finally, a data smoothing technique, namely 
moving average smoothing, was also adopted in this paper to 
reduce unwanted noise from raw data [19].  

III. MODELING METHODOLOGY 
Several methodologies for developing microscopic vehicle 

emission and fuel consumption models are described briefly in 
this second. And then we proposed the basic framework of the 
MEF model based on another two existing models. 

A.   Methodology review  
Microscopic models generally take kinematic variables e.g. 

speed and acceleration as input to calculate second-by-second 
vehicle emission and fuel consumption rates (g/s). The effect 
of various driving modes (acceleration, deceleration, cruise, 
idle) on emission and energy consumption is taken into 
account in these models, which is in general demonstrated as: 

( ) ( , ( ))i i j jj
e t e c x t= ∑                                                            (1) 

Where: i is the species of pollutions (or the fuel consumption); 
cj is the category of vehicle j; xj (t) denotes instantaneous 
variables of vehicle j at time t; ei (cj, xj (t)) denotes the emission 
of species i (or the fuel consumption) for vehicle j at time t; ei 
(t) denotes the total amount of emissions of species i (or the 
fuel consumption) generated at time t in a given area. 

Microscopic models presented in this general form can 
usually be classified into four categories, namely emission 
maps, regression-based models, load-based models, and 
neural network models. Emission maps are actually look-up 
tables for querying data of emission and fuel consumption 
rates according to each combination of vehicle speed and 
acceleration or of engine speed and torque. This type of 
emission models can be too sensitive to the driving cycle to 
generate satisfactory results [20]. Regression models normally 
adopt mathematic functions of instantaneous speed and 
accelerations as explanatory to predict emission rates. 
Although they are usually lack of clear physical basis, they can 
produce estimates of emissions with high quality [15]. 
Load-based models provide another modeling method, which 
is expressed as functions of several causal variable variables 
with detailed physical basis of emission generating in an 
engine [6]. However, too many input parameters are typically 
desired to feed into this type of models, which limit their 
application to a certain extent. Neural network models were 
also studied by researches in the past decade [21]. Due to the 
requirement of large quantity of input data for training the 
networks, these models usually take much computational time 
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for a run when they are combined with traffic simulation 
models. Among these types of modes discussed above, 
developing regression-based models using multivariate 
least-square methods based on PEMS data is what we focus on 
in this paper. 

B. Model development 
Most of the existing regression-based microscopic emission 

and fuel consumption models take account the speed and 
acceleration at a time point to estimate the emission and fuel 
consumption rates at the same time point. For example, the 
VT-Micro model has been developed by researchers based on 
laboratory chassis dynamometer measurements using a 
combination of linear, quadratic, and cubic speed and 
acceleration terms, which is demonstrated below [15]: 

3 3
,0 0

3 3
,0 0

exp( ( ) ( ) )   0  
( )

exp( ( ) ( ) )   <0

i j
i ji j

i j
i ji j

L v t a t a
e t

M v t a t a

= =

= =

⎧ × × ≥⎪= ⎨
× ×⎪⎩

∑ ∑
∑ ∑                          (2) 

where e(t) is the emission rate (or fuel consumption) at time t 
(g/s); Li,j and Mi,j are the regression model coefficients; v(t) and 
a(t) are instantaneous speed and acceleration at time t.  

However, researchers have also developed the POLY 
models that identified the acceleration or deceleration of 
previous time periods takes more impact on emissions than 
that of current time does [16]. The basic form of POLY models 
can be described by: 

2 3

9

2 3
0 ' ''( ) ( ) ( ) ( ) '( ) ''( )

         ( ) ( 9) ( )
t t

v T Tv v

a a w

e t v t v t v t T t T t

a t a t w t

β β β β β β

β β β
−

= + + + + +

+ + + − +K               (3) 
where β0 is a constant and βx is the coefficient for variable x. 
a(t-k) is acceleration at time t-k where k=1…9; T’(t) and T’’(t) 
are acceleration and deceleration time up to time t since its 
inception; w(t) is specific power at time t, which is equal to the 
product of v(t) and a(t). 

Based on the study on the VT-Micro and the POLY, we take 
not only the current speed and acceleration but also the history 
acceleration of previous nine seconds before current time 
point t into account in the MEF model. The framework of the 
MEF model is presented by: 

3 3
,0 0

3 3
,0 0

exp( ( ) ( ) )   0  
( )

exp( ( ) ( ) )    0  

m n
m nm n

m n
m nm n

v t a t a
e t

v t a t a

λ

γ
= =

= =

⎧ × × ≥⎪= ⎨
× × <⎪⎩

∑ ∑
∑ ∑

                   (4)   

where ( )a t  is the composite acceleration at time t derived 
from the current acceleration a(t) and the nine historical 
accelerations a(t-1),… ,a(t-9), which can be expressed as: 

9

0
( ) ( )ii

a t a t iω
=

= ⋅ −∑                                                             (5) 

where ωi is the weight for a(t-i), 0≤ωi≤1, ω0+ω1+…+ω9=1; 
λm,n and γm,n are the model coefficients for e(t) at speed power 
m and acceleration power n. Assuming these nine historical  
acceleration give the same degree of impact on emission and 
fuel consumption, we can transform equation (5) into: 

9

1
( ) ( ) (1 ) ( ) /9

i
a t a t a t iα α

=
= ⋅ + ⋅ −∑-                                     (6) 

where α is defined in this paper as Acceleration Impact Factors 
(AIF) for constructing composite acceleration, 0≤α≤1. The 
purpose of introducing the variable of composite acceleration 
into the MEF model is to capture the effects of historical 

accelerations interacting with current speed, which is not taken 
account into POLY model, on emission and fuel consumption 
based on the framework of the VT-Micro model. Further, the 
AIF (α) can also be regarded as an indicator that indirectly 
reflects the magnitude of impact of current acceleration and 
historical acceleration on emission rate. The nature logarithm 
is adopted in the MEF model in order to transform the 
emission and fuel consumption rate mainly based on two 
concerns. Firstly, negative predictions generated by the model 
can be avoided. Secondly, the magnitude of disparity among 
the raw emission data can be lowered by this transformation 
technique in order to improve the quality of model calibration. 

IV. MODEL CALIBRATION 
In this section, the MEF model was calibrated for two 

categories of light-duty vehicles using the PEMS data 
collected in Beijing. From the perspective of comparative 
study, the VT-Micro model and POLY model were also 
calibrated with the same dataset that used for the MEF model. 
The comparison and analysis of calibration results for the 
MEF model are provided at the end of this section. 

A.    Vehicle classification  
Generally, vehicles should be classified into several 

categories before developing emission and fuel consumption 
models because different types of vehicles have different 
emission properties, which considerably impacts the calibrated 
coefficients for one model framework. Therefore, it is 
reasonable and necessary to divide vehicles into different 
groups and calibrate the models for each vehicle group. In this 
study, the classification criteria set up in the CMEM model [6], 
a state-of-the-art load-based emission model, was adopted to 
classify the 28 test vehicles into two categories, LDVI and 
LDVII, according to four basic vehicle characteristics, namely 
fuel delivery system (carbureted or fuel injection), emission 
control technology (no catalyst, 2-way catalyst, or 3-way 
catalyst), accumulated mileage ( ≥ 50,000 miles, ≤ 50,000 
miles), and power-to-weight ratio (high or low). Table I 
illustrates the final vehicle classification results in this paper. 

B. Model Calibration 
Before calibrating the models, the experimental data from 

five vehicles of category LDVI and eight vehicles of category 
LDVII were selected purposefully to construct two composite 
datasets, which would be used in the following calibration.  

 
TABLE I 

CLASSIFICATION RESULTS FOR ALL TEST VEHICLES 

Vehicle 
category 

Fuel 
delivery 
system 

Emission 
Control 
Tech. 

Mileage 
(mile) 

Power-to-weight 
ratio 

Number 
of test 

vehicles 

LDVI FI 3-way 
catalyst <50,000 low 

(<0.039hp/lb) 11 

LDVII FI 3-way 
catalyst >50,000 low 

(<0.039hp/lb) 17 
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For both composite datasets, vehicles selection was 
performed in such a way that driving mileages of the chosen 
vehicles cover the entire mileage scope within the critical 
values listed in Table I. Finally more than 12,000 and 18,000 
data points in total are included in the two composite data 
samples respectively for category LDVI and LDVII. 

For the MEF model, the calibration process should be a 
complex nonlinear programming problem that costs too much 
computation time to reach a solution. In order to simply it, we 
determined the value of AIF (α) in advance. Specifically, we set 
the value of α to be from 0 to 1 at increments of 0.1 and adopt 
multivariate least-squares regression method to calibrate the 
MEF model using the predesigned composite datasets for LDVI 
vehicle category. The calibration quality with different values 
of α can be compared by Correlation Coefficient (R), which can 
be represented as follows:  

1
[ ( ) ( )] [ ( ) ( )]/T

t
R e t e t e t e t T

=
= − ⋅ −∑ $ $                                      (7) 

where ( )e t are the field measurements and ( )e t$  are the model 
predictions; ( )e t  and ( )e t$  are the average of ( )e t  and ( )e t$ , 
respectively; T denotes the total number of data points included 
in the dataset for calibration.  

The R statistics of calibration results against α values for the 
MEF model are demonstrated in Fig. 2, from which it can be 
seen that the R values for submodels of HC, CO and NOx will 
increase along with the growth of α value before it reaches 0.3, 
and the corresponding critical value of α for submodels of CO2 
and FUEL is near 0.8. Finally we define α=0.5 in the MEF 
model with an overall consideration such that all the five 
submodels can keep relatively high R values. Further, as the 
basis of the MEF model, the VT-Micro and the POLY model 
are also calibrated with the same datasets by multivariate 
least-squares regression method for the purpose of comparison 
study with the MEF model in this paper. 
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Fig. 2 Correlation Coefficient (R) against AIF (α) for calibration of the 

MEF model 

The calibration results of HC, CO emission and FUEL 
consumption of the MEF model as well as the corresponding t 
statistic of each parameter for composite datasets of LDVI and 
LDVII vehicles are illustrated in Table II and Table III, 
respectively. In order to keep the same with the general 
framework of the VT-Micro model developed by Rakha [15], 
some parameters are still remained in our study though they are 
not statistically significant by the t statistics at the 95% 
confidence level. Another reason for keeping these variables is 
that removing them from the model framework would cause the 
reduction of model performance. The values of adjusted R2, 
which is statistically considered as an effective goodness-of-fit 
measurement in multiple linear regression models, for each 
submodel are also showed. It can be seen from Table II and 
Table III that the MEF model always shows lower adjusted R2 

in negative acceleration regime than in positive acceleration 
regime. In addition, we can preliminarily conclude that the CO 
submodel performs better than the other two, and this is simply 
because in linear regression the higher the adjusted R2 is, the 
more proportion of variance in the dependent variables can be 
accounted for by the explanatory variables. 

TABLE II 
CALIBRATED PARAMETERS OF THE MEF MODEL (α=0.5) FOR LDVI VEHICLE CATEGORY

HC CO FUEL 

 Value t  Value t  Value t  Value t . Value t . Value t 

λ0,0 -8.9680 -193.20 γ0,0 -8.9184 -175.92 λ0,0 -5.4401 -164.30 γ0,0 -5.3600 -136.65 λ0,0 -1.9116 -61.18 γ0,0 -1.9428 -55.45 

λ0,1 5.0509 4.44 γ0,1 0.1177 0.21 λ0,1 6.1901 7.62 γ0,1 -1.9663 -4.46 λ0,1 2.7630 3.61 γ0,1 -0.4093 -1.04 

λ0,2 -7.0006 -2.11 γ0,2 -0.2350 -0.23 λ0,2 -8.6441 -3.65 γ0,2 -2.3950 -3.01 λ0,2 -2.5418 -1.14 γ0,2 -0.6861 -0.97 

λ0,3 3.4359 1.51 γ0,3 -0.1795 -0.43 λ0,3 3.7943 2.34 γ0,3 -0.8173 -2.51 λ0,3 0.6289 0.41 γ0,3 -0.2422 -0.83 

λ1,0 0.1640 5.39 γ1,0 0.2440 6.84 λ1,0 0.3588 16.56 γ1,0 0.3705 13.43 λ1,0 0.1108 5.42 γ1,0 0.1342 5.45 

λ2,0
 -0.0081 -2.34 γ2,0

 -0.0178 -3.93 λ2,0
 -0.0221 -8.99 γ2,0

 -0.0260 -7.45 λ2,0
 -0.0008 -0.36 γ2,0

 -0.0052 -1.66 

λ3,0
 0.0002 1.93 γ3,0

 0.0005 3.50 λ3,0
 0.0005 6.86 γ3,0

 0.0007 6.11 λ3,0
 -0.0005 -0.73 γ3,0

 0.0001 1.48 

λ1,1
 -0.7278 -1.74 γ1,1

 0.3314 1.18 λ1,1
 -1.1653 -3.91 γ1,1

 0.8556 3.94 λ1,1
 -0.0850 -0.30 γ1,1

 0.2968 1.53 

λ2,1
 0.0495 1.24 γ2,1

 -0.0249 -0.74 λ2,1
 0.0906 3.18 γ2,1

 -0.0657 -2.54 λ2,1
 -0.0198 -0.74 γ2,1

 0.0116 0.50 

λ3,1
 -0.0008 -0.77 γ3,1

 0.0007 0.70 λ3,1
 -0.0018 -2.41 γ3,1

 0.0015 1.89 λ3,1
 0.0011 1.55 γ3,1

 -0.0007 -1.02 

λ1,2 1.9105 1.68 γ1,2 0.4369 0.94 λ1,2 2.2321 2.74 γ1,2 0.8341 2.33 λ1,2 0.2791 0.36 γ1,2 0.3028 0.95 

λ2,2 -0.1149 -1.11 γ2,2 -0.0370 -0.68 λ2,2 -0.1549 -2.11 γ2,2 -0.0609 -1.45 λ2,2 0.0275 0.40 γ2,2 0.0154 0.41 

λ3,2
 0.0015 0.57 γ3,2

 0.0009 0.52 λ3,2
 0.0027 1.41 γ3,2

 0.0011 0.88 λ3,2
 -0.0019 -1.06 γ3,2

 -0.0011 -0.95 

λ1,3 -1.0900 -1.44 γ1,3 0.1278 0.71 λ1,3 -1.0589 -1.95 γ1,3 0.2029 1.46 λ1,3 -0.1128 -0.22 γ1,3 0.0573 0.46 

λ2,3
 0.0719 1.08 γ2,3

 -0.0097 -0.47 λ2,3
 0.0725 1.53 γ2,3

 -0.0111 -0.69 λ2,3
 -0.0111 -0.25 γ2,3

 0.0095 0.66 

λ3,3
 -0.0012 -0.71 γ3,3

 0.0002 0.25 λ3,3
 -0.0013 -1.06 γ3,3

 0.0007 0.15 λ3,3
 0.0008 0.72 γ3,3

 -0.0005 -1.15 

adjusted R2 =0.456 adjusted R2 = 0.322 adjusted R2 = 0.582 adjusted R2 = 0.424 adjusted R2 = 0.495 adjusted R2 = 0.394 
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TABLE III 
CALIBRATED PARAMETERS OF THE MEF MODEL (α=0.5) FOR LDVII VEHICLE CATEGORY 

HC CO FUEL 

 Value t  Value t  Value t  Value t . Value t . Value t 
λ0, -6.3291 -151.20 γ0,0 -6.35599 -143.81 λ0,0 -4.37417 -162.19 γ0,0 -4.34111 -131.26 λ0,0 -2.02233 -65.40 γ0,0 -1.98666 -57.13 

λ0, 1.4134 1.46 γ0,1 0.7361 1.47 λ0,1 3.9721 6.35 γ0,1 -0.4493 -1.20 λ0,1 3.0116 4.20 γ0,1 -0.4183 -1.06 

λ0, -1.98799 -0.65 γ0,2 0.7722 0.82 λ0,2 -7.5711 -3.82 γ0,2 -0.3978 -0.57 λ0,2 -3.6463 -1.60 γ0,2 -1.0615 -1.44 

λ0, 2.2297 0.93 γ0,3 0.0216 0.06 λ0,3 5.4554 3.54 γ0,3 -0.3386 -1.16 λ0,3 2.0060 1.14 γ0,3 -0.6250 -2.04 

λ1, 0.2626 8.79 γ1,0 0.2009 5.98 λ1,0 0.3387 17.59 γ1,0 0.2620 10.43 λ1,0 0.1334 6.05 γ1,0 0.1305 4.94 

λ2, -0.0226 -6.12 γ2,0
 -0.0134 -3.17 λ2,0

 -0.0279 -11.72 γ2,0
 -0.0180 -5.71 λ2,0

 -0.0060 -2.21 γ2,0
 -0.0061 -1.84 

λ3, 0.0005 4.44 γ3,0
 0.0002 1.84 λ3,0

 0.0007 10.43 γ3,0
 0.0005 4.89 λ3,0

 0.0002 2.22 γ3,0
 0.0002 1.83 

λ1, 0.0739 0.19 γ1,1
 -0.6077 -2.18 λ1,1

 -0.9961 -3.90 γ1,1
 -0.1856 -0.89 λ1,1

 -0.2541 -0.87 γ1,1
 0.1031 0.47 

λ2, 0.0227 0.51 γ2,1
 0.0890 2.52 λ2,1

 0.1308 4.54 γ2,1
 0.0567 2.14 λ2,1

 0.0359 1.08 γ2,1
 0.0299 1.07 

λ3, -0.0010 -0.76 γ3,1
 -0.0024 -2.11 λ3,1

 -0.0043 -4.91 γ3,1
 -0.0018 -2.07 λ3,1

 -0.0013 -1.24 γ3,1
 -0.0013 -1.43 

λ1, 0.5227 0.44 γ1,2 -0.6958 -1.37 λ1,2 2.9568 3.87 γ1,2 -0.4664 -1.24 λ1,2 0.7478 0.85 γ1,2 0.3768 0.95 

λ2, -0.1231 -0.93 γ2,2 0.0623 0.91 λ2,2 -0.3705 -4.34 γ2,2 0.0855 1.66 λ2,2 -0.0932 -0.95 γ2,2 -0.0099 -0.18 

λ3, 0.0054 1.27 γ3,2
 -0.0002 -0.08 λ3,2

 0.0129 4.74 γ3,2
 -0.0018 -0.97 λ3,2

 0.0032 1.03 γ3,2
 0.0001 0.08 

λ1, -0.9017 -0.97 γ1,3 -0.0524 -0.23 λ1,3 -2.3323 -3.89 γ1,3 -0.0877 -0.52 λ1,3 -0.7446 -1.08 γ1,3 0.2607 1.46 

λ2, 0.1326 1.25 γ2,3
 -0.0132 -0.38 λ2,3

 0.2871 4.19 γ2,3
 0.0144 0.56 λ2,3

 0.0935 1.19 γ2,3
 -0.0226 -0.83 

λ3, -0.0054 -1.51 γ3,3
 0.0014 1.06 λ3,3

 -0.0103 -4.48 γ3,3
 -0.0002 0.18 λ3,3

 -0.0034 -1.28 γ3,3
 0.0008 0.73 

adjusted R2 =0.487 adjusted R2 = 0.362 adjusted R2 = 0.594 adjusted R2 = 0.458 adjusted R2 = 0.465 adjusted R2 = 0.381 

V. MODEL VALIDATION 
Model validation seems to be the most important step in the 

model building sequence to test the capability of models to 
generate reasonable predictions from new inputs that are 
different from those used in calibration. In order to examine 
and analyze the prediction performance of the MEF model, we 
implement two types of validation procedure, namely 
instantaneous validation and aggregate validation, using the 
out-of-sample datasets that are not adopted in the calibration 
procedure. The purpose of instantaneous validation is to 
examine the microscopic prediction ability of the MEF model 
in second-by-second resolution, whereas the aggregate 
validation is adopted to verify its macroscopic forecast 
accuracy of the average emission factors (g/km) during specific 
driving periods. 

A.    Instantaneous validation 
In instantaneous validation, field measurements of six 

vehicles (not used in previous calibration) were used as the data 
samples. Three of them were prepared for LDVI category and 
the other three were for LDVII. Then the predicted 
second-by-second emission rates and fuel consumption rates 
generated from MEF model based on the real driving 
parameters (speed and acceleration) can be compared with the 
real world experimental data. In addition, the same data 
samples were also used to validate the VT-Micro model and 
POLY model, and the comparison and analysis of the 
validation results of these three models would be presented 
below. In this paper, two widely used statistics, the Mean 
Absolute Percentage Error (MAPE) and the Root Mean Square 
Error (RMSE) were adopted to verify the validation quality. 
MAPE and RMSE can be expressed as follows:  

( ) ( ) / ( )
t t

MAPE e t e t e t= −∑ ∑$                                                   (8) 

2
1
[ ( ) ( )] /T

t
RMSE e t e t T

=
= −∑ $                                                     (9) 

the meaning of all the variables in the right hand side of 
equation (8) and (9) are the same as those in equation (7). The 
instantaneous validation results based on these two statistics are 
listed in Table IV and Table V, respectively. It can be seen from 
Table IV that most of MAPEs derived from the MEF model are 
smaller than those from VT-Micro model and POLY model. It 
seems that MAPEs for CO2 emission and fuel consumption are 
comparatively lower than those for the other three pollutants. 
On the other hand, we can also say that the MEF model 
performs best by comparing RMSEs listed in table V because 
the MEF model generates the smallest RMSE values in most of 
time. However, POLY model can also give the lowest RMSE 
values in some cases.. In addition, the RMSE of HC, CO and 
NOx emission for LDVII vehicles are obviously larger than 
those for LDVI vehicles. But the RMSE of CO2 emission and 
fuel consumption for both vehicle categories are always 
similar. This may imply that the LDVII vehicles can produce 
more emissions than LDVI vehicles do based on the same fuel 
consumption.  

To illustrate the instantaneous estimation performance of the 
MEF model compared to the other two models, two 
second-by-second validation examples are graphically showed 
in Fig. 3 (LDVI) and 4 (LDVII). From Fig. 3, it is easy to tell 
that all of the three models can well capture the trend of real 
world emission trajectory and fuel consumption trajectory. 
During low emission periods, all of them have similar 
prediction performance. But during high emission periods, 
MEF model performs better than the other two models because 
it can give closer estimations to the peak values. However, all 
of them failed to reflect the peak measurements for HC 
emission. In Fig. 4, the emission and fuel consumption profiles 
generated by these three models can still follow the tendency of 
field measurements. We notice that the MEF model make more 
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accurate estimations at low emission areas while POLY models 
give overestimations at the same areas. However, all of these 
models still considerably underestimate HC emission at peak 
emission areas. 

B. Aggregate validation 
In our experiments, all of the recruited vehicles were tested 

on the same predesigned test route from the start to the end. So 
the aggregate emission factors (g/km) and fuel consumption 
(g/km) of each run for vehicles of the same category are 
expected to be similar or comparable. To validate the MEF 
model in an aggregate way, we randomly selected three data 
sequences for both categories as validation samples. Each data 
sample is composed of data of peak-hour run and off-peak hour 
run from the same vehicle. Then we calculated the real-world 
average emission factors and energy consumption rates for 
each data sample by dividing the total amounts of emissions 
and energy consumption by the distance of the test route. 
Afterwards, the second-by-second predictions generated by the 
MEF model were aggregated into a sum, which can be also 
divided by total distance to derive the average emission factors 
and energy consumption. The same procedure would be 
performed on VT-Micro model and POLY model similarly. 

From the comparison point of view, ARTEMIS road 
emission model [4] was also adopted in this paper to estimate 
the average emission factors and fuel consumptions. The 
ARTEMIS road model was developed within the framework of 
the EU 5th FP project ARTEMIS (Assessment and Reliability 
of Transport Emission Models and Inventory Systems). It is 
composed of two types of emission models, namely Traffic 
Situation based models and Average Speed based models. The 
former are designed as non-continuous or discreet models, 
opposite to instantaneous or average speed models, based on 
different traffic situations, which can be described by typical 
speed-time curves. However, average speed based models are  

also provided in ARTEMIS in order to keep continuity with 
previous models like COPERT. In our study, the average speed 
based models for gasoline passenger car in ARTEMIS model 
were used and the general mathematical form for these models 
can be demonstrated as follows:

 
 

2

21
a c v e v fEF

b v d v v
+ ⋅ + ⋅

= +
+ ⋅ + ⋅

                                            (10) 

where EF is emission factor or fuel consumption (g/km), v is 
average speed, a, b, c, d, e, f are model coefficients. However, 
models of CO2 emission are not constructed in ARTEMIS. 
Hence only the emission factors of HC, CO, NOX and fuel 
consumption are calculated in ARTEMIS model and compared 
with estimations of other models. 

Fig. 5 illustrates the comparison of aggregate emission 
factors and fuel consumption derived by MEF, ARTEMIS, 
VT-Micro, and POLY models with actual measurements. It can 
be seen from Fig. 5(a) (LDVI category) that the MEF give the 
closest predictions to measurements compared to the other 
three models in most cases. The average absolute error between 
the MEF predictions and measurements are 12.0%, 9.9%, 
11.6%, and 6.3% for HC, CO, NOx, and fuel consumption, 
respectively. Generally VT-Micro model has similar prediction 
performance with MEF model while POLY model tends to 
generate considerable overestimation of emissions and fuel 
consumption. It can be also noted that ARTEMIS model greatly 
underestimate CO emission factors. On the other hand, we can 
still tell from Fig. 5(b) (LDVII category) that MEF model 
performs best among the four models with the average absolute 
errors of 11.4%, 5.4%, 18.7% and 8.1% for HC, CO, NOx, and 
fuel consumption, respectively. However, ARTEMIS model 
still give prodigious underestimation of HC, CO, and NOx 
emission factors, which may implies that these data collected in 
Beijing cannot be applied with ARTEMIS model because it 
was developed based on European measurements. 

TABLE IV 
COMPARISON OF MODEL VALIDATION RESULTS BY MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) 

Vehicle 
number 

Mean Absolute Percentage Error (%) 

CO CO2 HC NOx FUEL 

MEF VT-Micro POLY MEF VT-Micro POLY MEF VT-Micro POLY MEF VT-Micro POLY MEF VT-Micro POLY 

LDVI-1 58 64 61 49 52 51 65 71 68  81 84 88 42 49 51 
LDVI-2 53 58 58 56 54 60 73 77 73  79 82 89 50 54 60 
LDVI-3 52 54 54 54 54 58 66 70 89  80 82 73 54 54 57 
LDVII-1 52 52 57 66 69 74 52 60 62  63 67 65 47 46 54 
LDVII-2 64 71 72 43 51 50 46 51 53  60 63 66 44 48 52 
LDVII-3 56 57 59 54 55 56 50 51 53  58 60 60 54 54 56 

TABLE V 
COMPARISON OF MODEL VALIDATION RESULTS BY ROOT MEAN SQUARE ERROR (RMSE) 

Vehicle 
number 

Root Mean Square Error (g/s) 

CO CO2 HC (10-2) NOx(10-2) FUEL 

MEF VT-Micr
o

POLY MEF VT-Micr
o

POLY MEF VT-Micr
o

POLY MEF VT-Micr
o

POLY MEF VT-Micr
o

POLY 

LDVI-1 0.066 0.073 0.063 1.428 1.514 1.602 0.14 0.18 0.16 0.59 0.62 0.56 0.482 0.508 0.536 
LDVI-2 0.053 0.059 0.051 1.491 1.524 1.571 0.29 0.30 0.27 0.60 0.62 0.60 0.496 0.508 0.520 

LDVI-3 0.049 0.054 0.047 1.218 1.226 1.236 0.28 0.30 0.28 0.90 0.92 0.78 0.406 0.414 0.417 

LDVII-1 0.097 0.097 0.095 1.129 1.143 1.151 0.87 0.88 0.71 1.28 1.37 1.48 0.408 0.403 0.393 

LDVII-2 0.117 0.129 0.139 1.314 1.406 1.419 0.46 0.49 0.55 1.40 1.57 1.66 0.529 0.567 0.580 

LDVII-3 0.104 0.103 0.093 1.113 1.150 1.158 0.46 0.47 0.42 1.48 1.50 1.25 0.406 0.402 0.388 
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Fig. 3 An example of instantaneous validation of the MEF, VT-Micro, and POLY model for LDVI vehicles 

 
Fig. 4 An example of instantaneous validation of the MEF, VT-Micro, and POLY model for LDVII vehicles
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(a)                                                                                                                 (b) 

Fig. 5 Comparison of aggregate emission factors and fuel consumption derived from the MEF, ARTEMIS, VT-Micro, and POLY models with 
measurements for (a) LDVI vehicles; (b) LDVII vehicles. 
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VI. CONCLUSION 
In this paper, we presented a framework for developing 

microscopic emission (HC, CO, NOx, and CO2) and fuel 
consumption models (MEF model) for light-duty vehicles. 
Based on the previous study on VT-Micro model and POLY 
model, we introduced composite acceleration, which is 
calculated as the weighted mean of acceleration of current time 
and accelerations of nine previous seconds, into MEF model 
with the purpose of capturing the effects of historical 
accelerations interacting with current speed on emission and 
fuel consumption. The data used in this paper were collected 
from 28 vehicles under real-world driving conditions in Beijing 
by a PEMS instrument (OBS-2200). All of the test vehicles 
were divided into two categories, LDVI category and LDVII 
category. The MEF model, as well as VT-Micro and POLY 
model, was separately calibrated for both categories using the 
collected PEMS data by multivariate least-squares regression 
method. Both instantaneous validation and aggregate 
validation were performed to verify the prediction accuracy of 
the MEF model. In instantaneous validation, the MEF model 
well captured the trend of real-world emission and fuel 
trajectories and showed best performance according to MAPE 
compared to the VT-Micro and the POLY model. In aggregate 
validation, the ARTEMIS model was also adopted in this paper 
for comparison with the MEF model, and the results showed 
that MEF model can give most accurate estimations compared 
to actual measurements.  

In the future research, several issues related to the MEF 
model are supposed to be investigated further. First, the value 
of AIF (α) in the MEF model needs further analysis by using 
some numerical methods for model identification, such as 
Gaussian-Newton method and Levenberg-Marquardt (LM) 
method. Second, more PEMS data should be collected from 
other vehicle categories, such as trucks, bus, and high-duty 
vehicles, in order to broaden the application range of the MEF 
model. Third, the applicability of the MEF model, which is 
developed for Beijing, in other cities should be examined. 
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