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Experimental study of coating flows in a partially-filled horizontally

rotating cylinder

S. T. Thoroddsen, L. Mahadevan

Abstract We describe a number of different phenomena seen
in the free-surface flow inside a partially filled circular cylinder
which is rotated about its horizontal axis of symmetry. At low
angular velocities the flow settles into a steady two-dimen-
sional flow with a front where the coating film coalesces with
the pool at the bottom of the cylinder. This mode becomes
unstable at higher angular velocities, initially to a sloshing
mode on the rising side of the coating film and then to an axial
instability on the front. The undulations that appear on the
front grow into large-amplitude stationary patterns with
cusp-like features for some parameter values. At still higher
angular velocities and volume fractions, a number of different
inertial instabilities and patterns appear. We present a phase
diagram of the various transitions and characterize some of the
more prominent instabilities and patterns in detail, along with
some possible mechanisms for the observed behaviour.

1
Introduction
Coating flows are fluid flows which lead to thin films of liquid
forming onto surfaces as a result of external forces associated
with inertia, viscosity, gravity, surface tension etc. Besides
being important in a number of industrial processes, Benkreira
et al. (1994), they form an interesting system in which to study
free-surface instabilities in hydrodynamics.

In this paper, we present some experimental observations of
the behaviour of a viscous fluid partially filling a horizontally
rotating cylinder. We undertake a comprehensive experimental
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study of the various phenomena that present themselves in the
course of the transition from the stationary pool at the bottom
of the cylinder to the homogeneous rimming flow uniformly
coating the cylinder, for various values of the problem
parameters. Our main aim is to present a reasonably complete
catalog of the various phenomena observed, including

some that seem to have escaped the attention of earlier
researchers.

The system is atypical, in that although the extreme states
of the fluid flow corresponding to angular velocities of zero
and infinity are trivial, a complicated sequence of transi-
tions connects these two states. At zero velocity, the fluid is
stationary and lies in a pool at the bottom of the cylinder, while
at very high angular velocity, the fluid rotates rigidly with the
cylinder and forms a homogeneous film that coats the cylinder
uniformly. It might not be an exaggeration to suggest that this
configuration is the free-surface analog of the well-studied
Taylor—Couette problem.

An early study of free-surface flows in this geometry goes
back to the work of Balmer (1970), who pointed out the
existence of hygrocysts, or walls of water in rapidly rotating
partially filled horizontal cylinders. Kovac and Balmer (1980)
have also studied external hygrocysts experimentally. Later
Karweit and Corrsin (1975) documented similar observations
but without quantifying them. Phillips (1960) analyzed the
propagation of disturbances on the free surface of the homo-
geneous fluid film that coats the cylinder at large angular veloc-
ities, while Ruschak and Scriven (1976), Orr and Scriven (1978)
and Lin (1986) studied the two-dimensional problem numeri-
cally and observed recirculation zones in the flow. All these
studies took viscosity, surface tension and inertia into account.

In 1977, Moffatt used lubrication theory to study the
problem of a viscous film coating the exterior of a cylinder.
Following earlier ideas of Lighthill and Whitham, he presented
a kinematic wave model to partially explain the evolution of
perturbations in the azimuthal direction, that lead to back-
ward-breaking waves. He also presented some qualitative
experiments that suggested a large number of questions that
remain unanswered.

Later work inspired by Moffatt’s paper includes the papers
of Johnson (1988), Preziosi and Joseph (1988), Melo (1993) and
most recently Benjamin et al. (1995) and Goodwin and Tavener
(1996). These authors have focused on trying to achieve
an analytical and numerical understanding of the steady
two-dimensional coating flow at low angular velocities which
shows a singularity that is regularized by surface tension. Melo
(1993) presented some experimental data for the onset of



three-dimensional instabilities followed by some analysis
based on Moffatt’s lubrication theory. Other attempts at
determining the wavelength of the spanwise undulations
(Johnson 1990; Zhang 1995) have not been successful. Vallette
et al. (1994) have studied the spatio-temporal chaos in the
waves on the front.

Before continuing, we mention two widely studied config-
urations that are related to the current experiment, and shed
some light on the possible mechanisms of instability and
pattern formation. The first is the classic experiment of flow
of a thin fluid film down an inclined plane, first studied
by Kapitza and Kapitsa (1949) and recently by Goodwin
and Homsy (1991) who give a summary of the history of
the problem. The ridge of fluid at the contact line in this
configuration becomes unstable to height perturbations in the
transverse direction and leads to the evolution of finger-like
patterns that evolve with time, which are only just beginning to
be understood theoretically. We will argue later that the axial
instability in our experiment may arise for related reasons,
although their evolution is very different.

A second related configuration arises in the flow between
two eccentrically mounted rotating cylinders separated by
a small gap. This setup was first studied by Pearson (1960) and
recently has been the subject of a series of papers by Rabaud
et al. (1991) and Rabaud (1994), and Pan and deBruyn (1994)
and deBruyn and Pan (1995) where variety of stationary
patterns, traveling waves and their stability, and spatio-
temporal chaos have been reported on. An essential difference
between this configuration and ours is that the free-surface in
the so-called printer’s instability is essentially one-dimen-
sional, which is clearly not the case in the coating flow
problem.

In Sect. 2, we present the various dimensionless numbers
that govern this phenomenon. In Sect. 3 we describe the
experimental setup. Experimental results are presented in
Sect. 4 and correspond to observations of the free-surface flow
as the angular velocity, volume fraction and viscosity of the
fluid are varied.

2

Dimensionless parameters

The richness of flow phenomena observed here arises due to
the interaction of gravity, viscous forces, inertial forces as well
as surface tension. To quantify the dependence of the various
transitions in the coating flow on these forces, we resort to
dimensional analysis. The various problem parameters are: the
radius R, and length / of the cylinder, the volume of fluid V},
the density p, the viscosity u and the surface tension o, the
angular velocity of the cylinder w and the acceleration of
gravity g. Therefore, by the Buckingham 7 theorem, there are
5 dimensionless numbers, say

Fr=w’R/g
A=//R

Re=pwRhy/u, (2.1)

Ca=uwR/a,
n=V/(nR*!)
Here hy=V;/(2nR/) is the mean film thickness, Re is the

Reynolds number based on this thickness and the cylinder

velocity, Fr is the Froude number, Ca is the capillary number
and A is the aspect ratio of the cylinder. The volume filling

fraction is denoted by 7. We note that the Reynolds number as
defined represents the ratio of the inertial to the viscous forces
only when there is a pool at the bottom of the cylinder so that
there is a velocity gradient inside the fluid. At large enough
angular velocities, the fluid moves rigidly along with the
boundary and there is no relative motion and the effective
Reynolds number is zero.

The experiments are conducted over a wide range of these
parameters. The Reynolds numbers ranged from 10 to 20000
(based on Eq. (2.1)). Most of the phenomena are observed for
capillary numbers in the range from about 2 to 120.

3

Experimental setup

The experimental apparatus is a modification of a previous
device built by Johnson (1988) and later used by Zhang (1995).
It consists of a circular plexiglass cylinder supported at the
ends by two conical shafts. The drive-shaft is keyed to a pulley
and is connected to the motor through interchangeable wheels
driven by a belt. Two separate motors were used during these
experiments. Both had a speed range of 1750 rpm, with manual
speed control and a least-count of 0.5% of the maximum. This
allowed cylinder angular velocities of up to 8 cylces/s. The
angular velocity was determined directly by measuring the
time required for a specific number of rotations of the cylinder
using a stopwatch and comparison with a calibrated tacho-
meter. Repeated calibrations showed that the tachometer
agreed with the direct measurements to within 0.5%. Investiga-
tions of video frames shows that long term variation in the
rotation rate is negligible. The observed flow phenomena were
independent of the direction of rotation. The cylinder axis was
levelled using the fluid level inside the stationary cylinder. The
coordinate axes and important dimensions are defined in
Fig. 1. The fluid viscosity was varied by more than two orders
of magnitude by using a glycerin-water mixture of varying
concentration, giving values between 2 and 1020 centipoise.
The density of the mixture increases somewhat with the
viscosity, as the specific gravity of the glycerin was 1.22. The
surface tension was measured using a ring-tensiometer and
was observed to be fairly independent of the mixture strength,
being about 69 +4 dyn/cm. Care was taken to ensure that
hygroscopic effects were not important. The viscosity of the
mixture was frequently measured and the room temperature
was monitored. The fluid was dyed with Congo Red dye to

facilitate visualization.
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Fig. 1a, b. Schematic of the cylinder cross-section and the coordinate
system. a Theliquid pool at the bottom of the cylinder spanning angle
20, at rest; b formation of the front on the receding side of the
cylinder, during rotation



The results discussed here were primarily obtained with
a cylinder of inside-radius R =6.25 cm and aspect ratio //R of
7.8. Unless otherwise stated, we always refer to the results
obtained using this cylinder. Four other cylinders were used in
specific cases. They had the following inner radii and (aspect
ratios): 2.35 cm (16.0), 3.8 cm (15.4), 7.1 cm (8.2) and 14.6 cm
(5.9). The aspect ratios were based simply on the ease of
availability of the cylinders.

The volume filling fraction n was varied between 1% and
about 30%. Dewetting of some parts of the surface did
sometimes occur for very small volume fractions, but was
avoided in the experiments and limited the smallest volume
fractions that could be studied. Care was taken to adjust the
angular velocity slowly (compared to the viscous time scale)
and in small increments, and to let the flow adjust to the new
conditions, as will be described in Sect. 4.4.1.

4
Experimental results

4.1

General flow phenomena

We start by describing a typical progression of phenomena
encountered when the angular velocity of the cylinder is
increased. Initially the liquid sits in a pool on the cylinder
bottom, filling an angle 26,, defined in Fig. 1a. At very slow
rotation rates a thin film is pulled out of the pool, wetting the
entire cylinder inner surface. As the fluid film enters the
bottom pool on the receding side a sharp straight front is
created. An accompanying recirculation region is also formed
in the pool, as shown schematically in Fig. 1b. This recir-
culating region grows in the azimuthal direction with increas-
ing w and the front is pulled farther in the 0 direction. With
increased angular velocity the sheet pulled out of the pool
also thickens. It eventually becomes unstable to a sloshing
mode of motion on the rising side of the cylinder. This falling
wave is initially straight along the span, but at higher w it
breaks up into a number of separate 2-dimensional capillary-
gravity waves with approximately parabolic shapes. For

a limited range of » these waves, which we call pendants are
stationary. At still larger o this sloshing instability is overcome
by the viscous shear and the flow becomes essentially 2-
dimensional. For even higher angular velocity the front on the
receding side of the cylinder, where the fluid enters the pool
becomes unstable and often develops undulations. The ampli-
tude of these undulations grows with @ and the free surface
develops cusp-like features for certain parameter values. At
very high angular velocities the front gets pulled over the top of
the cylinder. In this rimming mode where centrifugal forces
dominate, the fluid coats the cylinder surface uniformly and
rotates rigidly with it. The angular velocity w, at which the
fluid just enters the rimming mode (when o is increased) is
larger than the angular velocity w, at which the fluid leaves the
rimming mode (when o is decreased). This hysteresis is more
pronounced for larger filling fractions.

Other phenomena associated with the transition regions
include the popping or fluttering of surface features associated
with strong localized vortical flows inside the sheet, air
entrainment at the front, which sometimes leads to frontal
avalanches and the shedding of hydroplaning drops. For large

filling-fractions curtains or hygrocysts [Balmer, 1970] spann-
ing the entire cross-section of the cylinder are formed. For
small fluid viscosity the flow inside the pool and the rising
sheet of fluid becomes strongly turbulent. However some
patterns do persist even in the presence of this turbulent flow.
Figure 2 shows the regions of parameter space where the
different flow phenomena were observed. Each of these figures
characterizes the phenomena for a fixed value of viscosity,
in terms of w and #. Notice the overlapping of some of the
regions, such as the coexistence of the sloshing instability
and counterflowing jets inside the pool, shown in Fig. 2(a).
We next turn to more detailed description of the various
phenomena mentioned above.

4.2

Sloshing instability

Initially the thin film pulled out of the pool is stable and the
front is straight in the axial direction. As the angular velocity
increases, the location of the front gets pulled farther in the
direction of the rotation.

A crude measure of the coating capability is given by the
angular velocity required to pull the front to the bottom of the
cylinder, 6 =270°. The effective angular velocity scales with
1°g/ Ry, as is shown in Fig. 3. This scaling is a result of
balancing gravity gsin 0h and the effective viscous force
UwR/h, assuming that for small volume fractions # =~ h/R.
Simultaneously, the film being pulled out of the advancing edge
of the pool thickens. At a critical angular velocity w, this rising
film becomes unstable and it begins to slosh to and fro. The
onset of this instability is fairly independent of 1 for fixed y, as
shown in Fig. 4. Comparison between the results for different
values of u shows that the onset of the instability is delayed
with increased viscosity and w.~O(u"*) as shown in Fig. 5.

The edge of the sloshing film does not remain straight as
o increases and breaks up into a series of falling pendant-like
objects (see Fig. 6 below). These pendants are randomly spaced
along the cylinder’s axis. For even larger o the pendants get
pulled over the top of the cylinder. The angular velocity at
which the pendants disappear o, is also shown in Fig. 4. The
restabilization occurs in a rather constant band, independent
of viscosity. The restabilization shows however a weak, but
clear dependence on 1, i.e. for larger volume fractions it
stabilizes at lower w, see Fig. 4. The dashed lines in Fig. 4 mark
the n-bounds of the unstable region, beyond which no
instability was observed.

The evolution of the falling film as w is increased is not
regular and depends strongly on the angular acceleration. This
leads to a variety of phenomena: the falling front exhibits axial
traveling wave, just before the straight front breaks up into
pendants. Frequently, two or more sloshing wave fronts appear
at different angular locations in the sheet. This is true for both
the less viscous cases, as well as for the largest cylinder. In
isolated cases the same edge of the sloshing front splits into
two parts, one part falls down as before, while the other part is
pulled over the top of the cylinder. Vallette et al. (1994) and
Melo and Daoudy (1993) have studied the chaotic behaviour of
these travelling waves.

The pendants correspond to capillary gravity waves as
shown in Fig. 6 for a stationary isolated pendant. Similarly for
randomly falling pendants in this parameter range, intricate
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checkerboard patterns of interacting capillary waves are
generated (not shown here). For a more viscous fluid the
pendant has only one crest.
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4.3

Stationary and oscillating pendants

For a limited range of w and u (see Fig. 2) the falling pendants
are stationary. This configuration represents a balance between
gravity and viscous forces. Figure 6 shows typical shapes of
these stationary pendants. The pendants are often align
equidistantly along the span, but their formation, as  is
increased, often leaves sections of the cylinder devoid of
pendants. For slightly larger  the viscous stress overcomes
gravity and pulls the pendants over the top, leaving a uniform
stable sheet. Figure 2 shows the regions of existance of the
stationary pendants in the #—c plane for fixed values of .
Melo (1993) has reported similar pendants.

A single stationary pendant sometimes appears in a different
parameter range at much larger o, just before the whole
straight front is pulled over into rimming mode. In these
instances, the straight fluid front is first pulled over into
rimming mode at the two ends of the cylinder. With increasing
o this rimming region then progresses towards the center,
ultimately leaving an isolated pendant at the center of the
cylinder. This pendant is much more pronounced and thicker
than the ones described above. Figure 7 shows such a pendant.
The curved surface of the cylinder makes the precise deter-
mination of the pendant shape difficult, but it is approxi-
mately parabolic. The tips of these pendants have higher
curvature then the ones describe above. Figure 7 shows the
sideview of such a pendant which has induced at strong
localized thickening in the fluid sheet above it at the top of the
cylinder. At slightly higher w this thickening ridge will fall
through to form a curtain spanning the cross-section, as
described in Sect. 4.6.

In a small parameter range, two adjacent stationary pen-
dants sometimes interact dynamically as sketched in Fig. 8
from a sequence of video frames. Excess fluid collects in the
region between and above the two pendants and is shed
periodically. This fluid falls between the pendants, combining
with the two and dragging them down towards the bottom
pool. The viscous shear causes them to recoil and the pendants
move up on the rising side, where some fluid is transported
over the top of the cylinder. The two pendants resume their
original positions before the process repeats itself. The

Top of cylinder
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Fig. 8. A sketch made from a sequence of video frames showing the
periodic shedding and recovery of fluid between two stationary
pendants, for =42 cP and n=10%. The cylinder angular velocity is
1.05 cycles/s and the shedding has a frequency of 0.36 Hz. The times
within the shedding cycle are the following, (1) 0. (2) 0.7; (3) 0.8;
(4) 1.0; (5) 1.1; (6) 1.3; (7) 1.5; (8) 1.6; (9) 2.8 sec

mechanism responsible for the oscillations of the pendants
is not clear; however they seem to be similar to relaxation
oscillations with two time scales.

This mechanism is very stable and the oscillations with
a fixed period continue over long times (e.g. it was observed for
900 shedding periods without change).

4.4

Frontal instability and the formation of large amplitude
stationary patterns

For an extensive region of parameter space, axial undulations
appear on the front on the receding side of the cylinder, see
Fig. 1b. These undulations are stable, but sometimes oscillate
slightly sideways, especially for smaller viscosities. Figure 9
shows the region in y1—# space where frontal undulations are
observed.

The development of the instability with increasing w is
strongly dependent on the volume fraction. For large # the
flow-field is dominated by strong counter-flowing jets inside
the pool, which can lead to backward-facing (relative to the
front) steps resembling duck bills on the pool surface. For
smaller 17 (<6%), the undulations develop large amplitude
stationary waves with cusp-like features which we call shark-
teeth, characterized by strong vortical flows. Figure 2 shows the
regions in w —1 space where the undulations were observed,
for different values of p. For certain values of u the parameter
range where undulations occur can be split up into two
regions. The two regions are associated with the above-
mentioned shark teeth and duck bills respectively.

The frontal instability and its nonlinear behaviour were
observed for all five cylinder sizes tested, representing a vari-
ation in cylinder radius by a factor of 6.2. This is evidence that
their presence is not limited to a narrow range of cylinder
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curvatures. In fact a similar instability occurs at the contact-
line front of a fluid flowing down an inclined plane [Huppert,
1982]. We will now describe each undulation-regime

in turn.

4.4.1

Shark-teeth

The frontal undulations start out being approximately sinu-
soidal, but as o is increased the amplitude of these undula-
tions grow into cusp-like stationary waves. We call these forms
“shark teeth”, see Fig. 10.

The changes in wavelength 4 and amplitude f of the
undulations as a function of w, were studied for different u and
1. Figure 11 shows typical experimental results for 1 vs o
for a fixed u and a limited range of . The wavelength 4 is
not a monotonic function of w, but appears to be strongly
dependent on the angular location of the front. The wavelength
A is a maximum when the front is at 6 =~ 270°, when its local
dynamics are minimally affected by gravity. This angular
location of the front is in turn strongly dependent on x and #,
as shown in Fig. 3. The importance of all three independent

Fig. 6. Shape of stationary pendant. for u=8.5 cP, n=5.2% and
w=1.1c/s. Observe the capillary waves

Fig. 7. Photographs of the thick pendant that remains after the rest of
the flow along the cylinder axis has been pulled over into rimming
mode, for u=162 cP, n=9.3% and w=3.3 c/s. This sideview shows
a thick ridge running from it up to the top of the cylinder

Fig. 10. Shark teeth along the entire cylinder, for =49 cP,
w=3.2cls, 1=6.0%

Fig. 14a, b. The dimple arrangement relative to each cusp. a Photo-
graph; b sketch of the underlying flow field

Fig. 15. Long-duration transient during the tip-splitting of a single
wave as o is changed. Viscosity is u=49 cP, ®=4.4 c/s, 1=9.1% for
cylinder radius of R=3.8 cm and length L=59 cm

Fig. 16. Photograph of the fish-like patterns as the dimples above
the cusps have been pulled over the top of the cylinder, leading to
a periodic thickening on the top; u=25cP, w=3.9 c/s and n=4.9%

parameters (w, u and 77), makes the scaling of the wavelength
difficult and probably questionable. Empirically, we find that
the A-curves for different 7 show similar behaviour when

drawn vs. w/\/n.

To quantify the response of the front to an impulsive angular
acceleration, the following test was performed; the cylinder is
accelerated quickly from a straight-front state into a region
where strong undulations appear. The adjustment to the final
wavelength takes place in less than 10 viscous periods A*/v. The
flow adjusts to smaller accelerations more quickly. This is
shown in Fig. 12. To avoid transients, the angular velocity was
therefore varied slowly.

Figure 13 shows the normalized amplitude /1 of the
undulations for fixed u and different #; it is a monotonic
function of w. Here the amplitude is twice the usual one, i.e. it
is the distance between a crest and a through. For the largest
amplitudes the shark-teeth often oscillate axially, causing
oscillations in the value of 8. In these cases the maximum value
of f§ has been used.

While the mechanism for the axial instability is not com-
pletely clear, it seems as though it might be very similar to
the mechanism for the fingering instability in the flow down an
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inclined plane (Huppert 1982), Troian et al. (1989), Goodwin
and Homsy (1991). In that scenario, the size of the ridge of
fluid at the contact line, determined by the capillary number,
determines the transverse wavelength of the fingers. Any
transverse height perturbations cause a reduced vertical shear
and a runaway growth of the finger as first shown by Goodwin
and Homsy (1991). This might be modified by the dynamics at
the contact line itself as suggested by Bertozzi and Brenner
(1996). In our experiment there is a recirculating region at the
bottom of the cylinder corresponding to an eddy that sits on
the thin fluid film that coats the cylinder. The stagnation point
at that leading edge of the recirculating region corresponds to
the contact line in the inclined plane flow. Then, as the angular
velocity is increased to some critical value, the recirculating
region might lose stability to a varicose mode in a manner
similar to that in the inclined plane. This idea is currently being
studied in the context of a second-order lubrication theory by
Hosoi and Mahadevan (1996).

The flow field around the cusps was visualized by seeding
fluid with small particles. This revealed two counterrotating
vortices which reconnect to the fluid surface on both sides of
the cusp. These strong vortical flow close to the front lead to
a number of localized bumps and dips (dimples) in the free
surface. Some dimples are in phase with the cusps, others
develop near the center of each wave as well as at the stagnation
point upstream of the cusp; for example, the configuration with
5 dimples is shown in Fig. 14.

The flow field on the rising side of the film associated with
the frontal undulations sometimes develop staggered patterns.
These shapes often appear to be of a transient nature,
appearing when the angular velocity is increased, but usually
disappear after long time. They last however for long enough
to represent a quasi-stable state. Similarly the shark teeth
sometimes develop long-duration transient states, with com-
plicated crest-forms, shown in Fig. 15. For the largest cylin-
der the crest of the teeth sometimes develop lips reminiscent
of the ridge at the contact line for a fluid flowing down an
inclined plane (Huppert 1982).

As the dimples get pulled up to 0=0° the teeth become
unstable and oscillate axially. For moderate #, this leads to
a stable fish-like pattern, shown in Fig. 16. Here, the thickness
variations of the coating fluid film are clearly visible.

Finally, we mention the robust nature of the cusp-like
patterns. They form very quickly when the fluid falls out of
rimming flow and forms a new front.

4.4.2

Metastable states

We have observed a stable state consisting of a straight front
with only one cusp (see photograph in Thoroddsen and
Mahadevan 1996). This state is metastable; depending on
initial conditions one can have either an isolated cusp or

a straight front. This state was reached by suddenly decreasing
the cylinder rotation speed just before the transition to
rimming flow and is very robust. It persisted for at least 1200
cylinder rotation periods. This single cusp sometimes exhi-
bited small-amplitude vertical periodic oscillations with

a period of about 3 times the cylinder rotation period. In

a different metastable state half of the cylinder had a straight
front, the other half had shark teeth with cusps. This con-
figuration was observed to change slowly. The cusp adjacent
to the straight front would suddenly fall down to the level
of the straight front. One cusp would in this manner dis-
appear after about 20 cylinder rotation periods. The straight
section would invade the cusped region. These states were not
realized if the cylinder was accelerated slowly.
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Counter-flowing jets and surface steps

Here we describe the frontal undulations and flow fields inside
the pool, which appear for volume fractions larger than those
described above for the shark teeth. For large 1 the flow inside
the pool of the cylinder becomes three dimensional very
quickly. The recirculating region develops spanwise variations
with strong localized counter-flowing jets. This flow can lead to
steplike patterns on the pool surface (shown in Fig. 17) as well
as smooth undulations of the front. We refer to these surface
steps as a duckbills. The counter-flowing jets produce strong
vortices inside the pool. The localized vortical motions are at
about 45° relative to the cylinder axis and produce the surface
duck bills at the center of the pool.

—

Fig. 17. Photograph of the backward-facing steps on the surface of the
deep pool

Fig. 19. Travelling wave pattern on the front for the largest cylinder,
R=14.6 cm, u=47 cP, ®=2.9 c/s and 1=5.1%, with the wavelength
A= 2.5cm

Fig. 22. a Equispaced curtains along the entire span of the cylinder,
for £=120 cP, n=18.2%, w=4.9 c/s; b closeup of a partial cur-
tain, for the 59 cm long cylinder, R=3.8 cm, =28 cP, 1=32.7%;
®=17.2 c/s. The average spacing of the curtains along the whole
cylinder is 3.3 cm in this case

Fig. 23. Air entrainment and avalanche, traveling along the front. The
avalanches are converging from both sides, for u=144 cP, ®=3.8 c/s,
n=14.7%. The initial angle of the front was 0 ~ 260° and following
the avalanche the front has retreated by about 10°

Fig. 25. Hydroplaning drop being shed out of the bubbly front, for
u=144 cP, n=11.6% and w=3.9c/s
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Fig. 18a, b. Wavelength of the frontal undulations associated with the
counterflowing jets vs. cylinder rotation rate. a for a fixed =29 cP
and n=(Q) 8%; (M) 9%; (A) 10% and (®) 12%; b wavelength for
a few representative parameters, with the following values of (1, w).
(10%, 17 cP) (O); (9.5%, 24 cP) (A); (17%, 58 cP) (V¥); (26%, 165)
(H). Note that the wavelength increases with viscosity. The sudden
reduction in the wavelength for the open triangles marks the transition
into traveling waves

In a different parameter regime (larger #) this deep pool flow
generates a pronounced bump on top of each undulation, in
phase with the tip of the undulations. Axial oscillations of these
large bumps are common.

The wavelength of the frontal undulations associated with
the counter-flowing jets is plotted as a function of  in Fig. 18.
Here, in contrast to the wavelength of the shark-teeth which
is non-monotonic, the wavelength decreases monotonically
with w. The wavelength is longer at higher viscosities. For
the largest w there is a sudden decrease in A. This change
is associated with a sudden transition from stationary undula-
tions to axial traveling waves, shown in Fig. 19. These waves
start at a fixed interior point along the front and can propagate
in both directions. The speed of the traveling waves on the
front is very small. For y=26 cP and #=9.5% at ®=4.66 c/s,
the axial velocity of the (1=1.6 cm) waves is 2.3 cm/s, while
the azimuthal speed of the cylinder 2nwR is 80 times this
speed. The traveling waves occur at angular velocities where no
significant pool remains at the bottom of the cylinder. Similar
sideways-traveling parity-breaking waves have been studied by
Pan and deBruyn (1994) for the printer’s instability.

4.5

Dimple oscillations

As the angular velocity is increased the surface dimples above
the cusps are pulled farther up the rising side of the cylinder.
When the dimples approach the vertical (6 ~ 0) the tooth
pattern is often observed to become unstable and starts
oscillating sideways, sometimes violently. The dimples do also
in some cases start oscillating slowly in staggered pairs in the
azimuthal direction, with the adjacent dimples being out of
phase. These oscillations are coupled to the axial motion of
adjacent shark-teeth. Specific parameter values where this
phenomena is observed are shown in Fig. 20a.

For a limited range of parameters, where the cusps sit close
to the bottom of the cylinder, the dimple regions above the
shark-teeth cusps start popping, in what looks like the surface
rising and falling very suddenly in a localized spot. This
instability is accompanied by slight axial motions of the two
adjacent shark teeth, which translates the cusp slightly in the
0 direction. This popping occurs in a very narrow range of
parameters, shown in Fig. 20a. The popping occurs locally, but
often travels along the axis from cusp to cusp, in what appears
to be a quasi-periodic manner.

The popping described above is a temporally discrete
phenomena, with the fluid surface remaining calm, until it
suddenly rises in a burst at a localized spot above the cusp,
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Fig. 20. a Range of parameters where dimple popping and flutter is
observed, for u=29 cP. The diamond symbols identify parameter
values where the staggered dimples oscillate azimuthally; b frequency
of the flutter for different rotation rates and volume fractions 7 of (H)
6.5%; (O) 7%; (A) 7.5% and (+) 8.5%
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Fig. 21a, b. Curtains spanning the cross-section of the cylinder.
a Schematic of the pathlines inside the curtains; b partial curtains

whereas flutter refers to a continuous high frequency motion,
which is clearly visible in the video sequences from light
reflected from the fluid surface. Flutter occurs for higher
rotation rates, over a large region further above the cusps. It
usually occurs above every cusp along the entire cylinder. This
flutter occurs for a wide range of w and is often intermittent in
time. It is therefore very unlikely that the flutter is caused
by resonance with slight vibrations in the cylinder driving
mechanism, but is instead induced by flow inside the coating
film.

The fluttering frequency was determined from slow-motion
playback of the video frames and is shown in Fig. 20b. The
flutter frequency grows with the effective angular velocity of
the cylinder.

The popping and flutter of the regions above the cusps may
be connected to the dynamics of the vortices in the fluid pool.
The large sensitivity of the cusped front feeds disturbances
down-stream, which affect the stagnation point under the
downstream dimple.

4.6

Fluid curtains

The combination of high volume fractions and large viscosity
leads to the formation of radial sheets of fluid that span the
whole cross-section and partitions the cylinder, see Figs. 21
and 22. These sheets were called hygrocysts by Balmer (1970).
Balmer’s observations were limited to much larger volume
fractions (17>40%) than are studied here. The formation of
these walls or curtains is often triggered at the ends, leading to
the concurrent formation of two such curtains, one at each end.
At higher w, additional curtains are formed until the entire
cylinder has been filled with them. The curtains have approx-
imately equal spanwise spacing. The flow inside the curtains
was studied by seeding the fluid with particles and is approx-
imately sketched in Fig. 21. The spacing of the curtains was
briefly studied and was found to be fairly independent of x. In
some cases the curtains only span a limited fraction of the
cylinder length as each curtain suspends a considerable
amount of the total fluid.

The formation of the curtains is usually preceeded by
thickening of a fluid ridge over the top of the cylinder, as
shown in Fig. 7; and is independent of whether or not the
coating fluid film has air entrained in it.

The lower half of the curtains sometimes exhibits large axial
oscillations of the size of ;4 without breaking.

Partial curtains can exist at rotation rates slightly lower
than the full curtains, see Fig. 22b. The partial curtains were

sometimes realized simultaneously along the entire span of the
cylinder. The flow field and the shape of the edge where

the partial curtain separates from the coating fluid film is
particularly intricate, due to the presence of a stagnation point
on the free surface of the fluid sheet on the cylinder.

4.7

Air-entrainment and frontal avalanches

For certain parameter values and relatively large #, air is
entrained at the front. Figure 23 shows such an event and
demonstrates how the air entrainment changes the front. In
this case the front was initially at 0 ~ 260°. As the air gets
entrained the front falls backwards, by about 10° (to 0 ~ 250°),
under gravity in a sudden avalanche. This is due to the
reduction in the effective viscosity of the bubbly sheet. Note the
presence of bubbles inside the sheet, in Fig. 23, only in the part
of the front where the avalanche has advanced. The avalanche
is usually initiated at one or two places and then travels axially
along the front. The air entrainment fan is at an angle of
around 45° to the axis and travels sideways at about 20 cm/s
for the case shown in Fig. 23.

In the presence of shark-teeth the entrained bubbles tend
to collect at the cusps, forming large bubbles, which pop
periodically.

Figure 24 shows the angular location of the straight front
where air starts being entrained, for different # and u. The
entrainment depends strongly on #, but appears to be fairly
independent of u. This is a surprising result, since it suggests
that the viscous forces in the fluid under the front do not affect
the entrainment directly. For lower values of u it requires
larger w to pull the front to a certain angular location, as shown
in Fig. 3. The entrainment mechanism appears to be dictated
by surface tension and gravity and # determines the thickness
of the recirculating region above the front. The conditions and
mechanism of this air entrainment is of great practical
importance and deserves further study.

4.8

Hydroplaning drops

When air is entrained under the front the shedding of drops
from the front can occur. This happens when the front is far
enough up on the rising side of the cylinder so that when the
front entrains air fluid drops separate from it. These drops
hydroplane on the fluid sheet. Figure 25 shows drops being
shed from an irregular bubbly front. The drops move along the
film like particles and often collide with each other without
coalescing.

The entrained bubbles grow and form stretched cusped
forms in the areas where the front breaks. The various shapes
of bubble-cusps in a different context have recently been
studied by Liu et al. (1995).

When the air entrainment occurs on the receding side, i.e.
when the front is at 0 <260°, the avalanche does not separate
from the front, due to the relative direction of gravity. In this
case the pool and fluid sheet have a large number of bubbles,
which collect at the cusps of the front and burst when they
become sufficiently large.

As the front enters the centrifugal mode, drops are often
created from the fluid sheet, forming hydroplaning drops at the
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Fig. 24. The angular location 0,;, of the front where air entrainment
begins vs. 1, for different viscosities; u=130 (O); 144 cP (®); 154 (%);
196 (A); 230 (@)

bottom of the cylinder, while the rest of the fluid is in rimming
mode. The larger drops are more prolate and sessile. The drops
oscillate back and forth for a while, before settling close to the
bottom of the cylinder. The formation and initial size of these
drops is different from run to run due to their random
creation. However, once they form, their dynamics show
interesting and repeatable behavior. The presence of a number
of drops, which in many cases slide slowly spanwise, leads to
collisions, usually without coalescence. As w is increased the
drops get pulled farther up the rising sheet, leaving a promin-
ent wake on the coating fluid film seen behind the drops in Fig.
25. As w is increased the drops suddenly shed some of their
mass, which gets absorbed in a burst into the underlying fluid
sheet. As w is increased further this process is repeated and the
drops become smaller. Figure 26 shows the drop size character-
ized by the axial drop diameter D as a function of o for

a typical drop. The best fit line on the graph shows a power-law
dependence with an exponent of D ~ ™"

If w is decreased smaller drops do in some cases coalesce, on
colliding. Smaller drops are occasionally observed in the wake
of larger drops and are higher along the rising side of the
cylinder.

The rotating drop is unstable above a certain rotation speed
and centrifugal forces expel a part of the fluid. Seeded particles
from the fluid film caught inside these drops show internal
rotation, but the tangential velocity due to this rotation rate is
much smaller than the corresponding translational speed of
the underlying support. A thin layer of air lubricates these
drops and the viscous forces generated in this layer force the
drop to spin.

The persistence of these drops at much higher rotation
rates than is required for the onset of the rimming mode,
may present problems in manufacturing using rotomolding
(Johnson 1990).

4.9

Rimming flow and hysteresis

For a large enough rotation rate centrifugal forces dominate
over gravity and the fluid forms a film that coats the cylinder
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Fig. 26. Axial diameter of hydroplaning drops vs. cylinder rotation
rate, for 1=230 cP and 1 =13.7%. The best fit line has a slope of —1.4
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Fig. 27a, b. Hysteresis in the transition to centrifugal mode. Solid
symbols indicate transition when o is increased, whereas open
symbols when w is decreased, for u=8.5 (O); 29 ([0); 66 (<); 189 (A)

a vs. volume filling fraction, n; b vs. 5/ ﬁ

almost uniformly in a rimming mode. The transition to this
mode does not scale with 7, as shown in Fig. 27. This is especially
true for the regimes where the shark teeth are present.

Melo (1993) studied the reverse process, first accelerating all
the fluid into the centrifugal mode and then slowly reducing
the rotation rate. This gives results that scale very well with
his dimensionless parameter. He noticed no hysteresis, but
focused on lower Reynolds numbers.



After all of the fluid has entered into rimming flow, one can
reduce o significantly below the value at which the rimming
transition occured, before the fluid falls out of that mode and
reforms a front. The transition from the centrifugal mode to
the front dominated region, is weakly dependent on # and g,
showing only a slight rise with 7 (see open symbols in Fig. 27).
In Fig. 27(b) this data is scaled with #/ \/ u. We observe that
the data from a wide range of viscosities collapse onto a
single curve and also that there is a specific value of #/ \/ U
below which no hysteresis is observed. The instability of
the centrifugally dominated mode is preceded by periodic
thickening of the film on the top of the cylinder. These
initial axial instabilities do not grow as in the conventional
Rayleigh—Taylor instability because of the fluctuating direction
of gravity as observed in a rotating frame. Phillips (1960) and
Greenspan (1976) have studied these instabilities theoretically.

The arguments put forth below show that for <., there
should not exist any hysteresis. This is dramatically brought
out by the data. This critical dimensional effective volume
fraction is nc/ﬁ ~ 0.7 cP™'A

To study the presence of the hysteresis demonstrated in the
transition into and out of rimming flow, we consider the
balance of the various forces acting upon a small parcel of
fluid, which is just about to be pulled over the vertical on the
rising side of the cylinder, where 0=0 in Fig. 1a. The viscous,
gravitational and inertial forces acting on the parcel are given by

R
Fviscous:,u% /R dO (4.1)
Fyraviy = pgh/R dO (4.2)
Fcentrifugal =P0)2Rh/R do (4.3)

Here h is the film thickness at 0=0°. The transition into the
rimming mode is dominated by a balance between gravity and
viscous forces, whereas the transition out of the rimming mode
is characterized by a balance between gravity and centrifugal
forces. From Egs. (4.1) and (4.2), we get

v(wR/gh*)=1 (4.4)

Since n~h/R, this implies that 7*/y~ w, for a fixed R, while
Egs. (4.2) and (4.3) yield

glw’R=1 (4.5)

This implies that the fluid falls out of the rimming mode at
a value of w that is independent of the film thickness h. The
angular velocities for the onset and breakdown of rimming
flow using above scaling arguments are different in general.
However there is a critical film thickness (or #) for which they
are the same. By equating Eqs. (4.4) and (4.5) this yields some

n/ \/ u=Const. below which there is no hysteresis as shown in
Fig. 27b.
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