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Abstract

A simple second quantization model is used to describe a two-mode
Bose-Einstein condensate (BEC), which can be written in terms of the
generators of a SU(2) algebra with three parameters. We study the
behaviour of the entanglement entropy and localization of the system
in the parameter space of the model. The phase transitions in the
parameter space are determined by means of the coherent state for-
malism and the catastrophe theory, which besides let us get the best
variational state that reproduces the ground state energy. This semi-
classical method let us organize the energy spectrum in regions where
there are crossings and anticrossings. The ground state of the two-
mode BEC, depending on the values of the interaction strengths, is
dominated by a single Dicke state, a spin collective coherent state, or
a superposition of two spin collective coherent states. The entangle-
ment entropy is determined for two recently proposed partitions of the
two-mode BEC that are called separation by boxes and separation by
modes of the atoms. The entanglement entropy in the boxes partition
is strongly correlated to the properties of localization in phase space
of the model, which is given by the evaluation of the second moment
of the Husimi function. To compare the fitness of the trial wavefunc-
tion its overlap with the exact quantum solution is evaluated. The
entanglement entropy for both partitions, the overlap and localization
properties of the system get singular values along the separatrix of the
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two-mode BEC, which indicates the phase transitions which remain
in the thermodynamical limit, in the parameter space.

PACS number(s): 03.75.Gg; 03.65Ud; 05.30Jp; 03.67Mn

1 Introduction

The BEC phenomena has a long history and it starts when A. Einstein,
on the basis of a work of S. Bose devoted to the statistical description of
the quanta of light, predicted that when the temperature of a gas of atoms
is below a critical temperature, a large fraction of these atoms is collapsed
into the ground state [1]. At this temperature, bosons undergo a quantum
phase transition and they turn into a BEC: an object with coherent wave-
like properties in which every atom is in the ground state. This behavior is
a direct consequence of quantum statistics, that is, the thermal de Broglie
wavelength is of the order of the separation of the particles, and thus their
indistinguishability becomes crucial [2].

Although BEC’s had been observed in superconducting and superfluid
systems, experimental tests with dilute atomic gases was not achieved until
1995 by Anderson et al [3] using vapours of rubidium atoms in a magneto-
optic trap. Almost at the same time, Davis et al [4] observed the same
phenomenon but using sodium atoms instead of rubidium atoms and Bradley
et al [5] shown evidences for BEC of a gas of spin-polarized 7Li. The BEC in
a gas of lithium atoms with effective attractive interactions was confirmed [6].
This was a milestone in experimental physics and since then several systems
have been used to study BEC’s and their coherence properties. In 1996,
Myatt et al [7] created two different condensates in the same trap, which
corresponds to two different spins states of 87Rb. These two spin states or
species consist of two hyperfine sublevels of 87Rb, |F,MF 〉 = |1,−1〉 and
|2, 2〉, while in other experiments [8, 9, 10] they consider the sublevels |1,−1〉
and |2, 1〉.

Currently, the community recognize that the superconductivity, super-
fluidity, BEC phenomena and laser light are macroscopic manifestations of
quantum behaviour and all of them arise from the macroscopic occupation
of a single quantum state. The key ingredients to observe the BEC in di-
luted alkali gases are the developments of the laser cooling and magneto-
optical trapping, and the achievements of the spin-polarized-hydrogen com-
munity. The laser cooling was developed by Chu, Cohen-Tannoudji and
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Phillips [11, 12, 13]; the alkali atoms are suitable because their optical tran-
sitions can be excited by available laser technology and besides they have an
energy level structure appropriate for cooling to very low temperatures. It is
important to mention that in the conditions of temperature and density to
reach BEC, the system would be in the solid phase, then to observe BEC the
system must be preserved in a metastable gas phase for a sufficiently long
time and this is possible for alkali gases as 87Rb, 23Na, and 7Li. Therefore a
typical BEC is a system formed by 103 to 106 atoms, trapped by an harmonic
potential with an oscillator length of the order of 10−6 m, with an average
distance between the atoms larger than the range of the interatomic forces
and practically with a single parameter, the s-wave scattering length, one
can obtain an accurate description.

We study a two-mode Bose Einstein condensate described in terms of the
generators of a SU(2) algebra [14, 15, 16, 17], where the two-modes represent
single particle states which can be associated to external or internal degrees of
freedom. The physical system includes independent one and two-body inter-
actions, associated to the atom-atom collisions, the difference in the chemical
potentials of the wells and the tunneling amplitude. The parameters associ-
ated to each one of the interactions constitutes the parameter space, and we
study the stability properties or phase transitions of the ground state of the
system when these parameters are varied. In this contribution the quantum
phase transitions of the model are established by means of the spin collective
states and the catastrophe formalism [18, 19]. This means to get the locus
of points in the parameter space of the model where the ground state of the
system has qualitative changes when the parameters of the model are varied,
and to this locus of points, we called separatrix. For this reason, the expec-
tation values in the ground state of many observables suffer sudden changes
when the parameters of the model take values in different sides of the separa-
trix. Another purpose is to study the behaviour of the entanglement entropy,
the fidelity and the localization in the parameter space of the mentioned two-
mode BEC. The entanglement entropy is determined for two partitions of the
two-mode BEC, in one of them we separate the system in two boxes [16, 17]
and in the other we made the separation in the two hyperfine modes of the
atoms [20]. We show that the entanglement entropy calculation in the boxes
partition is strongly correlated to the properties of localization in the phase
space of the model, which is given by the evaluation of the second moment of
the Husimi function as suggested by Sugita [21, 22]. To compare the proba-
bility distributions associated to the variational state and the exact quantum
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solution we use the fidelity, which in the case of pure states is equivalent to
the overlap. The entanglement entropy for both partitions, the overlap and
localization properties of the system get singular values along the separatrix
of the two-mode BEC, which indicates where are the phase transitions that
remain in the thermodynamical limit, in the parameter space.

2 Exact solutions: Dicke and Spin Coherent

States

By means of the Jordan-Schwinger [23] realization of the components Jx,
Jy, and Jz of the angular momentum operator, a model Hamiltonian that
describes a two-mode Bose-Einstein condensate [14, 15, 16] can be written
in the following form

Ĥ =
a

J
Ĵz +

b

J2
Ĵ2
z +

c

J
Ĵx , (1)

where J denotes the quantum number of the angular momentum opera-
tor, besides of indicating the total number of atoms (N) in the condensate
through the relation J = N/2. Because we are interested in taking the ther-
modynamical limit, the two body interaction is divided by J . Finally, to get
an intensive quantity the Hamiltonian operator is divided additionally by
another factor J . The physical meaning of the parameters of the Hamilto-
nian is the following: the parameter c is related to the single atom tunneling
amplitude, a corresponds to the difference in the chemical potentials between
the wells, and b represents the atom-atom interaction.

The stationary states of this model can be obtained analytically for the
cases when the parameters c = 0 and/or b = 0. In the first case the energies
per pairs of particles of the system are given by the expression

EJ,M(a, b, 0) =
a

J
M +

b

J2
M2 , (2)

and its corresponding eigenstates are defined by the Dicke states |J,M〉.
From here on, we will call energy and energy spectrum to the energy and
energy spectrum per pairs of particles. This case presents very interesting
accidental degeneracy for a finite number of values of the ratio between the
parameters a/b [24, 18]. There is a special value in which all the energy levels
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are double degenerated except the lowest or highest energy states, and for this
case, one can identify the system with a supersymmetric Hamiltonian [25].
The dynamic behaviour of the energy gap between the ground state and the
first excited state for this system has been studied by Tonel et al [24, 18],
they do that also with the coupling parameter (c) different from zero.

For b = 0, the Hamiltonian can be diagonalized in terms of an eigen-
state of Ĵ2 and a projection of the angular momentum operator along the

direction n̂ =
(
c/
√
a2 + c2, 0, a/

√
a2 + c2

)
. Thus, the energy eigenvalues are

determined by

EJ,M(a, 0, c) = ±
√
a2 + c2

J
M , (3)

where the corresponding eigenfunctions are generalized Dicke states defined
by the expression

|J,M〉n =
∑
M ′

djM ′,M(θ0)|J,M ′〉 , (4)

with θ0 = arctan(±c/a) and djM ′,M(θ0) the matrix elements of the reduced
Wigner rotation matrix [26]. It is immediate to recognize that the generalized
Dicke state |J,M〉n is equivalent to the spin coherent state with parameters
(θ, φ) = (−θ0, 0), when M = −J or M = J [27, 28].

Entanglement properties

The entanglement is a property of bipartite systems, the concept was intro-
duced by Schrödinger in 1935 and it is also mentioned by Einstein-Podolski-
Rosen in their manuscript about the incompleteness of quantum mechan-
ics [29, 30]. A pure state is entangled when its vector state can not be
written as a direct product of pure states of its parts. For this systems the
von Neumann entanglement entropy is considered the most basic measure
of entanglement to quantify the resources needed to create a given entan-
gled state [31]. Nowadays, the entanglement is recognized as a resource like
other physical quantities as energy, or momentum, which can be quantified
in terms of the entanglement entropy. Next we will discuss the entanglement
properties of the Dicke and spin coherent pure states when they are con-
sidered compound systems formed by: the two modes of a two level system
or the particles are separated in boxes. For a bipartite pure state system
determined by the density matrix ρAB, the entanglement entropy is defined
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by means of the von Neumann entropy of the reduced density matrices ρA
or ρB as follows

SE(ρA) = −Tr(ρA ln ρA) . (5)

A Dicke state can also be written in terms of the eigenstates of two har-
monic oscillators using the Schwinger realization of the angular momentum
operators [23]. The harmonic oscillators are characterized by the number of
quanta in directions a and b, i.e., |J,M〉 = |N −n, n〉, where N = 2J defines
the total number of atoms, N − n denotes the number of particles in the
lower state a, and n gives the particles in the upper level b.

It is straightforward to construct the total density matrix of a Dicke
state, that is ρ = |J,M〉〈J,M |, by taking the partial trace with respect to
the particles in the lower level one finds ρb = |n〉〈n| that is a reduced density
matrix of a pure state. Therefore, if the compound system is described by a
Dicke state, the entanglement entropy in the modes partition takes the value
SE = 0.

Figure 1: At the left, the entanglement entropy for Dicke states with |J =
10,M〉 with M = −10,−9, · · · , 9, 10, are shown. It displays the entanglement
of one particle (the lowest curve of points), two particles (the middle one
curve) and ten particles (the highest curve) with the rest, respectively. The
compound system has N = 20 particles. At the right, The entanglement
entropy for spin coherent states with J = 3, lowest curve, J = 10, middle
plot, and J = 100, highest curve, are shown. It gives a measure of the
entanglement of the particles in the lowest energy state with those occupying
the excited energy level.

If the system of N atoms is separated in two boxes, one of them with N1

atoms and the other with N2, and satisfying that N = N1 + N2, the Dicke
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state can be written as

|J,M〉 =
∑
µ

〈J1, µ; J2,M − µ|J1 + J2,M〉|J1, µ〉 |J2,M − µ〉, (6)

where 〈J1, µ; J2,M − µ|J1 + J2,M〉 is a Clebsch-Gordan coefficient of the
angular momentum theory [26], with J1 = N1/2, J2 = N2/2, such that
~J = ~J1 + ~J2. The Clebsch-Gordan coefficient is a stretched one. Taking
the partial trace of the density matrix of a Dicke state with respect to the
number of particles in the first box we get the following expression for the
reduced density matrix of N2 particles

ρ
(1)

m′
2,m2

(J,M) =

(
2J1

J1+m2

)(
2J2

J2+M−m2

)(
2J

J+M

) δm′
2,m2

, (7)

where we have substituted the explicit expression for the stretched Clebsch-
Gordan coefficient. Thus one gets a diagonal reduced density matrix through
which it is immediate to evaluate the entanglement entropy. The results for a
Dicke state with J = 10 for a decomposition in (N1, N2) = (1, 19), (2, 18) and
(10, 10) subsets are displayed in the left part of Fig. 1. It is clearly seen that
for the lowest or highest value of the projection of the angular momentum
one has a pure state and the SE = 0.

The spin coherent state of N particles distributed into two modes: a the
lowest energy level and b the excited energy level can be written as [32]

|ζ, N〉 =
1√

N !(1 + |ζ|2)N
(
â† + ζb̂†

)N
|0, 0〉 (8)

=
1

(1 + |ζ|2)N/2
N∑
k=0

(
N

k

)1/2

ζk|N − k, k〉 ,

where the state |N−k, k〉 is a two dimensional harmonic oscillator state, the
complex number ζ is usually parametrized in terms of (θ, φ) the coordinates
of point in a unit radius sphere, i.e., ζ = eiφ tan(θ/2). Then the reduced
density operator in the first system, i.e., the set of particles occupying the
level a, is diagonal and it has the form

ρ(a)
n1,n2

= δn1, n2

(
N

n1

)
1

(1 + |ζ|2)N
(|ζ|2)n1

≡ δn1, n2 P(n1) , (9)
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where P(n) denotes the probability of finding n particles in the upper level
in the coherent state. This probability can be identified with a binomial

distribution where the probability of success is p = |ζ|2
1+|ζ|2 = 1−z

2
, and q = 1−p,

with z = cos θ. It is well known that for a binomial distribution, the average
number of particles in the upper level b is given by 〈n〉 = N p with dispersion
(∆n)2 = N p q. For p = q = 1/2 the probability of finding n excited atoms in
the system is equal to the one associated to the bonding state defined in [20],
which is the eigenstate of the Hamiltonian for the case a = b = 0 and then
it corresponds to a coherent state localized in the equator (θ = π/2) of the
unitary sphere.

By means of (5) it is straightforward to calculate the entanglement en-
tropy of a coherent state in the mode partition that is the entanglement
between the atoms in the lowest energy level with those in the excited one.
In the right part of Fig. (1) we show the entanglement entropy, in nat units,
associated to compound systems constituted by 6, 20, and 200 atoms, for
−1 ≤ z ≤ 1, with z a variable of the spin coherent state. The maxima is
reached when the particles are localized into the equator of the Bloch sphere
and for N = 100 particles the entanglement entropy takes a value close to
3.4 nats. It is straightforward to prove that for N →∞ the maximum value
of the entanglement entropy SE → 1

2
(1 + lnN + ln (π/2)).

The spin coherent state can also be written in terms of the SU(2) gener-
ators as [27, 28]

|ζ; J〉 =
1

(1 + |ζ|2)J
exp (ζ J+)|J,−J〉,

where the state |J,−J〉 is constituted by the tensorial product of N particles
with spin one half. This state is equivalent to the ansatz used in [33], except
at most for an overall phase, with the identification of the zenithal angle:
θ/2 = θL of that manuscript. Using the last expression, the spin coherent
state, in the boxes partition, can be written in the following form |ζ; J〉 ≡
|ζ; J1〉 ⊗ |ζ; J2〉, with the eigenvalues of the angular momentum operators
related by J = J1 + J2. Therefore one can immediately conclude that the
entanglement entropy of the spin coherent state in the boxes partition is zero
because the state is separable.
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Second Moment of the Q-function

The Husimi or Q-function [34] gives simply the probability distribution of
finding the spin coherent state ξ into the state defined by the density operator
of the considered system

Qρ(J, ξ) =
2J + 1

4π
〈 ξ; J |ρ|ξ; J 〉 , (10)

where ξ = eiφ tan θ/2 and the first factor normalizes the Q-function in the
complex space ξ or in the unitary sphere defined by the variables (θ, φ). Then
if the system is determined by a Dicke state the density operator has the form
ρ = |J,M〉〈J,M | and the Q-function is given by the occupation probability
distribution of the two level system,

Q |J,M〉(J, z) =
2J + 1

4π

(
2J

J +M

)(1 + z

2

)J−M (1− z
2

)J+M

,

where we remind you that |ξ|2 = 1−z
1+z

.
The second moment of the Husimi function has similar properties to the

Wehrl entropy, as it is suggested by Sugita [21, 22, 35], and its inverse, as
other quasidistribution probabilities, is related with the area of the phase
space occupied by the studied system. The second moment is defined by the
expression

M
(2)
Q (J,M) =

4J + 1

4π

∫ π

0

∫ 2π

0

sin θ 〈 θ, φ|ρ|θ, φ〉2 dθ dφ , (11)

where there is an extra factor depending on the eigenvalue J in the definition
of the second moment to guarantee that for a spin coherent state one gets
that M

(2)
|ζ;J〉 is a constant equal to one [22]. By means of the expression of the

occupation probability in terms of the Wigner’s D function and the series
of Clebsch-Gordan expression [26], one can obtain the second moment of a
Dicke state:

M
(2)
Q (J,M) = 〈J,M ; J,M |2J, 2M〉2 , (12)

=

(
(2J) !

(J +M) ! (J −M) !

)2
(2J + 2M) ! (2J − 2M) !

(4J) !
. (13)

Thus the inverse of the second moment for a Dicke state can not be arbitrarily
large but at the same time it can not be smaller than 1. In Fig. 2, the areas
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of phase space occupied for the Husimi functions of a Dicke state and a spin
coherent state are shown for N = 20 particles. For the lowest and highest
projection of the angular momentum eigenvalues the Husimi distributions of
the Dicke states occupy the same area in phase space that the spin coherent
states.

Figure 2: The area of phase space, A, is displayed for the Husimi distribution
of the Dicke state |J = 10, M〉, for the different projections of the angular
momentum, M = −10,−9, · · · , 9, 10. The area of the Husimi function of the
spin coherent state is also shown and occupies the minimum area, a constant
equal to one.

3 General Hamiltonian

In the previous section we have discussed the analytic solutions (Dicke and
spin coherent states) of the model Hamiltonian of a two-mode Bose-Einstein
condensate and in particular we have also presented their properties of en-
tanglement, for the modes and boxes partitions, and localization. Now,
we are going to consider the model Hamiltonian (1) when the parameter
b 6= 0, thus one has a renormalized Hamiltonian with two essential parame-
ters (ra = a/(|b| (2J − 1), rc = c/|b| (2J − 1)) i.e.,

Ĥ

|b| (2J − 1)
=
ra
J
Ĵz +

sign(b)

J (2J − 1)
Ĵ2
z +

rc
J
Ĵx ≡ HR,A , (14)
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where we have defined the function

sign(b) =

{
1 if b > 0 ,
−1 if b < 0 .

The Hamiltonian (14), except for the renormalization of the parameters,
has been called the canonical Josephson Hamiltonian which can represent
two single particle states separated spatially (external Josephson effect) or
characterized by different internal quantum numbers (internal Josephson ef-
fect) [20]. The Hamiltonian can also represent a two-sites version of the
Bose-Hubbard model, which describes the dynamics of two species of bosonic
atoms moving in an optical lattice [36].

According to the interpretation of the different parameters given in Sec-
tion 2, we are going to study two types of Hamiltonians, one for attractive
interactions (b < 0) between the atoms, HA, and the other for repulsive ones
(b > 0), HR.

These Hamiltonians can be diagonalized by means of the Dicke basis
states either in the two mode realization or in terms of the eigenvalues of the
squared of the angular momentum operator Ĵ2 and its projection Ĵz. Thus
one proposes that

|ψ(k) 〉 =
N∑
n=0

c(k)n |N − n, n〉 , (15)

where the coefficients c
(k)
n are obtained from the diagonalization of the Hamil-

tonian, the upper label takes the values k = 0, 1, 2, · · ·, denoting the lowest
energy state, the first excited state, and so on.

3.1 Case ra = 0

This corresponds to the description of a two mode BEC where the chemical
potentials of the two wells are equal, meaning that the single particle energies
and the scattering lengths for the collisions between the atoms of the different
modes of the condensate are identical [33].

The energy spectrum of the two-mode BEC of 20 particles is shown in
Fig. (3). The energy spectrum as function of rc is separated in two regions,
one has double degeneration and the other has not. Together with the spec-
trum of the system we are displaying the corresponding semiclassical energies
which are indicated by dark lines. The semiclassical energies are obtained by
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Figure 3: The energy spectra of the two-mode BEC, at the left HR and at
the right HA, as functions of the parameter rc are shown. We are considering
the case of N = 20 particles in the system. The corresponding semiclassical
energies are displayed by continuous lines.

means of the expectation value of the Hamiltonian HR,A with respect to the
variational function constituted by the spin collective coherent states, where
the parameters of the test function are determined through a standard mini-
mization procedure [37]. Notice that the energy spectrum of the Hamiltonian
HR is the negative one of the energy spectrum of HA. The degeneracy is due
to the symmetry of the Hamiltonian matrix under the interchange of the
projection of the angular momentum M → −M . This suggests us to take
symmetric and antisymmetric linear combinations of Dicke states, i.e.,

|M±〉 =
1√

2 (1 + δM,0 δ±,+)
{|J,M〉 ± |J,−M〉} , (16)

where the label M = J, J − 1, · · · , 1
2
, or 0, depending on the value of the

angular momentum quantum number J being a half integer or an integer,
respectively. In consequence, for an odd number of particles the basis states
have dimension J+1/2 while for an even number of particles, the symmetric
basis have dimension J + 1 and for the antisymmetric one dimension J . The
use of this states is necessary because in the calculations of some expectation
values, it allows to avoid numerical instabilities, when the parameter b takes
negative values.

Modes partition

We evaluate the entanglement entropies for the ground state associated to
the repulsive [20] and attractive Hamiltonians, respectively.
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Figure 4: For ra = 0, the entanglement entropies, in the modes partition, of
the ground state of the Hamiltonian HR as functions of the parameter rc are
shown. At the left we consider N = 20 particles in the system while in the
right N = 100. The corresponding semiclassical entanglement entropies are
also displayed and they constitute upper bounds of the entanglement.

In Fig. (4) we study, for repulsive interactions, the entanglement for two
BECs, one with N = 20 particles and the other with N = 100 particles. In
both cases, the comparison with the entanglement entropy of a spin coherent
state is good, outside of the vicinity of rc = 0. In this vicinity, it takes the
value zero because it corresponds to the entanglement entropy of a Dicke
state. Outside that region, the entanglement entropy increases with the
number of particles according to the expression lnN , for example if one takes
N = 20 we have SE = 2.2 nats while for N = 100 the result is SE = 3.0 nats.
Besides the entanglement entropy of the spin coherent state constitutes an
upper bound of the quantum result.

The corresponding entanglement entropies, for the ground state of the
Hamiltonian HA, are displayed in Fig. (5). We study again the entanglement
for systems with N = 20 and N = 100 particles. In both cases, the compari-
son with the entanglement entropy of a spin coherent state is very good. For
this case, the entanglement entropy of the spin coherent state constitutes a
lower bound of the quantum result; it increases newly according to the ex-
pression lnN . In this figure, the separatrix of the Hamiltonian HA is shown
to indicate the place where the ground state of the system suffers a quantum
phase transition.

In both cases, the behaviour of the entanglement changes abruptly in the
separatrix, that is, at the points rc = 0 and rc = ±1.
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Figure 5: The entanglement entropies in the modes partition of the ground
state of the Hamiltonian HA as functions of the parameter rc are shown.
At the left we consider N = 20 particles in the system while in the right
N = 100. The corresponding semiclassical entanglement entropies are also
displayed in lighter color. The separatrix of the system is shown by the
vertical lines at the points rc = ±1.

Boxes partition

For the ground state of the Hamiltonian HR, the entanglement entropies are
displayed in Fig. (6). The entanglement is shown for systems with N = 20
and N = 100 particles with the following partitions: (N1 = 1, N2 = N −N1)
and (N1 = N/2, N2 = N/2). The comparison with the entanglement entropy
of a spin coherent state is again good only outside of the vicinity of rc = 0. In
this case, it takes the value zero because it corresponds to the entanglement
entropy of a spin coherent state. Then, it is clear that the spin coherent state
constitutes a lower bound of the quantum result. Close to the neighborhood
rc = 0, the entanglement entropy follows the behaviour of the entanglement
of a Dicke state.

For the ground state of the Hamiltonian HA, the entanglement entropies
of one, two, and half of the particles with the rest are displayed in Fig. (7).
We study the entanglement for two systems with N = 20 and N = 100
particles; when −1 ≤ rc ≤ 1, the value of the entanglement entropy is the
same in both plots. This is due to the fact that the ground state of the
system behaves like two qubits with maximum entanglement entropy, that
is, they have a value close to SE = ln 2. Outside this region the ground state
of the system has an entanglement entropy of a pure state in this partition.
The value of the entanglement entropy changes abruptly in the separatrix,
that is at the points rc = ±1.
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Figure 6: The entanglement entropies for two different partitions of the
ground state of the Hamiltonian HR as functions of the parameter rc are
shown, that is the entanglement between one particle and half of particles
with the rest. At the left we consider N = 20 particles in the system while in
the right N = 100. The corresponding semiclassical entanglement entropies
are equal to zero because the test function corresponds to a spin coherent
state. In each plot, the dark line corresponds to N1 = N/2 while the light
line to N1 = 1.

Husimi function

The Q-function is a nonnegative and normalized probability distribution,
and is useful to study the quantum correlations. One can conclude that
the Q-function for the ground state of condensate with repulsive interactions
between the atoms is unimodal while the corresponding Q-function for the
condensate with attractive interactions is bimodal. This bimodal behaviour
is happening only in the region −1 < rc < 1; outside that region the Q-
function is unimodal [37].

The Wehrl entropy attains its minimum for the spin coherent states and
has been used to describe complexity of pure states. The second moment
of the Husimi distribution has been proposed as a measure of complexity
of quantum states because it gives equivalent information than the Wehrl
entropy. The inverse represents the effective area or volume occupied by the
distribution. It is known that the probability (pk) of finding an eigenvalue of
an observable can be used to get the information entropy and their moments
distribution, Mi =

∑
k p

i
k, are measures of delocalization with respect to the

basis expansion. In particular the inverse of the second moment is called the
number of principal components. However this measure is basis dependent
while the inverse of the second moment of the Husimi distribution is not.
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Figure 7: The entanglement entropies for three different partitions of the
ground state of the Hamiltonian HA as functions of the parameter rc are
shown, that is the entanglement of one, two, and half of the particles with
the rest. At the left we consider N = 20 particles in the system while in the
right N = 100. The separatrix of the system is shown by the vertical lines at
the points rc = ±1. The upper curve corresponds to the partition N1 = N/2,
the next to N1 = 2 and the lower one to N1 = 1.

Thus, the inverse of the second moment of the Q-function constitutes a first
measure of delocalization and the spin coherent states have the least delocal-
ized Husimi functions [38]. The explicit expressions used for the calculation
of the second moment for the Husimi function are presented in the Appendix.
This can be seen in both panels of the Fig. (8) where the delocalization be-
haviour of the Husimi functions of the ground states of the Hamiltonians HR

and HA are displayed for a system of N = 20 particles. From these results,
one concludes that the two-mode BEC with attractive interactions between
the atoms is more delocalized than the case of repulsive interactions, except
when rc ≈ 0. In this situation the ground state is described by a Dicke state
or very small combination of Dicke states.

3.2 Case ra 6= 0 and rc 6= 0

In this case there are more freedom in the possible values for the chemical
potentials of the two wells together with the scattering lengths associated to
the collisions between the particles in different modes.

In Fig. (9) the energy spectrum of the Hamiltonians HR is shown together
with the semiclassical approximation or energy surfaces evaluated at the
critical points. One can clearly see that the semiclassical energies separate
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Figure 8: The areas of phase space occupied by the Husimi distributions of
the ground state of the two-mode BEC as functions of rc are shown. At the
left for the case of repulsive interactions between the atoms while at the right
for attractive interactions. The area of phase space occupied by the coherent
state constitutes the lower bound. In the region −1 ≤ rc ≤ 1, the symmetric
combination of spin coherent states yields an area very close to the area of
the exact quantum state.

the spectra into regions where the energy levels present quasi-degeneracy and
regions where the energy levels are clearly separated. We consider a system
of N = 20 particles, use a fix value of ra = 0.1, and present the spectra as a
function of the parameter rc. Besides, the ground state of the Hamiltonian
is very well reproduced by the spin coherent state. Here it is immediate to
see the effect of the laser interaction by comparing the energy spectra with
the one presented in Fig. (3). The interaction breaks the degeneracy of the
ground and first excited states. Furthermore the rest of the levels in that
region are only quasi-degenerated.

Figura 9
In Fig. (10) the energy spectrum of the Hamiltonians HA is shown to-

gether with the semiclassical approximation or energy surfaces evaluated at
the critical points. The semiclassical energies separate again the spectra into
regions where the energy levels present crossings, regions where there are
anticrossings, and finally where the energy levels are clearly separated. We
consider a system of N = 20 particles, use rc = 0.1, and show the spectra as
a function of the parameter ra. The ground state of the Hamiltonian is also
very well reproduced by the spin coherent state. Thus one finds that allowing
the tunneling between the wells (rc 6= 0), the crossings between the energy
levels are destroyed [18, 19]. The energy spectra of the Hamiltonians HR is
the negative one of the energy spectra of HA, that is the minimum energy of
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Figure 9: In the left, we display the energy spectrum of the Hamiltonian
HA as function of rc, for a constant parameter ra = 0.1. In the right, an
amplification of the energy spectrum is shown. The system has N = 20
particles. The dark continuous lines exhibit the energy surfaces at the critical
points.

HR is the maximum energy of HA and vice versa. Besides the semiclassical
energy that constitutes a lower bound of the energy levels with crossings also
indicates where there is a zone of anticrossings.

Now, we are going to study the delocalization, and its properties of en-
tanglement, for two types of partitions, of the ground state of the two-mode
BEC. This study will be done in the control parameter space for two situa-
tions: one of them when the atoms in the condensate have repulsive interac-
tions and the other when it has attractive interactions.

The ground state of the two-mode BEC condensate, for repulsive inter-
actions, exhibits first order phase transitions for rc = 0 within the range of
values of the parameter −1 ≤ ra ≤ 1 because the ground state energy surface
as function of ra and rc presents a peak at that zone. Something similar is
happening for the two mode BEC with attractive interactions, for ra = 0
there are first order quantum phase transitions at the range −1 ≤ rc ≤ 1
where the manifold presents a peak. The energy surface for the attractive
interactions between the atoms is deeper than the energy surface of the re-
pulsive case.

The entanglement entropy of a compound system depends strongly on
the type of decomposition, so in this study we want to know the different
behaviours of a two-mode BEC in modes and boxes partitions. In Fig. (11),
the results in the modes partition for a BEC with repulsive and attractive
interactions are shown.
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Figure 10: In the left, we display the energy spectrum of the Hamiltonian
HR as function of ra, for a constant parameter rc = 0.1. In the right, an
amplification of the energy spectrum is shown. The system has N = 20
particles. The dark continuous lines exhibit the energy surfaces at the critical
points.

For the repulsive case the minimum values are obtained when the tun-
neling amplitude is zero, i.e., rc = 0, implying that the lower values of the
entanglement occur around that parameter value. One understands this be-
cause in that region of parameter values the ground state is dominated by a
Dicke state. Relatively far from that region the entanglement entropy takes
a value near to SE ≈ 2 nats, that corresponds to the value obtained with a
spin coherent state for N = 20 atoms as it can be seen at the right part of
Fig. (1).

For the attractive case, the minimum entanglement entropies again are
at rc = 0, and outside that region the entanglement take larger values close
to the points (ra = 0, rc = ±1), even larger that the entanglement for the
repulsive case. In general it is immediate to see that the quantum correlations
are bigger for the repulsive case than for the attractive one. By making cuts
along the line ra = 0, one can easily check the results indicated in the Figs. (4,
5).

In Fig. (12), the entanglement entropies in the boxes partition for a BEC
with repulsive and attractive interactions are shown. For the repulsive case
the entanglement entropy is close to zero for almost all values of the control
parameter space with the exception of the region near to rc ≈ 0 and with
chemical potential values of −1 ≤ ra ≤ 1. The result looks very similar to
the entanglement entropy of a Dicke state as one can see in the left part of
Fig. (1). Thus it can be concluded that the ground state of the system cor-
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Figure 11: The entanglement entropies in the modes partition of the ground
state of a two-mode BEC are shown in the parameter space (ra, rc). At
the left for repulsive interactions between the atoms and at the right for
attractive ones. We take N = 20 particles.

responds to Dicke states in that region while outside is very well reproduced
by a spin coherent state.

For the attractive case, the entanglement entropy is near to zero again
almost for all the values indicated for the control parameter space with the
exception at the region of points close to ra ≈ 0 with the tunneling ampli-
tude in the range −1 ≤ rc ≤ 1. In that region the entanglement entropy
corresponds to the value of the entanglement entropy for a two qubit state
with maximum entanglement, as it can be seen in Fig. (7).

Therefore the entanglement entropy for the boxes partition shows that:
(i) the entanglement is near to zero in a large region of the control parameter
space where the ground state is very well reproduced by a spin coherent state;
(ii) for the region where the entanglement is different from zero, the ground
state is dominated by a Dicke state or a symmetric combination of two Dicke
states.

To measure the delocalization we study the second moment of the Husimi
distribution for the ground state of the two-mode BEC for repulsive and
attractive interactions between the atoms. From the results indicated in
Fig. (13), it is immediate that are strongly correlated to the results obtained
for the entanglement entropies in the boxes partition for the correspond-
ing ground state. The results show that the repulsive condensate is more
delocalized than an attractive one.
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Figure 12: The entanglement entropies in the boxes partition of the ground
state of a two-mode BEC are shown in the parameter space (ra, rc). At
the left for repulsive interactions between the atoms and at the right for
attractive ones. We study the entanglement entropies of half of the particles
with respect to the other half, with N = 20 particles.

4 Semiclassical study

First of all, one takes the expectation value of the model Hamiltonian (14)
with respect to the spin coherent states, getting a function of variables (θ, φ)
and parameters (ra, rc). We call this function energy surface and it is given
by

E(θ, φ, ra, rc) = −ra cos θ+
sign(b)

2
cos2 θ+rc sin θ cosφ+

sign(b)

2(2J − 1)
≡ ER,A ,

(17)
where in the last equality the energy surface is denoted by ER for the case
b > 0 and EA when b < 0. Thus, one gets the critical points of the energy
surface by solving the following system of algebraic equations

ra sin θ − sign(b) cos θ sin θ + rc cos θ cosφ = 0 ,

−rc sin θ sinφ = 0 . (18)

For rc = 0, the energy surface is φ-unstable and the critical points are given
by θc 1 = 0, θc 2 = π, and θc 3 = arccos(sign(b) ra). The energy surfaces
evaluated at these points are

E|θc 1
= −ra +

sign(b)

2

(
1 +

1

2J − 1

)
,
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Figure 13: The area of phase space occupied by the Husimi distribution of
the ground state of a two-mode BEC as function of the control parameter
space (ra, rc). At the left for repulsive interactions between the atoms and
at the right for attractive ones. We use N = 20 particles.

E|θc 2
= ra +

sign(b)

2

(
1 +

1

2J − 1

)
,

E|θc 3
=

sign(b)

2

(
−ra +

1

2J − 1

)
. (19)

For rc 6= 0, the critical points take the values φc1 = 0 and φc2 = π; these
values should be substituted in the first row of the expression (18) to get the
corresponding θ critical points.

Afterwards, the Hessian or stability matrix is calculated at these critical
points and by means of the previous values of φc one gets a diagonal matrix
whose eigenvalues are

λθ = ra zc − sign(b)
(

2 z2
c − 1

)
− rc

√
1− z2

c cosφc ,

λφ = −rc
√

1− z2
c cosφc , (20)

where we do not substitute yet the values of φc. Thus the bifurcations sets are
obtained when these eigenvalues are zero implying that in the corresponding
variable the energy surface can not be approximated around the critical point
by a quadratic form.

Next, we follow the procedure indicated in [39] about singularities in
mappings to get the bifurcation sets. First of all, by substituting φc1 = 0
and φc2 = π in the first expression of Eqs. (18), one get manifolds embedded
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in a three dimensional space, which are given by

(z, ra, rc)0,π =

(
λ1;λ2,∓

√
1− λ2

1

(
λ2

λ1

− sign(b)

))
, (21)

where the minus sign corresponds to φc1 = 0 and the plus to φc2 = π. Making
now the projection to the plane (ra, rc) one has an invertible map in general
except for

λ2 = sign(b)λ3
1 , (22)

which let us define a curve in the control parameter space with the localiza-
tion of all degenerate critical points of ER and EA, that is(

ra

)2/3

+
(
rc

)2/3

= 1 . (23)

This bifurcation set yields a contour plot, Fig. 14, of 4 cusps separating the
control parameter space in open regions where the critical points are not
degenerated. The 4 cusps have been produced by two swallowtail singular-
ities, these can be defined as the set of all points (A,B,C) such that the
polynomial z4 +Az2±Bz+C has a multiple root. It can be seen that when
rc = 0 the range of the parameter ra is bounded by −1 ≤ ra ≤ 1 and vice
versa. Notice that by plotting the critical values of z in the plane (ra, rc) one
finds that outside the 4 cusps there are two real critical points while in the
inside part there are four critical points. On the bifurcation set there are two
degenerated critical points.

We are looking for the general solution of (18), thus from the second
equation one gets that φc1 = 0 and φc2 = π and the corresponding critical
values of θ are obtained through the solutions of the quartic equation

z4 − 2 sign(b) raz
3 + (r2

a + r2
c − 1)z2 + 2 sign(b) raz − r2

a = 0 , (24)

where z = cos θ. Notice that it is independent of the sign of the parameter
rc. It is straightforward to prove also by means of the expressions (22) and
(23) that the quartic equation is satisfied by the bifurcation set.

For ra = 0, the quartic equation is simplified and one finds the following
critical points, namely for z = 0, one has (θc, φc) = (π/2, 0) and (π/2, π),
while for z2 = 1−r2

c the points are given by (θc 3 , φc 3) = (arcsin(sign(b) rc), 0)
and (θc 4 , φc 4) = (arcsin(−sign(b) rc), π). The last two points are real only
when the condition −1 ≤ rc ≤ 1 is satisfied. Besides it is straightforward that
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Figure 14: The bifurcation set associated to the general Hamiltonian. It has
a form of a 4 cusps in the parameter space. The critical points for HR are(
r
1/3
a , 0

)
and

(
r
1/3
a , π

)
while for HA one has

(
−r1/3

a , 0
)

and
(
−r1/3

a , π
)

.

for rc = ±1 the critical points are degenerated in pairs. The corresponding
energy surfaces are given by the expressions

E|(π/2,0) = rc +
sign(b)

2(2J − 1)
,

E|(π/2,π) = −rc +
sign(b)

2(2J − 1)
,

E|(θc 3 ,φc 3 ) =
sign(b)

2

(
1 +

1

2J − 1

)
≡ E|(θc 4 ,φc 4 ) . (25)

The solution of the quartic equation gives all the critical points, from
them we consider those that yield a minimum energy surface. Thus, the
obtained minima zc are displayed in Fig. (15) for the repulsive and attractive
interactions between the two-mode BEC. For the repulsive case, the values
of the zc minimum presents a discontinuity along the straight line rc = 0 in
the region −1 < ra < 1 while in the attractive one, it is immediate that the
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Figure 15: The zc minima as function of the control parameter space (ra, rc).
At the left the zc minimum corresponds to repulsive interactions between
the atoms of the two-mode BEC while at the right to the zc minimum for
attractive interactions.

zc changes suddenly along the line ra = 0 in the region −1 < rc < 1, that
is when the parameter ra changes from zero to small positive or negative
values.

5 Exact vs. semiclassical results

The ground state energies of the two-mode BEC for repulsive and attractive
interactions between the atoms have been very well described by the collective
spin coherent states as functions of the control parameters ra and rc. The
ground state energies have symmetries under the interchange of rc → −rc
and ra → −ra.

We compared the semiclassical results of the ground state of the system
using cuts: rc = 0.5 and rc = 1.8; and ra = 0.5 and ra = 1.8. The energy
differences were of the order of 10−3 or lower. If one considers the locus of
points associated to the 4 cusps (23) and determine the energy spectrum
of the two-mode BEC, it is found that the separatrix corresponds to the
points (ra, rc) where the differences between the energy levels, i.e., ∆E(q) ≡
E(q + 1) − E(q) with q = 1, 2, · · · , 2J , take minima values. In other words,
the separatrix identifies the region of anticrossings of the model.

The exact quantum calculation of the expectation value of the relative
population operator (Ĵz), divided by J , corresponds the negative values of the
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semiclassical result for zc minimum. The expectation values are calculated
for the repulsive and attractive interactions between the atoms of the two-
mode BEC. These expectation values as functions of the control parameter
space are indistinguishable to the plots presented in Fig. (15). Similar results
for the fluctuations of the angular momentum operators are easily calculated
and compared with the semiclassical evaluations [37].

The entanglement entropy in the modes partition for the ground state of
the two-mode BEC described by the spin coherent state is given in Fig. (16).
The comparison with the corresponding results for the exact quantum states,
for the case of repulsive interactions between the atoms, is remarkable, ex-
cept in the region of points close to the rc = 0. For attractive interactions
between the atoms in the two-mode BEC, it seems that the semiclassical
results overestimates the entanglement entropy. For the boxes partition, the
semiclassical result gives zero value for the entanglement entropy for both
cases.

Figure 16: The entanglement entropies in the modes partition of the ground
state of a two-mode BEC described with the spin coherent states are shown
in the parameter space (ra, rc). At the left for repulsive interactions between
the atoms, and at the right for attractive ones. We take N = 20 particles.

According to the results of the entanglement entropy in the modes parti-
tion for the exact and variational results, for repulsive interactions one gets,
in the vicinity of rc = 0 and in the region −1 < ra < 1, the largest differ-
ences. For this reason, we consider in Fig. (17) the entanglement entropy
as function of rc with ra = 0.5 and as function of ra with rc = 0.5. The
obtained results are in good agreement except for the region close to the line
rc = 0. Besides for other regions the variational spin coherent state is an
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upper bound of the exact calculation. For attractive interactions between
the atoms of the two-mode condensate the agreement is very good in almost
all the regions in the control parameter space. This is confirmed in Fig. (18)
where the entanglement entropy is plotted as function of rc with ra = 0.5
and as function of ra for rc = 1.8. The comparison is very good and for
this case, the variational results is a lower bound of the exact result. These
considerations about the entanglement entropy are general in all the regions
of the control parameter space.

Figure 17: The entanglement entropies in the modes partition of the ground
state of repulsive interactions between the atoms of a two-mode BEC are
shown. The variational spin coherent state is an upper bound of the exact
calculation. At the left as function of rc with ra = 0.5, and at the right as
function of ra with rc = 0.5. We take N = 20 particles.

Finally, we consider the overlap between the exact and variational wave
functions of the two-mode BEC for repulsive and attractive interactions be-
tween the atoms. For repulsive interactions, the percentage of overlap is
close to one hundred except in the region −1 ≤ ra ≤ 1 in the vicinity of the
straight line rc = 0. For attractive interactions, the largest disagreements
between the exact and the test ground state occur in the neighborhood of
the points ra = −1 and ra = 1. Anyway in both cases the lowest overlap
percentages are of order 50% to 60%. We want to enhance that the overlap
has been used to study the regions of criticality that define quantum phase
transitions [40], where they study the fidelity in the Dicke and XY model
Hamiltonians.
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Figure 18: The entanglement entropies in the modes partition of the ground
state of attractive interactions between the atoms of a two-mode BEC are
shown. The variational spin coherent state is a lower bound of the exact
calculation. At the left as function of rc with ra = 0.5, and at the right as
function of ra with rc = 1.8. We take N = 20 particles.

6 Conclusions

The ground state properties of a two-mode BEC described by the intensive
Hamiltonian (14) has been shown. This was done by means of the exact
quantum diagonalization and through a variational spin coherent state. The
studied properties include: the energies, entanglement entropies in two par-
titions of the system, the Husimi function and its second moment. From
this, we conclude that the ground state is well described by a Dicke state,
a spin coherent state, or a symmetric combination of spin coherent states,
depending on the region of the control parameter space. The critical points
of the energy surface of the Hamiltonian let us organize the energy spectrum
in regions where there are degeneracy and anticrossings. The separatrix of
the model was determined, which establishes the stability properties of the
ground state of the system and indicates its phase transitions.

For ra = 0, the ground state of the Hamiltonian has an atom population
equally distributed in the two hyperfine sublevels, i.e., 〈Ĵz〉 = 0, or, if we
think in the two-mode as a potential with two wells, we have the same number
of atoms in each well. The spectrum of repulsive b > 0, and attractive b < 0
interactions between the atoms in the BEC are inverted, that is one is the
negative of the other. The critical values of the energy surface separate both
energy spectra into regions with and without degeneracy.

The Husimi distribution of the ground state of the two mode BEC shows
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Figure 19: The overlap between the exact quantum solution for the ground
state with the corresponding spin coherent variational state. At the left the
overlap is calculated for attractive interaction between the atoms, while at
the right for repulsive ones. We take N = 20 particles.

a bimodal behaviour for attractive interactions between the atoms approx-
imately within the interval −1 ≤ rc ≤ 1, while outside the previous region
the behaviour is unimodal. The bimodal behaviour occurs in the whole men-
tioned interval, when the number of particles is very large. For repulsive
interactions one gets always a unimodal characteristic for the corresponding
Husimi function.

For attractive interactions between the atoms, we need to use a sym-
metric combination of coherent states to get a better fit. For the modes
partition, the entanglement entropy calculated with the trial state gives an
upper bound for the exact result for the repulsive potential, while for the
attractive potential, it constitutes a lower bound. For the boxes partition,
the entanglement entropy for repulsive interactions is almost zero and in-
dependent of the number of atoms outside the vicinity of rc = 0, while for
attractive interactions it is constant and almost equal to the value of a Bell
state in the interval −1 ≤ rc ≤ 1.

For ra 6= 0 and rc 6= 0, we obtain a similar behaviour, the energy spectrum
is divided by the semiclassical energies in regions with quasi-degeneracy and
without degeneracy. In general, the ground state of the two-mode BEC is
very well described by the spin coherent state in almost all the control param-
eter space. This good agreement is not happening for repulsive interactions
at the locus of points close to the line rc = 0, while for the attractive case
this occurs in the vicinity of the points ra = −1 and ra = 1. This is proved
by the evaluation of the overlap of the spin coherent state with the exact
quantum solution. The region of anticrossings of the model is determined by
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the 4 cusps in the control parameter space, which defines the separatrix.
The entanglement entropies for the boxes and modes partitions of the

ground state of the two mode BEC, were calculated, and the match between
our trial state description with the exact solution is very good in the (ra, rc)
control parameter space. The exception is happening, for attractive inter-
actions, in the neighborhood of line rc = 0, where the ground state of the
two mode BEC corresponds a Dicke state with projection of the angular
momentum operator Ĵz equal to zero.

The calculations of the entanglement entropies, the second moment of
the Husimi functions, and the distribution of particles in the hyperfine levels
take singular values close to the separatrix. The population of atoms for the
attractive interactions is mainly distributed in the lower level for ra < 0 and
they are in the upper level for ra > 0. For the repulsive case they are mainly
equally distributed into the levels, except in the neighborhood of ra = −1
and ra = 1.

It has been shown that there is a correlation of the entanglement entropy
in the boxes partition with the second moment of the Husimi function as
it was suggested by Sugita, that is, the entanglement entropy is maximum
where the area of the phase space of the Husimi function is maxima, and vice
versa. This is very important to have global measures of the entanglement
of pure states consisting of two parts.

In this work, we have been considering the static properties of the two
mode BEC, similar studies related with the dynamics of a two mode BEC
have been published recently. In 2001, the dynamics of a two mode BEC was
studied in the vicinity of the mean field dynamical instabilities [41], more
recently in 2005 the evolution of an arbitrary state have been investigated for
the two mode BEC across a wide range of coupling regimes [42] or in similar
type of models [43]. Following the procedure used in these contributions
together the time dependent variational principle [44], we will study the
dynamic behaviour of the entanglement entropies and second moment of
the Husimi function in the control parameter space (ra, rc). By means of
the appropriate selection of the variational states, the procedure established
in this work can also be applied to other Hamiltonian systems involving
two mode approximations like those describing the coupling between atom-
molecule BEC modes [45].
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Appendix. Evaluation of the second moment

of the Husimi function

We consider the symmetric superposition of two spin coherent states

|ζ1, ζ2, J〉 = N (ζ1, ζ2)
(
|ζ1, J〉+ |ζ2, J〉

)
,

where

|N (ζ1, ζ2)| =

√√√√ (1 + |ζ1|2)J (1 + |ζ2|2)J

2
{

(1 + |ζ1|2)J(1 + |ζ2|2)J + Re(1 + ζ∗1ζ2)
2J
} ,

denotes the normalization constant of the state. The second moment of the
Husimi function is given by the expression (11), with the density operator
ρ = |ζ1, ζ2, J〉 〈ζ1, ζ2, J |. For simplicity from here on, we will forget the
label of the angular momentum quantum number J in the spin coherent
state. Then, to calculate the second moment, we consider 〈 ξ|ζ1, ζ2〉2, which
is given by the expression

〈 ξ|ζ1, ζ2〉2 = N (ζ1, ζ2)
2
(
〈 ξ|ζ1〉2 + 2〈 ξ|ζ1〉〈 ξ|ζ2〉+ 〈 ξ|ζ2〉2

)
. (26)

Remembering the expression of a spin coherent state in terms of the D Wigner
matrices, that is

|ζ〉 =
∑
M ′

DJ
M ′,−J(Ωζ)|J,M ′〉 ,

one can evaluate all the terms appearing in (26),

〈 ξ|ζk〉 =
∑
M

DJ ∗
M,−J(Ω)DJ

M,−J(Ωζk) .

Substituting the corresponding previous results in (26), the expression for
the overlap 〈 ξ|ζ1, ζ2〉2, can be written as follows

〈 ξ|ζ1, ζ2〉2 = N (ζ1, ζ2)
2
∑
µ

D2J ∗
µ,−2J(Ω)F J

µ (Ωζ1 ,Ωζ2) , (27)

where we define the function

F J
µ (Ωζ1 ,Ωζ2) = D2J

µ,−2J(Ωζ1) +D2J
µ,−2J(Ωζ2)

+ 2
∑
M

〈J, µ−M,J,M |2J, µ〉, DJ
µ−M,−J(Ωζ1)D

J
M,−J(Ωζ2) ,
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where we use the Clebsch-Gordan series together with the orthonormality
properties of the Clebsch-Gordan coefficients [26]. Thus, taking into account
that the solid angles for a spin coherent state only depend on two angles,
those that define a point in the unit sphere, the integration can be easily
realized when the expression (27) is multiplied by its complex conjugated.
Therefore the second moment of the Husimi function is given by

M
(2)
Q(ζ1, ζ2

(J,M) = N (ζ1, ζ2)
4 |F J

µ (Ωζ1 ,Ωζ2)|2 .

For the symmetric combination of coherent states, one has to replace Ωζ1 →
(−φc,−θc, φc) and Ωζ2 → (−φc,−π + θc, φc).
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[38] I. Bengtsson and K. Zicskowski, Geometry of quantum states (Cam-
bridge University Press, 2008).

[39] R. Gilmore, Catastrophe Theory for scientists and engineers (Wiley,
New York, 1981).

[40] P. Zanardi, and N. Paunkovic, Phys. Rev. E 74 (2006) 031123.

[41] J. R. Anglin and A. Vardi, Phys. Rev. A, 64 (2001) 013605.

34



[42] A. P. Tonel, J. Links, A. Foerster, J. of Phys. A: Math. and Gen., 38
(2005) 1235-1245.

[43] J. Vidal, G. Palacios, C. Aslangul, Physical Review A, 70 (2005) 062304.

[44] P. Kramer and M. Saraceno, Geometry of the Time-Dependent Vari-
ational Principle in Quantum Mechanics, Springer-Verlag, New York,
1981.

[45] G. Santos, A. Tonel, A. Foerster, and J. Links, Phys. Rev A 73 (2006)
023609.

35


	Introduction
	Exact solutions: Dicke and Spin Coherent States
	General Hamiltonian
	Case ra=0
	Case ra =0 and rc =0

	Semiclassical study
	Exact vs. semiclassical results
	Conclusions

