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VOLUME GROWTH, CURVATURE DECAY, AND CRITICAL

METRICS

GANG TIAN AND JEFF VIACLOVSKY

Abstract. We make some improvements to our previous results in [TV05a] and
[TV05b]. First, we prove a version of our volume growth theorem which does
not require any assumption on the first Betti number. Second, we show that our
local regularity theorem only requires a lower volume growth assumption, not a full
Sobolev constant bound. As an application of these results, we can weaken the
assumptions of several of our theorems in [TV05a] and [TV05b].

1. Introduction

Riemannian spaces with quadratic curvature decay have been widely studied in
the literature, see for example [Abr85], [Abr87] , [AG90], [BKN89], [Kas88], [Kas89],
[GPZ94], [Gro81], [Zhu94]. All of these works assume that the curvature decay is
strictly better than quadratic in the sense that

|Rm| = O(r−(2+δ)), as r → ∞,(1.1)

for some δ > 0, where r(x) = d(p, x) is the distance to a basepoint p, or the weaker
assumption that

Rm ≥ −
k(r)

r2
,(1.2)

(meaning all of the sectional curvatures are bounded below accordingly), and the
function k(r) satisfies

∫ ∞

1

k(r)

r
dr < ∞.(1.3)

Spaces satifying such a curvature decay condition are said to have asymptotically
nonnegative curvature. We remark that by standard comparsion theory, (1.2) and
(1.3) imply an upper volume growth estimate,

V ol(B(p, r)) ≤ V0r
n,(1.4)

for some constant V0. Moreover, only a lower bound on the Ricci curvature is needed
for this upper volume growth estimate [Zhu94].

In our investigation of critical metrics in [TV05a], [TV05b], and in the work of
[And05], spaces arise with curvature decay as in (1.2), but the function k(r) only
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satisfies k(r) → 0 as r → ∞, and standard comparsion arguments do not apply.
In [TV05a] we proved an upper volume growth estimate in this case, but our proof
required finiteness of the first Betti number to rule out the presence of so-called “bad”
annuli. In this paper, we show that adding the condition (1.8) below, eliminates this
pathology. For M non-compact, CS is defined to be the best constant so that

‖f‖
L

2n
n−2

≤ CS‖∇f‖L2,(1.5)

for all f ∈ C0,1(M) with compact support. Let Ric− denote the negative part of the
Ricci tensor.

Theorem 1.1. Let (M, g) be a complete, noncompact, n-dimensional Riemannian
manifold with base point p. Assume that

CS < ∞,(1.6)

and that

sup
S(r)

|Rmg| = o(r−2),(1.7)

as r → ∞, where S(r) denotes the sphere of radius r centered at p. If
∫

M

|Ric−|
n
2 dVg < Λ,(1.8)

for some constant Λ ∈ R, then (M, g) has finitely many ends, and there exists a
constant C2 (depending on g) so that

V ol(B(p, r)) ≤ C2r
n.(1.9)

Furthermore, each end is ALE of order 0.

We have another generalization of our previous results. We consider any system of
the type

∆Ric = Rm ∗ Ric,(1.10)

where the right hand side is shorthand notation for a linear combinating of terms of
the form AijklBjl, where Aijkl depends on the full curvature tensor, and Bjl depends
only on the Ricci tensor. We call any metric satisfying a system of the form (1.10) a
critical metric. In [TV05a, Theorem 3.1], we proved an ǫ–regularity theorem which
depended on the Sobolev constant. Here we relax this condition and require only a
lower volume growth assumption:

Theorem 1.2. Assume that (1.10) is satisfied, let r < diam(M)/2, and B(p, r) be a
geodesic ball around the point p, and k ≥ 0. If there exists a constant V0 > 0 so that

V ol(B(q, s)) ≥ V0s
4

for all q ∈ B(p, r/2), and s ≤ r/2, then there exist constants ǫ0, Ck (depending upon
V0) so that if

‖Rm‖L2(B(p,r)) =

{
∫

B(p,r)

|Rm|2dVg

}1/2

≤ ǫ0,
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then

sup
B(p,r/2)

|∇kRm| ≤
Ck

r2+k

{
∫

B(p,r)

|Rm|2dVg

}1/2

≤
Ckǫ0

r2+k
.

A consequence of these results is that we can (i) remove the Betti number as-
sumption from our volume growth theorem from [TV05b, Theorem 1.2], or (ii) We
can relax the Sobolev constant assumption to only an assumption on lower volume
growth.

Recall that a metric g is called anti-self-dual if W+
g ≡ 0, and self-dual if W−

g ≡ 0.
As in [TV05b], we specialize to the class of

(a) self-dual or anti-self-dual metrics with constant scalar curvature,
(b) metrics with harmonic curvature (δRm ≡ 0),
(c) Kähler metrics with constant scalar curvature.

We have the following notion of local Sobolev constant. For p ∈ M , and r > 0,
we define CS(p, r) to be the best constant such that

‖f‖L4 ≤ CS(p, r)‖∇f‖L2,(1.11)

for all f ∈ C0,1 with compact support in B(p, r), and define

CS(r) = sup
p∈M

CS(p, r).(1.12)

Let b1(M) denote the first Betti number of M .

Theorem 1.3. Let (M, g) be a metric of class (a), (b), or (c) on a smooth, complete
four-dimensional manifold M satisfying

∫

M

|Rmg|
2dVg ≤ Λ,(1.13)

for some constant Λ.
Assume that

V ol(B(q, s)) ≥ V0s
4, for all q ∈ M, and s ≤ diam(M)/2,(1.14)

b1(M) < B1,(1.15)

where V0, B1 are constants. Then there exists a constant V1, depending only upon
V0, Λ, B1, such that V ol(B(p, r)) ≤ V1 · r

4, for all p ∈ M and r > 0.
Assume instead that

CS(r) < C1, for r < diam(M)/2,(1.16)

where C1 is a constant. Then there exists a constant V2, depending only upon C1, Λ,
such that V ol(B(p, r)) ≤ V2 · r

4, for all p ∈ M and r > 0.

We have the following improvement of our compactness theorem [TV05b, Theorem
1.3] (we refer to that work for the definition of a multi-fold):
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Theorem 1.4. Let (Mi, gi) be a sequence of unit-volume metrics of class (a), (b) or
(c) on smooth, closed four-dimensional manifolds Mi satisfying

∫

Mi

|Rmgi
|2dVgi

≤ Λ,(1.17)

where Λ is a constant.
Assume that

V ol(B(q, s)) ≥ V0s
4, for all q ∈ M, and s ≤ diam(M)/2,(1.18)

b1(Mi) < B1,(1.19)

where C1, Λ, B1 are constants. Then a subsequence converges to a limit metric space
(M∞, g∞) which is a compact, connected, critical Riemannian multi-fold. The con-
vergence is smooth away from a finite singular set.

If we assume instead that

CSgi
(r) < C1, for r < diam(M)/2,(1.20)

then the same conclusion is true.

Remark. The first Betti number assumption from [TV05a, Theorem 1.1] (which allows
non-compact limits) can similarly be removed, and the Sobolev constant assumption
relaxed to lower volume growth.

Let Rg denote the scalar curvature of the metric g. Using the above in case (a),
we note the following special corollary.

Corollary 1.5. Let (M, gi) be a sequence of unit volume constant scalar curvature
anti-self-dual metrics on a fixed closed 4-manifold M . Assume that

|Rgi
| < C,(1.21)

V ol(B(q, s)) ≥ V0s
4, for all q ∈ M, and s ≤ diam(M)/2,(1.22)

where C, V0 are constants. Then a subsequence converges to a limit space (M∞, g∞)
which is a compact, connected, anti-self-dual Riemannian multi-fold.

1.1. Acknowledgements. The authors would like to thank Gilles Carron, John Lott
and Joao Santos for enlightening discussions. We also thank Edward Fan and Xiux-
iong Chen for insightful questions and comments on our previous work.

2. Proof of Theorem 1.1

The space of L2-harmonic k-forms Hk(M) is defined to be those ω ∈ Λk(T ∗M)

satisfying ∆ω = 0, and ω ∈ L2(M). It is well-known that Hk(M) ≃ H
k

(2)(M), the

reduced L2-cohomology, see [Car99]. We next quote the following finiteness theorem.

Theorem 2.1 (Carron, [Car98], [Car99]). Let (M, g) be a complete Riemannian man-
ifold satisfing for p > 2 the Sobolev inequality

µp(M)
(

∫

M

|u|
2p

p−2 (x)dVg

)1− 2

p

≤

∫

M

|du|2(x)dVg, for all u ∈ C∞
cpt(M).(2.1)
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If the negative part of the Ricci satisfies
∫

M

|Ric−|
p/2dVg < ∞,(2.2)

then H1(M) is finite dimensional. If the full Riemannian tensor curvature satisfies
∫

M

|Rm|p/2dVg < ∞,(2.3)

then Hk(M) is finite dimensional for each 1 ≤ k ≤ n.

Remark. For convenience of the reader, we give an indication of the proof in [Car99].
A crucial estimate is that the Sobolev constant bound yields an estimate on the heat
kernel: there exists a constant C such that for all x ∈ M , and any t > 0,

k(t, x, x) ≤ Ct−n/2.(2.4)

It is then shown that Hk(M) is finite dimensional, using the Cwickel-Lieb-Rosenbljum
estimate adapted to the Riemannian setting. Similar results were also obtained in
[BB90]. The Weitzenbock formula for a 1-form is

∇∗∇ = ∆H + Ric,

so for the case of harmonic 1-forms, only the Ricci assumption (2.2) is necessary. For
k > 1, the Weitzenbock formula depends upon the full curvature tensor, which is why
the full curvature assumption (2.3) is required. We note that this method also gives
an explicit estimate on the dimension of Hk(M) in terms of the Sobolev constant
µp(M), and the Lp/2 curvature integral.

We recall a definition

Definition 2.2. We say a component A0(r1, r2) of an annulus A(r1, r2) = {q ∈

M | r1 < d(p, q) < r2} is bad if S(r1)∩A0(r1, r2) has more than 1 component, where
S(r1) is the sphere of radius r1 centered at p.

For an annulus A0(r1, r2), we call a component of S(r1)∩A0(r1, r2) an inner sphere.
Note that this may have several components – indeed, this is one of the main subtleties
in proving the volume growth estimate in Theorem 1.1.

Theorem 2.3. Under the assumption in Theorem 1.1, there exists a constant N0

(depending upon CS and Λ) such that if A1, A2, . . . , AN is a collection of disjoint
connected bad annuli, then N < N0.

Proof. From the assumptions in Theorem 1.1, the estimate (2.1) is satisfied for p = n,
therefore Theorem 2.1 says that H1 is finite dimensional. Letting H1(M) and H1

c (M)
denote the first cohomology and first cohomology with compact support, respectively,
this implies that

Image
(

H1
c (M) → H1(M)

)

(2.5)

has finite dimension, since the space in (2.5) injects into H1 (see [And88]). The rest
of the argument just uses the finiteness of (2.5). Let Ai = A(ri, si). Without loss of
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generality, let us assume that the sequence of radii ri is non-decreasing. Since Ai is
bad, the inner sphere S(ri) ∩ Ai has Ni > 1 components, call them Ci,j , j = 1 . . . Ni.
Take any two components, say Ci,1 and Ci,2, and let pi,j be any point of Ci,j . For
fixed i, let γi,2,1(t) be a curve in Ai connecting pi,2 with pi,1. We can always find
such a curve since, by assumption, Ai is connected. We can also find a curve αi,1,2(t)
connecting pi,1 with pi,2, with image in B(p, ri). Joining these curves, we find a closed
loop βi = γi,2,1#αi,1,2 based at pi,1

Next, we find a function fi defined on Ai such that fi is supported in a neighborhood
of Ci,1, with fi = 1 on smaller neighborhood of Ci,1, and fi = 0 in a neighborhood
of all other components Ci,j . Then the 1-form αi = dfi clearly has an extension to a
smooth 1-form on M , which is closed (but not exact), and is supported on Ai. We
claim that

∫

βi

αi = 1.(2.6)

To see this, since αi is supported on Ai,
∫

βi

αi =

∫

γi,2,1(t)

αi =

∫

γi,2,1(t)

df = f(pi,1) − f(pi,2) = 1.(2.7)

Furthermore,
∫

βi

αj = 0, i < j.(2.8)

This is true since we have assumed the annuli are indexed by increasing radius, the
αj forms are supported either on a different component, or on an annulus which is
further out. We have shown that the αi define non-zero independent cohomology
classes in Image

(

H1
c (M) → H1(M)

)

, and we therefore have

N0 ≤ dim
{

Image
(

H1
c (M) → H1(M)

)}

.(2.9)

�

Remark. We thank Gilles Carron for providing the above argument, which was much
simpler than our original proof. Note also that the finiteness of the dimension of
(2.5) will be automatically satisfied if either H1(M), H1

c (M), or H1(M) is finite
dimensional.

We quote the following theorem from our previous work.

Theorem 2.4. ([TV05b, Theorem 5.2]) Let (M, g) be a complete, non-compact, n-
dimensional Riemannian orbifold (with finitely many singular points) with base point
p. Assume that there exists a constant C1 > 0 so that

V ol(B(q, s)) ≥ C1s
n,(2.10)

for any q ∈ M , and all s ≥ 0. Assume furthermore that as r → ∞,

sup
S(r)

|Rmg| = o(r−2),(2.11)
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where S(r) denotes the sphere of radius r centered at p. If (M, g) contains only
finitely many disjoint bad annuli, then (M, g) has finitely many ends, and there exists
a constant C2 so that

V ol(B(p, r)) ≤ C2r
n,(2.12)

Furthermore, each end is ALE of order 0.

Theorem 1.1 follows from the above, since we have shown there are only finitely
many bad annuli, and noting that the lower volume growth estimate is implied by
the Sobolev constant bound (see [TV05a, Lemma 6.1]). Note also that there is an
explicit bound the number of ends in terms of CS and Λ, see [Car98, Theorem 3.3].

Theorem 2.5. Theorem 1.1 is valid if (M, g) is assumed to be a smooth orbifold with
finitely many singular points.

Proof. It can be verified that Carron’s arguments are valid for smooth orbifolds, and
since Theorem 2.4 is also valid for orbifolds, the proof is identical to the smooth case.
Alternatively, instead of using Carron’s result for orbifolds, one can argue, albeit
non-effectively, as follows. Take a smoothing of (M, g) by cutting out a small ball
about each orbifold singularity and gluing in any smooth metric. This can be done
because each boundary S3/Γ certainly bounds some smooth manifold. We now have
a smooth manifold (M̃, g̃) which is isometric to (M, g) outside of a large ball B(p, R).

The manifold (M̃, g̃) has the same asymptotic behaviour as the original (M, g), so all
of the assumptions of Theorem 1.1 are satisfied by (M̃, g̃). Applying Theorem 1.1, we

obtain an upper volume estimate for balls in (M̃, g̃), which clearly implies an upper
volume estimate for the original (M, g), since the asymptotics are the same. �

3. Sobolev constant and local regularity

Recall from the introduction that we have the following notion of local Sobolev
constant. For p ∈ M , and r > 0, we define CS(p, r) to be the best constant such that

‖f‖L4 ≤ CS(p, r)‖∇f‖L2,(3.1)

for all f ∈ C0,1 with compact support in B(p, r). Clearly

CS(p, r) is an increasing function of r,(3.2)

and

lim
r→0

CS(p, r) = CE ,(3.3)

where CE is the best constant for the Euclidean Sobolev inequality.

Proposition 3.1. Assume that (1.10) is satisfied, and let B(p0, 2r) be a geodesic ball
around the point p0. Assume there exists a constant V0 > 0 so that

V ol(B(q, s)) ≥ V0s
4(3.4)

for all q ∈ B(p0, r), and s ≤ r.
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Then there exists a constant ǫ0 (depending upon V0) so that if

‖Rm‖L2(B(p0,2r)) =

{
∫

B(p0,2r)

|Rm|2dVg

}1/2

≤ ǫ0,

then

CS(p0, r/2) ≤ CV
−1/4
0 ,(3.5)

and C does not depend on V0.

Remark. We conjecture that for (1.10), ǫ0 can moreover be taken independent of V0

and assumption (3.4) is not necessary. This was recently proved for Einstein metrics
by Cheeger-Tian [CT06]. In fact, in [CT06, Section 11] this was already conjectured
to hold for anti-self-dual metrics and Kähler metrics with constant scalar curvature.

Proof. Without loss of generality, rescale so that r = 1. The proof goes by contradic-
tion. Assume we have a sequence of critical metrics gi, i = i . . .∞, and a sequence
ǫi → 0 as i → ∞, with

‖Rm‖L2(B(p0,2)) ≤ ǫi,

and that

CS(p0, 1/2) > CV
−1/4
0(3.6)

(we will choose C later).
We first choose a “nice” ball, one for which the Sobolev constant is controlled in

the ball, and also for nearby points. The following lemma is for a fixed metric.

Lemma 3.2. There exist a point p∞ ∈ B(p, 1) and a radius 0 < r∞ ≤ 1/2 such that

CS(p∞, r∞) > CV
−1/4
0 , and CS(p, r∞/2) ≤ CV

−1/4
0 for all p ∈ B(p∞, r∞).

Proof. From assumption, we have CS(p0, 1/2) > CV
−1/4
0 . If CS(p, 1/4) ≤ CV

−1/4
0

for all p ∈ B(p0, 1/2), then let B = B(p0, 1/2). Otherwise, there exists a point p1 ∈

B(p0, 1/2) with CS(p1, 1/4) > CV
−1/4
0 . If CS(p, 1/8) ≤ CV

−1/4
0 , for all p ∈ B(p1, 1/4),

then we let B = B(p1, 1/4). We continue inductively, assume we have chosen pi−1

with pi−1 ∈ B(pi−2, 2
−i+1) and CS(pi−1, 2

−i) > CV
−1/4
0 . If CS(p, 2−i) ≤ CV

−1/4
0 for

all p ∈ B(pi−1, 2
−i) then we stop, and let B = B(pi−1, 2

−i). Otherwise, there exists a

point pi ∈ B(pi−1, 2
−i) and CS(pi, 2

−i−1) > CV
−1/4
0 .

We claim this procedure must stop in finitely many steps. We have

d(p0, pi) ≤ d(p0, p1) +
i−1
∑

j=1

d(pi, pi+1)

< 1/2 +
i−1
∑

j=1

2−j−1

< 1/2 + 1/2 = 1.



VOLUME GROWTH, CURVATURE DECAY, AND CRITICAL METRICS 9

The sequence of points {pi} are therefore all contained in the unit ball B(p, 1). If
the process did not stop, then there would exists a limit point q. Our first restric-

tion on C is that CV
−1/4
0 > CE. But from the the choices, we would clearly have

limr→0 CS(q, r) > CE, which contradicts (3.3). �

Now we apply the lemma to each metric gi, to find points pi ∈ B(p, 1) (ball in the

gi metric) and ri < 1/2, with CS(pi, ri) > CV
−1/4
0 , and CS(p, ri/2) ≤ CV

−1/4
0 for all

p ∈ B(pi, ri) (Sobolev constant with respect to the gi metric).
Now we rescale to make ri unit size, that is, define g̃i = r−2

i gi. and consider the

sequence of balls B̃(pi, 2). By scale invariance, we have

‖Rm‖L2(B̃(pi,2))
≤ ǫi.

By our previous ǫ-regularity theorem [TV05a, Theorem 3.1], the curvature and all
of its derivatives are uniformly bounded in B(pi, 3/2)

|∇kRm| ≤ Ckǫi,(3.7)

where Ck depends upon k and CV
−1/4
0 . Since ǫi → 0, we use the theorem of Cheeger-

Gromov to extract a flat limit space, B(p∞, 3/2), with smooth convergence to the
limit. From the assumption V ol(B(p, r)) ≥ V0r

n, and since the limit space is flat,

we therefore get a bound on the Sobolev constant of the limit space, CS ≤ C1V
−1/4
0 .

Choosing C > C1, we arrive at a contradiction.
�

Theorem 1.2 then follows from Proposition 3.1 and [TV05a, Theorem 3.1].

4. Main volume estimate

In this section, we discuss the proof of Theorems 1.3 and 1.4, and Corollary 1.5.
We first prove Theorem 1.3.

Proof. (of Theorem 1.3). The proof is based on the argument from [TV05b], with some
modifications. First, let us assume that the volume growth estimate from Theorem
1.3 holds for r ≤ r0, where r0 is some fixed scale. That is, let us assume that

V ol(Bgi
(p, r)) ≤ V r4(4.1)

for all p ∈ Mi, and all r ≤ r0.
From the ǫ-regularity Theorem 1.2, (Mj , gj, pj) converges to a limiting multi-fold

(M∞, g∞, p∞) for some subsequence {j} ⊂ {i}, with finitely many C0-multi-fold sin-
gular points (recall that a C0-multi-fold point means that for each cone at a singular
point, the metric has a continuous extension to the universal cover of the punctured
cone). The argument for this is the same as in [TV05b].

Proposition 4.1. The singular points are smooth orbifold points. That is, if x is a
singular point, then for some δ > 0, the universal cover of B(x, δ) \ {x} is diffeo-
morphic to a punctured ball B4 \ {0} in R

4, and the lift of g, after diffeomorphism,
extends to a smooth critical metric g̃ on B4.
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Proof. In the case we assume a bound on the Sobolev constant (but no Betti number
bound), this follows directly from [TV05b, Theorem 6.4]. In the case where we only
assume a lower volume growth bound, we claim that for any singular point p, there
exists a constant Cs so that

‖u‖L4(B(p,ǫ)) ≤ Cs‖∇u‖L2(B(p,ǫ)), u ∈ C0,1
cpt(B(p, ǫ)).(4.2)

Indeed, in a neighborhood of a singular point, a C0-orbifold is just a C0-perturbation
of a flat cone, so clearly it satisfies a Sobolev inequality. The result then follows again
directly from [TV05b, Theorem 6.4]. �

Proposition 4.2. If (4.1) is satisfied, and (Mj , gj, pj) converges to a limiting multi-
fold (M∞, g∞, p∞), as j → ∞, then there is a bound on the number of cones at a
singular point of convergence, depending only upon Λ, V0, and B1 in the first case,
and depending only upon Λ and CS(r) in the second case. The bound does not depend
upon the constant V in (4.1).

Proof. We consider the first case. At any limiting multi-fold point p′∞, for δ > 0
small, we look at the balls Uj = B(p′j , δ) ⊂ Mj where p′j → p′∞ as j → ∞. The
are manifolds with boundary components spherical space forms, with the metrics
arbitrarily close to the limiting multi-fold cone metric. We apply the Gauss-Bonnet
Theorem to conclude

χ(Uj) ∼

∫

Uj

Rm ∗ Rm +
∑

k

1

|Γk|
.(4.3)

where Rm ∗ Rm is a quadratic curvature expression, the second sum is over the
boundary components, and Γk denotes the orbifold group for each cone. Note the
final term is an approximation of the boundary integral, with vanishing error term as
δ → 0. In terms of Betti numbers,

1 − b1(Uj) + b2(Uj) − b3(Uj) ∼

∫

Uj

Rm ∗ Rm +
∑

k

1

|Γk|
.(4.4)

We write Mj = Uj ∪ Vj, where

Uj ∩ Vj ∼
∐

k

S3/Γk.(4.5)

The Mayer-Vietoris sequence for Uj and Vj is

0 = H2(Uj ∩ Vj) → H2(Uj) ⊕ H2(Vj) → H2(Mj) → H1(Uj ∩ Vj) = 0,(4.6)

which gives b2(Mj) = b2(Uj) + b2(Vj).
Using (4.4), we can estimate

∑

k

1

|Γk|
≤ 1 + b2(Uj) + C · Λ ≤ 1 + b2(Mj) + C · Λ.(4.7)

Applying the Gauss-Bonnet formula to the oriented manifold Mj ,

2 − 2b1(Mj) + b2(Mj) =

∫

Mj

Rm ∗ Rm,(4.8)
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yields the estimate

b2(Mj) ≤ C · Λ + 2b1(Mj) − 2,(4.9)

so we have
∑

k

1

|Γk|
≤ 2C · Λ + 2B1 − 1.(4.10)

The lower volume growth estimate (1.18) clearly implies the the orders of the orbifold
groups are bounded strictly from below, so the proposition follows in this case.

In the second case, we use Carron’s bound on the number of ends N of a complete
space X [Car98, Theorem 0.4]

N ≤ 1 + C · CS

∫

X

|Ric−|
2dx ≤ 1 + C · CS · Λ,(4.11)

which, as mentioned above, is also valid for smooth orbifolds. Since we have a volume
growth bound (4.1) we can perform a standard bubbling analysis. This analysis was
carried out for Einstein metrics in [Ban90a], [Ban90b], see also [Nak92] for a nice
description of this bubbling process. The same method works in our case, with a few
modifications.

We recall the main steps of the bubbling analysis. Let S denote the singular set of
convergence. Note that in contrast to the Einstein case, a point p ∈ S may actually be
a smooth point of the limit. For 0 < r1 < r2, we let D(r1, r2) denote B(p, r2)\B(p, r1).
Given a singular point x ∈ S, take a sequence xj ∈ (Mj , gj) such that limj→∞ xj = x
and B(xj , δ) converges to B(x, δ) for all δ > 0. We choose a radius r∞ sufficiently
small and the sequence xj to satisfy

sup
B(xj ,r∞)

|Rmgj
|2 = |Rgj

|2(xj) → ∞ as j → ∞,(4.12)

and
∫

B(x,r∞)

|Rg∞|
2dVg∞ ≤ ǫ0/2,(4.13)

where ǫ0 is the constant in the ǫ-regularity Theorem 1.2.
We next choose r0(j) so that

∫

D(r0,r∞)

|Rgj
|2dVgj

= ǫ0,(4.14)

and again Dj(r0, r∞) = B(xj , r∞) \ B(xj , r0). An important note, which differs from
the Einstein case, the annulus D(r0, r∞) may have several components.

Since the curvature is concentrating at x, r0(j) → 0 as j → ∞, the rescaled
sequence (Mj , r0(j)

−2gj, xj) has a subsequence which converges to a complete, non-
compact multi-fold with finitely many singular points, which we denote by

M∞,i1, 1 ≤ i1 ≤ #{S}.(4.15)
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Note that by assumption, M∞,ii has bounded Sobolev constant. Since
∫

D(1,∞)

|Rm|2dVg ≤ ǫ0,(4.16)

there are no singular points outside of B(x, 1).
On the noncompact ends, since we are assuming an upper volume growth estimate,

the proof of [TV05a, Theorem 1.3] allows us to conclude that the metric is ALE
of order τ for any τ < 2. As in [Ban90a, Proposition 4], we conclude that the neck
regions (for large j) will be arbitrarily close to a portion of a flat cones R4/Γ, possibly
several cones if Mi1 has several ends (again in contrast with the Einstein case). The
convergence at a singular point xi1 is that the ALE multi-fold M∞,i1 is bubbling off,
or scaled down to a point in the limit, with each end of M∞,i1 corresponding exactly
to a cone at a multi-fold point of the limit (M∞, g∞). An important fact is that the
fundamental group of an end and the group of the orbifold cone onto which the end is
glued must be isomorphic (together with their actions on R

4), this also follows from
the proof in [Ban90a], see also [Nak92, Theorem 2.5]. In particular, the number of
ends of M∞,i1 is the same as the number of components of ∂B(xi1 , r∞).

To further analyze the degeneration at the singular points, we look at the multi-fold
M∞,i1 with singular set Si1 . If Si1 is empty, then we can stop, as the number of cones
must be bounded. If not, we do the same process as above for each singular point of
M∞,i1, and obtain ALE multi-folds

M∞,i1,i2 , 1 ≤ i2 ≤ #{Si1},(4.17)

each of which are just limits of re-scalings of the original sequence around the appro-
priate basepoints. If M∞,i1,i2 has singularities, then we repeat the procedure. This
process must terminate in finite steps, since in this construction, each singularity
takes at least ǫ0 of curvature: the L2-curvature bound (1.13) clearly implies the num-
ber of steps in the procedure is bounded by the number b = Λ/ǫ0. As pointed out in
[Ban90b], there could be some overlap if any singular point lies on the boundary of
B(1) at some stage in the above construction. But there can only be finitely many,
and then there must also be a singular point in the interior of B(1), so we still take
away at least ǫ0 of curvature at each step.

Note that in each step of the bubbling process, each end of the multi-fold obtained
in the kth step will be glued to one of the cones at a multi-fold singular point of the
(k − 1)st step, along a neck region which is close to a portion of a flat cone. Again,
we use the fact that the fundamental group of an end and the group of the orbifold
cone onto which the end is glued must be isomorphic (with isomorphic actions on
R

4). Consequently, the bound N on the number of ends (4.11) and the bound b on
the number of steps in the process, together imply that the number of cones at any
singular point must be bounded by N b. �

Remark. As was discussed in [TV05b, page 369 ], in the Kähler case only irreducible
singular points can occur in limit. We remark that this still holds under the weaker
assumptions in this paper. That is, in the Kähler case there are never multiple cones
at a singular point of convergence.
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Remark. The above proposition was proved using a alternative method in [TV05b,
Proposition 7.2]. However, that argument required both a Sobolev constant and a
first Betti number bound.

Next, we have

Proposition 4.3. Let (M, g) be a smooth multi-fold with finitely many singular points
and g a critical metric. Assume that the number of singular points is uniformly
bounded by the number N1, that the number of cones at any singular point is uniformly
bounded by the number N2, and that there exists a constant V0 > 0 so that

V ol(B(q, s)) ≥ V0s
4

for all q ∈ B(p, 2), and s ≤ 2. If

‖Rm‖L2(B(p,2)) =

{
∫

B(p,2)

|Rm|2dVg

}1/2

≤ ǫ0,

then there exists a constant A0 such that

V ol(B(p, 1)) ≤ A0,(4.18)

where A0 depends only upon N1, N2 and V0.

Proof. If (M, g) is smooth, then by Theorem 1.2,

sup
B(p,1)

|Rm| ≤
1

4
Cǫ0.(4.19)

By Bishop’s volume comparison theorem, we must have V ol(B(p, 1)) ≤ A′, where A′

depends only lower volume growth constant V0 (since ǫ0 only depends on V0).
In the case that (M, g) is a smooth orbifold, we claim that the ǫ-regularity theorem

still holds in this setting. This is because the argument in [TV05a, Theorem 3.1] uses
integration by parts. One then performs a similar argument, by cutting out small balls
of radius δ around the singular points and verifing that the resulting boundary terms
vanish as δ → 0 (note that it is crucial that the orbifold points be smooth for this to
be valid). Furthermore, Proposition 3.1 is remains valid for a smooth orbifold with a
bounded number of singular points. The details, which we omit, are straightforward.
Consequently, the estimate (4.19) holds. Next, Bishop’s volume comparison theorem
remains valid for smooth orbifolds (see for example [Bor93]), with the same constant
(or better) as in the smooth case. So for an orbifold (no multiple cone points), we
still obtain

V ol(B(p, 1)) ≤ A′.(4.20)

In the more general situation of a multi-fold, since there are at most N2 cones at each
of the N1 singular points, clearly we obtain the estimate

V ol(B(p, 1)) ≤ N1N2A
′ ≡ A0.(4.21)

�
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We also note the following fact, for any metric,

lim
r→0

V ol(B(p, r))r−4 = ω4,

where ω4 is the volume ratio of the Euclidean metric on R4. Clearly, A0 ≥ ω4.
For any metric (M, g), define the maximal volume ratio as

MV (g) = max
x∈M,r∈R+

V ol(B(x, r))

r4
.(4.22)

If the theorem is not true, then there exists a sequence of critical manifolds (Mi, gi),
with MV (gi) → ∞, that is, there exist points xi ∈ Mi, and ti ∈ R+ so that

V ol(B(xi, ti)) · t
−4
i → ∞,(4.23)

as i → ∞. We choose a subsequence (which for simplicity we continue to denote by
the index i) and radii ri so that

2 · A0 = V ol(B(xi, ri)) · r
−4
i = max

r≤ri

V ol(B(xi, r)) · r
−4,(4.24)

We furthermore assume that xi is chosen so that ri is minimal, that is, the smallest
radius for which there exists some p ∈ Mi such that V ol(Bgi

(p, r)) ≤ 2A0r
4, for all

r ≤ ri.
First let us assume that ri has a subsequence converging to zero. For this subse-

quence (which we continue to index by i), we consider the rescaled metric g̃i = r−2
i gi,

so that Bgi
(xi, ri) = Bg̃i

(xi, 1). From the choice of xi and ri, the metrics g̃i have
bounded volume ratio, in all balls of unit size.

From the argument above, some subsequence converges on compact subsets to a
complete length space (M∞, g∞, p∞) with finitely many point singularities. The limit
could either be compact or non-compact. In either case, the arguments above imply
that the limit is a Riemannian multi-fold.

Claim 4.4. The conclusions of Theorem 1.1 hold for the limit (M∞, g∞, p∞)

Proof. In the case that M∞ is compact the claim is trivial. For M∞ non-compact, the
remarks at the end of [TV05a, Section 3] shows that assumption (2.11) is satisfied.
Also, from [TV05a, Lemma 6.1], the Sobolev constant bound implies a lower volume
growth bound (this is also valid for orbifolds), so (2.10) is satisfied in both cases.

If we make the assumption on b1(Mi) (but no Sobolev constant assumption), then
the proof is the same as in our previous work [TV05b, Claim 7.1]: since b1(Mi) < ∞,
the limit must have finitely many bad annuli. The finiteness of ends and upper
volume growth estimate then follow from Theorem 2.4. In the case where we assume
the Sobolev constant bound (but no b1 bound), the result is contained in Theorem
2.5. �

From Claim 4.4, we have that M∞ has only finitely many ends, and that there
exists a constant A1 ≥ 2A0 so that

V ol(Bg∞(p∞, r)) ≤ A1r
4, for all r > 0.(4.25)
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If M∞ is compact, then clearly the estimate (4.25) is valid for some constant A1 ≥ 2A0,
since the limit has finite diameter and volume, and the estimate holds for r ≤ 1.

The inequality
∫

Bgi
(xi,2ri)

|Rmi|
2dVi > ǫ0,(4.26)

must hold; otherwise, as remarked above, we would have V ol(Bgi
(xi, ri)) ≤ A0r

4
i ,

which violates Proposition 4.3.
If the ri are bounded away from zero then there exists a radius t so that

V ol(Bgi
(p, r)) ≤ 2A0r

4, for all r ≤ t, p ∈ Mi.(4.27)

We repeat the argument from the first case, but without any rescaling. Since the
maximal volume ratio is bounded on small scales, we can extract an multi-fold limit.
The limit can either be compact or non-compact, but the inequality (4.25) will also
be satisfied for some A1, Following the same argument, we find a sequence of balls
satisfying (4.26).

We next return to the (sub)sequence (Mi, gi) and extract another subsequence so
that

2600 · A1 = V ol(B(x′
i, r

′
i)) · (r

′
i)
−4 = max

r≤r′
i

V ol(B(x′
i, r)) · r

−4.(4.28)

Again, we assume that x′
i is chosen so that r′i is minimal, that is, the smallest radius

for which there exists some p ∈ Mi such that V ol(Bgi
(p, r)) ≤ 2600A1r

4, for all r ≤ ri.
Clearly, ri < r′i.

Arguing as above, if r′i → 0 as i → ∞, then we repeat the rescaled limit construc-
tion, but now with scaled metric g̃i = (r′i)

−2gi, and basepoint x′
i. We find a limiting

multi-fold (M ′
∞, g′

∞, p′∞), and a constant A2 ≥ 2600A1 so that

V ol(Bg′
∞

(p′∞, r)) ≤ A2r
4 for all r > 0.

For the same reason as above, we must have
∫

Bgj
(x′

j
,2r′

j
)

|Rmj|
2dVj > ǫ0.

If r′i is bounded below, we argue similarly, but without any rescaling.
We next consider the ratio r′i/ri. There are 2 possible cases.
Case (i): there exists a subsequence (which we continue to index with i) satisfying

r′i < Cri for some constant C.
Case (ii) :

lim
i→∞

r′i
ri

= ∞.(4.29)

In Case (i) we proceed as follows: We claim that for i sufficiently large, the balls
B(xi, 2ri) (from the first subsequence) and B(x′

i, 2r
′
i) (from the second) must be dis-

joint because of the choice in (4.28). To see this, if B(xi, 2ri) ∩ B(x′
i, 2r

′
i) 6= ∅, then
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B(x′
i, 2r

′
i) ⊂ B(xi, 6r

′
i). Then (4.25) and (4.28) yield

2600A1(r
′
i)

4 = V ol(B(x′
i, r

′
i))

< V ol(B(x′
i, 2r

′
i)) < V ol(B(xi, 6r

′
i)) ≤ 2A1(6r

′
i)

4 = 2592A1(r
′
i)

4,
(4.30)

which is a contradiction (note the last inequality is true for i sufficiently large since
(4.25) holds for the limit, which is valid only in Case (i)).

In Case (ii) we argue as follows. If the balls B(xi, 2ri) (from the first subsequence)
and B(x′

i, 2r
′
i) (from the second) are disjoint for all i sufficiently large, then we proceed

to the next step. Otherwise, we look again at the scaling so that r′i = 1: g̃i = (r′i)
−2gi,

and basepoint x′
i. Then in this rescaled metric,

V ol(B(x′
i, 1)) = 2600A1.(4.31)

As above, we have a limiting multi-fold (M ′
∞, g′

∞, p′∞), satisfying

V ol(B(p′∞, 1)) = 2600A1.(4.32)

Proposition 4.2 implies the number of cones at a multi-fold point is a priori bounded,
so from Proposition 4.3, we conclude that

∫

B
g′∞

(p′
∞

,2)

|Rm|2dV > ǫ0,(4.33)

There is now a singular point of convergence corresponding to the balls B(xi, ri) in
the first subsequence. But since we are in Case (ii), in the g′

i metric, these balls must
limit to a point in M ′

∞. The only possibility is that the original sequence satisfied
∫

Bgi
(x′

i
,2r′

i
)

|Rmgi
|2dVi > 2ǫ0,(4.34)

for all i sufficiently large.
We repeat the above procedure, considering possible Cases (i) and (ii) at each step.

At the kth step, we can always account for at least k · ǫ0 of L2-curvature. The process
must terminate in finitely many steps from the bound ‖Rmi‖L2 < Λ. This contradicts
(4.23), which finishes the proof.

�

Remark. In the proof of [TV05b, Theorem 1.2], we neglected to consider the possibility
of Case (ii), the above fixes this oversight. Another point is that Propositions 4.2
and 4.3 depend crucially on the limiting multi-folds being smooth, which requires the
removable singularity result [TV05b, Theorem 6.4]. The argument given by Anderson
in [And05] misses this important point. It will be interesting to find a valid proof
not using the removable singularity theorem. Note also that in [And05], Anderson
claims to prove the upper volume growth estimate in Theorem 1.4 without requiring
either a Betti number assumption or a Sobolev constant bound (only assuming a lower
volume growth bound). We point out that his argument is incomplete – in that work
insufficient consideration is given to the connectedness properties of geodesic spheres
and annuli. Proper consideration of these connectedness properties is an absolutely
crucial point, as can be observed in our proof.
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Theorem 1.4 is proved in a similar manner as the corresponding theorem in [TV05b],
using Theorems 1.1, 1.2, and the volume growth estimate in Theorem 1.3.

We next prove Corollary 1.5, which is a simple consequence of the Gauss-Bonnet
Theorem and Hirzebruch Signature Theorem in dimension four (see [Bes87]):

8π2χ(M) =
1

6

∫

M

R2 −
1

2

∫

M

|Ric|2 +

∫

M

|W |2,(4.35)

12π2τ(M) =

∫

M

|W+|2 −

∫

M

|W−|2.(4.36)

In the anti-self-dual case, W+ ≡ 0, so we have

8π2χ(M) =
1

6

∫

M

R2 −
1

2

∫

M

|Ric|2 +

∫

M

|W−|2,(4.37)

12π2τ(M) = −

∫

M

|W−|2.(4.38)

Add these equations together to obtain

8π2χ(M) + 12π2τ(M) =
R2

6
V ol(M) −

1

2

∫

M

|Ric|2(4.39)

=
R2

6
−

1

2

∫

M

|Ric|2,(4.40)

since the scalar curvature is constant, and V ol = 1. The topology of the manifold M
is fixed, and the scalar curvature is uniformly bounded, so we find that 1

2

∫

M
|Ric|2 is

bounded. Also (4.38) yields a bound on
∫

M
|W−|2, so we have the estimate

∫

M

|Rm|2dVg < Λ,(4.41)

for some constant Λ. Therefore the assumptions of Theorem 1.4 are satisfied, which
finishes the proof.

5. ALE metrics and removable singularities

A related problem is to find geometric conditions so that each end of a complete
space will be ALE of order τ > 0, and to determine the optimal order of decay. In
[TV05a] we examined this problem for the following cases:

a. Self-dual or anti-self-dual metrics with zero scalar curvature.
b. Scalar-flat metrics with harmonic curvature.

By using Theorems 1.1, 1.2, and the volume growth estimate in Theorem 1.3, we
have the ollowing improvement of [TV05a, Theorem 1.3]:

Theorem 5.1. Let (M, g) be a complete, noncompact 4-dimensional Riemannian
manifold with g of class (a) or (b) satisfying,

∫

M

|Rmg|
2dVg < ∞.(5.1)
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Assume that

V ol(B(q, s)) ≥ V0s
4, for all q ∈ M and s > 0,(5.2)

b1(M) < ∞,(5.3)

then (M, g) has finitely many ends, and each end is ALE of order τ for any τ < 2.
If we assume instead that

CS < ∞,(5.4)

then the same conclusion holds.

To conclude, we mention that the following removable singularity theorem for crit-
ical metrics is expected:

Let (M, g) be a C0-orbifold with singular point at x, and g be a critical metric
satisfying (1.10). Suppose that

∫

B(x,1)

|Rmg|
2dVg < ∞.(5.5)

Then the metric g extends to B(x, 1) as a smooth orbifold metric. That is, for some
small δ > 0, universal cover of B(x, δ) \ {x} is diffeomorphic to a punctured ball
B4 \ {0} in R

4, and the lift of g, after diffeomorphism, extends to a smooth critical
metric g̃ on B4.

We plan to address this in a forthcoming paper. Such a removable singularity
theorem was proved for the special cases of (a),(b), and (c) in [TV05b, Theorem 6.4].
The above generalization is crucial in extending Theorems 1.3, 1.4, and 5.1 to the
more general class of critical metrics satisfying (1.10), in particular, Bach-flat metrics.
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