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Abstract

An image and object search and retrieval algorithm is devised that combines colour and

spatial information. Spatial characteristics are described in terms of Wiskott’s jets for-

mulation, based on a set of Gabor wavelet functions at varying scales, orientations and

locations. Colour information is first converted to a form more impervious to illumination

colour change, reduced to 2D, and encoded in a histogram. The histogram, which is based

on a new stretched chromaticity space for which all bins are populated, is resized and com-

pressed by way of a DCT. An image database is devised by replicating JPEG images by

a set of transforms that include resizing, various cropping attacks, JPEG quality changes,

aspect ratio alteration, and reducing colour to greyscale. Correlation of the complete en-

code vector is used as the similarity measure. For both searches with the original image as

probe within the complete dataset, and with the altered images as probes with the original

dataset, the grayscale, the stretched, and the resized images had near-perfect results. The

most formidable challenge was found to be images that were cropped both horizontally as

well as vertically. The algorithm’s ability to identify objects, as opposed to just images,

is also tested. In searching for images in a set of 5 classifications, the jets were found to

contribute most analytic power when objects with distinctive spatial characteristics were

the target.
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“I think I can, I think I can, I think I can!”

– The Little Engine That Could, Watty Piper, 1978
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Chapter 1

Introduction

Image content-based search and retrieval has the potential to be at least as useful, if not

more so, than traditional text-based searching. Increases in processing power, bandwidth

and storage capability have increased the availability of multimedia data. These collections

of multimedia data need to be organized based on content. As image processing is typically

computationally expensive, the need for efficient and scalable algorithms to retrieve image

content is apparent. An efficient approach is to analyze an image and generate a signature

based on distinguishing information. Images are then correlated based on their signatures.

This method provides a fast and scalable method of image recognition, because the signature

is generated offline as a preprocessing step and stored in a database. Typical image and

object recognition algorithms analyze colour and shape information.

A traditional colour-based object recognition approach uses colour histogram informa-

tion to compare objects. Though colour information is a powerful indicator in object recog-

nition, it has several difficulties. First, this approach discards information about the objects’

spatial properties, which is another powerful indicator of object similarity. It is very likely

that two different objects could have similar colour decompositions and distinctly different

shapes, resulting in an incorrect false positive identification. Second, colour information

varies under different lighting conditions and with different cameras. Although the colours

of the objects remain the same, the colours captured by the camera can vary dramatically.

Fortunately, there has been significant progress in the field of colour invariance to overcome

this difficulty. In this study, an illumination-invariant chromaticity method based on work

by Drew and Au [7] is used to provide the colour analysis.

Shape-based object recognition compares objects based on their measurable shape. One

1



CHAPTER 1. INTRODUCTION 2

edge-based approach is to generate a zero crossing signature. The second derivative of the

object’s edge is used to reveal the number and placement of the zero crossings (where the

second derivative changes sign). Alternatively, zero crossings of curvature can be mapped

across scale changes. Another approach is to infer the texture or 3D shape from an image.

This is typically done with a form of frequency analysis. Shape-based object recognition has

at least one major drawback. Objects that have a complex 3D shape yield a very different

shape analysis with only slight changes in rotation, pitch or yaw. In this study, a variation

of Wiskott’s Gabor wavelet filter based Jets [32] are used to provide the frequency analysis.

There are two main focuses of this paper. First is the improvement of current image

recognition and content based image retrieval algorithms by using colour analysis combined

with frequency analysis. Colour and shape indicators are used to recognize images, thus im-

proving on the results of either method used individually. Secondly, the algorithm developed

is intended to be applied to object recognition and this thesis serves as a proof-of-concept

for an object recognition algorithm discussed in section 5.2. Experiments were conducted

that show the effectiveness of the method developed for content-based image retrieval, in-

dexing and recognizing images and objects. In addition, the method developed resulted in

an efficient signature size and layout, which allowed searching to be performed at a high

rate of speed.



Chapter 2

Literature Review and Background

2.1 Linear Correlation

Linear correlation is the most widely used measure of association between variables that are

ordinal or continuous, rather than nominal [26]. Given two arrays, x and y of length N ,

having pairs of quantities (xi, yi), i = 1, ..., N , the linear correlation coefficient r is given

by the formula:

r =

∑

i(xi − x̄)(yi − ȳ)
√

∑

i(xi − x̄)2
√

∑

i(yi − ȳ)2
(2.1)

where x̄ is the mean of the xi and ȳ is the mean of the yi.

The value of r is in the range [-1,1]. Complete positive correlation, with r = 1, occurs

when the data values lie on a perfectly straight line with a positive slope (with x and y

increasing together). Similarly, a value of -1, complete negative correlation, occurs when

the data values lie on a perfectly straight line with a negative slope (with x and y decreasing

together). The closer r is to zero, the more uncorrelated the data values are.

2.2 Colour Analysis

In this section, colour analysis is discussed starting with the seminal work of Swain and

Ballard [29]. Subsequently, some techniques for the colour constancy problem are covered,

as well as the use of chromaticity histograms and their ability to be significantly compressed.

3



CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 4

2.2.1 Colour Histograms

Research on image content indexing and retrieval started by focusing on extraction and

correlation of global image feature vectors. In one of the early works on image retrieval,

Swain and Ballard [29] used histogram intersection to correlate colour histograms of two

images. First, a colour histogram Hi is generated for each image i in the database. The

histogram is then normalized, and stored in the database. For a model image from the

database, its histogram Hm is intersected with all database image histograms Hi according

to the equation:

n
∑

j=1

min(Hj
i ,Hj

m), (2.2)

where superscript j denotes histogram bin j, and each histogram has n bins. The closer the

intersection value is to 1, the better the images match. Computing the intersection value

is fast, but it is sensitive to colour quantization. Moreover, there is a problem that arises

because of the effect of changing illumination on images of colour objects [12] or images

of coloured objects captured with a different camera [22]. This is the colour constancy

problem.

2.2.2 Illumination

In an attempt to address the colour constancy problem on images of coloured objects, Drew

et al. [9] perform a normalization step on the colour channels in an image. The normalization

step was originally the first step in the “Colour Angles” method of Finlayson et al. [13].

Finlayson et al. perform this normalization step followed by subtracting the mean from the

images. Drew et al. [9] demonstrate that the normalization step promotes the illumination

invariance of the method and that one can do better if further information is preserved.

Other methods exist for the complex problem of colour constancy; however the method

of Drew et al. [9] is a very simple and has been shown to adequately discount illumination

for many tasks [22, 7, 4, 8].

2.2.3 Chromaticity Histograms

Chromaticities are ratios of colours. Linear chromaticity, for example, is calculated using

Equation 2.3.
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(r, g) = (R,G)/(R + G + B) (2.3)

As an alternative to using histogram intersection [29] on the normalized colour channels,

chromaticity histograms can be used that still capture the essential colour information and

sacrifice only image intensity [9]. Chromaticity histograms have been shown to be an

improvement on colour histograms [9]. There are two advantages of using a chromaticity

colour space. First, chromaticity colour space reduces the dimensionality of colour to 2,

which among other things significantly reduces the size of the histogram. Second, because

chromaticity is a ratio of colour bands, it has the effect of removing shading [7], which

contributes to illumination invariance - the ability to retrieve the same colour information

from objects under different lighting or capturing conditions.

The chromaticity histograms, being 2 dimensional, can be viewed as images. As such,

they can be compressed as images by the use of wavelet compression followed by a second step

of going to the frequency domain and keeping only the low frequency DCT coefficients [9].

This histogram compression is desirable as the histogram is typically sparse and this method

preserves most of the distinguishing information [9]. Originally, Drew et al. introduced this

technique on chromaticity histograms with normalized bin counts for size invariance [9]. It

has been applied successfully in object recognition [21] and multimedia applications [22, 7].

Later, an additional step was added whereby the chromaticity histograms were first

binarized [4, 8]. This technique attempts to concisely record the chromaticities in an image

in the form of a signature, where the chromaticity bin counts are binarized as is shown

in Fig. 2.2. Instead of counting the actual chromaticity bin counts, only the existence

of a chromaticity value is recorded by producing a binary image where the pixel values

either confirm or deny the existence of a particular chromaticity value within the image.

Appendix A.1 shows the implementation of this idea in Matlab. This approach limits

the information stored in the image signature and lends itself well to image compression.

Moreover the binarized chromaticity signature is like a statement that a particular colour

is or is not in the image colour palette much like image file formats such as GIF that use a

colour palette.

The calculation of the linear chromaticity in Equation 2.3 introduces a problem. As

ratios are not evenly distributed, they do not fully utilize the evenly spaced histogram bins.

Drew and Au [7] point out that because linear chromaticity obeys r + g ≤ 1, there exists a

straight diagonal edge in a chromaticity space histogram. The binarized chromaticity space
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Figure 2.1: Sample image: Abstract Color 833009.jpg
Image is from the Corel Gallery and is copyright Corel. All rights reserved.

histogram generated from Figure 2.1, using the linear chromaticity computation, is shown

in Figure 2.2. The above mentioned diagonal edge is readily apparent in the image.

To overcome the negative effects of the diagonal edge, Drew and Au used a spherical

chromaticity space of the form described in Equation 2.4, to mitigate a ringing effect in the

Fourier domain caused by the diagonal edge. Spherical chromaticity does not eliminate the

edge, but improves matters by replacing it with a circular edge as shown in Fig. 2.3. In

addition, spherical chromaticity space improved upon the linear model by utilizing more of

the histogram bins. Fig. 2.3 is the binarized chromaticity histogram that was created using

the spherical chromaticity computation with p = 2 in Equation 2.4. The Matlab script

implementation of generating a binarized spherical chromaticity space histogram is shown

in Appendix A.2.

(r, g) = (R,G)/ p
√

Rp + Gp + Bp (2.4)

Here, a new technique, proposed in [1], is used. This approach introduces the use of a 2D

stretched chromaticity space similar to that in [24], shown in Equation 2.5, which utilizes all
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Figure 2.2: Binarized Linear Chromaticity Histogram from image 833009.jpg

Figure 2.3: Binarized Spherical Chromaticity Histogram from Image 833009.jpg
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of the histogram bins and eliminates the edge effect altogether. 1 Using the stretched chro-

maticity is a reasonable approach as any edge in the chromaticity histogram compromises

the subsequent DCT very strongly. Chromaticity by itself is already a highly nonlinear

transformation, in that it is a projective transform of RGB. The stretching operation does

not change the proximity relationships of colours, but simply fills up the 2D colour space.

Utilizing all the histogram bins has the desired effect of eliminating the edge, but also elim-

inates the inefficient use of space taken up by the empty histogram bins. Figure 2.5 shows

the sample image, Figure 2.1, in a colourized form. This form is achieved by computing the

stretched chromaticity values using Equation 2.4, then using the r and g chromaticities as R

and G and then setting B equal to 1. Figure 2.5 shows that some different RGB colours have

approximately equal chromaticities. For example, consider a white area and a black area

in Figure 2.1, and then examine the corresponding areas in the chromaticity image, Figure

2.5. The original white and black colours are now the same, or very similar, chromaticity.

This is the effect of removing the dependence on lighting: White and black are essentially

the same colour with the difference being the illumination intensity.

Fig. 2.4 is the binarized stretched chromaticity histogram generated from Fig. 2.1. The

Matlab script implementation of generating a binarized stretched chromaticity space his-

togram is shown in Appendix A.3.

(r, g) = (R,G)/(R + G + B)

r =







r + g : if r ≥ g

2r : otherwise

g =







2g : if r ≥ g

r + g : otherwise

(2.5)

2.3 Spectral Analysis

The motivation behind using a wavelet based approach for the spectral analysis is discussed

in this section. This section begins by covering transforms in general, as an appreciation for

1This chromaticity space is like that in [24], but properly produces the range {[0..1],[0..1]}, rather than
{[0..1],[0..2]}.
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Figure 2.4: Binarized Stretched Chromaticity Histogram from Image 833009.jpg

Figure 2.5: Colourized Chromaticity Image from 833009.jpg
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the basic ideas and problems is necessary in understanding why wavelets are used. Moreover,

the choice of using Gabor Wavelets in particular is also covered.

2.3.1 Transforms

Transforms are a method to convert raw signals into another domain where additional

information may be apparent or further operations can be performed. Commonly, signals

are in the time domain, where the signal varies with respect to time; an example is an

electrocardiography (ECG) signal. Signals can also be in a spatial domain, as in the case of

imagery. There exist many types of transforms available for a wide range of applications,

each having benefits and drawbacks. The most common transform is the Fourier Transform.

When comparing various transforms, it is important to understand the difference be-

tween stationary and non-stationary signals. Stationary signals are signals for which the

frequency components in the signal exist throughout the entire signal and do not start and

stop over time. Many signals are non-stationary. A greyscale image is an example of a

2D signal where the frequency components can vary over the image extents. The Fourier

Transform is generally more applicable to stationary signals. The Fourier Transform can be

used on images where the signal is non-stationary, however, if one is only concerned with

the frequency components within the image and not where in the image those frequency

components occur. The implication of this is that a Fourier Transform will only provide

information about what frequencies exist and will not reveal at what locations they existed.

In imagery, the frequency components within a scene can vary dramatically over the image

extents and can be a significant source of distinguishing information. With this idea in mind,

a method was devised whereby the frequency components within discrete locations could be

compared directly to the frequency components from the same areas in other images. The

objective of performing this kind of analysis is to strengthen the discriminatory power of the

spectral analysis and add the ability to find similar images based on the spatial distribution

of frequency components. This increases the recognition ability of the algorithm and its

ability to find similar looking images.

Applying a Fourier Transform to an entire image does not reveal any spatial information

identifying frequency components that exist in that image at certain locations. This spatial

component could be achieved by dividing the image into sections (windows) and using a

Fourier transform on each section, as depicted in Fig. 2.6. In this case, a fixed resolution

(image area) is chosen and the image is transformed in areas instead of as a whole. This
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Figure 2.6: Sample image: Visual representation of splitting an image into sections using
Abstract Color 833009.jpg

approach would reveal more information about what frequency components exist within

each image area. However, this approach has a problem that is introduced by the fixed

resolution that is chosen. For any given resolution or image area, because of the Nyquist

theorem, the lower frequencies have sufficient samples, but the higher frequencies do not.

This allows the lower frequencies to be better resolved than the higher frequencies. Wavelets

were developed as an alternative to this approach as they, in part, overcome this problem

of resolution.

Wavelets handle the resolution problem through the use of a Gaussian envelope, which

is used as an effective window on the signal. The Gaussian envelope is parameterized by

the frequency, so that lower frequencies have a narrower window than higher frequencies.

This allows the higher frequencies to have the additional samples they need in order to be

resolved, and at the same time restricts the samples for the lower frequencies that are not

needed in order for the lower frequencies to be resolved.

2.3.2 Wavelet Transforms

Wavelets are a relatively new tool for transforms that partially avoid the problem of reso-

lution that other transforms have when dealing with non-stationary signals. In accordance



CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 12

with Heisenberg’s uncertainty principle, we cannot discern what spectral components ex-

ist at any given point or instant. We can, however, determine what spectral components

exist over a given interval. Choosing this interval can introduce a resolution problem for

transforms that have fixed resolutions. Smaller intervals have better time resolution, but

poorer frequency resolution. Wider intervals have better frequency resolution, but poorer

time resolution — there is a tradeoff. Wavelets have variable resolutions that make them

more desirable to use in this scenario. For low-frequency spectral components the spatial

resolution is increased and the frequency resolution decreased. For higher-frequency spectral

components, the spatial resolution is decreased and the frequency resolution is increased. In

this manner, the wavelet transform adapts in order to mitigate the effects of the resolution

problem. Figure 2.7 depicts this graphically with the frequency resolution on the y axis and

the spatial resolution on the x axis.

2.3.3 Gabor Wavelet Filter

The use of the 2D Gabor filter in computer vision was introduced by Daugman in the late

1980s [6, 5]. Since that time it has been used in many computer vision applications including

image compression [5], edge detection [19], texture analysis [20], object recognition [14] and

facial recognition [17, 16, 33, 32, 31].

The general form for a complex-valued 2D Gabor function is a planar wave attenuated

by a Gaussian envelope:

Ψ(x, k, σ) =
k2

σ2
exp(−k2x2

2σ2
)[exp(ikx) − exp(−σ2

2
)] (2.6)

In order to render the filters insensitive to the overall level of illumination, the term

exp(−σ2

2
) is subtracted. The multiplicative factor k2 ensures that filters tuned to different

spatial frequency bands have approximately equal energies.

2.3.4 Jets

Wiskott uses jets extensively in his facial recognition and scene analysis applications [34,

33, 32, 31]. Jets are a grouping of wavelets in varying orientations and frequencies evaluated

at a single point. A jet is a condensed and robust representation of a local grey value

distribution, termed a local expert [32]. Wiskott further describes a jet as being based on a

Gabor wavelet transform, which is a convolution with a family of complex Gabor wavelets
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Figure 2.7: Diagram Relating Pixel Width Evaluation to Frequency Level of the Wavelet
Transform Demonstrating the Dynamic Resolution used in a Wavelet Transform.



CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 14

having the shape of plane waves restricted by a Gaussian envelope function. The wavelets

are similar in the sense that they can all be generated from a mother wavelet by rotation

and scaling. All complex coefficients of the transform taken at one image location form a

jet.

A small displacement may lead to very different coefficients. However, the magnitudes

vary slowly and can be used directly for comparison [32]. Wiskott also states that jets are

robust with respect to illumination variations, scaling, translation and distortion. Another

benefit of Gabor wavelets is that they are a good model for the receptive fields of complex

cells in primary visual cortex of primates [32].

2.3.5 Gabor Filter Frequencies

When performing a frequency analysis it is important to consider what frequencies should

be evaluated. Low frequency information remains more stable across images. Nestares

et al. [23] selected Nyquist
2

as the highest central frequency of their implemented Gabor

filter banks. In accordance with Nyquist’s theorem, lower resolution images have fewer

useful frequencies that can be used. High frequency information has been shown to be a

differentiating factor in texture analysis in high-resolution images [20], but the majority

of images are not high resolution. In addition, high frequency information in images is

often associated with edges and noise [28] and we are not directly concerned with edge

information. For this implementation, we therefore use only the low frequency information.

2.4 Combined Colour and Spectral Analysis

Using a combination of colour, texture and shape in Content-based Image Retrieval (CBIR)

systems has been attempted in a variety of ways. Systems covered in this section include

IBM’s QBIC system [18], Blobworld [3], C-BIRD [35], a project by Tian et al. [30] and

an earlier iteration of the algorithm presented here [1]. Other systems include Virage [2],

Photobook [25] and Amore [27].

IBM has developed the QBIC (Query By Image Content) system [18] that indexes colour

using colour histogram distances measured in two ways. The low-dimensional colour his-

tograms are matched using a weighted Euclidean distance measure, which acts as a filter for

the more comprehensive quadratic histogram distance. It is shown that using this match

measure it is possible to first prune histogram matches by using a lower bound on the match



CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 15

measure of highly reduced dimensional histograms. QBIC also measures texture features

including coarseness, contrast and orientation. Shape features are made up of shape area,

circularity, eccentricity, major axis orientation and a set of algebraic moment invariants.

Texture and shape features are also matched using a weighted Euclidean distance calcula-

tion.

Belongie et al. [3] developed the image representation called “Blobworld” along with

an image retrieval system based on that image representation. The system allows a user

query for an image, or any number of objects within an image, by selecting a region for

use as a sample image. Another significant feature of the “Blobworld” system is that the

user can view the internal representation of the probe image and that of the query results.

This allows for the refinement of queries and produces a certain level of user satisfaction as

typical image retrieval systems return unintuitive results that are confusing to the casual

observer. Segmentation in “Blobworld” is accomplished by the Expectation-Maximization

(EM) algorithm that is used to group a large set of 6-D feature vectors. The algorithm first

determines the polarity measure at every pixel location at various scales. The first scale

in which the polarity doesn’t change (difference between successive values is < 2%) is the

chosen one. Once a scale has been chosen, a 6-D vector is created for every pixel made up of

three texture descriptors (orientation, anisotropy, and contrast) and three colour descriptors

(based on the HSV colour space). Pixels are grouped based on the 6-D feature vectors using

the Expectation-Maximization algorithm to determine the maximum likelihood parameters

of a mixture of K Gaussians. The image matching score is the Mahalanobis distance be-

tween feature vectors, and is similar to the QBIC colour histogram matching for colour

vectors. Experiments are performed on 2, 000 natural images selected from the same com-

mercial Corel photo collection used in Chapter 4. Their method typically outperforms global

histogram matching, however, the precision reported is very low.

The C-BIRD system generates a feature descriptor and a layout feature for each image

in the database. There are four vectors in the feature descriptor. Two of the feature

vectors are a 512-bin histogram colour vector and the chromaticity vector found in [9].

The other two feature vectors are the centroids of the five most frequent colour regions

and the centroids from the regions of the five most frequent edge orientations. The layout

feature contains colour layout and edge layout vectors constructed from determining the

most frequent colours and the number of edges for each orientation in each of the 64 image

tiles. There are a variety of matching techniques used in C-Bird depending on the feature
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being measured. The distance between chromaticity vectors is the L2 distance and histogram

intersection is used for the texture orientation histograms and colour histograms. When

querying for an object Li et al. [35] first localize the regions of the most frequent colours

as well as computing the area, the centroid and the eccentricity for each region. Using this

as a filter, images are selected that share a number of colour regions with the query image.

This generates a short list of similar objects which is then subjected to texture and shape

similarity matching. The 2D texture histogram measures orientation and edge separation

from the grey level image. A shape verification based on the Generalized Hough Transform

is performed if there is sufficient similarity in the texture between the query object and the

area in the short list of database images where the similar objects were identified.

Tian et al. [30] developed a CBIR system using wavelets. Their approach was to de-

tect the salient features in the image using a Haar wavelet-based salient point extraction

algorithm. Colour features and texture features are extracted at the salient points. Colour

features are extracted by interpreting the colour distribution of an image as a probability

distribution, which can then be characterized by its moments. The first three low-order mo-

ments in the HSV colour space make up the 9 dimensional colour feature vector. Texture

features are extracted by considering the Gabor filters as orientation and scale adjustable

edge and line detectors. Statistics were generated for those microfeatures at the salient

points and the low-order moments used to characterize the texture information.

There are two main differences in the use of wavelets here from that in the Tain et

al. [30] paper. First, they use Haar wavelets to detect the salient points in the image.

Typically they detected 50-100 such points. For a simplification in this study, we do not

attempt to determine the areas of distinguishing information, but rather simply use a coarse

grid in which to evaluate the wavelet filters. Second, although they use Gabor filters to

extract the texture features from the point locations, they use the coefficients to generate

statistics on the microfeatures present. Those statistics are then characterized by the low-

order moments. This study uses the magnitudes generated from the Gabor filters. In facial

recognition studies [32], Wiskott points out that magnitudes vary slowly and can be used

directly for comparison.

An earlier iteration of the algorithm presented here appeared in [1]. There are three

main differences that have been implemented in this study from the previous iteration. The

colour analysis now includes further refinement and compression. In [1] only global colour

information was retrieved. In the new algorithm colour information is extracted separately
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from each of the 25 tiles in the image. Moreover, instead of using the chromaticity bin

counts for comparison, the chromaticity histogram is now binarized and resized into a 16

by 16 pixel image. The image is then moved into the frequency domain via a DCT and

the top 8 coefficients are selected. This compression technique allowed for the additional

granularity in the colour analysis. The second difference is in the spectral analysis. In [1],

two wavelet grids were used. A 10 x 10 wavelet grid was overlapped by a 9 x 9 wavelet grid

and at each location the Gabor filters were only evaluated at 1 or 2 frequencies and in only

two orientations. This configuration was chosen empirically and has since been refined to a

single 5 x 5 wavelet grid, evaluating the Gabor filters at each location in four orientations at

four different frequencies in each orientation. This configuration was the result of extensive

testing by iteratively making improvements and measuring the increasing accuracy by the

use of a benchmark. The third change was in the benchmark used to test the similar image

retrieval capabilities. Previously there was only one data set used for both the benchmark

results and the similar image finding capabilities. In this study a new dataset was used

to test the similar image finding capabilities of the algorithm. The new data used is the

commercially available Corel photo collection. The entire collection is included, where as in

the previous iteration only a subset of the collection is used.

The work presented here is similar to that in Liapis and Tziritas [15] in that their paper

covers image retrieval based on a combined approach of using colour and texture features us-

ing chromaticities and wavelets 2. This work differs, however, in the methods used to extract

and produce these feature vectors. The colour features in Liapis and Tziritas are described

in terms of 2D or 1D histograms of CIE Lab chromaticity coordinates. The work presented

here uses 2D stretched chromaticity histograms, based on the RGB colour space, for which

all bins are populated. Texture information in Liapis and Tziritas’ paper is extracted using

a Discrete Wavelet Frames analysis, where they determine characteristics corresponding to

each texture type, so they can uniquely define each texture pattern. The work presented

here accomplishes feature extraction in a single step by evaluating Gabor wavelet filters

without the initial step of determining where to evaluate the filters; the placement of the

filters is made to be function of the size and aspect ratio of the image. This approach

offers an attractive degree of simplicity, while retaining a high level of discriminatory power

between images.

2Note that the work here was first reported in [1]; over a year before that in [15].
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Procedure

3.1 Frequency Analysis

For this application, a variation on Wiskott’s jet was used that evaluated the Gabor filter in

four different directions. The four directions were at 0 degrees (horizontal), at 45 degrees, at

90 degrees (vertical), and 135 degrees. Figure 3.1 depicts the idea behind the construction

of a jet: Applying the same size filter in multiple orientations at a single location. The jet

in this study used the four lowest frequencies at each of the four orientations. The purpose

is to sample the significant frequency components in the four major directions. In this way

the magnitudes computed from the evaluation of the wavelets becomes a record of the major

frequency components in a specific location. By evaluating four frequencies at each of four

directions, the feature vector retrieved from each image location contains 16 coefficients. By

evaluating the jets in multiple locations spanning the entire image, we retrieve stable and

significant information in the feature vectors that can be compared to the feature vectors

from other images.

The jets must be evaluated at locations that will provide statistically significant features

with high discriminatory power. As image content is not known a priori, the features

with discriminating power also cannot be known beforehand. Therefore, in order to gather

enough distinguishing information, locations covering the image extents were sampled. Four

considerations were taken into account when devising this method:

1. As the content of the image was not known beforehand, no assumptions could be made

as to the placement or orientation of the distinguishing content.

18
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Figure 3.1: Depiction of four Gabor filters evaluated in a single location at 0◦, 45◦, 90◦ and
135◦.
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2. The wavelet placement must be predictable and repeatable.

3. The wavelet placement method must be size invariant as the image dimensions can

vary.

4. The wavelet placement must be invariant to aspect changes in the imagery.

To achieve goal 1, a uniform grid of Gabor filters is evaluated over the entire image so

as to retrieve feature information from the entire image. To achieve goal 2, the placement

of the filters were made a function of the image extents. This makes the placement of the

wavelets consistent as they are based on the image’s dimensions and not the image content.

In addition, by making the shape and size of the filters a function of the image extents as

well, the filter size and shape were proportional to the size and shape of the image. This

allows the wavelets to evaluate similar magnitudes as the wavelets cover the same area no

matter how many pixels make up that area. This satisfies both goals 3 and 4.

Once the methodology of placing and sizing the filters was decided upon, the question of

how many filters that should be used still needed to be answered. Various uniform grids with

differing numbers of filters are attempted. Below, the evolution of the frequency algorithm

is followed, with grid sizes of 16x16, 10x10, 8x8, 6x6 and 5x5 being tested. Each variation is

benchmarked against a dataset in order to determine the effectiveness in retrieving the same

source images and its ability to retrieve images with similar content. The results of these

benchmarks are discussed in chapter 4. Ultimately a grid size of 5x5 was chosen as it was

reasonably stable under minor spatial shifts allowing the same source images to be found

with high accuracy, while still maintaining sufficient spatial constraints to aid in retrieving

images with similar content. An image depicting the highlighted wavelets in the four corners

of the 5x5 wavelet grid is shown in Figure 3.2. All 25 wavelets are shown, overlaid in Figure

3.2 — the image is layered with many wavelets so only a part of each wavelet can be

seen. The wavelets are made to overlap following Wiskott [32]. If the wavelets did not

overlap, then the areas that correspond to the highly attenuated edges of the wavelet would

contribute little to the recognition of the images or objects. Figure 3.2 shows prominently

the placement of the four corner wavelets in the image over a faded background comprised

of all the wavelets on the image. The wavelets in the corners are displayed in Figure 3.2 for

clarity. As they overlap and occlude each other, it is impossible to show all of the wavelets

at the same time.
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Figure 3.2: A 5x5 Gabor wavelet grid evaluating frequency 2 at orientation 0 (horizontal).
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In order to accurately describe the implementation of the Gabor wavelet, the steps taken

to compute a Gabor wavelet filter magnitude are described in detail. This section takes the

reader through a complete algorithm, starting from the original image, and proceeding all

the way down to the generation of the first Jet. For this section, Figure 2.1 is used.

When performing the spectral analysis on an image, the system first converts the image

to greyscale as the wavelet filters work on intensity values, or greylevel values. The system

analyzes the image dimensions in order to determine where to place the Gabor Jets to

achieve the 5x5 grid. Figure 2.1 is 384 pixels in width and 256 pixels in height. With a

50% overlap in the Jets, this means that the system must evaluate a Jet in the 25 positions

listed in Table 3.1, with each jet having a size of 128 pixels in the x direction and 84 pixels

in the y direction; which gives the Jets the same aspect ratio as Figure 2.1.

After determining the size, shape and placement of the Gabor Jets, the system can move

on to evaluating each Jet. When evaluating a jet at a specific location, the algorithm starts

off by looping over the number of frequencies and the number of orientations as shown in

Program 3.1. This will result in 16 calls to the function “EvaluateSingleFilter” for each Jet.

The following paragraph will go into detail on what happens during the first call to this

function.

iFirstO = 0;

iLastO = 3;

iFirstF = 1;

iLastF = 4;

// Generate a Gabor Jet for this feature location according to

// the initialized number of orientations and frequencies

for( iO = iFirstO; iO <= iLastO; iO++)

{

for( iF = iFirstF; iF <= iLastF; iF++ )

{

pdDescriptors[iCount++] = EvaluateSingleFilter(iO, iF);

}

}

Program 3.1: Generation of a Set of Filters Forming a Jet

The first time “EvaluateSingleFilter” is called it is tasked with evaluating the Gabor
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filter in orientation 0 (horizontal) and frequency 1. The frequency number refers to the

number of complete planar wave cycles that cover the width of the wavelet filter. The four

orientations correspond to the angles 0, 45, 90 and 135.

When implementing the Gabor wavelet filter, described in Equation 2.6, for use at dif-

ferent orientations, the waveform is fixed in the x direction and the x-y sampling area is

rotated. In order to calculate the planar wave value at any point for the current orienta-

tion angle, the algorithm rotates the x-y points instead of rotating the waveform — which

ultimately is the same thing. Rotating the x-y points around the center of the wavelet is

done by using a simple 2D transform shown in Program 3.2. dOri is the wave propagation

direction in radians, (iX,iY) is the current pixel location and (iXC,iYC) is the center of

the wavelet. The rotated point, (dRotX,dRotY) is used in calculating the planar wave and

gaussian values.

dRotX = (double)(iX-iXC)*cos(dOri) + (double)(iY-iYC)*sin(dOri);

dRotY = -(double)(iX-iXC)*sin(dOri) + (double)(iY-iYC)*cos(dOri);

Program 3.2: Generation of Rotated Planar Wave and Gaussian Coordinates

The system iterates over each pixel in turn. The first pixel in this image has intensity

171, which is read directly from the image. For each pixel, the system needs to deter-

mine the planar wave value for that position. This value depends not only on the pixel

location, but the wavelet rotation as well. The first time “EvaluateSingleFilter” is called

with orientation 0 and frequency 1, the values of dRotX and dRotY are equal to iX-iXC

and iY-iYC respectively, as there is no rotation in the wavelet at orientation 0. If there

were a rotation angle, the values of dRotX and dRotY would be different and they would

correspond to the position on the planar wave that this particular pixel would lie on, if it

was indeed rotated. Once the correct planar wave position is computed, the planar wave

value at this position can now be computed using the code snippet shown in Program 3.3.

dFreq is the frequency of the waveform, dRotX is the rotated x-y point calculated above,

dRadWaveCov is the radial coverage of the waveform in the x direction and 2*PI converts

the dRotX/dRadWaveCov ratio into radians. With no rotation, the radius of the filter,

dRadWaveCov, is equal to half of the width of the filter as determined above. When the

wavelet rotates, dRadWaveCov will change and the purpose of the code snippet listed in

Program 3.3, is to always maintain the exact number of planar wave cycles dFreq dictates
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dWaveMod = 2*PI*dFreq*dRotX/dRadWaveCov;

dPWaveCos = cos(dWaveMod);

dPWaveSin = sin(dWaveMod);

Program 3.3: Generation of Planar Wave Values

dGauss = dFreq * exp(-0.5*( dRotX*dRotX/dSigX2 + dRotY*dRotY/dSigY2));

dGaussSum += dGuass;

Program 3.4: Generation of Gaussian Envelope

in the horizontal direction. For our current example, dRadWaveCov is 64 and dFreq is 1.

As we are starting at the edge of the filter, dRotX is −64, which is the far left edge. Finally,

dRadWaveCov is 64 as the radius in the x direction is half the width of the filter when the

filter is not rotated. When we run the values through the code snippet in Program 3.3,

we end up with the value of 2*PI for the variable dWaveMod. Intuitively, this is correct

as this is the first pixel and it is at the edge of the planar wave. Program 3.3 finishes for

this pixel by calculating the sin and cos values for dWaveMod. Now that the pixel value

and the planar wave value is known at this location, the only remaining item to compute is

the gaussian value at this pixel location. As this is an edge pixel, we would expect a small

gaussian value here as the farther a pixel is from the center, the less it contributes to the

result of the filter.

The jet uses σx and σy to determine the gaussian width in the x and y directions. In

many applications, these two values are equal, and hence yield a circular filter. σx and σy are

used to produce elliptical shaped filters, with the same aspect ratio as the images on which

they were evaluated. Elliptical filters are used to analyze foreshortened objects or texture

patterns. Images that have been stretched, or have otherwise had the aspect ratio altered,

are analogous to a foreshortened view. Binding the shape of the filter to the aspect ratio of

the image produces an algorithm that is invariant to aspect changes. At each rotation the

waveform is stretched or compressed to ensure the foreshortened x-y information generates

the same coefficient magnitudes as the unforshortened view. This was accomplished by the

C++ code snippets shown in Program 3.3 and Program 3.4.

The planar waves are attenuated by a gaussian envelope generated by Program 3.4.
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dGaborReal += dGauss * dPWaveCos * (double)iIntensity;

dGaborImag -= dGauss * dPWaveSin * (double)iIntensity;

Program 3.5: Generation of Gabor Components

dGaborMag = (hypot(dGaborReal, dGaborImag) / sqrt(dGaussSum));

Program 3.6: Generation of Gabor Magnitudes

After having computed the planar wave and gaussian values we can calculate a running

sum of the Gabor components which is the product of pixel intensity value multiplied by

the planar wave attenuated by the gaussian envelope. The C++ code snippet is shown in

Program 3.5. dGaussSum is used later when we need to normalize the Gabor magnitude.

When the algorithm is finished evaluating the filter we compute the magnitude as the

hypotenuse of the real and imaginary components and then normalize the Gabor magnitude

by dividing by dGaussSum. The C++ code snippet in Program 3.6 shows how this is

accomplished.

The exp(−σ2

2
) factor, listed in Equation 2.6, was not included. This factor is usually

subtracted to yield a zero DC response, since the integral of the cosine is always larger

than the sine. This factor makes the response magnitudes invariant under different lighting

contrast conditions. Since the outer ends are severely attenuated by the gaussian, this factor

will have little effect on the overall response.

3.2 Colour Analysis and Illumination Invariance

The colour analysis was performed using a method similar to a method used by Drew and

Au [7]. As with their method, the colour channels were normalized before moving into

chromaticity space. This greatly attenuates dependence on both luminance and lighting

colour [7]. Normalization is accomplished by first dividing each colour channel by its mean,

then normalizing each pixel’s RGB colour vector to length 1 by dividing by the square root

of the sum of the squares of the RGB values. Iterating in this manner has been shown to

provide convergence after five iterations [10, 11]; however, good results can still be achieved

in one iteration with far less computation.
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In order to increase the algorithm’s similar-image finding ability, the colour analysis was

performed on each of the same 25 image tiles as in the spectral analysis. This added a

spatial component to the colour analysis giving the algorithm the ability to not only find

images with similar colours, but also add discrimination for finding images having the same

colours in similar locations.

For each image tile, the raw chromaticity values are used to create a binarized 2D

stretched-chromaticity histogram using the Matlab script shown in Appendix A.3, which

was based on Equation 2.5. The 2D stretched-chromaticity histogram was then reduced

into a 16x16 image by means of an image resizing operation. The resized 2D histogram was

then compressed by means of a 16x16 DCT operation. The first 8 DCT coefficients were

then appended to the filter coefficients to complete the encode vector. Linear correlation

was used as a measure of difference between the resulting feature vectors.

This approach has a significant level of illumination independence. First, normalization

of the colour channels, before moving into a chromaticity space, greatly attenuates depen-

dence on both luminance and lighting colour [7]. Moreover, because chromaticity is a ratio

of colour bands, moving over to chromaticity space has the effect of removing shading [7],

which also contributes to illumination invariance.

3.3 Image Encoding

The image was encoded in the following manner:

1. A Gabor wavelet filter grid was used to find discriminating information from multiple

locations over the image. The magnitude coefficients, produced by evaluating the

Gabor filters at each location, were added to an encode vector.

2. A colour decomposition was performed by creating a binarized 2D stretched chro-

maticity histogram image for each of 25 image tiles. The histogram was resized and

then compressed with a DCT. The top 8 DCT coefficients were added to the encode

vector for each image tile.

The data from the frequency analysis and chromaticity histogram was combined to

form an encode vector which acted as a signature. The similarity between any two encode

vectors was calculated using linear correlation. Linear correlation produces a number in
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the range of [−1, 1]. Zero represents no correlation, negative unity represents a complete

negative correlation, and unity represents a complete correlation. The absolute value of the

correlation was used to rank the images — this is valid because here it is the distance from

zero that represents correlation, as described in Section 2.1.

Because the values in the encoded feature vector are always positive, the results were

stored in an unsigned 16-bit integer. The small data type was used to increase the speed

of the correlation and to reduce the data that was stored in the database. If the results of

the Gabor filter were greater than 216 then the result was truncated and the coefficient was

assigned to be 216. In the dataset used for this experiment this condition never occurred.

The encode vector is made to be efficient for comparison in a number of ways. First,

the overall signature size is small (800 bytes), which allows for smaller storage requirements

and faster searching. Second, the layout of the signature allows for correlating frequency

and colour separately, without fragmentation in the signature, allowing for an efficient im-

plementation of the correlation routine. Finally, by using simple data types like unsigned

integers, we can correlate signatures faster than we could using floating point data types.

Benchmarks performed on an Intel P4 2.8 GHz machine revealed that the searching could

be performed at a rate of 300,000 images per second.
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Table 3.1: Gabor Jet Evaluation Positions on Image 833009.jpg

(x,y) 1 2 3 4 5

1 (64,42) (128,42) (192,42) (256,42) (320,42)

2 (64,85) (128,85) (192,85) (256,85) (320,85)

3 (64,128) (128,128) (192,128) (256,128) (320,128)

4 (64,170) (128,170) (192,170) (256,170) (320,170)

5 (64,213) (128,213) (192,213) (256,213) (320,213)



Chapter 4

Experiments

An image data set was assembled for testing the image recognition algorithm. 2,708 JPEG

images of varying content were chosen from a photo library 1 of 41,510 images. The JPEG

images were selected by choosing five images, if available, from each directory within the

photo library. The purpose of these images was to obtain varying content in which the

image recognition capabilities could be tested. In order to test the robustness of various

aspects of the algorithm, nine variations of each image were generated programmatically

using the Victor Image Processing Library. The format and motivation behind the image

variations are listed in Table 4.1. The image variations include resizing, colour changes,

distorting the aspect ratio and cropping. It is important to note that for the three image

variations involving cropping, the image center is unaffected. This point is emphasized here

in order to explain why cropping attacks are a challenging recognition task for this algorithm.

When cropping occurs, not only is information removed, but the relative positions of objects

within the image change. The effect of this shift on the spectral analysis is that the wavelet

filters are evaluated in slightly different positions, thus effecting the magnitudes calculated

from the filters. Although Wiskott points out that the magnitudes vary slowly with spatial

shifts [32], the results of this study indicate that this effect is still significant in image

recognition. All the original images and their nine variations were loaded into a database

along with the encode vectors that were produced from those images. With ten variations

(original included) of each image, the total number of images in the dataset was 27,080. The

dataset was then used to benchmark the algorithm’s recognition ability by testing its ability

1Corel Gallery Photo Library.

29
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to recover the same source image, including variations by cropping and aspect changes, from

the database. The benchmark also provided a subjective method to test every iteration of

the algorithm and determine the relative recognition contributions of each algorithmic step.

The performance was measured by the use of the Cumulative Match Characteristic (CMC).

The CMC score is the cumulative count of the correct number of returns. It is shown as

a percentage of the total number of correct images expected. A score of 80% achieved by

looking at only the first return (n = 1) from each search indicates that 80% of the images

returned the correct image variation in the top ranked position. The CMC was measured at

n = 1, 2, 5, 10 and 25. In addition, this study reports on the receiver operating characteristic

(ROC) curves, which are used to evaluate the results of a prediction. A ROC curve is a

graphical plot of the number of true positives verses the number of false positives for a binary

classifier system as its discrimination threshold is varied. Consider for example, that the

algorithm was set up to declare any two images a match if their correlation exceeded 90%.

The ROC curve could be inspected to determine the number of true positives versus the

number of false positives at 90%. The ROC curve plots this information for all correlation

values.

Table 4.1: Format and motivation behind the image copies included in the test dataset.

Format of Image Copy Purpose

Original JPG image Original

Greyscale image Colour invariance

70% resized image Invariance to small size change

30% resized image Invariance to large size change

24% height cropped image Spatial shift invariance

24% width cropped image Spatial shift invariance

24% height and width cropped image Spatial shift invariance

20% quality JPG image Pixelation and colour invariance

30% width stretched image Aspect change invariance

30% height stretched image Aspect change invariance

A second dataset was assembled for testing the similar image finding abilities of the
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algorithm. This dataset was comprised of all 41,510 images from the same photo library 2,

which is divided into directories based on context and content. Directories that had very

similar visual content were selected to measure the similar image finding capabilities. Figure

4.1 shows an example of a selection of thumbnails from one such directory called ”Doors of

Paris”. In this directory, all of the pictures have the same content and layout. They are all

pictures of doors that take up a similar portion of the image, have similar shapes and similar

backgrounds, but are in fact all pictures of different doors. One measure of the success of

this algorithm is to use it to find the remaining pictures of doors based on a single probe

image. The purpose of this dataset is to obtain content in which the similar image finding

capabilities could be tested as well as getting a sense for the potential object recognition

capabilities of the algorithm.

Testing began by isolating each image variation in the dataset, so that each search

was restricted to the 2,708 images of the same variation. Using the original image as the

probe, each image variation was searched for in turn. This allowed the system’s performance

to be measured under each of the conditions produced by the image variations. The top

25 appropriate matches from each search were analyzed. The search results were used

to calculate the cumulative match characteristic score. The CMC scores for each image

variation search are summarized for each iteration of the algorithm.

4.1 Evolution of the Spectral Algorithmic Component

During this study various versions and stages of the algorithm were tested. The results of

these tests were analyzed and new iterations of the algorithm were designed based on the

results. This process, as it was applied to the spectral component, is summarized in this

section. The evolution of the colour and chromaticity component is summarized in section

4.2. Spectral content alone is studied in this section. When correlating image signatures

during a search, the colour information was ignored and the signatures were based on the

original images.

The first version of the algorithm used a 16 x 16 wavelet grid to obtain the spectral

components. After analyzing the results of the 16 x 16 wavelet grid, the algorithm progressed

to use a 10 x 10 wavelet grid. This study then tested a 8 x 8 wavelet grid, followed by a

2Corel Gallery Photo Library.
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Figure 4.1: Sample Thumbnails from the Corel Photo Library ”Doors of Paris” Directory.
Images are from the Corel Gallery and are copyright Corel. All rights reserved.
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6 x 6 wavelet grid and then finally a 5 x 5 wavelet grid. The algorithmic progression and

associated results are discussed in detail in this section. At each stage, the results of the

benchmark are discussed.

4.1.1 16 x 16 Wavelet Grid

Table 4.2 summarizes the CMC results for the 16 x 16 wavelet grid benchmark using the

original image as the probe image. The system found the Greyscale, 70% resized, 20%

Quality images, 30% X stretch and 30% Y stretch with over 97% accuracy in the top ranked

position. The images cropped in one direction, 24% X crop and 24% Y crop, had reasonable

rates of returns with 81.28% and 76.33% respectively. The 24% X and Y cropped image had

poor returns, achieving only 23.26% returns in the top ranked position. The 30% resized

image was essentially never found using this version of the algorithm.

The dataset was then restricted to the 2,708 original images. All of the image variations

were then used as probes to search for the original images. The CMC scores generated by

using each image variation as the probe image are summarized in Table 4.3. The results

indicate similar relative strengths in the system. Using the 30% resized image as the probe

gave near zero returns. Cropping in both directions had very poor results as well, with only

23.30% correct returns in the top ranked position. Cropping in a single direction produced

better results, with 61.89% and 85.75% in the X and Y direction respectively. Using the

aspect altered images as probes provided returns of 99.04% for the X direction and 84.97%

for the Y direction.

Two results are apparent in this data set. The first result is that the 30% resized test

case shows virtually no recognition capabilities. This is due to a combination of a violation

of the Nyquist-Shannon sampling theorem and of an implementation issue. In order to

understand the implementation issue, it is first important to understand how the Nyquist-

Shannon sampling theorem is violated. With 16 wavelets being evaluated in each direction,

each with a 50% overlap, means that each individual wavelet covers 12.5% of the image,

or 1/8th. The first four frequencies are analyzed, meaning that for the fourth frequency, a

minimum of 16 pixels are required to satisfy the Nyquist-Shannon sampling theorem. When

resized to 30%, most images did not satisfy this requirement. The effect of this is that

the magnitudes being generated at the higher frequencies are unreliable. The magnitudes

generated under this condition are significantly larger. This impacted the implementation

of the benchmark program. In order to perform this number of tests against this number of
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Table 4.2: Using a 16x16 Gabor Wavelet Grid, every original JPEG image was tested as
a probe for finding each image variation in turn. The CMC score was recorded and the
percentage of the variations returned, within each ranking category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Greyscale 99.48 99.48 100 100 100

70% resized 99.04 99.04 99.34 100 100

30% resized 0.04 0.04 0.04 0.04 0.04

24% Y crop 76.33 78.95 81.32 87.22 91.62

24% X crop 81.28 83.75 86.19 90.36 94.28

24% Y & X crop 23.26 25.74 29.36 37.59 47.78

20% quality 99.63 99.82 100 100 100

30% X stretch 99.04 99.04 99.82 100 100

30% Y stretch 97.78 97.97 98.71 99.48 99.67

Table 4.3: Using a 16x16 Gabor Wavelet Grid, every image variation was tested as a probe
for finding each original JPEG in turn. The CMC score was recorded and the percentage
of the original number of images returned, within each ranking category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Grayscale 99.48 99.67 100 100 100

70% resized 99.15 99.63 100 100 100

30% resized 0.04 0.04 0.04 0.04 0.04

24% Y crop 85.75 88.29 90.69 93.65 9642

24% X crop 61.89 64.48 67.61 70.46 73.14

24% Y & X crop 23.30 26.44 30.58 39.48 48.97

20% quality 99.63 99.63 100 100 100

30% X stretch 99.04 99.56 100 100 100

30% Y stretch 84.97 85.64 86.71 87.19 87.81
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images, the benchmark application was designed to run all the tests simultaneously so as to

avoid performing too many searches. The results for each individual test were determined by

inspecting the attributes of the returns. If a particular return was pertinent to a given test

then it was used in the calculation of the CMC values, otherwise it was ignored. The total

number of returns for each search was set to 2000. No returns were inspected beyond the

first 2000 images. The implication of this is that if none (or very few) of the first 2000 returns

are applicable to a given test, then the results of that test are incomplete. The number of

returns was adequate for all the tests with the exception of the following scenario: with each

30% resized image producing a large spike in the magnitudes at the higher frequencies they

all correlated unnaturally low and as a consequence, the 2000 returns inspected was not

sufficient to complete this test. The solution to this problem is to run the tests in isolation

or by increasing the number of returns inspected. In both cases the benchmark application

became unusable as the length of time taken to complete was unmanageable.

The second result we observe is that the cropping attacks produce large reductions in

recognition capability, particularly when cropping is in both directions. There are two

reasons for this. The first reason is that when images are cropped, information is removed

and as a result any algorithm that extracts that information will be affected. The second

reason has to do with the placement of the wavelets. Because the placement of the wavelets

is a function of the image extents, when the image is cropped the positioning of the wavelets

is subject to a spatial shift. The magnitudes generated from the wavelets are sensitive to

spatial shifts, especially when the shift is large relative to the wavelet’s size.

Figure 4.2 is the top 12 returns at this grid size and it shows a similar result to the

CMC results. The system found the Original, Greyscale, 20% Quality and 70% resized in

the top four returns. The 30% X stretched image and 30% Y stretched image were next in

the number 5 and number 6 positions respectively. The only cropped image to make the

top 12 returns was the Y cropped image in position 12. Positions 7 through 11 are all false

positives as they were ranked higher than the images generated from the probe.

4.1.2 10 x 10 Wavelet Grid

Table 4.4 summarizes the CMC results for the 10 x 10 wavelet grid benchmark using the

original image as the probe image. The system produced similar or better results in all

categories. The Greyscale, 70% resized, 20% Quality images produced similar returns of

over 99% accuracy in the top ranked position. The aspect altered images, 30% X stretch and
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Figure 4.2: False positives and negatives from probe image 549001.jpg with a 16x16 grid
size
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30% Y stretch, also achieved similar good returns with 98.97% and 98.49% respectively. The

cropped images all showed significant increases in recognition rates ranging from a 14.26%

increase for the images cropped in both directions, a 9.27% increase for the X cropped images

and a 12.33% increase for the images cropped in the Y direction. Although substantially

better, the images that were cropped in both directions still had a poor recognition rate of

only 37.52% in the top ranked position. The 30% resized image was the most significant

improvement, by achieving a 98.56% recognition rate up from 0.04% observed in table 4.2.

The CMC scores generated by using each image variation as the probe image, searching

for the original image, are summarized in Table 4.5. The results indicate similar relative

strengths in the system as reported in table 4.4. The 30% resized image had the biggest

increase in recognition over the previous version of the algorithm, bringing the CMC score up

from 0.04% to 98.74% in the top ranked position. The cropped images all showed significant

increases in recognition when used as probe images. This increase ranged from 8.27% in

the Y cropped images to 18.5% for the images cropped in both directions. The recognition

rates of the images cropped in both directions remains relatively poor at 41.80%. Using

the X stretched images as probes provided a negligible difference in recognition rates with

a difference of less than 0.1%. The Y stretched image however yielded a 13.22% increase in

recognition in the top ranked position.

After reviewing the results of this benchmark it is apparent that the 30% resized images

can now be used with confidence. The reduction in the number of wavelets from 16 to

10 causes each individual wavelet to cover more of the image. Using 10 wavelets in each

direction means that each wavelet covers 20%, or 1/5th of the image. This increase in

resolution, allowed the 30% resized images to be accurately transformed as they now had

sufficient resolution to satisfy the Nyquist-Shannon sampling theorem. This eliminated the

large spikes in the magnitudes that caused the benchmark application to be unreliable for

this image category in the previous section. Moreover, this additional resolution reduced the

overall sensitivity to spatial shifts, allowing for an increase in the recognition rates involving

the cropped images.

Another important effect of reducing the number of wavelets in the wavelet grid is

that the size of the image signature is dramatically reduced. Instead of containing 4096

magnitude coefficients, 3 the signature has now been reduced to 1600 magnitude coefficients.

3(16*16 wavelets in the grid * 4 orientations * 4 frequencies = 4096)
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This reduction in data size not only saves storage space but allows for faster searches as less

data needs to be correlated.

Taking into account the significant increases in recognition in some categories, with no

significant recognition decreases in other categories, and the reduced data overhead of the

smaller grid size, a further reduction in the number of wavelets was tested in the next

section.

Figure 4.3 is the top 12 returns for this grid size using the probe image, Figure 4.12.

Figure 4.3 shows very similar results, not only to the CMC results, but also to Figure 4.2.

The system found the Original, Greyscale, 20% Quality and 70% resized in the top four

positions as before. The difference comes in with the addition of the 30% resized image in

position 6. The 30% X stretched image and 30% Y stretched image came in the number 5

and number 7 position respectively. The Y cropped image took position 11 and position 12

saw the new addition of the X cropped image. There were 3 false positives in this search

occupying positions 8 through 10.

4.1.3 8 x 8 Wavelet Grid

Table 4.6 summarizes the CMC results for the 8 x 8 wavelet grid benchmark using the

original image as the probe image. The system produced similar or better results in all

categories compared to the previous iteration. The Greyscale, 70% resized and 20% Quality

images produced similar returns of over 99% accuracy in the top ranked position. The 30%

resized image also maintained a high rate of return that dropped slightly to 98.38%. The

aspect altered images also maintained similar returns, with 98.93% and 98.52% for the X

stretched and Y stretched images respectively. The returns of the cropped images continued

to improve with increases in recognition rates ranging between a 1.37% increase for the Y

cropped images to a 6.61% increase for the images cropped in both directions.

The CMC scores generated by using each image variation as the probe image, searching

for the original image, are summarized in Table 4.7. The results indicate similar relative

differences as compared to the returns reported in table 4.6. The Greyscale, 70% Resized,

30% Resized and 20% Quality probe images produced virtually identical returns as compared

to the previous iteration. The cropped image probes all showed increases in recognition

rates ranging from 1.29% in the Y cropped images to 7.2% for the images cropped in both

directions. The recognition rates of the images cropped in both directions remains poor at

49.00%. Using the aspect altered images as probes produced small increases in recognition,
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Table 4.4: Using a 10x10 Gabor Wavelet Grid, every original JPEG image was tested as
a probe for finding each image variation in turn. The CMC score was recorded and the
percentage of the variations returned, within each ranking category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Greyscale 99.48 99.48 100 100 100

70% resized 99.04 99.04 100 100 100

30% resized 98.56 98.63 98.71 99.85 99.89

24% Y crop 88.66 90.25 91.69 94.61 96.49

24% X crop 90.55 92.06 92.80 95.72 97.56

24% Y & X crop 37.52 41.47 45.75 54.91 65.88

20% quality 99.63 99.82 100 100 100

30% X stretch 98.97 98.97 99.52 100 100

30% Y stretch 98.49 98.60 98.74 99.89 99.96

Table 4.5: Using a 10x10 Gabor Wavelet Grid, every image variation was tested as a probe
for finding each original JPEG in turn. The CMC score was recorded and the percentage
of the original number of images returned, within each ranking category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Grayscale 99.48 99.67 100 100 100

70% resized 99.19 99.59 100 100 100

30% resized 98.74 99.19 99.71 99.82 99.89

24% Y crop 94.02 95.02 96.60 98.34 98.97

24% X crop 93.09 94.20 95.83 97.49 98.30

24% Y & X crop 41.80 46.79 51.92 60.93 70.75

20% quality 99.63 99.63 100 100 100

30% X stretch 98.97 99.56 100 100 100

30% Y stretch 98.19 98.93 99.34 99.56 99.56
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Figure 4.3: False positives and negatives from probe image 549001.jpg with a 10x10 grid
size
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when compared to the previous iteration, with a difference of 0.07% for the 30% X stretched

probe and a 0.52% difference for the 30% Y stretched probe.

After reviewing the results of this benchmark it is apparent that the reduction in the

number of wavelets from 100 (10 x 10) to 64 (8 x 8) causes an overall improvement in

recognition. Figure 4.7 shows the increase in the average returns for each iteration. This

increase in recognition is largely due to increases in the cropped image categories. This

signifies that the increase in image area covered by the larger wavelets is still reducing the

effect of the spatial shift by significant amounts.

Reducing the number of wavelets in the wavelet grid from 100 (10 x 10) to 64 (8 x

8) continues to reduce the size of the image signature. The signature is reduced from

1600 magnitude coefficients to 1024 magnitude coefficients. The reduction in data and the

overall increase in recognition indicate that the algorithm is heading in the right direction.

A reduction to a 6 x 6 wavelet grid is tested in the next section.

Figure 4.4 is the top 12 returns for this grid size using the probe image, Figure 4.12.

Figure 4.4 has the same relative ordering of the true positive results as Figure 4.3. The only

difference is that the Y cropped image and the X cropped image came before the three false

positive images which now take up positions 10 through 12.

4.1.4 6 x 6 Wavelet Grid

Table 4.8 summarizes the CMC results for the 6 x 6 wavelet grid benchmark using the

original image as the probe image. The system produced similar results in all categories

compared to the previous iteration, however, some categories increased slightly while other

categories decreased. Greyscale, 70% resized and 20% Quality images produced similar

returns of over 99% accuracy in the top ranked position. The 30% resized image also

maintained a high rate of return that increased slightly to 98.78%. The aspect altered

images maintained similar returns with 98.93% and 98.34% for the X stretched and Y

stretched image probes respectively. The returns of the cropped images remained similar

with an increase in the Y cropped direction and small decreases in the X and X&Y cropped

directions.

The CMC scores generated by using each image variation as the probe image, searching

for the original image, are summarized in Table 4.9. The results indicate similar relative

differences as compared to the returns reported in table 4.8. The Greyscale, 70% Resized,

30% Resized and 20% Quality probe images produced virtually identical returns as compared
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Table 4.6: Using an 8x8 Gabor Wavelet Grid, every original JPEG image was tested as
a probe for finding each image variation in turn. The CMC score was recorded and the
percentage of the variations returned, within each ranking category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Grayscale 99.48 99.48 100 100 100

70% resized 99.00 99.00 99.93 99.96 99.96

30% resized 98.38 98.49 98.60 99.67 99.74

24% Y crop 90.03 91.43 93.02 95.98 97.27

24% X crop 92.76 93.65 94.65 97.30 98.60

24% Y & X crop 44.13 48.38 53.40 61.00 70.20

20% quality 99.63 99.82 100 100 100

30% X stretch 98.93 98.93 99.52 100 100

30% Y stretch 98.52 98.71 98.93 99.96 99.96

Table 4.7: Using an 8x8 Gabor Wavelet Grid, every image variation was tested as a probe
for finding each original JPEG in turn. The CMC score was recorded and the percentage
of the original number of images returned, within each ranking category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Grayscale 99.48 99.67 100 100 100

70% resized 99.08 99.56 99.96 99.96 99.96

30% resized 98.78 98.86 99.45 99.85 99.85

24% Y crop 95.31 96.09 97.45 98.74 99.34

24% X crop 94.39 95.09 96.31 97.23 97.78

24% Y & X crop 49.00 53.47 59.05 66.91 75.52

20% quality 99.63 99.63 100 100 100

30% X stretch 99.04 99.56 99.96 100 100

30% Y stretch 98.71 99.34 99.59 99.67 99.67
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Figure 4.4: False positives and negatives from probe image 549001.jpg with a 8x8 grid size
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to the previous iteration, with either no differences or modest increases. The cropped image

probes all showed small changes in recognition rates ranging from a 0.77% decrease in the

Y cropped images to 0.52% for the Y cropped images. Using the aspect altered images as

probes produced a small reduction in recognition for the X stretched probes and for the Y

stretched probe images.

After reviewing the results of this benchmark it is apparent that the reduction in the

number of wavelets from 8 to 6 does not cause a significant overall reduction in recognition.

Figure 4.7 shows the trend in the average returns for each iteration. This lack of change in

the recognition rates inspired one more reduction in the number of wavelets.

Reducing the number of wavelets in the wavelet grid from 64 (8 x 8) to 36 (6 x 6)

continues to reduce the size of the image signature. The signature is reduced by 43.75%,

by reducing the 1024 magnitude coefficients to 576 magnitude coefficients. The significant

reduction in data compared to the small overall decrease in recognition suggests that this is

an acceptable compromise. A reduction to a 5 x 5 wavelet grid is tested in the next section.

Figure 4.5 is the top 12 returns for this grid size using the probe image, Figure 4.12.

There were no changes in the ordering or positioning of the true positives or false positives

for this grid size. The system found the Original, Greyscale, 20% Quality and 70% resized

in the top four positions. This was followed by the 30% X stretched image, 30% resized

image and the 30% Y stretched image in positions 5, 6 and 7. The Y cropped image and

the X cropped image are in positions 8 and 9, followed by 3 false positives in positions 8

through 10.

4.1.5 5 x 5 Wavelet Grid

Table 4.10 summarizes the CMC results for the 5 x 5 wavelet grid benchmark using the

original image as the probe image. The system produced similar results in all categories

compared to the previous iteration, however, there was a slight overall increase in recognition

rates. The Greyscale, 70% Resized and 20% Quality images produced similar returns of

almost 99% accuracy or higher in the top ranked position. The 30% resized image also

maintained a high rate of return that decreased slightly to 98.67%. The aspect altered

images maintained similar returns, with 98.71% and 98.45% for the X stretched and Y

stretched images respectively. The top ranked return of the 30% X stretched image drop

by 1.26% from the previous iteration and the 30% Y stretched returns dropped by 0.19% in

the returns for the top ranked position. The returns of the cropped images also remained
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Table 4.8: Using a 6x6 Gabor Wavelet Grid, every original JPEG image was tested as
a probe for finding each image variation in turn. The CMC score was recorded and the
percentage of the variations returned, within each ranking category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Grayscale 99.63 99.63 100 100 100

70% resized 99.04 99.04 99.96 99.96 99.96

30% resized 98.78 98.78 98.97 99.82 99.82

24% Y crop 90.55 91.69 92.91 95.42 97.08

24% X crop 90.92 92.25 93.35 95.75 97.19

24% Y & X crop 43.87 48.38 52.88 59.01 68.58

20% quality 99.63 99.67 100 100 100

30% X stretch 98.93 98.93 99.45 99.96 99.96

30% Y stretch 98.34 98.45 98.63 99.78 99.89

Table 4.9: Using a 6x6 Gabor Wavelet Grid, every image variation was tested as a probe
for finding each original JPEG in turn. The CMC score was recorded and the percentage
of the original number of images returned, within each ranking category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Grayscale 99.63 99.67 100 100 100

70% resized 99.11 99.52 99.96 99.96 99.96

30% resized 98.82 99.37 99.78 99.89 99.96

24% Y crop 94.54 96.01 97.08 98.01 98.71

24% X crop 93.87 95.24 96.23 96.86 97.08

24% Y & X crop 47.08 52.18 57.20 63.59 71.64

20% quality 99.63 99.63 100 100 100

30% X stretch 98.89 99.52 99.96 99.96 99.96

30% Y stretch 98.26 99.00 99.37 99.59 99.59
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Figure 4.5: False positives and negatives from probe image 549001.jpg with a 6x6 grid size
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similar with an increase in the Y cropped returns of 3.02% and an increase in the X cropped

returns of 1.95%. There was a notable decrease in the X&Y cropped image returns of 2.7%

for the top ranked position.

The CMC scores generated by using each image variation as the probe image, searching

for the original image, are summarized in Table 4.11. The results indicate similar relative

differences as compared to the returns reported in table 4.10, however the increase in recog-

nition identified in table 4.10, is in part negated by a drop in recognition reported by table

4.11. All categories produced virtually identical returns as compared to the previous iter-

ation. The cropped probes produced the largest increase of 0.77%, and the aspect altered

images remained relatively the same.

After reviewing the results of this benchmark it is apparent that the reduction in the

number of wavelets from 6 to 5 does not alter the overall recognition ability of the algorithm

significantly. Figure 4.7 shows the slight increase in the average returns for this iteration.

As the number of wavelets in each direction is an odd number, there exists a wavelet in the

image that is centered around the center of the image. It is hypothesized that, statistically

speaking, the differentiating content in an image is generally centered in the image, and thus

this center wavelet contributes greatly to the overall recognition abilities. The magnitude

coefficient variance is studied in section 4.1.7.

Reducing the number of wavelets in the wavelet grid from 36 (6 x 6) to 25 (5 x 5)

continues to reduce the size of the image signature. The signature is reduced by 30.56%,

by reducing the 576 magnitude coefficients to 400 magnitude coefficients. The significant

reduction in data compared to the small overall increase in recognition reinforces this new

wavelet grid size as the best choice.

Figure 4.6 is the top 12 returns for this grid size using the probe image, Figure 4.12.

Figure 4.6 shows all 10 image variations being returned in the top 10 positions. The ordering

is the same as in the previous iterations of the grid size, with the addition of the X&Y

cropped image in position 10. As all ten image variations are now returned in the top ten

positions, the images in positions 11 and 12 are no longer considered false positives. The

ordering of the images being found are as follows: The Original image, Greyscale image,

20% Quality image, 70% resized image, 30% X stretched image, 30% resized image, 30% Y

stretched and finally the X&Y cropped image. This ordering is consistent for most probe

images.
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Table 4.10: Using a 5x5 Gabor Wavelet Grid, every original JPEG image was tested as
a probe for finding each image variation in turn. The CMC score was recorded and the
percentage of the variations returned, within each ranking category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Grayscale 99.59 99.59 100 100 100

70% resized 98.97 98.97 99.96 99.96 99.96

30% resized 98.67 98.71 98.93 99.74 99.78

24% Y crop 93.57 94.68 95.94 98.34 99.08

24% X crop 92.87 94.05 95.31 97.75 98.52

24% Y & X crop 41.17 45.16 50.37 55.95 64.25

20% quality 99.63 99.67 100 100 100

30% X stretch 97.67 97.90 98.52 99.48 99.52

30% Y stretch 98.15 98.34 98.71 99.89 99.93

Table 4.11: Using a 5x5 Gabor Wavelet Grid, every image variation was tested as a probe
for finding each original JPEG in turn. The CMC score was recorded and the percentage
of the original number of images returned, within each ranking category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Grayscale 99.59 99.63 100 100 100

70% resized 99.00 99.52 99.96 99.96 99.96

30% resized 98.86 99.00 99.59 99.96 99.96

24% Y crop 90.36 92.87 94.79 96.94 98.08

24% X crop 90.77 93.28 95.16 97.38 98.04

24% Y & X crop 43.54 48.52 54.39 59.71 66.69

20% quality 99.63 99.63 100 100 100

30% X stretch 98.71 99.11 99.70 99.96 99.96

30% Y stretch 98.45 99.08 99.67 99.85 99.89
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Figure 4.6: False positives and negatives from probe image 549001.jpg with a 5x5 grid size
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4.1.6 Receiver Operator Curve

Another important consideration when evaluating a recognition system is the Receiver Op-

erator Curve (ROC). The ROC is a plot of the number of correctly identified images (true

positives) versus the number of falsely identified images (false positives). The ROCs com-

paring each iteration of the spectral analysis algorithm are shown. Figure 4.8 is the ROC

showing the difference between a grid size of 16x16 and 10x10, which shows a substantial in-

crease in recognition. The differences in the ROC curves in the subsequent grid size changes

are shown in Figure 4.9, Figure 4.10 and Figure 4.11. The ROC curves show a similar result

that the CMC results did, in that the recognition ability between a grid size of 16x16 and

10x10 increased significantly, followed by more modest increases in recognition from grid

sizes 10x10 to 8x8, then onto 6x6 and finally 5x5.

4.1.7 Variance in Magnitude Coefficients Among Same Source Images

An analysis was conducted of the Gabor Wavelet magnitudes in an effort to determine

where the recognition capabilities come from. Every signature was exported into csv files for

import into Matlab. The Gabor magnitude coefficients were extracted from each signature

and images from the same source were grouped together. The within-class scatter was

calculated on each of the 2708 groups of 10 image variations. These variations were then

averaged for each of the 25 image tiles at each frequency level. Table 4.12 shows the result of

this analysis for the first frequency level. Although Table 4.12 does not have a clear pattern,

Table 4.13, 4.14, and 4.15 all show smaller variances in the center of the image than at the

edges suggesting that the contributions from the center of the image contribute more to the

overall recognition of the algorithm. This could be a result of the desire to center the item

of interest in the image, thus placing more distinguishing information in the center of the

image. Table 4.12 suggests that the low frequency information is present throughout the

image and is not concentrated in the centers as the higher frequency information is.

4.2 Colour Analysis Evolution

In this section, the use of colour alone is studied, independent of the spatial frequency

by correlating only the colour content of a feature vector during a search. The algorithm

started by using a single RGB histogram with 8 bins for each colour channel for a total of
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Figure 4.7: Average percentage return of the top ranked position using the original image
as the probe.

Figure 4.8: Receiver Operator Curve for Grid Sizes 16x16 and 10x10.
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Figure 4.9: Receiver Operator Curve for Grid Sizes 10x10 and 8x8.

Figure 4.10: Receiver Operator Curve for Grid Sizes 8x8 and 6x6.
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Figure 4.11: Receiver Operator Curve for Grid Sizes 6x6 and 5x5.

Table 4.12: Average Within Class Scatter for Frequency Level 1 Per Image Tile

Image Tile 1 2 3 4 5

1 1.0500 1.0941 1.0602 1.0326 0.9696

2 1.0738 1.0911 1.0527 1.0283 0.9838

3 1.0797 1.0717 1.0413 1.0183 0.9760

4 1.0860 1.0873 1.0566 1.0467 0.9925

5 1.0641 1.0825 1.0630 1.0501 0.9721

Table 4.13: Average Within Class Scatter for Frequency Level 2 Per Image Tile

Image Tile 1 2 3 4 5

1 0.1492 0.1752 0.1836 0.1877 0.1714

2 0.1564 0.1882 0.1984 0.2057 0.1821

3 0.1602 0.1933 0.2048 0.2058 0.1885

4 0.1597 0.1872 0.2005 0.2037 0.1866

5 0.1485 0.1688 0.1798 0.1878 0.1739



CHAPTER 4. EXPERIMENTS 54

Table 4.14: Average Within Class Scatter for Frequency Level 3 Per Image Tile

Image Tile 1 2 3 4 5

1 0.0751 0.0894 0.0960 0.0994 0.0903

2 0.0776 0.0961 0.1011 0.1056 0.0960

3 0.0814 0.1011 0.1052 0.1074 0.0986

4 0.0802 0.0962 0.1040 0.1058 0.0996

5 0.0755 0.0876 0.0979 0.0975 0.0899

Table 4.15: Average Within Class Scatter for Frequency Level 4 Per Image Tile

Image Tile 1 2 3 4 5

1 0.0472 0.0595 0.0651 0.0642 0.0571

2 0.0495 0.0627 0.0685 0.0705 0.0640

3 0.0545 0.0632 0.0723 0.0710 0.0685

4 0.0513 0.0622 0.0681 0.0685 0.0653

5 0.0486 0.0582 0.0612 0.0645 0.0587
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512 bins. It was desirable at this point to add a spatial component to the colour analysis.

To this end, the algorithm was adapted to create an RGB histogram for each of the non-

overlapping 25 image tiles generated from dividing the image into 5 equal sections in both

directions. This allowed for the ability to discriminate between different areas of the image

when correlating colour components. The algorithm progressed from there to use the same

partially overlapping image tiles that were used in the spectral analysis. This allowed for a

more efficient algorithm as well as adding more resolution to the RGB histogram. Finally

in order to reduce the significant size of the signature the algorithm was redeveloped to use

a compressed chromaticity signature. Ratios of normalized colour bands were taken and a

binarized 2D chromaticity histogram was created. The two level histogram was compressed

as an image resulting in a substantial data compression. At each stage a benchmark was

run indicating the relative success of each algorithm step. In each algorithmic step, the

performance of retrieving the greyscale images is reported. The retrieval is low, as would be

expected as there is no colour information; however, it is not zero as there are a few original

greyscale images in the image database.

4.2.1 Single RGB Histogram Intersection

This section examines using only a single RGB histogram over the entire image. There are

eight equal sized bins in the histogram for each colour band resulting in a histogram of 512

bins (8 ∗ 8 ∗ 8 = 512). The bin counts were calculated as a percentage of the total number

of pixels and then normalized into an unsigned 2 byte integer data type.

Table 4.16 summarizes the CMC results for the RGB histogram intersection benchmark

using the original image as the probe image. The system found the Original, 70% resized,

20% quality and stretched images with over 98.60% accuracy or higher in the top ranked

position. The 30% resized, X and Y cropped images had slightly lower CMC curves starting

at 95.24% or lower in the top ranked position. The X&Y cropped image had the poorest

CMC results with 79.32% in the top ranked position.

The CMC scores generated by using each image variation as the probe image, searching

for the original image, are summarized in Table 4.17. Similar relative differences as compared

to the returns reported in Table 4.16 are seen.

It is hypothesized that the poor results from the X&Y cropped images is the result

of there being distinguishing colour information at the image extremities that is discarded

during the cropping operation, thereby altering the properties of the histogram significantly,
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lowering recognition of this image group.

4.2.2 Multiple RGB Histogram Intersection

As an alternative to the single RGB histogram, here we study using a separate RGB colour

histogram for each image tile in the non-overlapping 5x5 grid. Table 4.18 summarizes the

CMC results for the 5 x 5 RGB histogram intersection benchmark using the original image

as the probe image. The Original image, 70% resized, 20% quality and stretched images

all had moderate gains in recognition starting at 99.15% accuracy or higher in the top

ranked position. The 30% resized, X and Y cropped images had significant increases in

recognition. The CMC results for these image variations were 98.71% or higher in the top

ranked position. The X&Y cropped image had the largest increase. The recognition of the

X&Y cropped images jumped 16.21% to 95.53% in the top ranked position as compared

with the previous benchmark.

The CMC scores generated by using each image variation as the probe image are summa-

rized in Table 4.19. The X&Y cropped probe images did slightly better relative to the results

in table 4.18, but otherwise the benchmark revealed similar relative recognition abilities.

When analyzing the histograms generated in this iteration of the algorithm it was appar-

ent that the histograms were sparsely populated. This is due to the already small images

being divided into 25 separate areas. In an attempt to provide more information to the

histograms, the same partially overlapping image tiles used in the spectral analysis were

also used for the histograms in the next section.

When the algorithm moved to the tiled RGB histograms, they were using a small image

area to fill the histogram. As the number of pixels in these areas is quite small, the size

of the tiles is increased. The tile size is the same size as the tiles in the spectral analysis.

This made for a more efficient implementation and provided additional resolution for the

histograms. The overlapping histogram approach is hypothesized to be more robust to the

cropping attacks as the histograms should become more stable. Table 4.20 summarizes the

CMC results for the 5 x 5 overlapping RGB histogram intersection benchmark using the

original image as the probe. All CMC scores remained the same or were slightly higher,

except for a small decline for the 30% resized image which fell to 98.6%.

The CMC results generated by using each image variation as the probe image are summa-

rized in Table 4.21. Compared to the results in Table 4.20, the results are almost identical.

The 30% resize probe also had a slightly lower CMC curve, but the X&Y cropped image
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Table 4.16: Using a RGB Color Histogram Intersection, every original JPEG image was
tested as a probe for finding each image variation in turn. The CMC score was recorded
and the percentage of the variations returned, within each ranking category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Grayscale 1.00 1.00 1.18 1.18 1.18

70% resized 98.60 98.60 99.08 99.59 99.74

30% resized 95.24 96.01 96.64 98.23 98.89

24% Y crop 94.87 95.20 95.83 97.82 98.78

24% X crop 95.16 95.61 96.31 97.64 98.63

24% Y & X crop 79.32 81.28 83.64 86.89 90.03

20% quality 99.04 99.15 99.56 99.67 99.78

30% X stretch 98.74 98.74 99.41 99.67 99.78

30% Y stretch 98.67 98.71 99.30 99.67 99.78

Table 4.17: Using a RGB Color Histogram Intersection, every image variation was tested
as a probe for finding each original JPEG in turn. The CMC score was recorded and the
percentage of the original number of images returned, within each ranking category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Grayscale 1.00 1.00 1.18 1.18 1.18

70% resized 98.74 98.97 99.34 99.67 99.82

30% resized 95.83 96.75 97.97 98.89 99.37

24% Y crop 95.24 95.90 96.71 97.97 99.04

24% X crop 97.45 97.86 98.23 98.86 99.26

24% Y & X crop 85.49 87.74 89.96 93.17 95.61

20% quality 99.04 99.04 99.45 99.67 99.78

30% X stretch 98.74 98.97 99.48 99.67 99.74

30% Y stretch 98.63 98.97 99.30 99.45 99.56
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Table 4.18: Using a 5 x 5 RGB Non-Overlapping Color Histogram Intersection, every original
JPEG image was tested as a probe for finding each image variation in turn. The CMC score
was recorded and the percentage of the variations returned, within each ranking category,
is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Grayscale 1.00 1.00 1.18 1.18 1.18

70% resized 99.15 99.15 99.78 99.96 99.96

30% resized 98.71 98.71 98.82 99.78 99.82

24% Y crop 98.86 98.86 98.89 99.71 99.78

24% X crop 98.93 98.93 99.04 99.93 99.93

24% Y & X crop 95.53 95.79 96.16 97.49 98.12

20% quality 99.63 99.82 100 100 100

30% X stretch 99.26 99.26 99.71 100 100

30% Y stretch 99.26 99.26 99.67 100 100

Table 4.19: Using a 5 x 5 RGB Non-Overlapping Color Histogram Intersection, every image
variation was tested as a probe for finding each original JPEG in turn. The CMC score was
recorded and the percentage of the original number of images returned, within each ranking
category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Grayscale 1.00 1.00 1.18 1.18 1.18

Grayscale 99.59 99.63 100 100 100

70% resized 99.26 99.52 99.93 100 100

30% resized 99.15 99.19 99.63 100 100

24% Y crop 98.78 98.86 99.34 99.82 99.82

24% X crop 99.00 99.19 99.63 99.74 99.78

24% Y & X crop 97.97 98.12 98.49 99.11 99.23

20% quality 99.63 99.63 100 100 100

30% X stretch 99.26 99.56 99.93 100 100

30% Y stretch 99.19 99.41 99.78 99.82 99.82
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probe increased by 2.07% to 98.56% in the top ranked position.

Although the results from this approach are excellent, the size of the signature for this

method limits the number of practical applications. In the next section we try to compress

the colour signature significantly in order to make it available for deployment in many

different scenarios.

4.2.3 Multiple Compressed Chromaticity Coefficients

In order to reduce the size of the image signature, chromaticities were calculated instead of

RGB values. The first significant reduction in signature size came because the problem was

reduced to 2 dimensions. Second, instead of recording bin counts in the histogram, we use a

binary histogram whereby the existence of a particular chromaticity is recorded and not the

quantity of that chromaticity. As this severely curtails the amount of information collected

the number of bins was increased to partially offset reduced information collected from the

image. Finally, the binary histogram is treated like an image and resized to a 16x16 image

and then compressed with a DCT. The top 8 coefficients are stored as the signature for that

image tile. With 25 tiles, and 8 (2 byte) coefficients for each tile, the colour signature was

reduced to 400 bytes. This algorithm is described in more detail in Section 3.2.

Table 4.22 summarizes the CMC results for the 5 x 5 compressed chromaticity bench-

mark. When using the original image as the probe, the algorithm found the Original,

20% quality, 70% resized, X and Y cropped images and the stretched images with results

of 98.49% correct returns or higher in the top ranked position. The 30% resized images

and the X&Y cropped image were the two problem areas with 93.10% and 93.5% returns

respectively for the top ranked position.

The CMC results generated by using each image variation as the probe image are sum-

marized in Table 4.23. Compared to the results in Table 4.22 the results suggest the same

relative strengths and weakness. The Original, 20% quality, 70% resized, X and Y cropped

images and the stretched images had results of 98.49% correct returns or higher in the top

ranked position. The 30% resized image probe and the X&Y cropped image probe had top

ranked returns of 96.34% and 95.31% respectively in the top ranked position.

The benchmark produced results that were slightly worse in all categories when compared

to the results in Table 4.21 and in Table 4.20. However, when compared to the original single

RGB histogram reported in table 4.16 and table 4.17, the results are higher in the case of

the 20% quality, the X and Y stretched and all three cropped image categories. The results
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Table 4.20: Using a 5 x 5 RGB Overlapping Color Histogram Intersection, every original
JPEG image was tested as a probe for finding each image variation in turn. The CMC score
was recorded and the percentage of the variations returned, within each ranking category,
is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Grayscale 1.00 1.00 1.18 1.18 1.18

70% resized 99.23 99.23 99.78 99.96 99.96

30% resized 98.60 98.63 98.89 99.78 99.78

24% Y crop 99.08 99.08 99.08 99.82 99.82

24% X crop 99.00 99.00 99.10 99.93 99.96

24% Y & X crop 96.49 96.71 96.97 98.23 98.71

20% quality 99.63 99.82 100 100 100

30% X stretch 99.26 99.26 99.71 100 100

30% Y stretch 99.26 99.26 99.67 100 100

Table 4.21: Using a 5 x 5 RGB Overlapping Color Histogram Intersection, every image
variation was tested as a probe for finding each original JPEG in turn. The CMC score was
recorded and the percentage of the original number of images returned, within each ranking
category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Grayscale 1.00 1.00 1.18 1.18 1.18

70% resized 99.26 99.52 99.93 100 100

30% resized 99.04 99.11 99.63 99.93 100

24% Y crop 99.08 99.15 99.56 99.96 99.96

24% X crop 99.04 99.26 99.71 99.78 99.82

24% Y & X crop 98.56 98.56 98.93 99.37 99.41

20% quality 99.63 99.63 100 100 100

30% X stretch 99.26 99.56 99.93 100 100

30% Y stretch 99.19 99.48 99.78 99.82 99.82
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in the cropped image categories are all higher. The Original and 70% resized categories had

the same results as in Table 4.16 and the 30% resized image category performed worse than

the single RBG histogram approach.

The signature size was greatly reduced with this approach. For the single RGB histogram

approach the colour signature was 1KB in size. For the tiled compressed chromaticity

approach this was reduced to 400 bytes. Given that the benchmark had the same or better

results in all categories except the 30% resize images, the 60% reduction in signature size

seems to be an acceptable tradeoff for the lower results in the one category. Moreover, as

the 30% resized image category performs well in the spectral analysis the poorer results for

the colour analysis will be mitigated when the two techniques are combined into a single

algorithm.

4.3 Colour and Spectral Combined

The spectral analysis and the colour analysis developed in the previous sections were com-

bined into a single algorithm in this section. The results of the benchmark of this algorithm

are discussed in this section as well as the complimentary results of the merged approach.

Table 4.24 summarizes the CMC results of the benchmark for the final algorithm, when

using the original image as the probe image. The merged algorithm found the Original image

100% of the time in the top ranked position. The 70% resized and 30% resized had returns

of 99.15% and 98.97% respectively. Searching for the greyscale image produced 98.85%

correct returns in the top ranked position. The 20% quality image search gave 99.63%

correct returns in the top ranked position. The X and Y cropped images had 98.86% and

96.82% returns for the top ranked position and the X&Y cropped image produced a CMC

result of 93.94% for the top ranked position.

The CMC results generated by using each image variation as the probe image are sum-

marized in Table 4.25. The results show similar relative strengths and weaknesses when

compared to the results in table 4.24. The merged algorithm found the Original image

100% of the time in the top ranked position. Using the 70% resized and 30% resized im-

ages as probes found the original images 99.23% and 99.15% respectively in the top ranked

position. Using the greyscale image as the probe produced 99.59% correct returns in the

top ranked position. The 20% quality image probe gave 99.63% correct returns in the top

ranked position. The X and Y cropped image probes had 96.75% and 98.56% returns for the
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Table 4.22: Using a 5 x 5 Compressed Chromaticity, every original JPEG image was tested
as a probe for finding each image variation in turn. The CMC score was recorded and the
percentage of the variations returned, within each ranking category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Grayscale 1.00 1.00 1.18 1.18 1.18

70% resized 98.60 98.60 99.11 99.45 99.59

30% resized 93.10 93.54 94.20 95.68 96.27

24% Y crop 98.49 98.56 98.60 99.30 99.45

24% X crop 98.63 98.74 98.89 99.67 99.78

24% Y & X crop 93.50 93.83 94.46 95.86 96.90

20% quality 99.34 99.52 99.71 99.74 99.82

30% X stretch 98.93 98.93 99.37 99.74 99.82

30% Y stretch 98.93 98.93 99.30 99.71 99.78

Table 4.23: Using a 5 x 5 Compressed Chromaticity, every image variation was tested
as a probe for finding each original JPEG in turn. The CMC score was recorded and the
percentage of the original number of images returned, within each ranking category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Grayscale 1.00 1.00 1.18 1.18 1.18

70% resized 98.78 99.08 99.52 99.63 99.78

30% resized 96.34 96.64 97.71 98.60 98.89

24% Y crop 98.08 98.15 98.56 99.00 99.23

24% X crop 98.49 98.71 99.15 99.34 99.52

24% Y & X crop 95.31 95.83 96.64 97.45 97.97

20% quality 99.34 99.34 99.71 99.74 99.82

30% X stretch 98.93 99.15 99.59 99.74 99.85

30% Y stretch 98.86 99.04 99.45 99.56 99.67
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top ranked position and the X&Y cropped image probe produced a CMC result of 95.02%

for the top ranked position.

The overall performance increased for the merged algorithm. The colour analysis added

additional recognition in the cropped image categories, where the spectral components were

suffering from a spatial shift. The spectral analysis added additional recognition in the

case of using the greyscale image as the probe or gallery category as there was no colour

information available. In addition, the spectral analysis added recognition to the 30% resized

image probe and gallery categories where the colour information was severely reduced.

Overall the recognition results were excellent. All benchmark categories returned the correct

image in the top ranked position with a 93.94% success rate or better.

As the benchmark database was automatically generated by performing various image

conversions on an original image, there is one category that was never tested that will be

introduced when the algorithm is adapted for object recognition. Colour constancy will be

an issue for the algorithm when the same object is captured with different cameras or under

different lighting conditions. As the benchmarks in this section show that the spectral

analysis seems reasonably impervious to colour changes, it is hypothesized that this will

be another strength of the spectral component of the algorithm in the domain of object

recognition.

4.4 Similar Image Finding

Out of the entire Corel Photo Library of 42,510 images, 5 classifications were chosen and

are used for similar image testing. The five classifications of visually similar images that

were chosen were Parisian Door, Museum Dolls, Cards, Duck Decoys and Easter Eggs.

Figures 4.12, 4.13, 4.14, 4.15 and 4.16 are the example images from these categories.

The similar images in each of the classifications were counted. There are 100 Parisian

Door pictures, 100 Museum Dolls pictures, 51 single playing Card pictures, 100 Duck Decoy

pictures and 100 Easter Egg pictures. Table 4.26 summarizes the results of searching for

visual similar images using only one of the images as the probe. The number of similar

scenes in each classification is listed in the second column of Table 4.26. The third column

is the number of similar images returned in the top 12. The fourth column is the number of

similar images that were returned in the top 24. The fifth column is the number of similar

images that were returned in the top 48. The sixth column is the percentage of similar
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Table 4.24: Using a 50% weighted combination of Colour and Spectral components, every
original JPEG image was tested as a probe for finding each image variation in turn. The
CMC score was recorded and the percentage of the variations returned, within each ranking
category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Grayscale 99.85 99.85 100 100 100

70% resized 99.15 99.15 99.93 99.93 99.93

30% resized 98.97 98.97 99.08 99.78 99.82

24% Y crop 96.82 96.96 97.34 98.41 98.63

24% X crop 98.86 98.86 98.93 99.93 99.93

24% Y & X crop 93.94 94.57 95.72 97.23 98.30

20% quality 99.63 99.82 100 100 100

30% X stretch 98.38 98.41 99.04 99.48 99.63

30% Y stretch 99.19 99.19 99.48 100 100

Table 4.25: Using a 50% weighted combination of Color and Spectral components, every
image variation was tested as a probe for finding each original JPEG in turn. The CMC
score was recorded and the percentage of the original number of images returned, within
each ranking category, is listed.

Image Variation n = 1 n = 2 n = 5 n = 10 n = 25

Original 100 100 100 100 100

Grayscale 99.59 99.63 100 100 100

70% resized 99.23 99.59 99.96 99.96 99.96

30% resized 99.15 99.19 99.78 99.96 99.96

24% Y crop 98.56 98.86 99.34 99.85 99.85

24% X crop 96.75 97.27 98.26 98.63 99.04

24% Y & X crop 95.02 96.16 97.34 98.23 98.82

20% quality 99.63 99.63 100 100 100

30% X stretch 99.15 99.52 99.93 100 100

30% Y stretch 97.86 98.30 98.97 99.41 99.63
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Figure 4.12: Sample image: Parisian Door
Image is from the Corel Gallery and is copyright Corel. All rights reserved.

Figure 4.13: Sample image: Museum Dolls
Image is from the Corel Gallery and is copyright Corel. All rights reserved.
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Figure 4.14: Sample image: Cards
Image is from the Corel Gallery and is copyright Corel. All rights reserved.

Figure 4.15: Sample image: Duck Decoys
Image is from the Corel Gallery and is copyright Corel. All rights reserved.
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images that were returned out of the total, up to a maximum of 48. The top 12 returns

were completely accurate using this method. The percentage of similar scenes in the top 48

ranged from 72.9% to 100%. These categories work particularly well as the images are of a

single object. Images containing multiple objects or highly varied patterned areas of interest

were noted to not perform as well. This is not unexpected, as the algorithm does not include

any segmentation step. This is a key component to any object recognition system.

Table 4.26: Results from similar image finding tests on five classifications of similar images.

Classification Number of Number of Number of Number of % of total

sim. scenes top 12 sim. top 24 sim. top 48 sim. up to 48

Parisian Door 100 12 21 35 72.9%

Museum Dolls 100 12 20 37 77.1%

Cards 51 12 24 39 81.3%

Duck Decoys 100 12 24 42 87.5%

Easter Eggs 100 12 24 48 100%

The similar image testing reveals the system’s applicability to object recognition. The

similar images tested are essentially all pictures of objects. All of the images had some

similar qualities. The Parisian Doors, for example, are all inset in brick buildings and

occupied the same proportion of the image. However, there are significant differences in

the images as well. Some of the doors were rounded while some were square and some had

elaborate detailing while others were quite simple. Still the system was able to pull the

images of the doors to the top of the returns. In this respect, there is significant potential

for the application of this algorithm in object recognition.

4.5 Example Searches

To demonstrate how the system performs, searches were conducted against the entire Corel

Photo Library of 42,510 images. Six probe images were chosen and the top 12 returns from

searching with those probe images are shown. The search results are ordered in ranking

from left to right, top to bottom.

The first probe, shown in Figure 4.17, generated the 12 returns shown in Figure 4.18.
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The results have a high degree of visual similarity to the probe image. In particular, return

#9 is a close-up picture of the exact same plant that was in the probe image. The second

probe image, Figure 4.19, is that of a person performing aerobics. A search with this probe

image generated the top 12 returns shown in Figure 4.20. Seven of the top twelve returns

are of people doing aerobics. The remaining five images do not seem to be contextually

related, however there are similar visual characteristics. They all share the same colour

background, and all but one have objects centered in the image.

Figure 4.21 is the same Parisian door seen earlier in this section. It is included again

for easy comparison to the search results shown in Figure 4.22. As mentioned earlier in

section 4.4, the 12 returns are all doors of slightly varying shape and level of detail. Figure

4.23 is labeled as a wooden duck decoy. When used as a probe image, the top 12 images

returned by searching are all wooden duck decoys, shown in Figure 4.24. It should be noted

that the dataset contains 100 of each of the Parisian doors and duck decoys. Figure 4.25

is a wedding photograph of which there are 7 similar photos in the image dataset, where

the wedding couple in the picture are only photographed from the waist up. When used as

a probe image, Figure 4.25 produced four of these photos in the top 12 returns shown in

Figure 4.26.

Finally, Figure 4.27 is shown as an example of when the system starts to fail to return

the images expected. Figure 4.27 is that of a zebra, and when used as a probe image it

returns the 12 images shown in Figure 4.28. There are over 40 pictures that contain a

zebra in this dataset and none of them appeared in the top 12 images returned. As can be

seen in Figure 4.28, the colour analysis is certainly returning images that contain similar

colours. Likewise, the spectral analysis is also returning images that have similar frequency

components to those that were measured in the original probe. The problem, however,

is that the algorithm only has 4% of the colour analysis and spectral analysis covering

the zebra. The algorithm, in a sense, makes no attempt to single out the distinguishing

information of the zebra, but instead attempts to maximize the entire correlation. The

returns are the images that shared the most in common (colour and frequency) on average.

A human observer would certainly expect to see some of the over 40 pictures of zebras in

the search returns.
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Figure 4.16: Sample image: Easter Egg
Image is from the Corel Gallery and is copyright Corel. All rights reserved.

Figure 4.17: Sample probe image: 423000.jpg
Image is from the Corel Gallery and is copyright Corel. All rights reserved.
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Figure 4.18: Search Results from probe image: 423000.jpg
Images are from the Corel Gallery and are copyright Corel. All rights reserved.
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Figure 4.19: Sample probe image: 282041.jpg
Image is from the Corel Gallery and is copyright Corel. All rights reserved.
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Figure 4.20: Search Results from probe image: 282041.jpg
Images are from the Corel Gallery and are copyright Corel. All rights reserved.
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Figure 4.21: Sample probe image: 549001.jpg
Image is from the Corel Gallery and is copyright Corel. All rights reserved.
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Figure 4.22: Search Results from probe image: 549001.jpg
Images are from the Corel Gallery and are copyright Corel. All rights reserved.

Figure 4.23: Sample probe image: 655017.jpg
Image is from the Corel Gallery and is copyright Corel. All rights reserved.
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Figure 4.24: Search Results from probe image: 655017.jpg
Images are from the Corel Gallery and are copyright Corel. All rights reserved.
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Figure 4.25: Sample probe image: 702083.jpg
Image is from the Corel Gallery and is copyright Corel. All rights reserved.
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Figure 4.26: Search Results from probe image: 702083.jpg
Images are from the Corel Gallery and are copyright Corel. All rights reserved.

Figure 4.27: Sample probe image: 408019.jpg
Image is from the Corel Gallery and is copyright Corel. All rights reserved.
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Figure 4.28: Search Results from probe image: 408019.jpg
Images are from the Corel Gallery and are copyright Corel. All rights reserved.
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Conclusions and Future Work

5.1 Conclusions

This project was conducted as a proof of concept for a hybridized approach to object recog-

nition. Based on the results of this project, there is a significant potential for this algorithm.

Recognition rates for same-image recognition were near perfect, 93.94% or higher, for all im-

age variations. Similar-image finding also produced encouraging results, with similar scenes

being returned with between 72.9% and 100% success. The algorithm presented here has

several attractive qualities including simplicity, compactness and speed.

The frequency analysis presented here has one step. This offers a significant simpli-

fication over the other approaches discussed in section 2.4. The approaches presented in

[18, 3, 35, 30, 2, 25, 27] all have two or more steps in which they, at a basic level, try to

determine the salient features or areas first. This is accomplished by some number of steps

involving statistical, image processing or computer vision techniques. Following this step,

the salient features are then summarized or otherwise represented by a small number of

values, which then comprises the feature vector. The approach presented here removes the

step of determining where the salient features exist and instead supposes that if we sample

the entire image we will then sample the salient features as well. Although the approach

is significantly simpler than other approaches, this study demonstrates that high levels of

distinguishing information can still be extracted.

The colour analysis also offers a level of simplicity as it too involves a single step, without

the prior steps of determining the salient areas of the image to sample. Moreover, this study

presents a colour analysis in which the signature is highly compressed. The compression

79
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happens at multiple stages. First, the use of chromaticities is a form of compression that

discards information about illumination, which not only compresses the colour information,

but also contributes to a more illumination invariant approach. Second, the binarized his-

togram is a more compact method of recording which chromaticities exist over the area

being analyzed. Finally, compressing the binarized chromaticity by the use of a DCT offers

a final reduction in data size to eight coefficients (two bytes each).

The image signature generated by this approach is very compact. For each area sampled

the colour analysis produced 16 bytes of data (eight coefficients of two bytes each). In

addition to the colour analysis, the frequency analysis also required 16 bytes of storage space

(16 coefficients of one byte each generated from four orientations with four frequencies each).

With 25 areas being sampled for both the colour analysis and the frequency analysis, the

total signature is 800 bytes in length. This signature size has two main benefits. First, the

small signature requires less storage space and second, a smaller signature can be correlated

more quickly than a larger one. These results make the approach more adaptable for scaling

out the algorithm for use with larger image repositories.

The combination of Gabor Wavelets and compressed chromaticities outperformed either

method used in isolation as the strengths of one approach complimented the other approach’s

weaknesses. The effect of combining a colour analysis with a frequency analysis was an

overall improvement in recognition. The frequency analysis is particularly sensitive to the

spatial shifts generated by the cropping attacks. The colour analysis performed here proved

to be much less sensitive to spatial shifts and therefore aided the performance of the overall

algorithm with respect to the cropping attacks. Conversely, the colour analysis was rendered

useless for the greyscale images. In this instance, the recognition was achieved by the

frequency analysis.

The algorithm presented here has limitations that were revealed during testing. The

algorithm performed poorly on images with a high number of objects or images that were

otherwise very busy in appearance. Moreover, the algorithm is sensitive to spatial shifts,

which has the effect of reduced recognition capabilities on images where the content has

shifted. This includes pictures taken from different angles and cropping attacks where the

image center is altered.
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5.2 Future Work

There are several changes that would have to be made in order to apply this technique

more successfully at the object level. First, the objects would have to be segmented from

the imagery. Second, because objects can have irregular shaped edges, a different technique

for distributing the wavelets would have to be implemented. One such approach could be

implemented as follows. Instead of wavelets being placed in a grid pattern, they could be

placed in a pattern that is a function of the object’s edges and the object’s center. First the

object’s center would be determined: this could be achieved by any method, so long as it

was repeatable even under rotation of the object. A weighted center, or a center computed

from the minimum bounding box could be used. Next, imaginary lines are drawn from the

center of the objects to the edges in steps of some angle, θ. Each line is divided into x pieces

of equal length. The wavelets are evaluated at each intersection, and stored in the signature

in a clockwise fashion starting with the magnitudes that were closest to the center, then

second closest to the center and working out to the magnitudes closest to the object’s edge.

There are two problems with this approach that need to be discussed, along with tentative

solutions. First, the object’s shape may be such that a wavelet placement is outside the

object. If this case occurs, it should be detected and its magnitude set to 0, or some other

value reserved for this scenario. Second, a direct comparison of magnitudes will only work

if the object has not been rotated. As this assumption is not practical, it is speculated

that if the magnitudes were transformed using a Fourier Transform, that the coefficients

from that operation could be correlated. In effect, it would be the pattern or shape of the

magnitudes that would provide the recognition, instead of the magnitudes themselves. As

long as a repeatable coordinate system could be applied to each object, this algorithm is

postulated to be rotationally invariant. A coordinate system could be placed using a variety

of techniques including an axis of major inertia.



Appendix A

Generating Chromaticity

Histograms in Matlab

A.1 List of Programs
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%read input image and convert to double floating point data type

img = double(imread(’833009.jpg’,’jpg’));

[width,height,channels] = size(img);

%Calculate the denominator: R+G+B. Avoid divide by zero.

%Note: If the denominator is zero then so is the numerator.

% Thus, making this modification is reasonable.

denom = img(:,:,1) + img(:,:,2) + img(:,:,3);

back = denom==0; denom(back) = 1.0;

img(:,:,1) = img(:,:,1) ./ denom;

img(:,:,2) = img(:,:,2) ./ denom;

%bring the chromaticity values into the 1-256 range

img(:,:,1) = (img(:,:,1) .* 255) + 1;

img(:,:,2) = (img(:,:,2) .* 255) + 1;

img(:,:,2) = 257 - img(:,:,2); %flip the g value over the y axis

img = uint16(img);

histogram = zeros(256,256);

for i=1:width

for j=1:height

x = img(i,j,1);

y = img(i,j,2);

histogram(y,x) = 1; % binarized

end

end

imwrite(histogram,’linear_hist_plot.tif’,’tif’);

Program A.1: Matlab Script to Generate Linear Chromaticity Histogram
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%read input image and convert to double floating point datatype

img = double(imread(’833009.jpg’,’jpg’));

[width,height,channels] = size(img);

%Calculate the denominator: sqrt(R*R + G*G + B*B). Avoid divide by zero.

%Note: If the denominator is zero then so is the numerator.

% Thus, making this modification is reasonable.

denom = (img(:,:,1) .* img(:,:,1));

denom = denom + (img(:,:,2) .* img(:,:,2));

denom = denom + (img(:,:,3) .* img(:,:,3));

denom = sqrt(denom);

back = denom==0; denom(back) = 1.0;

img(:,:,1) = img(:,:,1) ./ denom;

img(:,:,2) = img(:,:,2) ./ denom;

%bring the chromaticity values into the 1-256 range

img(:,:,1) = (img(:,:,1) .* 255) + 1;

img(:,:,2) = (img(:,:,2) .* 255) + 1;

img(:,:,2) = 257 - img(:,:,2); %flip the g value over the y axis

img = uint16(img);

histogram = zeros(256,256);

for i=1:width

for j=1:height

x = img(i,j,1);

y = img(i,j,2);

histogram(y,x) = 1;

end

end

imwrite(histogram,’spherical_hist_plot.tif’,’tif’);

Program A.2: Matlab Script to Generate Spherical Chromaticity Histogram
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%read input image and convert to double floating point datatype

img = double(imread(’833009.jpg’,’jpg’));

[width,height,channels] = size(img);

%Calculate the denominator: R+G+B. Avoid divide by zero.

%Note: If the denominator is zero then so is the numerator.

% Thus, making this modification is reasonable.

denom = img(:,:,1) + img(:,:,2) + img(:,:,3);

back = denom==0; denom(back) = 1.0;

img(:,:,1) = img(:,:,1) ./ denom;

img(:,:,2) = img(:,:,2) ./ denom;

%alter the chromaticity values to achieve the stretched chromaticity space

for i=1:width

for j=1:height

if img(i,j,1) >= img(i,j,2)

img(i,j,1) = img(i,j,1) + img(i,j,2);

img(i,j,2) = img(i,j,2) * 2;

else

img(i,j,2) = img(i,j,1) + img(i,j,2);

img(i,j,1) = img(i,j,1) * 2;

end

end

end

%bring the chromaticity values into the 1-256 range

img(:,:,1) = (img(:,:,1) .* 255) + 1;

img(:,:,2) = (img(:,:,2) .* 255) + 1;

img(:,:,2) = 257 - img(:,:,2); %flip the g value over the y axis

img = uint16(img);

histogram = zeros(256,256);

for i=1:width

for j=1:height

x = img(i,j,1);

y = img(i,j,2);

histogram(y,x) = 1;

end

end

imwrite(histogram,’stretched_hist_plot.tif’,’tif’);

Program A.3: Matlab Script to Generate Stretched Chromaticity Histogram
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