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Abstract

The goal of this paper is to show that the jump-diffusion models are an
essential and easy-to-learn tool for option pricing and risk management,
and that they provide an adequate description of stock price fluctuations
and market risks. We try to give an overview of the field without focusing
on technical details. After introducing several widely used jump-diffusion
models, we discuss Fourier transform based methods for European option
pricing, partial differential equations for barrier and American options,
and the existing approaches to calibration and hedging.

1 Introduction

Starting with Merton’s seminal paper [21] and up to the present date, various
aspects of jump-diffusion models have been studied in the academic finance
community (see [8] for a list of almost 400 references on the subject). In the
last decade, also the research departments of major banks started to accept
jump-diffusions as a valuable tool in their day-to-day modeling. This increasing
interest to jump models in finance is mainly due to the following reasons.

First, in a model with continuous paths like a diffusion model, the price
process behaves locally like a Brownian motion and the probability that the
stock moves by a large amount over a short period of time is very small, unless
one fixes an unrealistically high value of volatility. Therefore, in such models the
prices of short term out of the money options should be much lower than what
one observes in real markets. On the other hand, if stock prices are allowed to
jump, even when the time to maturity is very short, there is a non-negligible
probability that after a sudden change in the stock price the option will move
in the money.

Second, from the point of view of hedging, continuous models of stock price
behavior generally lead to a complete market or to a market, which can be
made complete by adding one or two additional instruments, like in stochastic
volatility models. Since in such a market every terminal payoff can be exactly
replicated, options are redundant assets, and the very existence of traded options
becomes a puzzle. The mystery is easily solved by allowing for discontinuities:
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Figure 1: Jumps in the trajectory of DM/USD exchange rate, sampled at 5-
minute intervals.

in real markets, due to the presence of jumps in the prices, perfect hedging
is impossible and options enable the market participants to hedge risks that
cannot be hedged by using the underlying only.

From a risk management perspective, jumps allow to quantify and take into
account the risk of strong stock price movements over short time intervals, which
appears non-existent in the diffusion framework. To be more specific, let us give
an example from the domain of portfolio management. The constant proportion
portfolio insurance strategy consists in holding a proportion xt of the risky asset
in the portfolio, where xt is given by

xt = m
Vt − Ft

Vt
,

where Vt is the portfolio value, Ft is the ’floor’, i.e., the ’insured’ lower bound
on the portfolio value, and m is a constant multiplier. When the portfolio value
approaches the lower bound, the proportion of risky asset tends to zero. In a
continuous-path model with frequent trading, the portfolio will therefore never
go below the barrier Ft. Taking a large multiplier, one can then construct a
portfolio with a very important upside potential and almost no downside risk.
However, this illusion breaks down as soon as one takes into account the jump
risk: there is always a non-zero probability that due to a sudden downward
jump in the risky asset price, the investor will not have a chance to withdraw
before the portfolio value drops below Ft.

The last and probably the strongest argument for using discontinuous models
is simply the presence of jumps in observed prices. Figure 1 depicts the evolution
of the DM/USD exchange rate over a two-week period in 1992, and one can see
at least three points where the rate moved by over 100 bp within a 5-minute
period. Price moves like these ones clearly cannot be accounted for in a diffusion
model with continuous paths, but they must be dealt with if the market risk is
to be measured and managed correctly.
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In this paper we give a brief introduction to jump-diffusion models and
review various mathematical and numerical tools needed to use these models
for option pricing and hedging. Since we are focusing on explanations rather
than technical details, no proofs are given, but the reader will always be able
to find complete proofs in the references we provide.

The rest of this paper is structured as follows. In section 2 we provide a brief
mathematical introduction to jump diffusions and define several important para-
metric and non-parametric classes. Section 3 discusses the Fourier-transform
methods for European option pricing, based on the explicit knowledge of the
characteristic function in many jump-diffusion models. Section 4 discusses the
partial integro-differential equations which play the role of the Black-Scholes
equation in jump-diffusion models and can be used to value American and bar-
rier options. Finally, section 5 discusses hedging in presence of jumps and section
6 explains how jump-diffusion models can be calibrated to market data.

2 A primer on jump-diffusion models

The two basic building blocks of every jump-diffusion model are the Brown-
ian motion (the diffusion part) and the Poisson process (the jump part). The
Brownian motion is a familiar object to every option trader since the appear-
ance of the Black-Scholes model, but a few words about the Poisson process are
in order. The proofs of the statements below can be found in [8, chapter 2].

The Poisson process Take a sequence {τi}i≥1 of independent exponential
random variables with parameter λ, that is, with cumulative distribution func-
tion P [τi ≥ y] = e−λy and let Tn =

∑n
i=1 τi. The process

Nt =
∑

n≥1

1t≥Tn

is called the Poisson process with parameter λ. For example, if the waiting times
between buses at a bus stop are exponentially distributed, the total number of
buses arrived up to time t is a Poisson process. The trajectories of a Poisson
process are piecewise constant (right-continuous with left limits or RCLL), with
jumps of size 1 only. The jumps occur at times Ti and the intervals between
jumps (the waiting times) are exponentially distributed. At every date t > 0,
Nt has the Poisson distribution with parameter λt, that is, it is integer-valued
and

P [Nt = n] = e−λt (λt)n

n!
. (1)

The Poisson process shares with the Brownian motion the very important prop-
erty of independence and stationarity of increments, that is, for every t > s the
increment Nt −Ns is independent from the history of the process up to time s
and has the same law as Nt−s. The processes with independent and stationary
increments are called Lévy processes after the French mathematician Paul Lévy.

3



Characteristic function The notion of characteristic function of a random
variable plays an essential role in the study of jump-diffusion processes: often
we do not know the distribution function of such a process in closed form but
the characteristic function is known explicitly. The characteristic function of a
random variable X is defined by

φX(u) ≡ E[eiuX ].

For the Poisson process, this gives

E[eiuNt ] = exp{λt(eiu − 1)}.

Here, the computation can be done directly using equation (1).

Compound Poisson process For financial applications, it is of little interest
to have a process with a single possible jump size. The compound Poisson pro-
cess is a generalization where the waiting times between jumps are exponential
but the jump sizes can have an arbitrary distribution. More precisely, let N be
a Poisson process with parameter λ and {Yi}i≥1 be a sequence of independent
random variables with law f . The process

Xt =
Nt∑

i=1

Yi

is called compound Poisson process. Its trajectories are RCLL and piecewise
constant but the jump sizes are now random with law f (cf. Fig.2). The
compound Poisson process has independent and stationary increments. Its law
at a given time t is not known explicitly but the characteristic function is known
and has the form

E[eiuXt ] = exp{tλ
∫

R
(eiux − 1)f(dx)}.

Simulation of compound Poisson process Contrary to more complex
jump processes, the compound Poisson process is easy to simulate. The al-
gorithm is based on the following fact [8, chapter 2]:

Fact 1 Conditionally on NT = n, the jump times T1, . . . , Tn of a Poisson pro-
cess on the interval [0, T ] are distributed as n independent ordered uniforms on
[0, T ].

This leads to the following algorithm:

• Simulate NT from the Poisson distribution1 with parameter λT .
1The random number generator from the Poisson distribution is available in most

MATLAB-like scientific computing environments. If you need to implement it, see [13].
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Figure 2: Left: sample path of a compound Poisson process with Gaussian
distribution of jump sizes. Right: sample path of a jump-diffusion process
(Brownian motion + compound Poisson).

• Simulate NT uniform random variables {Ui}NT
i=1 on [0, T ].

• Simulate NT independent variables {Yi}NT
i=1 with law f .

• The process is given by

Xt =
NT∑

i=1

Yi1Ui≤t.

Jump-diffusions and Lévy processes Combining a Brownian motion with
drift and a compound Poisson process, we obtain the simplest case of a jump-
diffusion — a process which sometimes jumps and has a continuous but random
evolution between the jump times (cf. Fig.2):

Xt = µt + σBt +
Nt∑

i=1

Yi. (2)

The best known model of this type in finance is the Merton model [21], where the
stock price is St = S0e

Xt with Xt as above and the jumps {Yi} have Gaussian
distribution.

The process (2) is again a Lévy process and its characteristic function can
be computed by multiplying the CF of the Brownian motion and that of the
compound Poisson process (since the two parts are independent):

E[eiuXt ] = exp
{

t

(
iµu− σ2u2

2
+ λ

∫

R
(eiux − 1)f(dx)

)}
.

The class of Lévy processes is not limited to jump-diffusions of the form (2):
there exist Lévy processes with infinitely many jumps in every interval. Most
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of such jumps are very small and there is only a finite number of jumps with
absolute value greater than any given positive number. One of the simplest
examples of this kind is the gamma process, a process with independent and
stationary increments such that for all t, the law pt of Xt is the gamma law
with parameters λ and ct:

pt(x) =
λct

Γ(ct)
xct−1e−λx.

The gamma process is an increasing Lévy process (also called subordinator). Its
characteristic function has a very simple form:

E[eiuXt ] = (1− iu/λ)−ct
.

The gamma process is the building block for a very popular jump model, the
variance gamma process [20, 19], which is constructed by taking a Brownian
motion with drift and changing its time scale with a gamma process:

Yt = µXt + σBXt .

Using Yt to model the logarithm of stock prices can be justified by saying that the
price is a geometric Brownian motion if viewed on a stochastic time scale given
by the gamma process [16]. The variance gamma process is another example of
a Lévy process with infinitely many jumps and has characteristic function

E[eiuYt ] =
(

1 +
σ2u2

2
− iµκu

)−κt

.

The parameters have the following (approximate) interpretation: σ is the vari-
ance parameter, µ is the skewness parameter and κ is responsible for the kurtosis
of the process.

In general, every Lévy process can be represented in the form

Xt = γt + σBt + Zt,

where Zt is a jump process with (possibly) infinitely many jumps. A detailed
description of this component is given by the Lévy-Itô decomposition which is
beyond the scope of this introductory paper. The characteristic function of a
Lévy process is given by the Lévy-Khintchine formula:

E[eiuXt ] = exp
{

t

(
iγu− σ2u2

2
+

∫

R
(eiux − 1− iux1|x|≤1)ν(dx)

)}
,

where ν is a positive measure on R describing the jumps of the process: the Lévy
measure. If X is compound Poisson, then ν(R) < ∞ and ν(dx) = λf(dx) but in
the general case ν need not be a finite measure. It must satisfy the constraint

∫

R
(1 ∧ x2)ν(dx) < ∞
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and describes the jumps of X in the following sense: for every closed set A ⊂ R
with 0 /∈ A, ν(A) is the average number of jumps of X in the time interval [0, 1],
whose sizes fall in A.

To keep the discussion simple, in the rest of this paper we will only consider
Lévy jump-diffusions, that is, Lévy processes with finite jump intensity of the
form (2), but with the new notation ν(dx) = λf(dx) for the Lévy measure. The
characteristic function of such a process therefore takes the form

E[eiuXt ] = exp
{

t

(
iµu− σ2u2

2
+

∫

R
(eiux − 1)ν(dx)

)}
. (3)

Exponential Lévy models To ensure positivity as well as the independence
and stationarity of log-returns, stock prices are usually modeled as exponentials
of Lévy processes:

St = S0e
Xt . (4)

In the jump-diffusion case this gives

St = S0 exp

(
µt + σBt +

Nt∑

i=1

Yi

)
.

Between the jumps, the process evolves like a geometric Brownian motion, and
after each jump, the value of St is multiplied by eYi . This model can therefore
be seen as a generalization of the Black-Scholes model:

dSt

St−
= µ̃dt + σdBt + dJt. (5)

Here, Jt is a compound Poisson process such that the i-th jump of J is equal to
eYi − 1. For instance, if Yi have Gaussian distribution, S will have lognormally
distributed jumps. The notation St− means that whenever there is a jump, the
value of the process before the jump is used on the left-hand side of the formula.
The forms (4) and (5) are equivalent: for a model of the first kind one can
always find a model of the second kind with the same law. In the rest of the
paper, unless explicitly stated otherwise, we will use the exponential form (4).

For option pricing, we will explicitly include the interest rate into the defi-
nition of the exponential Lévy model:

St = S0e
rt+Xt . (6)

While the forms (4) and (6) are equivalent, the second one leads to a slightly
simpler notation. In this case, under the risk-neutral probability, eXt must
be a martingale and from the Lévy-Khintchine formula (3) combined with the
independent increments property we conclude that this is the case iff

b +
σ2

2
+

∫

R
(ex − 1)ν(dx) = 0. (7)
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The model (6) admits no arbitrage opportunity if there exists an equivalent
probability under which eXt is a martingale. For Lévy processes it can be
shown that this is almost always the case, namely an exponential Lévy model is
arbitrage-free if and only if the trajectories of X are not almost surely increasing
nor almost surely decreasing.

If a Brownian component is present, the martingale probability can be ob-
tained by changing the drift as in the Black-Scholes setting. Otherwise, in
finite-intensity models, the drift must remain fixed under all equivalent proba-
bilities since it can be observed from a single stock price trajectory. To satisfy
the martingale constraint (7), one must therefore change the Lévy measure, i.e.
the intensity of jumps. To understand how this works, suppose that X is a
Poisson process with drift:

Xt = Nt − at, a > 0.

We can obtain a martingale probability by changing the intensity of N to
λmart = a

e−1 . If, however, X is a Poisson process without drift (increasing
trajectories), one cannot find a value of λ > 0 for which eXt is a martingale.

Beyond Lévy processes Although the class of Lévy processes is quite rich,
it is sometimes insufficient for multiperiod financial modeling for the following
reasons:

• Due to the stationarity of increments, the stock price returns for a fixed
time horizon always have the same law. It is therefore impossible to incor-
porate any kind of new market information into the return distribution.

• For a Lévy process, the law of Xt for any given time horizon t is completely
determined by the law of X1. Therefore, moments and cumulants depend
on time in a well-defined manner which does not always coincide with the
empirically observed time dependence of these quantities [3].

For these reasons, several models combining jumps and stochastic volatility
appeared in the literature. In the Bates [2] model, one of the most popular
examples of the class, an independent jump component is added to the Heston
stochastic volatility model:

dXt = µdt +
√

VtdWX
t + dZt, St = S0e

Xt , (8)

dVt = ξ(η − Vt)dt + θ
√

VtdWV
t , d〈WV ,WX〉t = ρdt,

where Z is a compound Poisson process with Gaussian jumps. Although Xt is
no longer a Lévy process, its characteristic function is known in closed form [8,
chapter 15] and the pricing and calibration procedures are similar to those used
for Lévy processes.
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3 Pricing European options via Fourier trans-
form

In the Black-Scholes setting, the prices of European calls and puts are given
explicitly by the Black-Scholes formula. In the case of Lévy jump-diffusions,
closed formulas are no longer available but a fast deterministic algorithm, based
on Fourier transform, was proposed by Carr and Madan [7]. Here we present a
slightly improved version of their method, due to [22, 8].

Let {Xt}t≥0 be a Lévy process and, for simplicity, take S0 = 1. We would
like to compute the price of a European call with strike K and maturity T in
the exponential Lévy model (6). Denote k = log K the logarithm of the strike.
To compute the price of a call option

C(k) = e−rT E[(erT+XT − ek)+],

we would like to express its Fourier transform in log strike in terms of the
characteristic function ΦT (v) of XT and then find the prices for a range of
strikes by Fourier inversion. However we cannot do this directly because C(k)
is not integrable (it tends to 1 as k goes to −∞). The idea is to subtract
the Black-Scholes call price with non-zero volatility and compute the Fourier
transform of the resulting function which is integrable and smooth:2

zT (k) = C(k)− CΣ
BS(k),

where CΣ
BS(k) is the Black-Scholes price of a call option with volatility Σ and

log-strike k for the same underlying value and the same interest rate.

Proposition 1 Let {Xt}t≥0 be a real-valued Lévy process such that (eXt) is a
martingale, and

∫

x>1

e(1+α)xν(dx) < ∞

for some α > 0. Then the Fourier transform in log-strike k of zT (k) is given
by:

ζT (v) = eivrT ΦT (v − i)− ΦΣ
T (v − i)

iv(1 + iv)
,

where ΦΣ
T (v) = exp(−Σ2T

2 (v2 + iv)) is the characteristic function of log-stock
price in the Black-Scholes model.

The optimal value of Σ is the value for which ζT (0) = 0. However, the conver-
gence is good for any Σ > 0. One can take for example Σ = 0.2 for practical
calculations.

2Carr and Madan proposed to subtract the (non-differentiable) intrinsic value of the price
(1− ek−rT )+ but this leads to a slower convergence.
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Figure 3: European put price as a function of stock for three choices of param-
eters in the Merton model. Other parameters: K = 1, T = 1, r = 0.

Numerical Fourier inversion Option prices can be computed by evaluating
numerically the inverse Fourier transform of ζT :

zT (k) =
1
2π

∫ +∞

−∞
e−ivkζT (v)dv. (9)

This integral can be efficiently computed for a range of strikes using the Fast
Fourier Transform. Recall that this algorithm allows to calculate the discrete
Fourier transform DFT[f ]N−1

n=0 , defined by,

DFT[f ]n :=
N−1∑

k=0

fke−2πink/N , n = 0 . . . N − 1,

using only O(N log N) operations.
To approximate option prices, we truncate and discretize the integral (9) as

follows:

1
2π

∫ ∞

−∞
e−ivkζT (v)dv =

1
2π

∫ L/2

−L/2

e−ivkζT (v)dv + εtrunc

=
L

2π(N − 1)

N−1∑
m=0

wmζT (vm)e−ikvm + εtrunc + εdiscr,

where εtrunc is the truncation error, εdiscr is the discretization error, vm =
−L/2 + m∆, ∆ = L/(N − 1) is the discretization step and wm are weights,
corresponding to the chosen integration rule (for instance, for the Simpson’s
rule w0 = 1/3, and for k = 1, . . . , N/2, w2k−1 = 4/3 and w2k = 2/3).3 Now,

3We use the FFT with N = 2p, so N is even.
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model f(dx) ΦT (u) = E[eiuXT ]

Merton exp(−(x−µ)2)√
2πδ2 dx eT (−σ2

2 +ibu+λ{e−δ2u2/2+iµu−1})

Kou (pλ+e−λ+x1x>0 +
(1−p)λ−e−λ−|x|1x<0)dx

e
T (−σ2

2 +ibu+iuλ{ p
λ+−iu− 1−p

λ−+iu})

Table 1: Examples of characteristic functions of jump-diffusion processes used
in financial modeling. For further examples, see [8, chapter 4].

choosing kn = k0 + 2πn
N∆ we see that the sum in the last term becomes a discrete

Fourier transform:

L

2π(N − 1)
eiknL/2

N−1∑
m=0

wmζT (km)e−ik0m∆e−2πinm/N

=
L

2π(N − 1)
eiknL/2DFTn[wmζT (km)e−ik0m∆]

Therefore, the FFT algorithm allows to compute zT and option prices for the
log strikes kn = k0 + 2πn

N∆ . The log strikes are thus equidistant with the step d
satisfying

d∆ =
2π

N
.

This relationship implies that if we want to compute option prices on a fine grid
of strikes, and at the same time keep the discretization error low, we must use
a large number of points.

This method applies to all models where the characteristic function of log-
stock price is known or easy to compute. This is the case for exponential Lévy
models (see, e.g., Table 1) but also holds for a more general class of affine
processes [14, 15], which includes in particular the Bates model mentioned in
section 2.

4 Integro-differential equations for barriers and
American options

The Fourier-transform based algorithm of the preceding section is very efficient
for European vanilla options, but does not apply to more complicated contracts
with barriers or American-style exercise4. In diffusion models their prices are
usually expressed as solutions of the Black-Scholes partial differential equation

∂P

∂t
+

1
2
σ2S2 ∂2C

∂S2
= rC − rS

∂C

∂S
(10)

4Fourier-transform based methods for pricing single-barrier options can be found in the
literature [24, 5, 18] but except for some particular models [17], the numerical complexity of
the resulting formulae is prohibitive.

11



with appropriate boundary conditions. In this section, we show how this method
can be generalized to models with jumps by introducing partial integro-differential
equations (PIDEs). A complete presentation with proofs, as well as the general
case of possibly infinite Lévy measure, can be found in [23, 12].

Barrier “out” options We start with up-and-out, down-and-out, and double
barrier options which have, respectively, an upper barrier U > S0, a lower
barrier L < S0, or both of them. If the stock price St has not crossed any of the
barriers before maturity T , then the payoff of the option is H(ST ); otherwise,
the option expires worthless or pays out a rebate G(τ∗, Sτ∗) where τ∗ is the
moment when the stock price first touches the barrier (usually, the rebate is
simply a constant amount).

The barrier options are said to be weakly path dependent, because at any
given time t, their price does not depend on the entire trajectory of the stock
price prior to t but only on the current value St and on the event {t < τ∗}, that
is, on the information, whether the barrier has already been crossed. If the price
of a barrier option is denoted by Ct then Ct1t<τ∗ = Cb(t, St)1t<τ∗ where Cb

is a deterministic function, which satisfies a generalized Black-Scholes equation
given below.

To obtain an equation with constant coefficients we switch to log-prices and
denote:

• τ = T − t (time to maturity), x = log(S/S0) (log-price),

• l = log(L/S0), u = log(U/S0) (barriers in terms of log-price),

• h(x) = H(S0e
x) (payoff function after the change of variables),

• g(τ, x) = erτG(T − τ, S0e
x) (rebate after the change of variables),

• v(τ, x) = erτCb(T − τ, S0e
x) (option’s forward price).

Then the transformed option price v(τ, x) satisfies

∂v

∂τ
(τ, x) = Lv(τ, x), (τ, x) ∈ (0, T ]× (l, u), (11)

v(0, x) = h(x), x ∈ (l, u), (12)
v(τ, x) = g(τ, x), τ ∈ [0, T ], x /∈ (l, u), (13)

where L is an integro-differential operator:

Lf(x) =
σ2

2
f ′′(x)−

(
σ2

2
− r

)
f ′(x) +

∫

R
ν(dy)f(x + y)− λf(x)− αf ′(x), (14)

with λ =
∫
R ν(dy), α =

∫
R(e

y − 1)ν(dy). By convention, we set l = −∞ if
there is no lower barrier and u = ∞ if there is no upper barrier. So, (11)–(13)
covers all types of barrier options above, as well as the European vanilla case.
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In the case of the Black-Scholes model (ν ≡ 0), equation (11)–(13) is nothing
more than the standard heat equation

∂v

∂τ
=

σ2

2
∂2v

∂x2
−

(
σ2

2
− r

)
∂v

∂x
,

which can be obtained from the Black-Scholes equation (10) by an exponential
change of variable.

Note, that (13) is different from usual boundary conditions for differential
equations: it gives the values of the solution not only at the barriers but also
beyond the barriers. It is an important consequence of the non-local character
of the operator L due to the integral part.

Numerical solution of the integro-differential equation To solve nu-
merically the problem (11)–(13), we proceed with the following steps:

• Truncation of large jumps. This corresponds to truncating the integration
domain in (14).

• Localization. If the problem was initially stated on an unbounded inter-
val (as in the European or one-barrier cases), we must choose a bounded
computational domain and, consequently, impose artificial boundary con-
ditions.

• Discretization. The derivatives of the solution are replaced by usual finite
differences and the integral terms are approximated using the trapezoidal
rule. The problem is then solved using an explicit-implicit scheme.

Let us now consider these steps in detail.

Truncation of large jumps Since we cannot calculate numerically an in-
tegral on the infinite range (−∞,∞), the domain is truncated to a bounded
interval (Bl, Br). In terms of the process, this corresponds to removing the
large jumps. Usually, the tails of ν decrease exponentially, so the probability
of large jumps is very small. Therefore, we don’t change much the solution by
truncating the tails of ν.

Localization Similarly, for the computational purposes, the domain of defini-
tion of the equation has to be bounded. For barrier options, the barriers are the
natural limits for this domain and the rebate is the natural boundary condition.
In absence of barriers, we have to choose artificial bounds (−Al, Ar) and impose
artificial boundary conditions. Recall that “boundary” conditions in this case
must extend the solution beyond the bounds as well: v(τ, x) = g(τ, x) for all
x /∈ (−Al, Ar), τ ∈ [0, T ].

In [23], it is shown that a good choice for the boundary conditions is g(τ, x) =
h(x+rτ) where h is the payoff function. For example, for a put option, we have
h(x) = (K − S0e

x)+ and thus g(τ, x) = (K − S0e
x+rτ )+.

In the case of one barrier, we need this boundary condition only on one side
of the domain: the other is zero or given by the rebate.
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Figure 4: The support of ν is discretized with the same step ∆x as [−Al, Ar].

Discretization We consider now the localized problem on (−Al, Ar):

∂v

∂τ
= Lv, on (0, T ]× (−Al, Ar) (15)

v(0, x) = h(x), x ∈ (−Al, Ar), (16)
v(τ, x) = g(τ, x), x /∈ (−Al, Ar). (17)

where L is the following integro-differential operator:

Lv =
σ2

2
∂2v

∂x2
−

(
σ2

2
− r

)
∂v

∂x
+

∫ Br

Bl

ν(dy)v(τ, x + y)− λv − α
∂v

∂x
,

with λ =
∫ Br

Bl
ν(dy), α =

∫ Br

Bl
(ey − 1)ν(dy). Let us introduce a uniform grid

on [0, T ]× R:

τn = n∆t, n = 0 . . .M, xi = −Al + i∆x, i ∈ Z,

with ∆t = T/M , ∆x = (Ar + Al)/N . The values of v on this grid are denoted
by {vn

i }. The space derivatives of v are approximated by finite differences:
(

∂2v

∂x2

)

i

≈ vi+1 − 2vi + vi−1

(∆x)2
, (18)

(
∂v

∂x

)

i

≈ vi+1 − vi

∆x
, or

(
∂v

∂x

)

i

≈ vi − vi−1

∆x
. (19)

The choice of the approximation of the first order derivative — forward or
backward difference — depends on the parameters σ, r, and α (see below).

To approximate the integral term, we use the trapezoidal rule with the same
discretization step ∆x. Choose integers Kl, Kr such that [Bl, Br] is contained
in [(Kl − 1/2)∆x, (Kr + 1/2)∆x] (Fig. 4). Then,

∫ Br

Bl

ν(dy)v(τ, xi + y) ≈
Kr∑

j=Kl

νjvi+j , where νj =
∫ (j+1/2)∆x

(j−1/2)∆x

ν(dy). (20)

Using (18)–(20) we obtain an approximation for Lv ≈ D∆v + J∆v, where
D∆v and J∆v are chosen as follows.
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Explicit-Implicit Scheme Without loss of generality, suppose that σ2/2 −
r < 0. Then

(D∆v)i =
σ2

2
vi+1 − 2vi + vi−1

(∆x)2
−

(
σ2

2
− r

)
vi+1 − vi

∆x
.

If σ2/2−r > 0, to ensure the stability of the algorithm, we must change the dis-
cretization of ∂v/∂x by choosing the backward difference instead of the forward
one. Similarly, if α < 0 we discretize J as follows:

(J∆v)i =
Kr∑

j=Kl

νjvi+j − λvi − α
vi+1 − vi

∆x
. (21)

Otherwise, we change the approximation of the first derivative. Finally, we
replace the problem (15)–(17) with the following explicit-implicit scheme:

Initialization :
v0

i = h(xi), if i ∈ {0, . . . , N − 1}, (22)
v0

i = g(0, xi), otherwise. (23)
For n = 0, . . . ,M− 1 :
vn+1

i − vn
i

∆t
= (D∆vn+1)i + (J∆vn)i, if i ∈ {0, . . . , N − 1} (24)

vn+1
i = g((n + 1)∆t, xi), otherwise. (25)

Here, the non-local operator J is treated explicitly to avoid the inversion of the
dense matrix J∆, while the differential part D is treated implicitly. At each time
step, we first evaluate vector J∆vn where vn is known from the previous itera-
tion5, and then solve the tridiagonal system (24) for vn+1 = (vn+1

0 , . . . , vn+1
N−1).

This scheme is stable if
∆t <

∆x

|α|+ λ∆x
.

Pricing American options The simplest way to adapt the above method to
pricing American options is to use the dynamic programming. If we approximate
continuous time by a discrete grid of exercise dates tn = n∆t, the value of
the American option at tn is the maximum between profits from exercising
immediately and holding the option until tn+1:

Vn = max{H(Stn), V e
n }, (26)

where V e
n = e−r∆tE[Vn+1 | Ftn ] may be interpreted as the value of a European

option with payoff Vn+1 and maturity tn+1. Therefore, at each time step, we
can compute V e

n as above and then adjust the result by taking the maximum
as in (26).

5The particular form of the sum in (21) (discrete convolution of two vectors) allows to
compute it efficiently and simultaneously for all i using Fast Fourier transform.
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More precisely, after the same change of variables, localization and discretiza-
tion procedures, we end up with the following scheme:

Initialization :
v0

i = h(xi), for all i,

For n = 0, . . . ,M− 1 :
ṽn+1

i − vn
i

∆t
= (D∆ṽn+1)i + (J∆vn)i, if i ∈ {0, . . . , N − 1}

ṽn+1
i = g((n + 1)∆t, xi), otherwise;

vn+1
i = max{h(xi), ṽn+1

i }, for all i.

A slightly different approach to pricing American puts in jump-diffusion
models, also based on the explicit-implicit scheme (22)–(25), is described in [1].

5 Hedging the jump risk

In the Black-Scholes model, the delta-hedging strategy is known to completely
eliminate the risk of an option position. This strategy consists in holding the
amount of stock equal to ∂C

∂S , the sensitivity of the option price with respect
to the underlying. However, in presence of jumps, delta-hedging is no longer
optimal. Suppose that a portfolio contains φt stock, with price St, and a short
option position. After a jump ∆St, the change in the stock position is φt∆St,
and the option changes by C(t, St+∆St)−C(t, St). The jump will be completely
hedged if and only if

φt =
C(t, St + ∆St)− C(t, St)

∆St
.

Since the option price is a nonlinear function of S, φt 6= ∂C
∂S and delta-hedging

does not offset the jump risk completely. This is illustrated in figure 5 where a
single 7% jump in the stock price leads to an important residual hedging error.

Thus, to hedge a jump of a given size, one should use the sensitivity to move-
ments of the underlying of this size rather than the sensitivity to infinitesimal
movements. Since typically the jump size is not known in advance, the risk as-
sociated to jumps cannot be hedged away completely: we are in an incomplete
market. In this setting, the hedging becomes an approximation problem: in-
stead of replicating an option, one tries to minimize the residual hedging error.
Empirical studies show that strategies using only stock lead to high levels of
residual risk, and to obtain realistic hedges, liquid options should be added to
the hedging portfolio (gamma-hedging).

In this section we show how to compute optimal hedging strategies in pres-
ence of jumps. First, we treat the case when the hedging portfolio contains only
stock and the risk-free asset. Let St denote the stock price and φ the quantity
of stock in the hedging portfolio, and suppose that S satisfies (5) with the Lévy
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Figure 5: Evolution of an option position and the corresponding delta-hedging
portfolio in presence of stock jumps.

measure of the jump part denoted by ν. Then the (self-financing) portfolio
evolves as

dVt = (Vt − φtSt)rdt + φtdSt.

The ’forward’ values of the stock and the portfolio

S∗t = er(T−t)St and V ∗
t = er(T−t)Vt

satisfy

V ∗
T = erT V0 +

∫ T

0

φtdS∗t .

We would like to compute the strategy which minimizes the expected squared
residual hedging error under the martingale probability:

φ∗ = arg inf E[(VT −HT )2] = arg inf E




(
V0 +

∫ T

0

φtdS∗t −HT

)2



with HT the option’s payoff. Using the Itô formula for jump processes and the
isometry relation for stochastic integrals (both are out of scope of the present
paper but see [11] for details), the residual hedging error can be expressed as

E[(VT −HT )2] =
(
erT V0 − E[HT ]

)2
+ E

∫ T

0

dt(S∗t )2σ2

{
φt − ∂C

∂S

}2

+ E

∫ T

0

∫

R
ν(dz)e2r(T−t) {C(t, St(1 + z))− C(t, St)− Stφtz}2 .

From this formula, three immediate conclusions can be made:

• The initial capital minimizing the hedging error is

V0 = e−rT E[HT ]. (27)
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Figure 6: Delta-hedging strategy and optimal quadratic hedging strategy ratios
as a function of stock price.

• If the initial capital is given by (27), the residual hedging error is zero
(and the market is complete) only in the following two cases:

– No jumps in the stock price (ν ≡ 0). This case correspond to the
Black-Scholes model and the optimal hedging strategy is

φt =
∂C

∂S
.

– No diffusion component (σ = 0) and only one possible jump size
(ν = δz0(z)). In this case, the optimal hedging strategy is

φt =
C(St(1 + z0))− C(St)

Stz0
.

• In all other cases, the residual hedging error is non-zero (and the market
is incomplete) and is minimized by

φ∗(t, St) =
σ2 ∂C

∂S + 1
St

∫
ν(dz)z(C(t, St(1 + z))− C(t, St))

σ2 +
∫

z2ν(dz)
.

The optimal quadratic hedging strategy is a weighted sum of two terms: the
sensitivity of option price to infinitesimal stock movements, and the average
sensitivity to finitely-sized jumps. Figure 6 shows the difference between the
optimal strategy and the delta ∂C

∂S . These data were obtained in Merton’s jump
diffusion model (2) with parameters µ = 0.1, r = 0, σ = 0.2, λ = 1, mean jump
of −0.1, jump standard deviation of 0.05, for a European put option with strike
K = 1.2 and maturity T = 1 month. As we see, the two strategies are not so
different after all. The residual hedging errors are also similar: for delta-hedging
it has a standard deviation of 1.7% (of the initial stock price) and for the optimal
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strategy 1.6%. For comparison, in absence of jump risk, the residual hedging
error (due to discrete rebalancing) has a standard deviation of 0.7% and if we
do not hedge at all, the error is of order of 16%. In conclusion,

• Hedging with stock only in presence of jumps eliminates a large part risk
but still leads to an important residual hedging error.

• Performances of delta hedging and of the optimal quadratic hedging with
stock only are very similar.

To eliminate the remaining hedging error, a possible solution is to introduce
liquid options into the hedging portfolio. In the above example, if, in addition
to the stock, the hedging portfolio contains a European option with strike K = 1,
the standard deviation is 0.76%, that is, the risk due to jumps becomes negligible
compared to the one associated to discrete rebalancing. Optimal quadratic
hedge ratios in the case when the hedging portfolio may contain options can be
found in [11].

6 Model calibration

In the Black-Scholes setting, the only model parameter to choose is the volatility
σ, originally defined as the annualized standard deviation of logarithmic stock
returns. The notion of model calibration does not exist, since after observing a
trajectory of the stock price, the pricing model is completely defined. On the
other hand, since the pricing model is defined by a single volatility parameter,
this parameter can be reconstructed from a single option price (by inverting the
Black-Scholes formula). This value is known as the implied volatility of this
option.

If the real markets obeyed the Black-Scholes model, the implied volatility
of all options written on the same underlying would be the same and equal
to the standard deviation of returns of this underlying. However, empirical
studies show that this is not the case: implied volatilities of options on the
same underlying depend on their strikes and maturities (figure 7, left graph).

Jump-diffusion models provide an explanation of the implied volatility smile
phenomenon since in these models the implied volatility is both different from
the historical volatility and changes as a function of strike and maturity. Figure
7, right graph shows possible implied volatility patterns (as a function of strike)
in the Merton jump-diffusion model.

The results of calibration of the Merton model to S&P index options are
presented in figure 8. The calibration was carried out separately for each ma-
turity using the routine [4] from Premia software. In this program, the vector
of unknown parameters θ is found by minimizing numerically the squared norm
of the difference between market and model prices:

θ∗ = arg inf ‖P obs − P θ‖2 ≡ arg inf
N∑

i=1

wi(P obs
i − P θ(Ti,Ki))2, (28)
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Figure 7: Left: implied volatilities of options on S&P 500 index as a function of
their strikes and maturities. Right: implied volatilities as a function of strike for
different values of the mean jump size in Merton jump diffusion model. Other
parameters: volatility σ = 0.2, jump intensity λ = 1, jump standard deviation
δ = 0.05, option maturity T = 1 month.

where P obs denotes the prices observed in the market and P θ(Ti, Ki) is the
Merton model price computed for parameter vector θ, maturity Ti and strike
Ki. Here, the weights wi := 1

(P obs
i )2

were chosen to ensure that all terms in
the minimization functional are of the same order of magnitude. The model
prices were computed simultaneously for all strikes present in the data using the
FFT-based algorithm described in section 3. The functional in (28) was then
minimized using a quasi-newton method (LBFGS-B described in [6]). In the case
of Merton model, the calibration functional is sufficiently well behaved, and can
be minimized using this convex optimization algorithm. In more complex jump-
diffusion models, in particular, when no parametric shape of the Lévy measure
is assumed, a penalty term must be added to the distance functional in (28)
to ensure convergence and stability. This procedure is described in detail in
[9, 10, 22].

The calibration for each individual maturity is quite good, however, although
the options of different maturities correspond to the same trading day and the
same underlying, the parameter values for each maturity are different, as seen
from table 2. In particular, the behavior for short (1 to 5 months) and long
(1 to 3 years) maturities is qualitatively different, and for longer maturities the
mean jump size tends to increase while the jump intensity decreases with the
length of the holding period.

Figure 9 shows the result of simultaneous calibration of Merton model to
options of 4 different maturities, ranging from 1 month to 3 years. As we see,
the calibration error is much bigger than in figure 8. This happens because,
as already observed in section 2, for processes with independent and stationary
increments (and the log-price in Merton model is an example of such process),
the law of the entire process is completely determined by its law at any given

20



60 70 80 90 100 110 120
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Market

Model

30 40 50 60 70 80 90 100 110 120 130
0.1

0.2

0.3

0.4

0.5

0.6

0.7
Market

Model

50 60 70 80 90 100 110 120 130
0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30
Market

Model

40 50 60 70 80 90 100 110 120 130 140
0.10

0.15

0.20

0.25

0.30
Market

Model

Figure 8: Calibration of Merton jump-diffusion model to market data separately
for each maturity. Top left: maturity 1 month. Bottom left: maturity 5 months.
Top right: maturity 1.5 years. Bottom right: maturity 3 years.
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Figure 9: Calibration of Merton jump-diffusion model simultaneously to 4 ma-
turities. Calibrated parameter values: σ = 9.0%, λ = 0.39, jump mean −0.12
and jump standard deviation 0.15. Top left: maturity 1 month. Bottom left:
maturity 5 months. Top right: maturity 1.5 years. Bottom right: maturity 3
years.
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Maturity σσσ λλλ jump mean jump std. dev.
1 month 9.5% 0.097 −1.00 0.71
2 months 9.3% 0.086 −0.99 0.63
5 months 10.8% 0.050 −0.59 0.41
11 months 7.1% 0.70 −0.13 0.11
17 months 8.2% 0.29 −0.25 0.12
23 months 8.2% 0.26 −0.27 0.15
35 months 8.8% 0.16 −0.38 0.19

Table 2: Calibrated Merton model parameters for different times to maturity.

60 70 80 90 100 110 120
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Market

Model

30 40 50 60 70 80 90 100 110 120 130
0.1

0.2

0.3

0.4

0.5

0.6

0.7
Market

Model

50 60 70 80 90 100 110 120 130
0.10

0.15

0.20

0.25

0.30

0.35

0.40
Market

Model

40 50 60 70 80 90 100 110 120 130 140
0.10

0.15

0.20

0.25

0.30

0.35
Market

Model

Figure 10: Calibration of the Bates stochastic volatility jump-diffusion model
simultaneously to 4 maturities. Top left: maturity 1 month. Bottom left:
maturity 5 months. Top right: maturity 1.5 years. Bottom right: maturity 3
years. Calibrated parameters (see equation (8)): initial volatility

√
V0 = 12.4%,

rate of volatility mean reversion ξ = 3.72, long-run volatility
√

η = 11.8%,
volatility of volatility θ = 0.501, correlation ρ = −48.8%, jump intensity λ =
0.038, mean jump size −1.14, jump standard deviation 0.73.

time t (cf. equation 3). If we have calibrated the model parameters for a single
maturity T , this fixes completely the risk-neutral stock price distribution for all
other maturities. A special kind of maturity dependence is therefore hard-wired
into every Lévy jump diffusion model, and table 2 shows that it does not always
correspond to the term structures of market option prices.

To calibrate a jump-diffusion model to options of several maturities at the
same time, the model must have a sufficient number of degrees of freedom to
reproduce different term structures. This is possible for example in the Bates
model (8), where the smile for short maturities is explained by the presence of
jumps whereas the smile for longer maturities and the term structure of implied
volatility is taken into account using the stochastic volatility process. Figure 10
shows the calibration of the Bates model to the same data set as above. As we
see, the calibration quality has improved and is now almost as good as when
each maturity was calibrated separately. The calibration was once again carried
out using the tool [4] from Premia.
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