
 1

Mobile Object Tracking in Wireless Sensor
Networks*

Hua-Wen Tsai1 Chih-Ping Chu1 Tzung-Shi Chen2 #

1 Department of Computer Science and Information Engineering
National Cheng Kung University

Tainan 701, Taiwan.

2 Department of Information and Learning Technology
National University of Tainan

Tainan 700, Taiwan
e-mail: chents@mail.nutn.edu.tw

Abstract— Wireless sensor network is an emerging technology that enables remote monitoring objects
and environment. This paper proposes a protocol to track a mobile object in a sensor network dynamically.
The previous researches almost focus on how to track object accurately and they do not consider the query
for mobile sources. Additionally, they need not report the tracking information to user. The work is
concentrated on mobile user how to query target tracks and obtain the target position effectively. The
mobile user can obtain the tracking object position without broadcast query. The user is moving and
approaching the target when he/she knows the target's position. Wireless sensor networks can assist user to
detect target as well as keep the movement information of the target. Sensor nodes establish face structure to
track the designated target and keep target tracks. The source follows the tracks to approaching target. To
chase the object quick and maintain an accurate tracking route, the sensors cooperate together to shorten
the route between target and source dynamically. A source can quickly approach a target along a shortened
route. Finally, we compare the proposed scheme with three flooding-based query methods. By the
simulation results, the proposed protocol has better performance than that of flooding-based query
methods.

Index Terms—Mobile computing, object tracking, routing, spatiotemporal guarantee, wireless sensor
networks.

* This work is supported partially by National Science Council of the Republic of China, Taiwan, under Contract Nos.

NSC-94-2213-E-024-002 and NSC-95-2221-E-024-012.
Corresponding author

 2

I. INTRODUCTION
Recent advances in wireless communications and electronics have enabled the development of

low-cost, low-power, multifunctional sensor nodes which are small in size and communicate un-tethered
in short distances. These tiny sensor nodes have sensing, data processing, and communicating
components capabilities. A wireless sensor network (WSN) is composed of a large number of sensor
nodes and deployed either inside the phenomenon or very close to it. Wireless sensor networks are
expected serve as a key infrastructure for a broad range of applications including precision agriculture,
surveillance, intelligent highway systems, emergent disaster response and recovery. One of the important
application issues for sensor networks is utilized to track mobile object. In such scenarios, the sensor
networks may be deployed for military (tracking enemy vehicles, detecting illegal border crossings) and
civilian purposes (tracking the movement of wild animals in wildlife protection). To track an object
accurately, two or more of sensors are required to sense the object simultaneously. The cooperation is an
important issue for object tracking. However, the activated sensors need to consume power because of
communication, sensing, or other factors. We would like to select the fewest essential number of sensors
dedicated for the task and at the same time other sensors stay in the sleep state. During the tracking, a
large number of sensors are involved in cooperation. Such object tracking sensor network provides
significant research opportunities in terms of energy management. To simultaneously satisfy the
requirements of saving power and improving overall efficiency, large scale coordination and other
management operations are needed.

In previous object tracking sensor networks, the sensors are assumed activating. But this assumption
causes that sensors in WSN consume too much energy. This is because that a lot of sensors are assigned to
detect the moving object and transmit control data at the same time. Hence, we can utilize Collaborative
Signal and Information Processing (CSIP) to reduce the energy consumption. For the kind of techniques,
CSIP has been proposed in [3][12][24][31]. In general, the object tracking protocols are classified into
cluster-based and non-cluster-based protocols in WSNs. In cluster-based protocols [7][8][25][30], a
non-cluster sensor node detected an object and then it forwards an information to its cluster head. Next,
the cluster head collects and propagates the information to a sink. This approach reduces the required
communication bandwidth and energy consumption. Therefore, WSNs can prolong lifetime. In
non-cluster-based protocols, there is not any node to serve as cluster head in WSNs. When a sensor
detects an object, it records the object information in its local memory. A user issues a request to WSNs
when he/she wants to know the location of tracked object. If a sensor has the information of the tracked
object, it replies the information to the user. Kung et al. [21] and Lin et al. [23] assume that a logical
structure of connecting sensors exists in WSNs. They build a hierarchical structure that allows the system
to handle a large number of tracked objects. In addition, Tseng et al. [26] proposed a novel protocol based
on the mobile agent. Once a new object is detected, a mobile agent will be initiated to track the roaming
path of object. The mobile agent will choose and stay in a sensor that is the closest to the tracked object.
The agent invites some nearby slave sensors to track the position of object cooperatively and inhibits
other irrelevant sensors to track object. Both the overhead of communication and the sensing energy are
reduced.

For saving energy, the prediction-based methods [13][29][30] are used to predict the location of mobile
object. When a sensor detects an object, it forwards the object information to its cluster head. The
information contains the location, velocity and moving direction of object. The cluster head calculates
and predicts the location of object and then it multicasts wakeup information to the predicted area
(forwarding area). The multicast method is called mobicast. These sensors in the forwarding area wake to
perform sensing task and wait for source arrived. However, the object tracking may be failed when
mobicast method meet a hollow region in sensor network. The "hole" problem is one of key issues in

 3

object tracking for WSNs.

To solve holes problem for mobicast, some protocols are proposed object tracking protocols that
possess temporal delivery guarantee. Some literatures [5][6][15][16][20][22] have been addressed for
spatial and temporal delivery guarantee. Chen et al. [5][6] builds a new shape of a forwarding zone, called
the variant-egg. They utilize the variant-egg shape of the forwarding zone to achieve a high predicted
accuracy by considering the factors of moving speed and direction. Huang et al. [16] presented a new
face-aware mobicast routing protocol. This protocol relies on the notion of spatial neighborhoods and
features a novel timed face-aware forwarding method. This protocol uses face routing to achieve high
space delivery guarantee and uses timed forwarding for controlling information propagation speed.

The mobicast routing protocols for sensor networks are main designed for predicting the object moving
direction. Before the object arrived, some nodes are waked up to prepare for detecting object. They do not
consider how to inform mobile user the present location of target. This work proposes a novel object
tracking protocol in sensor networks for mobile user. The purpose of this proposed protocol is different
than that of other mobicast routing protocols. This protocol guides a mobile user to chase a mobile object
and it does not need flooding request to obtain the present location of object. This protocol can track
mobile object accurately and save power consumption to prolong wireless sensor network lifetime. A
mobile user is called source and a tracked object is called target. The source wants to chase the target. The
sensor network assist source in detecting the target and keeping the target's track information. The sensor
node keeping the track information acts as a beacon that waits for source and guides source to chase the
target. The source follows the track to approach the target. To save power consumption, some sensor
nodes are in active state to track target and others are into sleep state. In the course of chasing, source does
not need to request the present location of target frequently. The sensor also does not need to tell the
source the target location when sensor detects the target. When the source reached the location of beacon
sensor, it queries the sensor the next moving position. The next position is the present location of target or
the location of next beacon sensor. Source will catch the target along the sequence of beacon sensors. Due
to the target moves arbitrarily, the track route does not form a straight line. For accurately tracking the
target, this work utilizes face routing component to achieve spatiotemporal guarantee and solve the holes
problem. Furthermore, the moving direction and velocity of target are also considered. To abridge the
catch time, the sensors can cooperate to adjust the route between the target and the source dynamically.
The source would reach the site of target along the adjusted route faster than along the target track. By the
experimental results, this proposed protocol can save more energy than other flooding based protocols in
object tracking. Therefore, this protocol can extend the lifetime of the entire wireless sensor network.
Additionally, the protocol also guides a source to catch a target fast.

The rest of this paper is organized as follows. Section 2 presents the object tracking protocol for
wireless sensor networks. We compare the proposed protocol with three flooding-based protocols in
Section 3. The conclusions from this work are presented in Section 4.

II. MOBILE OBJECT TRACKING
This section introduces the proposed protocol in details. The work is to focus on mobile user how to

query target tracks and obtain the target position effectively. This work designs an efficient object track
protocol that can decrease energy consumption and increase tracking efficacy. Assume the mobile user
wants to follow a mobile object in a sensor network. First, the overview and definitions of protocol are
presented. Next, the object tracking processes are introduced including target discovery, target detecting,
target tracking, face-track shortening, and loop face-track removing.

 4

A. Assumptions and Definitions

First, several assumptions of the proposed protocol are defined. A mobile user, called source, wants to
track a mobile object, called target, in a wireless sensor network. Assume that a source knows the
information of target. The target information includes the characterization which is used to identify and to
seek the target. When a sensor network identifies the target in accordance with the target/object
information, it assigns a unique number for the target. This identification information is exchanged
between sensors. A sensor node has three states, active, sleep and awaking. While a sensor is in active
state, it can sense object, receive or transmit data any time. The sensor continues to work in active state
until an active time expires. While a sensor is in sleep state, the sensor stops sensing, receiving or
transmitting. A sensor periodically wakes at a predefined period and changes its state to awaking. In
awaking state, the sensor listens to communication channel to check request or wakeup packets. If it
receives a target discovery request packet, it delivers this packet to sensor network with flooding. If it
receives a wakeup packet in this period, its state will be changed as active. If the sensor does not change
its state to active in this period, its state returns to sleep. The sensor network is assumed synchronization.
The sensors periodically synchronize awaking and sleeping. Additionally, a sensor can detect the
accurate location of object, because the sensor utilizes trilateration to compute the object's location. The
trilateration has been proposed in [2]. Each node knows its location and this information can be acquired
from global positioning system (GPS) or other mechanisms. Notation L(o) denotes the location of object
o. The communication and sense range for each node are both same. This work assumes that the
transmission range is two times of sensing range. In this range ratio, the sensors can track an object
cooperatively. When an object leaves the sensing range of sensor X and moves into the sensing range of
sensor Y, this range ratio can guarantee that X and Y are neighbors. Sensor Y can directly inform X the
object information so sensor network can track object cooperatively.

Next, some notations are given below. To track mobile object and solve the "hole/obstacle" problem,
this work utilizes face routing component [1][14][16] to construct a spatial neighborhood for preventing
losing the track of object. This work uses the knowledge of spatial neighborhood defined on a planar
graph. To let each node find out locally who its spatial neighbors are, we first need a method to planarize
the network. It is well known that the Gabriel Graph (GG) and the Relative Neighborhood Graph (RNG)
[1][28] are planar graphs. In a geometric graph, an edge e = (u, v) is called a “Gabriel edge” if there is no
other node inside the disk which uses e as a diameter. An example is in Fig. 1. A graph is a GG if it
contains only Gabriel edges. Gabriel subgraphs of non-planar have been used in [4][19] for unicast
geometric routing. A simple distributed algorithm can be found in both papers. We use unit disk graph as
an approximation for sensor networks in our simulation. In a unit disk graph, two nodes have a common
edge if and only if their Euclidean distance is less than a constant.

u ve

Fig. 1: A Gabriel edge.

Each node exchanges its location information and computes the face neighbors. If a neighbor v is a face
neighbor of node u, the e is a Gabriel edge. When a node has n face neighbors, it means that the node has
n adjacent faces. Next, it issues a packet to collect and construct adjacent faces. A node does not need to
know all of sensors and their location. It only needs to get the information of nodes that are in its adjacent

 5

faces. Fi is denoted as an identity of face i in the network. In Fig. 2, node n1 has four face neighbors n2, n3,
n4, and n5, so it has four adjacent faces F1, F2, F3, and F4. In same situation, node n3 has three adjacent
faces F1, F3, and F5. Note that the “boundary node” n10 has two adjacent faces F4 and F7. One of them is
the “inner” face F4 formed by node n10, n9, n8, n4, n1, and n5, the other is the “outer” face F7 formed by
node n10, n5, n2, n16, n15, n14, n13, n12, n11, n6, , n7, n8, and n9. These neighbors in Fi are called spatial
neighbors. Let Fi.SN is a set of n's spatial neighbors in Fi, and Fi.sn1, Fi.sn2, …, Fi.snj, be all neighboring
face nodes of Fi of n (Fi.snk∈ Fi.SN, 1 ≤ k ≤ j). The identification methods of the “boundary”, “inner” and
“outer” face are proposed in [16]. The face structure is established in face discovery phase.

n16

F3

F1

F5

F7

F4

F6

n1

n2

n5

n4n6

n7

n8

n3

n9

n11

n12

n13

n14

n15

face link
transmission link

n10

F2

Fig. 2: Planar graph and planar neighborhood.

B. Overview

This subsection illustrates the overview of proposed object tracking protocol in Fig. 3. This protocol is
applied to assist a source S in chasing a mobile object o. A scenario is that we dispatch a tiny robot (like a
bee) to chase an enemy or a wild animal. The robot must follow the target. Assume that the robot can not
detect object location, so the robot must employ sensor networks to get target location. When S gets the
target location, it chases the target. The moving target maybe has left the original place while S reached
the obtained location. But S cannot predict the moving direction of target. If S uses continually a flooding
method to obtain the target position, the energy of sensors will be exhausted soon. This work proposes a
protocol that not only saves sensor energy but also chases target accurately and fast.

First, S uses a flooding request to get the target location and asks sensor network to track target. Source
S obtains the target's present location is near sensor n1. Next, S moves to the target's location and queries
sensor n1 the target's present location. Because the target moves arbitrary, the sensors need to record the
target tracks. This work utilizes face structure to distinguish different areas in sensor network. A sensor n
detects a target enters its adjacent face and n is the closest to the target. This kind of sensor is ingress node.
While the tracked target moves through k faces, k ingress nodes exists in sensor network. The sequence of
ingress nodes represents the target tracks. E.g. the target tracks are recorded as <n1, n2, n3, n4, n5, n6 >.
When source S reached n1, it queries n1 the next position n2. The ingress node acts a mark to guide source
the chase direction, so ingress node also is called beacon node. Source S will chase the target along the
sequence of beacon nodes. This is similar to that ants (i.e. sensor network) release a substance called
pheromone (i.e. beacon nodes) to communicate with other ants (i.e. source). An ant (i.e. S) will follow the
scent and reach to a food source (i.e. target).

 6

S

n1

n2

n3
n4

n5

n6

F1

F2 F3

F4

F5
F6

F7

Sensor
Beacon node

Mobile target
Source

Fig. 3: An overview for object tracking.

C. Face Discovery

First, each node collects the neighbor information by hello message. Next, each node computes its face
neighbor nodes by Gabriel Graph (GG). The face neighbor node means the link between this node and its
neighbor conforms to GG. Next, each node informs the computed face neighbor nodes to its neighbors.
Each node decides its face neighbor nodes after these processes. Next, each node utilizes the right-hand
neighborhood discovery protocol that is proposed in [14][16] to construct adjacent faces. The face
maintenance also follows [14][16]. After the face discovery, each node obtains the location information
of spatial neighbors. This face discovery phase is performed in initial.

D. Target Discovery

This subsection discusses target discovery process. A source S wants to track a target o but it does not
know the location of target o. Source S employs the sensor network to discover the target o. Source S
issues a flooding request packet to seek target. The sensor network is synchronization and the sensors
periodically synchronize to wake and to sleep. Source S issues a request packet in awaking period. The
format of request packet is request(packet type, source id, sequence number, target information), where
the packet type is Request, the sequence number is used to avoid forwarding the duplicate packet, the
target information is used to identify target.

When a sensor ni receives a request packet, it judges whether it is a near-node. Near-node means that
the node is the closest to the target than others. If a sensor ni detects the target o that stays in its sense
range and it is the near-node, it forwards a reply packet to source S. This process is similar to the route
discovery process in ad hoc networks. Because every node has collected its all spatial neighbors' location
in face discovery phase, it can judge whether it is the closest to the target. The format of reply packet is
reply(packet type, source id, target id, the location of target, beacon node id), where the packet type is
REPLY, target id is an unique number of target, beacon node id is ni. When the sensor ni issues a reply to
the source, it set its state as active and the active time as infinity. It becomes a beacon node and begins to
track the target.

If the source does not receive reply at a predefined time, it rebroadcasts request packet at next awaking
period. This mechanism can prevent the routing failure, node failure and lose tracking. Additionally, the
advantage of face structure is that it is suitable for any kinds of node-density networks for being able to
solve the hole/obstacle problems. If the target unfortunately stays in a hollow region while the source

 7

requires target information, the source cannot get the information and then it will try to rediscover the
target after a predefined period. When the target left in the hollow region, the source can obtain the target
location at rediscovery process.

E. Target Detection

If a sensor n is a near-node and target o is in face Fa, this sensor n becomes an ingress node of Fa and
tracks the target. If the sensors do not cooperate to detect the target, it maybe loses the target tracks while
the target moves. For tracking the target accurately, sensor n asks its spatial neighbors for cooperating
tracking target. Sensor n issues wakeup packet to wake its all spatial neighbors of adjacent faces and asks
them for detecting target o cooperatively. The wakeup packet format is wakeup(packet type, ingress id,
near-node id, object in face id, received node id, target id, the location of target, active time, face hop
count), where the packet type is WAKEUP, received node id is indicates the node to receive this packet
and -1 means this packet is broadcast, active time indicates the active period of spatial neighbors, the face
hop count indicates the number of faces that the target already has moved. The face hop count is set as 1
initially. The wakeup packet is forward along the face routing.

When the spatial neighbors of n receive wakeup packet, they stay in active state and detect target
cooperatively. They do not enter sleep state at the predefined sleep period. The ingress node forwards
wakeup packet periodically while it is a near-node. If the target leaf the sensing range of the ingress node
and it is still in the same face Fa, another sensor m (m∈Fa.SN) can detect the target and it is the near-node
now. Because every node has the location information of its spatial neighbors, it can check whether it is
the closest to the target. Sensor n stops issuing wakeup packet, but sensor m will issue wakeup packet to
its all spatial neighbors. In other words, every active node detects the target and must to check whether it
is the near-node. A sensor, which is the near-node, has to issue wakeup packet, but the others have not.
The target information is stored in all of spatial neighbors until active time expires. When the active time
has expired, the sensor enters sleep state. Hence, the wakeup packet can wake the sleep sensors and
refresh the active time of active node. We assume that the active time of ingress node (i.e. beacon node) is
infinity. This is because this kind of node must to guide source S the chasing direction of target o.
Therefore, this node has to stay in active state until source S arrives. The near-node and its spatial
neighbors form a detecting region, called envelopment-net, i.e. a group of sensors besieges the target.
While the target is moving, the envelopment-net also follows the target. Therefore, this proposed protocol
can track target accurately and avoid losing the target traces. This envelopment-net utilizes the advantage
of face structure to solve holes and obstacle problem. Additionally, envelopment-net can also guarantee
that the target is in the envelopment-net region due to the characteristics of face structure. If we can
ascertain that a target has moved into a face which includes a hollow region but loses the target tracks in
the hollow region in the face, we can guarantee that the target is still in this face.

An example for detecting the mobile target is illustrated in Fig. 4. Assume a mobile target is in face F1
at period T. Three sensors n1, n2 and n3 can detect the target and n1 is the near-node. When n1 receives a
request packet from a source, it replies a reply packet to the source and it becomes an ingress node. Next,
n1 issues wakeup packets to wake its all spatial neighbors. In Fig. 4, n1 broadcasts wakeup packet
(WAKEUP, n1, n1, -1, F1, o, L(o), t, 1) to its neighbors n2, n6 and n9. When sensor n2 receives wakeup
packet from n1, it means this packet is in F1. Sensor n2 forwards this packet to n3. All spatial neighbors
will receive this packet. These spatial neighbors include n2, n3, n4, n5, n6 in F1, n9, n2 in F2 and n6, n7, n8, n9
in F3. The target may move to adjacent face at next period (T+1), e.g. the target o may move to the
adjacent face F2, F3, F4, F5, F6 or F7 in Fig. 4 (a).

If the target moves to adjacent face F4 at T+2, it has to cross an edge (n5, n6). While the target moves to
n5's neighborhood at T+1 and it still stays in face F1, n5 broadcasts wakeup packet (WAKEUP, n1, n5, -1,

 8

F1, o, L(o), t, 1) to face F1, F4 and F5. If an active sensor does not receive a wakeup packet again in time t,
its state returns to sleep. When the active time of n8 and n9 are expired, the states of sensors n8 and n9
return to sleep shown in Fig. 4 (b). If the target enters F4 at T+2 and n5 is also the near-node as shown in
Fig. 4 (b), n5 broadcasts wakeup packet (WAKEUP, n5, n5, -1, F4, L(o), t, 2) to its all spatial neighbors to
wake up them. These spatial neighbors include n6, n1, n2, n3, n4 in F1, n10, n11, n12, n7, n6 in F4 and n4, n10 in
F5. New, n5 is the ingress node of face F4 and the face hop count is set as 2. Sensor n1 records n5 as the
next beacon node and n5 records n1 as the previous beacon node. The face hop count is increased when the
target moves into a new face. When the source has arrived n1, n1 guides the source to n5. The source
follows a sequence of beacon/ingress nodes (i.e. the target tracks) to chase mobile target.

(a)

F4

F3

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

F2n1

F1

F5

o

WAKEUP Packet in F2

WAKEUP Packet in F1

WAKEUP Packet in F3

WAKEUP Packet in F4

WAKEUP Packet in F1

WAKEUP Packet in F6

(b)

F4

F3

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12
F2n1

F1

F5

o

At T

Moving path
Sensing target
Near-node

Active nodes
Sensor Mobile target ()T

Mobile target (+1)T

F6

F7

F6

F7

Mobile target (+2)T

Fig. 4: An example for detecting mobile target.

To reduce power consumption, this work only needs the near-node and its spatial neighbors to detect
the target. Other sensors turn into sleep state. Additionally, these nodes have to wake up periodically and
check whether it needs to turn into active state and detect object. We define a parameter, the frequency of
awaking. If the awaking frequency is high, it can avoid losing target tracks. The sensor network has to
frequently wake for detecting target. The high frequency of awaking is suitable for the velocity of target
be fast. If the frequency of awaking is low, it can save more of energy. The low frequency of awaking is
suitable for the velocity of target be slow.

This work addresses the track losing problem here. If the frequency of awaking is low and the target
moves very fast, the sensor may be losing the track of target. Additionally, if the covered area of face is
very small, it also has the losing track problem. This is because that this work utilities an envelopment-net
to besiege target. If the update rate of envelopment-net is too slow or the covered area of envelopment-net
is too small, the target will escape from envelopment-net. The last ingress node stops searching target
when it loses target tracks. When the source reached the last ingress node, the source rediscovers the
target again. We show an example of losing track problem in Fig. 5. We assume that the target o is in F1 at
time T-1. The active nodes are n1, n2, n3, n4, n5, n6, n7, n8 and n9. At time T, the target o moves close to n11.
Sensor n11 is sleeping in this moment, so n5 still is the near-node. If n5 wakes its spatial neighbors in F1, F4
and F5 at time T, it does not have the losing track problem. Assume time T is sleep period and time T+1 is
awaking period. Sensor n5 will wake the spatial neighbors in F4 at time T+1. But the target has got away

 9

the sensing range of n11 at time T+1. In this situation, the last ingress node n5 loses the target tracks.
Although n5 loses the target track, the target discovery process is restarted when the source reached n5. If
the awaking frequency is set too low, the proposed algorithm is degraded and the target tracking process
is the same as that of Threshold Flooding. Threshold Flooding only has the target discovery process of
our algorithm. This method has to perform the target discovery process repeatedly when the source
reached the obtained location.

F4

F3

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12
F2n1

F1

F5
F6

o

F4

F3

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12
F2n1

F1

F5
F6

o

At T At +1T

Moving path

Sensing target
Near-node

Active nodes
Sensor

Wakeup packetMobile target ()T

Mobile target (+1)T

Mobile target (1)T-

Sensing range

(a) (b)

T-1 T
Sleep

Awaking

T+1

time

Fig. 5: An example for losing track problem.

F. Tracking Target

While a target o is tracked by source S, the sensor network has to record the target tracks. A source S
obtains the target location that is informed from the first beacon node n (i.e. ingress node) after
completing a target discovery process, and then S starts to move toward the first beacon node n's location.
When S reaches the position of the first beacon node n, S queries the beacon node for next position. The
query packet format is q_next(packet type, source id, target id, received beacon node id), where the
packet type is Q_NEXT. The beacon node n informs S the target's or next beacon node's location
information. The reply packet format is q_next_rep(packet type, source id, target id, next beacon node id,
the location of target), where the packet type is Q_NEXT_REP. If the target is still here, the source S
moves to the target location and catches the target o. If the target has left, the beacon node n informs S
next ingress node m's location. Then, the source moves toward the next beacon node again. The beacon
node n also informs the next beacon node m the information that the source S will reach m. The packet
format is info_first(packet type, target id, sending beacon node id, next beacon node id), where the packet
type is INFO_FIRST. The beacon node n stops its active state and turns into awaking or sleep state. The
active time is also set as 0. This node does not need to track target for source S anymore. The next beacon
node m becomes the first beacon node. This process is repeated until the source catches target. The source
will pursue the target along the sequence of beacon nodes. An example for tracking target is shown in Fig.
6. The source S follows the path of beacon nodes <n1, n2, n3, n4, …> to pursue the target o. This path is
called face-track.

 10

F1 F2

F3
F4 F5

F6

F8

F9

F7

F10

S

o
n1

n2

n3 n4

Sensor
Beacon node

Mobile target
Source

Target tracks
Source tracks

Fig. 6: An example for tracking mobile target.

G. Face-Track Shortening

This subsection discusses how to adjust face-track. When the velocity of target is faster than that of
source, the source is very difficult to catch target. In the course of chasing, the face-track may be not the
optimal tracks. Therefore, this work proposes a shortening method for face-track to make source chase
target fast. The length of face-track will be shortened in this process. The face-track needs to adjust when
the face hop count has already accumulated to K hops. When the target moves into the n× Kth face (n ≥ 1),
the (1+ n× K)th ingress node needs to shorten face-track from the (1+ n× K)th to the (1+ (n-1)× K)th ingress
node. The (1+n× K)th ingress nodes are set as checkface. Only adjusting a part of face-track can reduce
adjustment overhead. Additionally, the source is also approaching the target at the same time. So we do
not need to shorten the face-track to the first ingress node.

An overview for adjusting face-track is shown in Fig. 7. Fig. 7 (a) shows that the target o has passed
through faces F9, F6, F4, F5 and F8. The face-track is <n1, n2, n3, n4>, where the 4th and 5th ingress nodes
are both n4. This face-track is not the optimal tracks. Here, we assume that the value of K is 4 and n1 is the
first ingress node (checkface). The source S is moving toward the first ingress node n1 but S has not
reached n1. When the target has passed through 4 faces from the last checkface, the 5th ingress node (n4) is
the new checkface and it performs the face-track shortening process. Because the face-track is not a
beeline, we shorten the moving path from n1 to n4. If the source S has reached the 1st ingress node n1, S
will directly move to n4 shown in Fig. 7 (b). The adjusted source track is shorter than the original one.

Sensor
Ingress node Mobile target

Source Target tracks
Source tracks

(a)

F1 F2

F3
F4

F6

F8

F9

F7

F10

S

o

n1

n3

(b)

F1
F2

F3
F4

F8

F9

F10

S

n1

n2

n3

n4

n2

n4

F5 F5

o

F6

F7

Fig. 7: An overview for face-track shortening.

 11

When a target o enters to the (1+n× K)th face, the (1+n× K)th ingress node issues an infoshort packet to
the (1+(n-1)× K)th ingress node. The infoshort packet format is infoshort (packet type, the last ingress
node id, the last ingress node location, present face hop count, the previous ingress node), where the
packet type is INFOSHORT. When an ingress node that is between the (1+(n-1)× K)th and the (1+n× K)th
ingress nodes receives this packet, it cancels the ingress node role. In other words, it is not an ingress node
anymore. And then it forwards this packet to the previous ingress node. This process is repeated until the
(1+(n-1)× K)th ingress node received this packet. When the (1+(n-1)× K)th ingress node receives this
infoshort packet, it changes its next ingress node from (1+(n-1)× K+1)th to (1+n× K)th. An example for
face-track shortening is shown in Fig. 8. We assume that K is set as 4, n1 is a checkface (i.e. the first
ingress node) and n4 is the (1+K)th ingress node of face F8. In Fig. 8 (a), n4 issues an infoshort packet to the
previous checkface (i.e. n1) by unicast. This packet is delivered along face routing. Ingress nodes n2 and n3
cancel ingress node role. When n1 receives the infoshort packet, it changes its next ingress node from n2 to
n4.

F3
F4 F5

F6

F8

F9

F7

F10

F11

n1
n2

n3 n4

F1
F2

Infoshort

Fig. 8: An example for face-track shortening.

H. Loop Face-Track removing

This subsection discusses the loop face-track problem. When the face-track forms a loop, we have to
remove track loop. An example for loop face-track removing is illustrated in Fig. 9. Assume that the
object moving path is <F6, F7, F8, F10> and the sequence of ingress nodes is <n1, n2, n3, n4, n5 > shown in
Fig. 9 (a). When the target o enters to face F7, the new ingress node is n5 and then n5 issues a wakeup
packet to its spatial nodes. When the old F7's ingress node n2 receives the wakeup packet, n2 knows the
face-track that has formed a loop. Therefore, n2 delivers a deletion packet to n5. Sensor n5 cancels its
ingress node state and it becomes a near-node of face F7. Next, n5 forwards the deletion packet to n4. This
process is repeated until n2 received this packet. In other words, the deletion packet is forwarded
backtracking to n2. The ingress nodes in the loop are deleted. The deletion packet format is
deletion(packet type, detecting loop ingress node id, the previous ingress node id), where the packet type
is DELETION. In Fig. 9 (b), the loop has deleted and new face-track is <n1, n2>.

III. EXPERIMENTAL RESULTS
This section compares the proposed dynamic object tracking (DOT) protocol with the flooding-based

object tracking protocols. The experiments are implemented in ns2 simulator [27]. The version of ns2 is
2.27. The simulations use CMU’s wireless extensions [9] for the ns2 simulator. The nodes use the IEEE
802.11 radio and MAC model [17] provided by the CMU extensions. Additionally, we extend NRL's
Sensor Network [11] to ns2 simulator. This foundation consists of dual-homed sensor nodes that are data
channel and phenomenon channel. The data channel is followed standard of 802.11. The project adds a
phenomenon channel for detecting some physical phenomenon. The project facilitates to simulate sensor

 12

network environment. The value of noise or error models is default in ns2 simulator.

n5

F1
F2

F3
F4 F5

F6

F8

F9

F7o

n1
n2 n3

n4

(a) (b)

F10

n5

F1
F2

F3
F4 F5

F6

F8

F9

F7o

n1
n2 n3

n4
F10

Mobile target

Target tracks
Source tracks

Sensor
Ingress node

Deletion packet

Fig. 9: An example for removing loop face-track.

A. Protocols Based on Flooding

Due to the previous researches which are not considered in querying object tracks, this work compares
the proposed protocol with three querying methods based on flooding. Three flooding query methods are
Threshold Flooding (called TF), Schedule Flooding (called SF), and Schedule Updating (called SU). Our
proposed protocol is called dynamical object tracking (called DOT for short).

In TF protocol, the target discovery is similar to our protocol, but this protocol does not maintain the
target tracks. When the source gets the location of mobile target, it moves toward the obtained location.
This method has to perform the target discovery process repeatedly when the source reached the location.
In SF protocol, the source performs the target discovery process with a predefined period. The time
interval is set as 2 second in the simulation. In SU protocol, the source broadcasts a query packet to all
sensors at first. This query asks that the sensors that detect the object report the object location. After the
first query, the source does not need to query the object tracks by flooding. The detecting object sensors
update the object location information with a predefined period. The time interval is set as 2 second in the
simulation. Because the sensor does not know the location of source, it updates the object’s location by
flooding.

B. Simulation Model

There are 140 sensors in this simulation network. These nodes are deployed uniformly and randomly in
a 400m × 400m square region. In the simulation energy model, the initial battery is 30J, the transmission
power is 700mW and the received power is 360mW. The communication range is 50 meter and the sensor
range is 25 meter. The object node moves according to the “random waypoint” model [18] with velocity
of 0~30 meter/sec and the pause time is 5 second. The velocity of source node is varied 5, 10, 20 and 30
meter/sec. Each run simulates 2000 seconds. During the 0~150 seconds, the sensor network performs face
discovery phase. In the 150th second, the source performs target discovery phase. In a simulation run, the
source chases the mobile target until the simulation time terminated. Three snapshots are shown in Fig. 10.
We have evaluated four key performance metrics: (i) remaining energy and energy consumption (ii)
maximum life time (iii) packet overhead (iv) average distance.

 13

(a) A snapshot in 150 sec

(b) The snapshot in the 160th sec (left) and 194 th sec (right)

Fig. 10: The snapshot for DOT simulation.

C. Simulation Results

First, we compare DOT with different K value. We present the performance of different K in simulation
illustrations. Next, we compare DOT with three flooding-based query methods. The K value is varied 3~7.
The notation DOT-ki means DOT with K = i. The K value affects the length of track path for source.
When K value decreases, the sensor network adjusts face-track with increasing frequency. When K value
increases, the sensor network also needs more of overhead for shortening the length of face-track. The
source speed is varied 5, 10, 20 and 30 meter/sec. We simulate different scenarios with object speed. In
slow moving scenario, the object speed is varied 0~15m/s. In medium moving scenario, the object speed
is varied 10~30m/s. In fast moving scenario, the object speed is varied 10~30m/s. Fig. 15 shows the
remaining energy of sensor with different object and source speed. In slow and medium moving scenarios,
the remaining energy performance for different K does not have obvious difference. In fast moving
scenario, DOT-k5 saves more energy than others when source speed is set as 10 and 20 m/s. Because the
source has to follow the object and it cannot detect object, the source utilizes the sensor network to obtain
the object location. When the source speed increases, the source can be very close to follow the object. To
avoid losing the target tracks, the source has to query the beacon node about the target location

 14

periodically. The period is 2 seconds in the simulation. Therefore, the network has to consume more of
energy when the source speed is fast. When the object speed increases, the envelopment-net also updates
quick for tracking the target.

Remaining Energy (Object speed = 0~15m/s)

0

2

4

6

8

10

12

14

16

DOT-k3 DOT-k4 DOT-k5 DOT-k6 DOT-k7

En
er

gy
 (J

)

S:5m/s
S:10m/s
S:20m/s
S:30m/s

Remaining Energy (Object speed = 5~20m/s)

0

2

4

6

8

10

12

14

16

DOT-k3 DOT-k4 DOT-k5 DOT-k6 DOT-k7

En
er

gy
 (J

)

S:5m/s
S:10m/s
S:20m/s
S:30m/s

Remaining Energy (Object speed = 10~30m/s)

0

2

4

6

8

10

12

DOT-k3 DOT-k4 DOT-k5 DOT-k6 DOT-k7

En
er

gy
 (J

)

S:5m/s
S:10m/s
S:20m/s
S:30m/s

Fig. 11: The remaining energy of sensor for different object moving scenarios.

Because the experiment is simulated in same face structure, we compare the packet overhead for
tracking object shown in Fig. 12. The performance of packet overhead for object tracking is similar to that
of the remaining energy. In slow and medium moving scenarios, the packet overhead for different K does
not have obvious difference. In fast moving scenario, DOT-k5 has less packet overhead than others when
source speed is 20 m/s. When more of packets are issued in sensor network, sensor network has to
consume more of energy. When the source speed increases, the q_next and q_next_rep packets are
increased. When the object speed increases, the wakeup packet and face maintain packets are increased.

Fig. 13 shows the average relative distance between source and object. The average relative distances
for different K do not have obvious difference. When the source speed is slow, the source is difficult to
catch the target. Therefore, the average distance of S-5m/s is higher than that of S-30m/s. When the object
speed increases, the average relative distance is increased. The source is not easy to catch the target in the
course of chasing.

Fig. 14 shows the relative distance in a simulation that performs in slow moving scenario. When the
object speed is very slow, the relative distance is very small. When the object speed increases, the relative
distance is increased. We can observe this situation at the 414th second. During 476~551 seconds, the
source chases the object along the track-face. We observe that DOT-k5 is moving toward the target faster
than others. This result shows that the source is moving along short track-face. Summarized the above
results, this work selects DOT-k5 to compare with other flooding-based query methods.

 15

Tracking Packet Overhead (Object speed = 0~15m/s)

0

5

10

15

20

25

30

35

DOT-k3 DOT-k4 DOT-k5 DOT-k6 DOT-k7

Th
e

nu
m

be
r o

f p
ac

ke
ts

 (T
ho

us
an

d)
s5
s10
s20
s30

Tracking Packet Overhead (Object speed = 5~20m/s)

0
5

10
15
20
25
30
35
40
45

DOT-k3 DOT-k4 DOT-k5 DOT-k6 DOT-k7

Th
e

nu
m

be
r o

f p
ac

ke
ts

 (T
ho

us
an

d)

s5
s10
s20
s30

Tracking Packet Overhead (Object speed = 10~30m/s)

0

10

20

30

40

50

60

DOT-k3 DOT-k4 DOT-k5 DOT-k6 DOT-k7

Th
e

nu
m

be
r o

f p
ac

ke
ts

 (T
ho

us
an

d)

s5
s10
s20
s30

Fig. 12: The packet overhead for tracking object.

Average Distance (Object speed = 0~15m/s)

0

10

20

30

40

50

60

70

DOT-k3 DOT-k4 DOT-k5 DOT-k6 DOT-k7

D
is

ta
nc

e
(m

)

S:5m/s
S:10m/s
S:20m/s
S:30m/s

Average Distance (Object speed = 5~20m/s)

0

20

40

60

80

100

120

140

160

DOT-k3 DOT-k4 DOT-k5 DOT-k6 DOT-k7

D
is

ta
nc

e
(m

)

S:5m/s
S:10m/s
S:20m/s
S:30m/s

Average Distance (Object speed = 10~30m/s)

0

20

40

60

80

100

120

140

160

DOT-k3 DOT-k4 DOT-k5 DOT-k6 DOT-k7

D
is

ta
nc

e
(m

)

S:5m/s
S:10m/s
S:20m/s
S:30m/s

Fig. 13: The average distance between source and object.

 16

0

30

60

90

120

150

180

210

240

150 200 250 300 350 400 450 500 550 600 650 700
Simulate Time(sec)

D
is

ta
nc

e
(m

)

DOT-k3
DOT-k4
DOT-k5
DOT-k6
DOT-k7

k5

k3

k4

k6

Object Speed (m/s)

k7

Fig. 14: the relative distances in a simulation.

Next, we compare DOT with three flooding-based methods. Fig. 15 shows the energy consumption for
different source speed. This simulation performs in slow moving scenario. The results of other moving
scenarios are similar to slow moving scenario. The SU and SF query methods periodically update object
location by sensors and source, respectively. Therefore, the source speed does not affect the energy
consumption. In SU method, several sensors that detect the object have to broadcast the object location.
In SF method, only source needs to broadcast packet. Hence, SU consumes more energy than others. In
TF method, the source has to query the object location when it reached the obtained location. When the
source speed increases, the source catches the object fast. Then, the source has to obtain the object
location every 2 seconds. Therefore, TF has to consume more of energy when the source speed increases.
When source speed = 30m/s, the energy consumption of TF is similar to that of SF. The DOT does not
increase a lot of energy consumption while the source speed increases. During 0~150 seconds, DOT
needs to construct face routing, so DOT must to consume more energy than others. In the course of
tracking and chasing, DOT can guide source by beacon nodes to chase object. The source does not query
object location by frequent broadcast. Hence, DOT can decrease a lot of power consumption. Therefore,
DOT can save more energy than others.

Next, we compare the maximum life time because of the sensor networks with flooding methods died in
simulation run. The results of maximum life time are illustrated in Fig. 16. If the maximum life time =
2000, it means that the network does not die in simulation run. In fast moving scenario, SU method lets
sensor network die at the 684th second. The SU method has shortest life time than others. The SF method
also let sensor network die in the simulation run. The TF let sensor network die in the simulation run
when the source speed increases. This is because that the source needs to obtain object location
periodically. The TF method degrades the query efficiency as same as SF method. The DOT method
saves packet overhead and power consumption, so it does not let sensor network die in the simulation run
except in object fast moving scenario and the source speed = 30m/s.

Next, we compare total packet overhead that includes routing maintain, tracking object, query and reply
packets. The results are shown in Fig. 17. The SU method has the highest packet overhead than others.
The TF has more of packet overhead while the source speed increases. In high source speed, the packet
overhead of TF is similar to SF. It means that the TF method degrades the query efficiency as same as SF
method. The DOT has better performance than others. The DOT increases a little bit of packet overhead
while the source or object speed increases.

 17

Energy Consumption (Source speed = 5m/s)

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600 1800
Simulation Time (Sec)

En
er

gy
 (J

)
DOT
SU
SF
TF

SF
TF DOT

SU

Energy Consumption (Source speed = 10m/s)

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600 1800
Simulation Time (Sec)

En
er

gy
 (J

)

DOT
SU
SF
TF

SU SF
TF

DOT

Energy Consumption (Source speed = 20m/s)

-5

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600 1800
Simulation Time (Sec)

En
er

gy
 (J

)

DOT
SU
SF
TF

SU SF TF

DOT

Energy Consumption (Source speed = 30m/s)

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600 1800
Simulation Time (Sec)

En
er

gy
 (J

)

DOT
SU
SF
TF

SU SF TF

DOT

Fig. 15: Energy consumption with different source speed.

Max. Life Time (Object speed = 0~15m/s)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

DOT SU SF TF

Li
fe

 T
im

e
(s

ec
)

S:5m/s
S:10m/s
S:20m/s
S:30m/s

Max. Life Time (Object speed = 5~20m/s)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

DOT SU SF TF

Li
fe

 T
im

e
(s

ec
)

S:5m/s
S:10m/s
S:20m/s
S:30m/s

Max. Life Time (Object speed = 10~30m/s)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

DOT SU SF TF

Li
fe

 T
im

e
(s

ec
)

S:5m/s
S:10m/s
S:20m/s
S:30m/s

Fig. 16: The maximum life time for different object moving scenarios.

The simulation results of relative distances are illustrated in Fig. 18. The results of average distance are
gotten from 0~670 seconds. The SU and SF have the same performance in relative distance because of the
source chases the object along the shortest path. When the source receives the object location updating, it
changes its moving direction immediately. The update ratio is 2 seconds. Therefore, they have better
performance than DOT and TF in slow source speed. The DOT has better performance with high source

 18

speed than others. It is because that the source can obtain the object location information from the beacon
node immediately. The source need not wait to obtain the present object position by querying. Therefore,
the source with DOT can catch the target faster than that with others. Additionally, after the source met
the object, the source can obtain the latest news from beacon node immediately when the object changes
its moving direction. This also increases the tracking efficiency of DOT. The TF has longer distance than
others. The source with TF queries the present object position when it reached the obtained location.
Hence, the source cannot get the latest news of object position when the object changes its moving
direction.

By the experimental results, DOT protocol has better performance of energy consumption, packet
overhead and tracking than the flooding-based query methods. This protocol can reduce the power
consumption when the source wants to query the target position. The source also need not issue periodical
broadcast query to obtain the object position. It can reduce the packet overhead. While the source catches
the target and it wants to follow the target, the proposed protocol can save the power efficiently.
Moreover, a shortening method for face-track is proposed in this protocol. The source can follows short
path to chase target and avoid loop path.

Total Packet Overhead (Object speed = 0~15m/s)

0

20

40

60

80

100

120

DOT SU SF TF

Th
e

nu
m

be
r o

f p
ac

ke
ts

 (T
ho

us
an

d)

S:5m/s
S:10m/s
S:20m/s
S:30m/s

Total Packet Overhead(Object speed = 5~20m/s)

0

20

40

60

80

100

120

140

DOT SU SF TF

Th
e

nu
m

be
r o

f p
ac

ke
ts

 (T
ho

us
an

d)
S:5m/s
S:10m/s
S:20m/s
S:30m/s

Total Packet Overhead(Object speed = 10~30m/s)

0

20

40

60

80

100

120

140

DOT SU SF TF

Th
e

nu
m

be
r o

f p
ac

ke
ts

 (T
ho

us
an

d)

S:5m/s
S:10m/s
S:20m/s
S:30m/s

Fig. 17: The total packet overhead for different object moving scenarios.

IV. CONCLUSIONS
This work proposes a dynamical object tracking (DOT) protocol for sensor networks. The previous

researches are almost force on how to track object accurately and they do not consider the query for
mobile source. Additionally, they need not report the tracking information to user. The work is to focus on
mobile user how to query target tracks and obtain the target position effectively. This protocol can be
applied in tiny robot (like a bee) to chase an enemy or a wild animal. The scenario is that a source wants to
chase a mobile target and it employs the sensor networks to track the target. A group of sensors forms an
envelopment-net to besiege and to detect the target. When the target moves, the envelopment-net follows
the target and a set of ingress nodes is kept. The sequence of ingress nodes is the target traces (face-track).

 19

The ingress (beacon) node can pilot the source to the target position. The source can obtain the object
information from the ingress node directly so this protocol can decrease the frequency of querying. The
broadcast query would consume energy and increase packet overhead. Additionally, a shortening method
for face-track is proposed to decrease the moving distance of source. It can improve the efficiency for
chasing. The source can follow short path to chase the target. This method can also avoid track loop
problem. By the experimental results, DOT protocol has better performance than the other flooding-based
query methods.

Average Distance (Object speed = 0~15m/s)

0

10

20

30

40

50

60

70

DOT SU SF TF

D
is

ta
nc

e
(m

)

S:5m/s
S:10m/s
S:20m/s
S:30m/s

Average Distance (Object speed = 5~20m/s)

0

20

40

60

80

100

120

140

160

DOT SU SF TF
D

is
ta

nc
e

(m
)

S:5m/s
S:10m/s
S:20m/s
S:30m/s

Average Distance (Object speed = 10~30m/s)

0

20

40

60

80

100

120

140

160

DOT SU SF TF

D
is

ta
nc

e
(m

)

S:5m/s
S:10m/s
S:20m/s
S:30m/s

Fig. 18: The relative distances for different object moving scenarios.

REFERENCES
[1] M. d. Berg, M. van Kerveld, M. Overmars, and O. Schwarzkopf, Computational Geometry, Springer, 1998.
[2] K. Bhaskar, B. W. Stephen, and B. Ramon, “Phase Transition Phenomena in Wireless Ad-Hoc Networks,” in

Proceedings of IEEE GLOBECOM, Volume 5, pp. 2921-2925, San Antonio, Texas, November 2001.
[3] R. R. Brooks and A. M. Sayeed, “Distributed Target Classification and Tracking in Sensor Networks,” in

Proceedings of the IEEE, Volume 91, Number 8, pp. 1163-1171, August 2003.
[4] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with Gurranteed Delivery in Ad Hoc Wireless

Networks,” in Wireless Networks, Vol. 7, No. 6, pp. 609-616, 2001.
[5] Y.-S. Chen and S.-Y. Ann, “VE-Mobicast: A Variant-Egg-Based Mobicast Routing Protocol in Wireless

Sensor Networks,” in Proceedings of the 40th IEEE International Conference on Communications (IEEE ICC
2005), Vol. 5, pp. 3020-3024, Seoul, Korea, May 2005.

[6] Y.-S. Chen and Y.-J. Liao, “HVE-mobicast: a hierarchical-variant-egg-based mobicast routing protocol for
wireless sensornets,” in Proceedings of the IEEE Wireless Communications and Networking Conference
(WCNC2006), Vol. 2, pp. 697-702, Las Vegas, NV, USA, April 2006.

[7] W.-P. Chen, J. C. Hou, and L. Sha, “Dynamic Clustering for Acoustic Target Tracking in Wireless Sensor
Networks,” in Proceeding of 11th IEEE International Conference on Network Protocols (ICNP'03), pp.
284-294, Atlanta, Georgia, USA, November 2003.

[8] C.-Y. Chong, F. Zhao, S. Mori, and S. Kumar, “Distributed Tracking in Wireless Ad Hoc Sensor Networks,” in
Proceedings of the Sixth International Conference on Information Fusion (FUSION 2003), pp. 431-438,
Cairns, Australia, July 2003.

[9] CMU Monarch Group. CMU Monarch extensions to ns.

 20

[10] M. Ding, D. Chen, A. Thaeler, and X. Cheng, “Fault-Tolerant Target Detection in Sensor Networks,” in
Proceeding of the IEEE Wireless Communications and Networking Conference (WCNC 2005), Vol. 4, pp.
2362-2368, New Orleans, LA, USA, March 2005.

[11] I. Downard, “Simulating sensor networks in ns-2,” Naval Research Laboratory, NRL Formal Report
5522-04-10, 2004.

[12] L. J. Guibas, “Sensing, Tracking, and Reasoning with Relations,” IEEE Signal Processing Magazine, Volume
19, Number 2, pp. 73-85, March 2002.

[13] S. Goel and T. Imielinski, “Prediction-based Monitoring in Sensor Networks: Taking Lessons from MPEG,” in
ACM SIGCOMM Computer Communication Review, Volume 31, Number 5, pp. 82-98, October 2001.

[14] Q. Huang, S. Bhattacharya, C. Lu and G. Roman, “FAR: Face-aware routing for mobicast in large-scale sensor
networks,” in ACM Transactions on Sensor Networks, Vol. 1, No. 2, pp. 240-271, November 2005.

[15] Q. Huang, C. Lu, and G.-C. Roman, “Mobicast: Just-in-time multicast for sensor networks under
spatiotemporal constraints,” in Proceeding of the 2nd International Workshop on Information Processing in
Sensor Networks, pp. 442-457, Palo Alto, CA, USA, April 2003.

[16] Q. Huang, C. Lu, and G.-C. Roman, “Reliable Mobicast via Face-Aware Routing,” in Proceedings of the IEEE
Conference on Computer Communications (INFOCOM'04), pp. 2108-2118, Hong Kong, China, March 2004.

[17] IEEE Standard Department. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, IEEE standard 802.11-1997.

[18] D.B. Johnson and D.A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless Networks”, in Mobile
Computing, edited by T. Imielinski and H. Korth, Chapter 5, pp. 153-181, Kluwer Pub-lishing Company, 1996.

[19] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing for wireless networks,” in Proceedings of
the 6th ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom 2000), 2000, pp.
243-254.

[20] E. Kranakis, H. Singh, and J. Urrutia, “Compass Routing on Geometric Networks,” in Proceedings of 11th
Canadian Conference on Computational Geometry, pp. 51-54, Vancouver, Canada, August 1999.

[21] H. T. Kung and D. Vlah, “Efficient Location Tracking Using Sensor Networks,” in Proceedings of the IEEE
Wireless Communications and Networking Conference (WCNC 2003), New Orleans, Louisiana, USA , March
2003.

[22] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric Ad-Hoc Routing: Of Theory and Practice,”
in Proceedings 22nd ACM Symposium on the Principles of Distributed Computing (PODC 2003), pp. 63-72,
Boston, Massachusetts, July 2003.

[23] C.-Y. Lin and Y.-C. Tseng, “Structures for In-Network Moving Object Tracking in Wireless Sensor
Networks,” in Proceedings of the First International Conference on Broadband Networks (BROADNETS'04),
pp. 718-727, San Jose, California, USA, October 2004.

[24] D. Li, K. D. Wong, Y. H. Hu, and A. M. Sayeed, “Detection, Classification, and Tracking of Targets,” IEEE
Signal Processing Magazine, Volume19, Number 2, pp. 17-30, March 2002.

[25] F. Mondinelli and Z. M. Kovacs-Vajna, “Self-Localizing Sensor Network Architectures,” IEEE Transactions
on Instrumentation and Measurement, Volume 53, Number 2, pp. 277-283, April 2004.

[26] Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, and C.-F. Huang, “Location Tracking in a Wireless Sensor Network by
Mobile Agents and Its Data Fusion Strategies,” Computer Journal, Volume 47, Number 4, pp. 448-460, 2004.

[27] VINT Project, “Network Simulator version 2 (NS-2),” Technical report, http://www.isi.edu/nsnam/ns, June,
2001.

[28] J.W. Jaromczyk and G.T. Toussaint, “Relative Neighborhood Graphs and Their Relatives,” in Proceedings of
the IEEE, Vol. 80, No. 9, pp. 1502-1517, 1992.

[29] Y. Xu, J. Winter, and W.-C. Lee, “Prediction-based Strategies for Energy Saving in Object Tracking Sensor
Networks,” in Proceedings of the 2004 IEEE International Conference on Mobile Data Management
(MDM’04), pp. 346-357, Berkeley, California, January 2004.

[30] H. Yang and B. Sikdor, “A Protocol for Tracking Mobile Targets Using Sensor Network, Sensor Network
Protocols and Applications,” in Proceedings of the First IEEE International Workshop on Sensor Network
Protocols and Applications, pp. 71-81, Anchorage, Alaska, May 2003.

[31] Y. Zou and K. Chakrabarty, “Target Localization Based on Energy Considerations in Distributed Sensor
Networks,” in Proceedings of the 1st IEEE International Workshop on Sensor Network Protocols and
Applications, pp. 51-58, Anchorage, Alaska, May 2003.

