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Abstract—Two efficient algorithms are proposed to seek the
sparse representation on high-dimensional Hilbert space. By
proving that all the calculations in Orthogonal Match Pursuit
(OMP) are essentially inner-product combinations, we modify
the OMP algorithm to apply the kernel-trick. The proposed
Kernel OMP (KOMP) is much faster than the existing methods,
and illustrates higher accuracy in some scenarios. Furthermore,
inspired by the success of group-sparsity, we enforce a rigid
group-sparsity constraint on KOMP which leads to a non-
iterative variation. The constrained cousin of KOMP, dubbed as
Single-Step KOMP (S-KOMP), merely takes one step to achieve
the sparse coefficients. A remarkable improvement (up to 2, 750
times) in efficiency is reported for S-KOMP, with only a negligible
loss of accuracy.

I. INTRODUCTION

During the past decade, Sparse Representation (SR) (or

sparse coding) has attracted much attention in computer vi-

sion community. Sparse representations approximate a input

vector by using a sparse linear combination of atoms from

an over-complete dictionary. In different scenarios, SR could

solve various problems such as image annotation[1], image

denoising[2], image restoration[3] and image classification[4],

[5]. Some state-of-the-art performances were reported with SR

approaches. To achieve higher classification accuracy, Gao et
al. [6] equip sparse representations with the kernel trick[7].

In essence, they solve the SR problem in high-dimensional

feature space, where the non-linearly mapped feature points

with the corresponding labels are easier to separate. Gao et al.
believe that the sparse representation will also benefit from the

non-linear mapping. Their experiment proves this conjecture

empirically.

The conventional way to solve the SR problem is interior-

point based, e.g. basis pursuit[8]. However, it suffers from

high computational complexity which makes it prohibitively

expensive for massive dictionaries or real-time applications.

The kernel sparse representation brings even heavier compu-

tational burden due to the extra calculation for kernel matrix.

Instead of the standard approach, the authors of [6] employ

a more recently-proposed method termed Feature-Sign Search

(FSS)[9]. It is faster than interior-point approaches yet the

implementation is complicated and no iteration-number bound

is guaranteed. Both the above approaches achieve sparse repre-

sentation via solving a �1-regularized Least Square (LS) which
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is a relaxed version of the original optimization problem. On

the other hand, the Orthogonal Matching Pursuit (OMP)[10],

[11] solves the original �0 minimization problem in a greedy

fashion. It is extremely fast and could be used for real-time

applications[12].

As proved in this paper, the OMP possesses an advantage

that every calculation inside OMP could be expressed as

a combination of inner products. With minor modifications,

We could directly perform the OMP procedure in the high-
dimensional space. In this paper, we derive the procedure of

Kernel OMP (KOMP). The proposed algorithm outperforms

other sparse representation solvers in terms of efficiency and

signal-recovery accuracy. Additionally, for Sparse Representa-

tion Classification (SRC), an aggressive constraint is enforced

to guarantee the rigid group-sparsity. This extreme constraint

makes the KOMP non-iterative, i.e. one could obtain the
sparse coefficient in one step. We gain a massive improvement

in efficiency thanks to this constraint. The non-iterative KOMP,

termed S-KOMP (“S” for Single-step), also achieves the best

classification rates on low-dimensional face subspace.

The rest of this paper is organized as follows. We briefly

review the related literature background in the next section.

In Section III, we derive the OMP algorithm in the context of

kernel method. We present the group-sparsity constraint and

the S-KOMP algorithm in Section IV. Our methods is verified,

by comparing with the state-of-the-art approaches in Section

V. Conclusion and future work can be found in the last section.

II. PRELIMINARIES

A. Sparse representation and its variations

The goal of sparse representation is to represent input vector

y ∈ R
d approximately as a weighted linear combination of a

small number of “atoms” or “basis”. The atom-set X ∈ R
d×N

is dubbed “dictionary” which could be the collection of orig-

inal data[4] or learned basis[13]. Given the prior knowledge

that the combination coefficient β ∈ R
N is sparse, one could

achieve the sparse coefficient via

min
β

‖β‖0, s.t. Xβ = y, (1)

where ‖ · ‖0 denotes the �0 norm. Since (1) is NP-hard [11],

it is commonly relaxed to

min
β

‖β‖1, s.t. Xβ = y. (2)

which is Linear Programming (LP) and could be solved in the

polynomial time. The relaxed problem (2) is also proved to
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produce identical solution to (1) under some conditions[14].

To deal with noise, one could alternatively solve a Second

Order Cone Programming (SOCP) problem:

min
β

‖β‖1, s.t. ‖Xβ − y‖2 ≤ ε, (3)

where ε is a pre-specified error tolerance. In Sparse Represen-

tation Classification[4] (SRC), the class identity l(y) is then

assigned as

l(y) = argmin
j∈{1,··· ,C}

rj(y), (4)

where rj(y) .= ‖y −Xδj(β)‖2 is the reconstruction residual

associated with class i, C is the number of classes and the

function δj(β) sets all the coefficients of β to 0 except those

corresponding to the jth class.

Kernel Sparse Representation[6] (KSR) casts the original

SR problem onto the high-dimensional feature space. Suppose

there exists a feature mapping function Φ : X → F . It maps

the feature y and basis X as

y →Φ(y)
X→U = [Φ(x1), Φ(x2), · · · , Φ(xN )].

(5)

The problem (3) is then converted to

min
β

‖β‖1, s.t. ‖Uβ − Φ(y)‖2 ≤ ε,

Or equivalently, the non-constraint form

min
β
‖Uβ − Φ(y)‖22 + λ‖β‖1

Gao et al. [6] argue that the sparse representation still main-

tains in the space F and could be solved more effectively.

Their experimental results support this assumption.

It is important to notice that we do not pay attention to

the dictionary learning, which is considered as another part of

sparse representation[13]. In this work, the dictionary is fixed.

B. Orthogonal matching pursuit

Before the compressed sensing theory was proposed, numer-

ous approaches had been applied for sparse approximation[15],

[10], [16]. Orthogonal Matching Pursuit (OMP) is one of the

approaches. Tropp and Gilbert[11] proved OMP’s recoverabil-

ity and showed its remarkable efficiency. In specific, the OMP

solves the following problem in a greedy fashion.

min
β

‖β‖0, s.t. ‖Xβ − y‖2 ≤ ε, (6)

Given a dictionary X ∈ R
d×N , the computational complexity

of linear programming is in O(d2N
3
2 ), while OMP is in

O(dN)[11]. The paradigm of OMP is shown in Algorithm 13.

Inspired by the simplicity and efficiency of OMP, in the

following section, we try to extend it to the high-dimensional

feature space defined by kernel functions.

Algorithm 1: Orthogonal Matching Pursuit

Input:
• A normalized observation y ∈ R

d.

• A dictionary X = [x1, · · · ,xN ] ∈ R
d×N .

• A recovery residual 0 < ε � 1.

• A sparsity upper bound 0 < η < N .

begin1

Initialize the residual r0 = y, index set Λ0 = ∅ and2

selected basis set Ω0 = ∅;

for t ← 1 to η do3

λt = argmax
i=1,...,N

〈rt−1,xi〉;
4

Λt = [Λt−1 λt] ;5

Ωt = [Ωt−1 xλt ];6

Solve the least-squares problem:7

βt = argmin
β

‖Ωtβ − y‖2;
8

Calculate the new residual:9

rt = y − Ωtβt ;10

if ‖rt‖2 < ε then break;11

Retrieve signal β according to βt and Λt;12

end13

Output:
• SR coefficient β ∈ R

N .

III. KERNEL OMP: ORTHOGONAL MATCHING PURSUIT IN

A HIGH-DIMENSIONAL SPACE

Theorem 3.1. All the steps in OMP could be expressed in the
form of inner products between y and xi, i = 1, 2, · · · , N .

Proof:
For the calculation of least square problem (step 7), it is

well known that the solution is

βt = (Ω�t Ωt)
−1

Ω�t y, (7)

where Ωt is a subset of X thus the above equation could be

expressed in the form of inner products between y and xi.

Secondly, for step 11, the �2 norm of residual could be

obtained as

‖rt‖22 =(y − Ωtβt)
�(y − Ωtβt)

=y�y − 2y�Ωtβt + β�t Ω�t Ωtβt,
(8)

where all the terms are in the form of inner product.

Finally, the calculation of residual vector r (step 10) is

unnecessary, considering that we only use it for computing

the correlations (step 4) between r and xi,∀i. Instead, one

can get the correlations by substituting rt = y − Ωtβt into

step 4 which yields the new expression of the correlation

〈rt−1,xi〉 =〈y − Ωt−1βt−1,xi〉
=y�xi − β�t−1Ω

�
t−1xi,

(9)

which is still the combination of inner products.

Inspired by this interesting finding, we could play the kernel

trick easily for OMP. Given the kernel function that determines

the high-dimensional space F
K(x,y) = 〈Φ(x), Φ(y)〉. (10)
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Accordingly, the Gram matrix of set U = Φ(X) in space F
writes

Ψi,j = 〈Φ(xi), Φ(xj)〉, (11)

where Ψ ∈ R
N×N . Let κ ∈ R

N denote the inner product

vector between Φ(y) and Φ(xi) ∀i, i.e.

κi = 〈Φ(xi), Φ(y)〉. (12)

The KOMP iteratively achieve the high-dimensional SR via

performing the following optimization.

min
β

‖β‖0, s.t. ‖Uβ − Φ(y)‖2 ≤ ε, (13)

Based upon the analysis in Theorem 3.1, one could rewrite

the OMP procedure in the fashion of kernels. The paradigm of

Kernel OMP is illustrated in Algorithm 2, where we follow the

manner of Matlab to denote matrix elements and the subsets.

From the paradigm we can see that KOMP only cares about

formulation of the kernel function. Therefore, we can draw the

conclusion that Kernel OMP achieves sparse representation
in any high-dimensional (possibly infinite) Hilbert space F ,
which is implicitly determined by a proper kernel function1.

Compared with the FSS algorithm[9], KOMP enjoys many

advantages, e.g. simple implementation, clear upper bound

for iteration number (N ) and the self-explaining parameter ε
(compared with the trade-off parameter λ in [9]). We employ

the KOMP algorithm to solve the SR problem and achieve

superior performance as reported in the experimental part.

Algorithm 2: Kernel OMP

Input:
• A kernel matrix Ψ ∈ R

N×N defined in (11).

• A kernel vector κ ∈ R
N defined in (12).

• A kernel scalar value θ = Φ(y)�Φ(y).
• A recovery residual 0 < ε � 1.

• A sparsity upper bound 0 < η < N .

begin1

Initialize the index set Λ0 = ∅;2

for t ← 1 to η do3

λt = argmax
i=1,...,N

(κi − β�t Ψ[i,Λt]) ;
4

Λt = [Λt−1 λt] ;5

Obtain the subset of Ψ and κ:6

Ψt = Ψ[Λt, Λt], κt = κ[Λt] ;7

Solve the least-squares problem:8

βt = Ψ−1
t κt ;9

Calculate the new residual:10

‖rt‖2 = θ − κ�t βt ;11

if ‖rt‖2 < ε2 then break;12

Retrieve signal β according to βt and Λt;13

end14

Output:
• Kernel SR coefficient β ∈ R

N .

Please note that our algorithm is unrelated to the algorithm

termed Kernel Matching Pursuit[17] where the dictionary

1The kernel function should satisfy the Mercers’ theorem[7]

is composed of kernel functions, rather than the implicitly

mapped vectors Φ(xi) in our case.

IV. S-KOMP: NON-ITERATIVE KOMP

The conventional method of SR treats the atoms in the

dictionary equally. However, in some applications, we do have

additional prior knowledge for the atoms. For example, in

SRC[4], each gallery face in the dictionary comes with its own

label. To utilize this type of prior knowledge, various methods

were proposed[18], [19], [20]. In particular, one could assume

that the sparse coefficients in the same group tend to be zero

or nonzero simultaneously. The assumption, termed Group-

Sparisty, usually leads to higher recovery accuracy when the

underlying group structure is consistent with the data[20].

Naseem et al. [21] proposed Linear Regression Classifi-

cation (LRC) for face recognition. Given a test face y, a

series of linear regressions are conducted based on the face-

sets belonging to different individuals respectively. In other

words, for each linear representation, all the coefficients of

one group/class is nonzero while the others are all forced to

be zero. From the perspective of sparse representation, LRC

could be considered as a SRC approach with a rigid group-
sparsity constraint.

If we introduce the same constraint to KOMP, the basis

of sparse representation is already selected according to their

labels. Thus, the original iterative paradigm will degenerate to

a single-step LS procedure. That is, given the coefficient x is

not too sparse, a great improvement with respect to efficiency.

We term the constraint KOMP as Single-step KOMP (S-

KOMP), the algorithm is illustrated in Algorithm 3. Analogous

to LRC, the identity of y is assigned to the class with the

smallest residual ri.

Algorithm 3: Single-step KOMP

Input:
• A kernel matrix Ψ ∈ R

N×N defined in (11).

• A kernel vector κ ∈ R
N defined in (12).

• A label vector l ∈ R
N corresponding to

[Φ(xi), Φ(x2), · · · , Φ(xN )].
• A kernel scalar value θ = Φ(y)�Φ(y).
• A recovery residual 0 < ε � 1.

• A sparsity upper bound 0 < η < N .

begin1

The class number C = max(l);2

for i ← 1 to C do3

Obtain the subset of Ψ and κ:4

Ψi = Ψ[l = i, l = i], κi = κ[l = i] ;5

Solve the least-squares problem:6

βi = Ψ−1
i κi ;7

Calculate the norm of residual:8

ri =
√

θ − κ�i βi ;9

end10

Output:
• Kernel SR coefficients [β1, β2, · · · , βC ].
• Kernel SR residual norm [r1, r2, · · · , rC ].
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V. EXPERIMENT

A. General setting

In this section, a series of experiments is designed and

conducted to verify the proposed methods. The signal-recovery

capability of KOMP is tested comparing with two state-of-the-

art SR solvers i.e. the standard SOCP solver (from the CVX

package[22]) and FSS2[9]. For face recognition, KOMP and S-

KOMP are both performed comparing with SRC[4], KSRC[6]

and LRC[21]. All the algorithms are implemented in Matlab

on PC with a quad-core CPU and 8G memory while only one

core is enabled when measuring the running speed.

B. Synthetic signal recovery

The KOMP seeks sparse representation on the high-

dimensional feature space determined by certain kernel func-

tion K(x,y). To justify the recovery power of KOMP, one

needs to generate dictionary U = [Φ(x1),Φ(x2), · · · , Φ(xN )]
and the target signal β. Without explicit Φ, it is impossible

to generate high-dimensional feature Φ(x) from the original

one x. Therefore, we directly generate the mapped atoms

Φ(xi), ∀i and β and assume they all belong to normal

distribution. The observation, or the estimation target is then

calculated as

Φ(y) = Uβ (14)

Given the randomly generated dictionary U and Φ(y), the

standard SOCP solver, KOMP and FSS are performed to

estimate the sparse signal. Since in signal recovery tasks no

label information is provided, we don’t conduct S-KOMP in

this scenario. In our setting, the dictionary U ∈ R
125×500 and

signal β ∈ R
500 are generated so that their entries belonging

to the distribution N (0, 0.5). As to the parameter selection,

for CVX and FSS, we use λ = 1e−5 here, which follows the

setting in [6]; for KOMP, we set ε = 0.001.

Figure 1 illustrates a demo of the signal recovery trail.

Figure 1(a) shows the original signal β with sparsity 20, i.e.

20 of the signal elements are nonzero. Figure 1(b), Figure 1(c)

and Figure 1(d) show the recovery results for CVX, FSS and

KOMP respectively. From the figures, we can see that CVX

and FSS illustrate similar recovery performances which are

both inferior to KOMP.

The trail is repeated for 50 times, with different sparsity

levels of the signal. The averaged running time and the

recovery error (with their standard deviations) are reported in

Table I.

As illustrated in the table, KOMP is always the fastest solver

and the superiority is up to 850% (FSS vs. KOMP, S-10).

As regards the recovery error, KOMP performs best for more

sparse signals while CVX performs well for less sparse ones.

The FSS algorithm, on the other hand, illustrates the lowest

efficiency and recovering capability on the synthetic data.

2We obtain the code from H. Lee’s homepage and keep it unchanged during
our implementation.

0 100 200 300 400 500
−0.4

−0.2

0

0.2

0.4
Original Signal (S = 20, X ∈ R125×500 )

(a)

0 100 200 300 400 500
−0.4

−0.2

0

0.2

0.4
CVX: Error = 2.2e-1

(b)

0 100 200 300 400 500
−0.4

−0.2

0

0.2

0.4
FSS: Error = 2.0e-1

(c)

0 100 200 300 400 500
−0.4

−0.2

0

0.2

0.4
KOMP: Error = 8.9e-16

(d)

Fig. 1. Signal recovery comparison. The horizontal axis represents the signal
dimensions while the vertical axis corresponds to the signal value. The red
stems indicates the original signal in all the plots while the blue crossing
symbols stand for the estimated one.

S-5 S-10 S-20 S-50 S-100

Recovery error
CVX 0.14± 0.09 0.24± 0.10 0.34± 0.09 0.57± 0.09 0.82± 0.08
FSS 0.13± 0.08 0.20± 0.08 0.31± 0.11 0.76± 0.16 1.09± 0.11
KOMP 0.04± 0.06 0.14± 0.10 0.33± 0.17 0.89± 0.17 1.24± 0.12

Running time
CVX 1.21± 0.11 1.16± 0.05 1.14± 0.04 1.11± 0.04 1.12± 0.04
FSS 1.85± 0.79 1.89± 0.04 1.84± 0.30 1.66± 0.11 1.69± 0.11
KOMP 0.02± 0.01 0.02± 0.01 0.03± 0.01 0.03± 0.00 0.03± 0.01

TABLE I
THE COMPARISON OF RECOVERY ERROR AND RECOVERY SPEED (S).

“S-∗” DENOTES THE SPARSITY VALUE IS ∗. NOTE THAT THE RECOVERY

ERROR r IS OBTAINED VIA r = ‖x− x�‖2/‖x‖2 , WHERE x� IS THE

ESTIMATED SIGNAL. EACH BEST PERFORMANCE WITH CERTAIN SPARSITY

IS SHOWN IN BOLD TYPE.

C. Face recognition

A well-known application of SR is face recognition[4], [12],

[6]. We hereby compare KOMP, S-KOMP, SRC, KSRC (with

FSS) and LRC by solving the face recognition problem on

the datasets Yale-B[23]. Yale-B dataset contains 2, 414 well-

aligned face images from 38 individuals under various lighting

conditions, as illustrated in Figure 2. For each subject, we

randomly choose 30 images to compose the gallery and other

30 images for testing.

Fig. 2. The demonstration of Yale-B dataset with extreme illumination
conditions.

To define the high-dimensional space, we adopt the RBF

kernel for all the kernel related algorithm, a.k.a. KSRC,

7575



KOMP and S-KOMP. The RBF kernel writes

K(x, y) = exp(−‖x− y‖2
σ

) (15)

The parameter σ is fixed at 32 for both KOMP and S-KOMP.

We follow the parameter setting in the paper [6] and [4] for

KSRC and SRC respectively. The residual threshold in KOMP

is set as ε = 0.001. The dimensionality of the faces are

reduced to certain values from {25,50, 100,200}, via PCA

projection (Eigenface) or random projection (Randomface).

The recognition accuracies are illustrated in Table II.

D-25� D-50 D-100 D-200

Eigen

LRC 60.5± 3.0 92.3± 0.5 93.6± 0.8 94.1± 0.6
SRC 80.4± 1.6 89.1± 0.9 92.8± 0.8 94.2± 0.7
KSRC 86.6± 0.9 92.2± 0.5 94.4± 0.4 95.6± 0.7
KOMP 85.3± 1.5 91.4± 1.2 93.3± 0.5 94.8± 0.8
S-KOMP 89.9± 1.3 92.7± 0.7 93.4± 0.6 93.8± 0.6

Random

LRC 31.6± 4.4 88.5± 1.0 94.0± 1.1 94.9± 0.7
SRC 80.1± 1.6 90.7± 1.0 94.7± 0.5 96.3± 0.7
KSRC 82.3± 1.2 91.5± 0.7 95.7± 0.8 96.5± 0.6
KOMP 79.2± 1.5 91.7± 1.4 95.6± 0.5 96.2± 0.9
S-KOMP 85.8± 1.2 91.6± 0.5 93.9± 0.6 94.8± 0.5

TABLE II
THE COMPARISON OF ACCURACY ON YALE-B. THE BEST PERFORMANCES

ARE SHOWN IN BOLD. THE � SYMBOL INDICATES THAT THE DIMENSION IS

TOO LOW TO ACHIEVE THE STABLE SOLUTION FOR LRC. PLEASE REFER

TO [21] FOR DETAILS.

From the table we can see that all the best performances

are obtained by kernel-based methods. In particular, KOMP

achieves comparable accuracy compared with KSRC. The

performance gap between these two algorithms is usually less

than 1.5% and KOMP even outperforms KSRC on D-100
Randomfaces. On the other hand, S-KOMP illustrate high-

accuracy on low-dimensional extracted features. It beats all

the other competitors on D-25 faces and D-50 Eigenfaces. In

a nutshell, our methods are comparable to KSRC and even

superior when the dimensionality is low.

To illustrate the excellence of our methods in terms of

efficiency, we hereby exam the running speed of all the

compared algorithms. We reuse the parameters selected above,

except where otherwise stated.

The running speed of kernel-based methods is significantly

influenced by the kernel parameter. To understand this, just

imagine we set σ in (15) very large, then the elements in the

kernel matrix Ψ and kernel vector κ will all be very close

to 1. In this scenario, it is trivial to prove that for greedy

method like KOMP and KSRC (FSS), the iterative procedure

will converge in few steps. Thus an apparently “high” effi-

ciency will be observed. For fair comparison, we compare the

involved algorithms with the same kernel type (RBF) and same

parameters σ ∈ {0.5, 1, 2, 4, 8, 16, 32, 64, 128}.
Figure 3 illustrates the running-time curves (in ms) of the

compared algorithms, with different kernel parameter σ. The

results are yielded using D-200 Eigenfaces. According to the

plots, LRC is ranked first in terms of running speed, with

overwhelming superiority. One can perform LRC on a D-200
Eigenface within 2 ms. The second fastest one is S-KMOP

with the speed of around 20 ms per face. The running-time of

KOMP converges from 1, 000 ms to 110 ms after σ reaches

16. SRC requires around 7, 000 ms for processing a face. As
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LRC SRC KSRC KOMP S−KOMP

Fig. 3. Running time comparison. The results are obtained by performing the
algorithms on D-200 Eigenfaces. Note that the non-kernel algorithms (SRC
and LRC) are not affected by the change of σ. Thus their plots are shown as
horizontal lines.

to KSRC, which employs the FSS algorithm as its solver,

illustrates the lowest efficiency (up to 55, 000 ms per image)

when σ < 32 and the second lowest efficiency otherwise. In

the extreme case (σ = 0.5), our S-KOMP is 2, 750 times faster

than KSRC, thanks to the non-iterative framework of S-KOMP.

Furthermore, as we analyzed before, the elapsed time of the

greedy methods (KSRC and KOMP) consistently decrease as

σ grows.

Another advantage of the proposed methods is that the

efficiency is insensitive to the feature dimensionality (see

Figure 4). It is mainly because the size of kernel matrix Ψ
and kernel vector κ is only related to N , a.k.a. the number

of training samples. In contrast, KSRC does becomes slower

when the dimensionality grows, even though it also performs

on Ψ and κ. The difference may be caused by the different

bounds with respect to iteration-number (N in KOMP vs.

“finite” in KSRC[9]) while the exact reason remains unclear.
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Fig. 4. Running time vs. dimensionality. We set σ = 16 for all the kernel
related methods.

Consequently, we can draw the conclusion that KOMP and
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S-KOMP are significantly faster than KSRC and SRC. In

addition, the proposed algorithms can be conducted very fast

even with very high-dimensional extracted features.

VI. CONCLUSION AND FUTURE WORK

In summary, we have proposed two kernel-based algorithms

termed KOMP and S-KOMP. The novel methods could solve

the SR problem on high-dimensional Hilbert space, at a

very fast speed. The experimental comparisons show that our

approaches are comparable to the state-of-the-art methods in

terms of accuracy. In particular, KOMP illustrates the best

recovery capability on respectively sparse signals. S-KOMP

achieves the highest recognition rate of 89.9% when the

feature dimensionality is extremely low (D-25). More impor-

tantly, remarkable improvement in efficiency is observed for

both KOMP and S-KOMP. In particular, thank to the constraint

of group-sparsity, the S-KOMP algorithm is up to 2, 750 times

faster than KSRC, only with marginal performance drop.

As regards future topics, we are interested in employing

more advanced kernel types which treat different dimensions

of the original feature discriminatively. This way, one can

overcome the occlusion problem in face recognition. Another

interesting direction is tuning the kernel parameter in a more

sophisticated way. Higher performance is likely to be obtained

based upon the modifications.
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