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Three expressions are provided for the first hitting time density of an Ornstein-Uhlenbeck
process to reach a fixed level. The first hinges on an eigenvalue expansion involving zeros
of the parabolic cylinder functions. The second is an integral representation involving some
special functions whereas the third is given in terms of a functional of a 3-dimensional Bessel
bridge. The expressions are used for approximating the density.

1. Introduction

In this paper, we gather different expressions for the density function of the first hitting time
to a fixed level by an Ornstein-Uhlenbeck process, abbreviated as OU-process. This density
is used in different areas of mathematical finance. Indeed, it is connected to some pricing
formulas of interest rate path dependent options when the dynamics of the underlying asset
is assumed to be a mean reverting OU-process. For this, we refer to Leblanc & Scaillet [16]
and the references therein. The knowledge of the sought density is also relevant in credit risk
modelling, see e.g., Jeanblanc & Rutkowski [10]. It is also required in other fields of applied
mathematics. For instance in biology (see Smith [22]), the hitting time is used for modelling
the time between firings of a nerve cell.

Recently, Leblanc & Scaillet [16] and Leblanc, Renault & Scaillet [15] showed that the density
can be expressed as the Laplace transform of a functional of a 3-dimensional Bessel bridge. How-
ever, the authors used therein an erroneous spatial homogeneity property for the 3-dimensional
Bessel bridge, a mistake that has been noticed by several authors, including Göing-Jaeschke &
Yor [6]. The feature of this representation is of probabilistic nature and the details are given
in Section 5. We provide two other explicit expressions obtained by different techniques which
feature is of analytic nature. The first expression is a series expansion involving the eigen-
values of a Sturm-Liouville boundary value problem associated with the Laplace transform of
the first hitting time, (see Keilson & Ross [11]). An analytic continuation argument is used
to compute the Fourier transform of the first hitting time that gives an integral representation
of the density. As discussed above – in specific contexts in mathematical finance – there is a
need to perform numerical computations of the density. The three representations suggest new
methods to approximate the density. Finally, it is worth to emphasise that the methodologies
described below can be adapted for a large class of one-dimensional diffusions.
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The paper is organised as follows. In the next section the OU-process is reviewed and basic
properties of the first hitting time are presented. In Section 3, 4 and 5 the series, the integral,
and the Bessel bridge representations of the density are derived respectively. Section 6 is
devoted to numerical computations of the density. Finally, for completeness, some properties
of Hermite and parabolic cylinder functions are recalled in Section 7.

2. Preliminaries on Ornstein-Uhlenbeck processes

Let (Bt)t≥0 be a standard Brownian motion. The associated OU-process (Ut)t≥0, with parameter
λ ∈ R, is defined to be the unique solution to the stochastic differential equation

(2.1) dUt = dBt − λUt dt, U0 = x ∈ R.

Denote by P(λ)
x the law of (Ut) when U0 = x ∈ R and hence P

(0)
x = Px is the law of (Bt) started

at x. Thanks to Girsanov’s theorem, the absolute-continuity relationship

(2.2) dP
(λ)
x|Ft

= exp
(
− λ

2

(
B2

t − x2 − t
) − λ2

2

∫ t

0

B2
s ds

)
dPx|Ft

holds for any t > 0. Moreover, the process (Ut)t≥0 is a strong Markov process with infinitesimal
generator, denoted by G, given on Cb(R) by

(2.3) Gf(x) =
1

2

∂2f

∂x2
(x) − λx

∂f

∂x
(x), x ∈ R.

The linear stochastic differential (2.1), when integrated, yields the realization

Ut = e−λt

(
x +

∫ t

0

eλs dBs

)

for t ≥ 0. By the Dambis, Dubins-Schwartz theorem, see Revuz & Yor [19, p.181], there is a

Brownian motion (Wt) such that
∫ t

0
eλs dBs = Wτ(t), for any t ≥ 0, where τ(t) = (2λ)−1(e2λt−1).

Hence, the representation Ut = e−λt
(
x + Wτ(t)

)
holds and this is known as Doob’s transform.

For a fixed real a, introduce the stopping time

σa = inf { t > 0 : Ut = a }.
Its law is absolutely continuous with respect to the Lebesgue measure. We set

P(λ)
x (σa ∈ dt) = p(λ)

x→a(t)dt, t > 0,

and assume that λ > 0 so that (Ut) is positively recurrent and, therefore σa is finite. We focus
here on the situation when (Ut) starts below the hitting barrier and notice that we recover
the other case by replacing a and x with −a and −x in the density (since (−Ut) is also an

OU-process). For the Laplace transform uα
a (x) = E

(λ)
x [e−ασa], α > 0, we recall the following

well-known result, (see Siegert [21] or Breiman [3]).

Proposition 2.1. For x < a, the Laplace transform of σa is given by

(2.4) uα
a (x) =

H−α/λ(−x
√

λ)

H−α/λ(−a
√

λ)
=

eλx2/2D−α/λ(−x
√

2λ)

eλa2/2D−α/λ(−a
√

2λ)
,

where Hν(·) and Dν(·) are the Hermite and parabolic cylinder functions, respectively.
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Proof. Thanks to the general theory of linear diffusion, we refer to Itô & McKean [9], uα
a (·) is

the unique solution of the following Sturm-Liouville boundary value problem

Gu(x) = αu(x) for x < a(2.5)

u(a) = 1 and lim
x→−∞

u(x) = 0.

This is a singular boundary value problem since the interval is not bounded. We refer to
[9, p.130] where it is shown that the solution to the above problem takes the form uα

a (x) =
Ψα(x)/Ψα(a), where Ψα(·) is, up to some multiplicative constant, the unique increasing positive
solution of the equation GΨ = αΨ. By the definition of Hermite functions – see Section 7 – we
easily see that Ψα(x) = H−α/λ(x

√
λ) leading to (2.4) as required. �

Remark 2.2. By the scaling property of (Bt) or Proposition 2.1 we see that E
(λ)
x

[
e−ασa

]
=

E
(1)

x
√

λ

[
e−(α/λ) σa

√
λ

]
. Hence

(2.6) p(λ)
x→a(t) = λp

(1)

x
√

λ→a
√

λ
(λt)

and therefore the study of p
(λ)
x→a(·) may be reduced to the case λ = 1.

Remark 2.3. For the special case a = 0 there is a simple expression for p
(λ)
x→0(·). Indeed, we

shall first recall that, for the Brownian motion recovered by letting λ → 0, we have

(2.7) p(0)
x→a(t) =

|a − x|√
2πt3

exp

(
− (a − x)2

2t

)
.

Now, with σ̂a = inf { t > 0 : Wt + x = a
√

1 + 2λt }, Doob’s transform implies the identity

σ̂a = τ(σa) a.s. as was noticed by Breiman [3]. We deduce that p
(λ)
x→0(t) = τ ′(t) p

(0)
x→0(τ(t)).

Thus,

(2.8) p
(λ)
x→0(t) =

|x|√
2π

(
λ

sinh(λt)

)3/2

exp

(
− λx2e−λt

2 sinh(λt)
+

λt

2

)
,

which is also found in Pitman & Yor [18].

We close this section with a couple of remarks concerning extension of the results to the cases
of transient OU-processes and mean reverting OU-processes.

Remark 2.4. Recall that if λ is negative then the process (Ut) is transient. However, from

(2.2) and the chain rule, we deduce that dP
(λ)
x|Ft

= exp
(
λ(U2

t − x2 − t)
)
dP

(−λ)
x|Ft

for t > 0, as

found in [2]. This combined with the optional stopping theorem yields

p(λ)
x→a(t) = exp

(
λ(a2 − x2 − t)

)
p(−λ)

x→a(t).

Remark 2.5. If we replace (Bt)t≥0 by (Bt + μt)t≥0 in (2.1), for some real μ, then the resulting
process is a mean reverting one for which a realization is given by

U
(μ)
t =

μ

λ
+ e−λt

(
x − μ

λ
+

∫ t

0

eλs dBs

)
.

The corresponding first hitting time density, denoted by p
(λ,μ)
x→a (·), is easily seen to be related to

that with μ = 0 via the formula p
(λ,μ)
x→a (t) = p

(λ)

x−μ
λ
→a−μ

λ
(t).
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3. The series representation

This section is devoted to inverting the Laplace transform of the distribution of σa by means of
the Cauchy Residue Theorem. Let Dν(·) be the parabolic cylinder function with index ν ∈ R,
see Section 7. For b given and fixed, denote by (νj,b)j≥1 the ordered sequence of positive zeros
of ν �→ Dν(b). We are ready to state the following result.

Theorem 3.1. For any x < a, we have the series expansion

(3.1) p(λ)
x→a(t) = −λeλ(x2−a2)/2

∞∑
j=1

Dνj,−a
√

2λ
(−x

√
2λ)

D′
νj,−a

√
2λ

(−a
√

2λ)
exp

( − λνj,−a
√

2λ t
)
,

where D′
νj,b

(b) = ∂Dν(b)
∂ν

|ν=νj,b
. For any t∗ > 0, the series converges uniformly for t > t∗.

Proof. The substitution v(x) = e−x2/4u(x/
√

2λ) transforms (2.5) into the Weber equation
v

′′ − (
α
λ
− 1

2
+ q(x)

)
v = 0 where q(x) = x2/4. A fundamental solution of the latter equation is

given by x �→ D−α/λ(−x). Since x �→ q(x) is real-valued, continuous and q(x) → ∞ as x → ∞,
the Weber operator has a pure point spectrum, we refer to Hille [8, Theorem 10.3.4]. Moreover,
the eigenvalues are simple, positive and bounded from below. See Ricciardi & Sato [20] for more
details about the distribution of the spectrum. As a consequence, the Laplace transform (2.4)
is meromorphic as a function of the parameter α, whose poles are negative simple and are given
by the sequence {αj = −λνj,−a

√
2λ}j=1,.... The residue of α �→ uα

a (x) at α = αj, j ≥ 1 is easily

found to equal Resα=αj
uα

a (x) = −λeλ(x2−a2)/2D−αj/λ(−x
√

2λ)/D′
−αj/λ(−a

√
2λ). To check that

the conditions of [7, Theorem 10.7c] are satisfied, we make use of the asymptotic properties
of parabolic cylinder functions recalled in Section 7. The Heaviside expansion theorem in [7]
gives the expression of the density where the parameters are given by the eigenvalues of the
associated Sturm-Liouville expansion. The uniform convergence of the series on [t∗,∞), for any
t∗ > 0, follows from the asymptotic formulas (7.7) and (7.8). �

The following local limit result is essentially due to the fact that the series of formula (3.1)
is uniformly convergent.

Corollary 3.2. Let the situation be as in Theorem 3.1, then

lim
T→∞

eλν1,−a
√

2λ T P(λ)
x (σa > T ) =

eλ(x2−a2)/2

ν1,−a
√

2λ

Dν1,−a
√

2λ
(−x

√
2λ)

D′
ν1,−a

√
2λ

(−a
√

2λ)
.

Remark 3.3. The above representation appeared without a rigorous justification in many
references. For instance, we found it in Keilson & Ross [11] and Ricciardi & Sato [20] where the
authors study the zeros of the Hermite functions. A similar expression is given by Frishling,
Kordzakhia & Novikov [4] for the density of the first passage time of the Brownian motion to the
square root boundary, connected to the distribution we are focusing on by Doob’s transform.

Remark 3.4. The distribution of σa is infinitely divisible and may be viewed as an infinite
convolution of elementary mixtures of exponential distributions. In [13], Kent establishes a link
between the canonical measure of the first hitting time of a fixed level by a one dimensional
diffusion and the spectral measure of its infinitesimal generator. When the left end point of
the diffusion is not natural, the same author gives the series expansion based on the spectral
decomposition, (see [12]). However, in our case, the left end point is natural therefore such
methodology cannot be applied directly.
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4. The integral representation

In this section we compute the cosine transform of the distribution of σa. Then the density

p
(λ)
x→a(·) is computed out from the cosine transform and its inverse defined on L1(R+) via

p(λ)
x→a(t) =

2

π

∫ ∞

0

cos(αt)E(λ)
x

[
cos(ασa)

]
dα.

Theorem 4.1. Fix x < a and t > 0, we have that

(4.1) p(λ)
x→a(t) =

2λ

π

∫ ∞

0

cos(αλt)
Hr−α(−√

λa)Hr−α(−√
λx) + Hi−α(−√

λx)Hi−α(−√
λa)

Hr2−α(−√
λa) + Hi2−α(−√

λa)
dα,

where Hr−α(·) and Hi−α(·) are specified by formulae (7.4) and (7.5) respectively.

Proof. We shall only treat the case λ = 1 which can be completed by using (2.6). The

Laplace transform ν �→ E
(1)
x [e−νσa ] is analytic on the domain {ν ∈ C | Re(ν) ≥ 0}. Recall

that ν1,−a
√

2 denotes the smallest positive zero of the function ν �→ Dν(−a
√

2) and that the
ratio of parabolic cylinder functions is analytic on {ν ∈ C | Re(ν) > −ν1,−a

√
2}. By analytical

continuation, the Laplace transform is also analytical on {ν ∈ C | Re(ν) > −ν1,−a
√

2} and hence

E
(1)
x [e−νσa] = H−ν(−x)/H−ν(−a) on {ν ∈ C | Re(ν) ≥ 0} due to Proposition 2.1. We have that

E(1)
x

[
cos(ασa)

]
= Re

(
Hiα(−x)

Hiα(−a)

)

=
Hr−α(−a)Hr−α(−x) + Hi−α(−x)Hi−α(−a)

Hr2−α(−a) + Hi2−α(−a)
.

The statement follows from the injectivity of the cosine transform. �

5. The Bessel bridge representation

As mentioned in the introduction computing explicitly p
(λ)
x→a(t) amounts to characterising the

distribution of a quadratic functional of a 3-dimensional Bessel bridge. In order to explain the
connection let us recall that, informally, the 3-dimensional Bessel process (Rs)s≤t conditionally
on R0 = x and Rt = y, denoted by (rs)s≤t, is the so-called 3-dimensional Bessel bridge over the
interval [0, t] between x and y. Formally, (rs) is the unique strong solution of the stochastic
differential equation

drs =

(
y − rs

t − s
+

1

rs

)
ds + dBs, r0 = x, s < t,

which is its decomposition as a semi-martingale in its own filtration. Now, we are ready to
quote the following result from [6] and provide its detailed proof.

Theorem 5.1. For x < a and t > 0 we have that

(5.1) p(λ)
x→a(t) = e−λ(a2−x2−t)/2 p(0)

x→a(t)E0→a−x

[
exp

(
− λ2

2

∫ t

0

(rs − a)2 ds

)]
,

where (rs) is a 3-dimensional Bessel bridge over the interval [0, t] between 0 and a − x and

P0→a−x stands for its law. The density p
(0)
x→a(·) is given in (2.7).
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Proof. Relation (2.2) combined with Doob’s optional stopping theorem yields that p
(λ)
x→a(t) =

exp(−λ(a2 − x2 − t)/2) p
(0)
x→a(t) b(t), where we set

b(t) = Ex

[
exp

(
− λ2

2

∫ t

0

B2
s ds

)∣∣∣∣σ(0)
a = t

]

and σ
(0)
a = inf { t > 0 : Bt = a }. Next, we need to recall Williams’ time reversal formula

for which we set La = sup{s ≥ 0 : Rs = a}. Corollary 4.4, in [19, p.498], gives that the
processes (y − B

σ
(0)
y −u

)
u≤σ

(0)
y

and (Ru)u≤Ly are equivalent. It remains to use successively the

spatial homogeneity, the symmetry of (Bt), Williams’ time reversal identity and the transience
property of (Rt) in order to write

b(t) = Ea−x

[
exp

(
− λ2

2

∫ t

0

(Bs − a)2 ds

)∣∣∣∣σ(0)
0 = t

]

= E0

[
exp

(
− λ2

2

∫ t

0

(Rs − a)2 ds

)∣∣∣∣La−x = t

]

= E0

[
exp

(
− λ2

2

∫ t

0

(Rs − a)2 ds

)∣∣∣∣Rt = a − x

]
.

This completes the proof. �

6. Numerical Illustrations

Two standard techniques for approximating the density of the first hitting time of diffusions
commonly used, are the following: the numerical approach to the solution of the partial differ-
ential equation associated to the density (analytic method) and direct Monte Carlo simulation
(probabilistic method). The three representations of the hitting time density of OU-process
suggest alternative ways to approximate the density. Below, we provide a short description of
the approximation and illustrate them with two examples.

6.1. The first approximation is to use the series expansion (3.1). The infinite series is truncated
after the first N terms, that is,

fS(t) = −λeλ(x2−a2)/2

N∑
j=1

bj exp
( − λajt

)
,

where aj = νj,−a
√

2λ and bj = Dνj,−a
√

2λ
(−x

√
2λ)/D′

νj,−a
√

2λ
(−a

√
2λ). For t small, fS(t) is nega-

tive or decreasing. Let t0 be the point where fS(t0) = 0 or f ′
S(t0) = 0. Hence, the approximation

of p
(λ)
x→a(·) is given by fS(t) for t ≥ t0 and 0 for 0 < t < t0. The parabolic cylinder function

Dν(x) can be estimated by the series expansion given by (7.6) and (7.1). From this, numerical

values of νj,−a
√

2λ, Dνj,−a
√

2λ
(−x

√
2λ) and D′

νj,−a
√

2λ
(−a

√
2λ) can be estimated where the last

term is computed by the differential quotient. A problem is to choose suitable N for a pre-
scribed truncation error. Since we are approximating a density, there are many ways to measure
the quality of the chosen truncation parameter N . We give an average error ē based on large-n
asymptotics that is independent of the argument t and is easy to compute. Integrating the
absolute value of the N ’th term of the series and using the asymptotic formulas (7.7) and (7.8)
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yield ∫ ∞

0

|λeλ(x2−a2)/2bN exp
( − λaN t

)| dt = eλ(x2−a2)/2|bN |/aN ∼ π−1eλ(x2−a2)/2N−1.

The average error is defined to by ē = π−1eλ(x2−a2)/2N−1. When νj,−a
√

2λ, j = 1, . . . , N , are
estimated, it is easy to numerically compute the expectation of a bounded function of the
hitting time (e.g. prices of interest rate options presented in [16]) using the approximation.
Then ē gives a measure how precise the expectation is estimated. In the examples below we
chose N = 100 and in Example 1 ē is equal to 0.005.

6.2. It is not a good method to approximate the integral in (4.1) by the corresponding Riemann
sum. Instead, we make use of the trapezoidal rule. The approximation using the integral
representation is then given by

fI(t) =
eA/2

2t

H−A/(2λt)(−x
√

λ)

H−A/(2λt)(−a
√

λ)
+

eA/2

t

N∑
k=1

(−1)k Re

(
H−A/(2λt)−kπi/(λt)(−x

√
λ)

H−A/(2λt)−kπi/(λt)(−a
√

λ)

)
,

where A > 0. It follows from the computations in Section 4 that the Laplace transform is given

by E
(λ)
x [e−νσa ] = H−ν/λ(−x

√
λ)/H−ν/λ(−a

√
λ). Also, for this approach, the question remains

about a good choice for A and N . The numerical computations of the integral leads to the
discretisation error and the truncation error (both depends on the argument t). A bound for the
discretisation error is Ce−A where C is constant that dominates the density. In the examples
below A = 18.1 so the discretisation error is of order (10−7). There is no simple bound for the
truncation error. One can choose N when the value of the last term is small. We set N = 500
in the examples which is a conservative choice. In practice, one can determine A and N based
on trial and error. We refer to Abate & Whitt [1], for precise statements and more details on
this approximation method.

6.3. For the Bessel bridge approach, it is needed to resort to some simulation techniques to
compute the functional of the 3-dimensional Bessel bridges in the expression (5.1). With the

notation E
[
G

( ∫ t

0
h(rs) ds

)]
where G(x) = e−x is a bounded function and h(x) = λ2(x − a)2/2

is a regular function, the three steps to follow are:

(1) First, we compute the integral by considering the corresponding Riemann sum, that is,

E
[
G

( ∫ t

0
h(rs) ds

)] 	 E
[
G

( ∑n
k=1 h(rkt/n)

)]
.

(2) We approach (rt) with another process (r̄t) by means of the Euler scheme which gives
E

[
G

( ∑n
k=1 h(rkt/n)

)] 	 E
[
G

( ∑n
k=1 h(r̄kt/n)

)]
. The same step of discretisation is cho-

sen for the Euler scheme and the Riemann sum.
(3) Finally, to estimate the expectation we use Monte Carlo method by simulating a large

number M of independent paths of the process (r̄t) and hence E
[
G

( ∑n
k=1 h(r̄kt/n)

)] 	
1
M

∑M
i=1 G

( ∑n
k=1 h(r̄

(i)
kt/n)

)
.

Putting these steps together, the approximation formula for (5.1) is given by

fB(t) = e−λ(a2−x2−t)/2 |a − x|√
2πt3

exp

(
− (a − x)2

2t

)
1

M

M∑
i=1

G

( n∑
k=1

h(r̄
(i)
kt/n)

)
.
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6.4. The two first approaches are analytic methods and very easy to implement using programs
like Maple or Mathematica, where it is possible to use built-in functions. However, these require
the knowledge of the Laplace transform of the first hitting time, which can be computed only
for some specific continuous Markov processes. The Bessel bridge approach is a probabilistic
method. Its main advantage compared to the direct Monte Carlo one is that it overcomes the
problem of detecting the time at which the approximated process crosses the boundary. We refer
to [5] for an explanation of the difficulties encountered with the direct Monte Carlo method.
We also emphasise that this algorithm estimates directly the density whereas the direct Monte
Carlo provides an approximation of the distribution function. This method can readily be used
to treat similar problems for continuous Markov processes which laws are absolutely continuous
with respect to the Wiener measure.

In order to test the performance of the three methodologies, we carried out two numerical
examples. In both examples we have used the following approximation parameters. For the
series we used N = 100 of the series expansion of fS(·). For the integral representation we have
chosen A = 18.1 and took N = 500 terms in the series of fI(·). In the series of fB(·) for the
Bessel bridge method, we have simulated M = 105 paths of the Bessel bridge with n = 1000
time steps on the interval [0, 4]. In both examples the parameter of the OU-process is λ = 1,
which is sufficient by (2.6).
Example 1: We examine the example a = 0, which is the only case where the density is known
in closed form, indeed given by (2.8). The OU-process is starting from x = −1. The numerical

approximations of the density p
(1)
(−1)→0(t) are collected in Table 1. The table shows that the

analytical approaches are accurate to five decimal places whereas the simulation approach is
accurate up to three decimal places. Note that for the series method t0 = 0.044 and hence for
t = 0.04 the approximated value for the density is set to be 0 as described in Subsection 6.1.
In fact, fS(0.04) = −0.0019.

t 0.04 0.08 0.10 0.25 0.50 0.75

Explicit .000310 .057549 .144538 .762172 .760954 .584084
Series 0 .057540 .144538 .762172 .760954 .584084
Integral .000310 .057540 .144538 .762172 .760954 .584084
Bessel bridge .000310 .057538 .144534 .762074 .760946 .584362

t 1.00 1.50 2.00 2.50 3.00 4.00

Explicit .441483 .257945 .154101 .092934 .056248 .020670
Series .441483 .257945 .154101 .092934 .056248 .020670
Integral .441483 .257945 .154122 .092612 .055968 .020670
Bessel bridge .441648 .258012 .154107 .092841 .056203 .020596

Table 1. Different values of the density p
(1)
(−1)→0(t), that is, the parameters are a = 0, x = −1

and λ = 1.

Example 2: In this example the OU-process starts from x = 0. We computed the density

p
(1)
0→a(t) for a equals 0.50, 0.75 and 1.00. In Figure 1, the results of the three densities are

presented. In this example there is no check of the numerical values since there is no closed
form formulas. But from Figure 1, one see that three methods give numerical values that are
very close and can hardly be distinguished.
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Figure 1. Drawings of the density t �→ p
(1)
0→a(t) for a equals 0.50, 0.75 and 1.00 when λ = 1

and x = 0. Solid line: series method, bullet: Bessel bridge method and cross: integral method.

7. Hermite functions and their complex decomposition

The special functions used in previous sections are recalled in this section and the results can
be found in Lebedev [14, Chapter 10]. The Hermite function Hν(z) is defined by the following
series representation

(7.1) Hν(z) =
1

2Γ(−ν)

∞∑
m=0

(−1)m

m!
Γ

(
m − ν

2

)
(2z)m, |z| < ∞,

and satisfy the recurrence relations

∂Hν

∂z
(z) = 2νHν−1(z) and Hν+1(z) = 2zHν(z) − 2νHν−1(z).

Hν(z) is an entire function of both variable z and parameter ν. The couple Hν(±·) form a
fundamental solution to the ordinary Hermite equation

(7.2) Gu + νu = 0,

where G is the infinitesimal operator given in (2.3). The Hermite function (see [14, p.297]), has
the integral representation

(7.3) Hν(z) =
2ν+1

Γ((1 − ν)/2)

∫ ∞

0

e−s2

s−ν(s2 + z2)ν/2 ds,

for Re(ν) < 1 and | arg z| < π/2. We have that Hν(0) = 2νΓ(1/2)/Γ((1 − ν)/2). With the
notation

Hiα(z)

Hiα(0)
= Hrα(z) + iHiα(z),
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thanks to the representation (7.3) we easily get that

Hrα(z) =
2√
π

∫ ∞

0

e−s2

cos

(
α

2
log

(
1 +

(z

s

)2))
ds(7.4)

Hiα(z) =
2√
π

∫ ∞

0

e−s2

sin

(
α

2
log

(
1 +

(z

s

)2))
ds.(7.5)

Replacing ν by iα in (7.2) and equalising the real and imaginary parts yield the system

GHrα − αHiα = 0 and GHiα + αHrα = 0,

with boundary conditions Hrα(0) = 1 and Hiα(0) = 0. Furthermore, the Weber equation,
u′′ +

(
ν + 1

2
− 1

4
z2

)
u = 0, has as a particular solution the parabolic cylinder function

(7.6) Dν(z) = 2−ν/2 e−z2/4 Hν(z/
√

2), z ∈ R.

Finally, as for ν → ∞, we have the asymptotic formula

Dν(z) ∼
√

2 (ν + 1/2)ν/2 e−(ν+1/2)/2 cos
(
z
√

ν + 1/2 − πν/2
)(

1 + O(ν−1/2)
)
, z ∈ R.

We deduce from the formula the following large-n asymptotics

(7.7) νn,−a
√

2λ ∼ 2n − 1 + 4
λa2

π2
− 2

√
λa

π

√
4n − 1 + 4

λa2

π2

and

Dνn,−a
√

2λ
(−x

√
2λ)

D′
νn,−a

√
2λ

(−a
√

2λ)
(7.8)

∼ (−1)n
2
√

2νn,−a
√

2λ + 1

π
√

2νn,−a
√

2λ + 1 + 2a
√

λ
cos

(
x
√

λ(2νn,−a
√

2λ + 1) +
πνn,−a

√
2λ

2

)
,

where νn,b is the n’th positive zero of ν �→ Dν(b) for a fixed b.

Acknowledgement. We thank Marc Yor for his comments on this paper.

References

[1] Abate, J. and Whitt, W. (1992). The Fourier-series method for inverting transforms of probability
distributions. Queueing Systems Theory Appl. 10 (5-87).

[2] Borodin, A.N. and Salminen, P. (2002). Handbook of Brownian motion - facts and formulae. (Second
edition). Birkhäuser.
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