
Synchronous and Multicomponent
Tree-Adjoining Grammars:

Complexity, Algorithms and
Linguistic Applications

A dissertation presented

by

Rebecca Nancy Nesson

to

The Department of Computer Science

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

May 2009

c©2009 - Rebecca Nancy Nesson

All rights reserved.

Thesis advisor Author

Stuart M. Shieber Rebecca Nancy Nesson

Synchronous and Multicomponent Tree-Adjoining Grammars:

Complexity, Algorithms and Linguistic Applications

Abstract

This thesis addresses the design of appropriate formalisms and algorithms to be used

for natural language processing. This entails a delicate balance between the ability

of a formalism to capture the linguistic generalizations required by natural language

processing applications and the ability of a natural language processing application

based on the formalism to process the formalism efficiently enough to be useful. I

focus on the Tree-Adjoining Grammar formalism as a base and on the mechanism of

grammar synchronization for managing relationships between the input and output

of a natural language processing system.

Grammar synchronization is a formal concept by which the derivations of two

distinct grammars occur in tandem so that a single isomorphic derivation produces

distinct derived structures in each of the synchronized grammars. Using synchro-

nization implies a strong assumption—one that I seek to justify in the second part

of the thesis—namely that certain critical relationships in natural language applica-

tions, such as the relationship between the syntax and semantics of a language or

the relationship between the syntax of two natural languages, are close enough to be

expressed with grammars that share a derivational structure.

The extent of the isomorphism between the derived structures of the related lan-

iii

Abstract iv

guages is determined only in part by the synchronization. The base formalism cho-

sen can offer greater or lesser opportunity for divergence in the derived structures.

My choice of a base formalism is motivated directly by research into applications of

synchronous TAG-based grammars to two natural language applications: semantic

interpretation and natural language translations. I first examine a range of TAG

variants that have not previously been studied in this level of detail to determine

their computational properties and to develop algorithms that can be used to process

them. Original results on the complexity of these formalisms are presented as well

as novel algorithms for factorizing grammars to reduce the time required to process

them. In Part II, I develop applications of synchronous Limited Delay Tree-Local

Multicomponent TAG to semantic interpretation and probabilistic synchronous Tree

Insertion Grammar to statistical natural language translation.

Contents

Title Page . i
Abstract . iii
Table of Contents . v
Citations to Previously Published Work viii
Acknowledgments . ix
Dedication . xii

1 Introduction 1
1.1 Tree Adjoining Grammar . 3

1.1.1 Feature-Based TAG . 7
1.2 TAG Parsing . 9
1.3 Multicomponent TAG . 16
1.4 Synchronous TAG . 22
1.5 Part 1: Formalisms, Complexity and Algorithms 27
1.6 Part 2: Linguistic Applications . 28

I Formalisms, Complexity and Algorithms 30

2 Tree-Local Multicomponent Tree-Adjoining Grammar 31
2.0.1 Summary of Results . 32

2.1 Complexity . 34
2.1.1 Universal Recognition of TL-MCTAG is NP-Complete 34
2.1.2 Universal Recognition of TL-MCTAG with Bounded Fan-Out

is NP-Complete . 40
2.1.3 Universal Recognition of TL-MCTAG with bounded rank is

NP-Complete . 46
2.1.4 Universal Recognition of TL-MCTAG with Fixed Input String

is NP-Complete . 48
2.2 TL-MCTAG with Tree Vectors . 51
2.3 Parsing . 52

v

Contents vi

2.3.1 TAG Parsing . 53
2.3.2 CKY-Style Tree-Local MCTAG Parsing 55

2.4 Link Factorization . 60
2.4.1 Preliminaries . 61
2.4.2 Factorization algorithm . 67
2.4.3 Mathematical properties . 72

2.5 Conclusion . 79

3 Extensions to Tree-Local MCTAG 83
3.1 Domains of Locality and Derivation Trees 84
3.2 The Simultaneity Requirement . 87
3.3 Restricted Non-Simultaneous MCTAG 88
3.4 Restricted V-TAG . 89

3.4.1 Limited Delay V-TAG . 92
3.5 Delayed TL-MCTAG . 93
3.6 Complexity . 95
3.7 Conclusion . 97

4 Synchronous Tree-Adjoining Grammar 98
4.1 Synchronous Tree-Adjoining Grammar 101
4.2 k-arization Algorithm . 103

4.2.1 Maximal nodes . 104
4.2.2 Excision of Synchronous Fragments 105
4.2.3 Method . 106

4.3 Complexity . 109
4.4 Proof of Correctness . 110

4.4.1 Definition: validity preserving 112
4.4.2 Lemma: Fragment Excision is Validity Preserving 113
4.4.3 Proof Sketch: Smallest-First Removal of Fragments is Optimal 115

4.5 Conclusion . 117

II Linguistic Applications 118

5 Modeling the Syntax-Semantics Interface using Synchronous TAG 119
5.1 Background . 121
5.2 Predication . 123
5.3 Modification . 126
5.4 Basic Quantification . 130
5.5 Wh Questions . 134
5.6 In Situ Wh Questions and Topicalization 138
5.7 Raising, Embedding and Control Verbs 141

Contents vii

5.7.1 Raising Verbs . 141
5.7.2 Embedding Verbs . 143
5.7.3 Control Verbs . 149

5.8 Prepositional Phrases . 151
5.9 Noun Phrase Complements and Relative Clauses 155

5.9.1 Restricting Movement Out of Islands 159
5.10 Binding Theory . 160

5.10.1 De Bruijn Notation . 163
5.10.2 Using De Bruijn Notation to Model Binding Theory 168

5.11 Conclusion . 192

6 Modeling the Syntax-Semantics Interface: Beyond TL-MCTAG 194
6.1 Introduction . 194

6.1.1 Introducing Dominance and Delay 195
6.2 Nested Quantifiers . 196
6.3 Quantificational Elements Along the VP-Spine 201
6.4 Quantifiers Scoping Out of Islands . 206
6.5 Conclusion . 209

7 STAG for Machine Translation 210
7.1 Introduction . 210
7.2 The Statistically Induced Substrate 214

7.2.1 Synchronous Tree-Insertion Grammars 217
7.2.2 Parsing Synchronous Tree-Insertion Grammars 220
7.2.3 Parsing Probabilistic RSTIG 229
7.2.4 Induction from Sentence-Aligned Text 235
7.2.5 Preliminary Empirical Results 240

7.3 Syntactically-Motivated Trees . 245
7.3.1 Bilingual Dictionaries . 245
7.3.2 Harvesting from a Treebank 246

7.4 Combining the Two Grammars . 249
7.5 Conclusion . 250

8 Conclusion 251

Citations to Previously Published Work

Chapter 2 is based in large part on an article currently in submission. A version

is currently available as a technical report [Nesson et al., 2008b]. Large portions of

Chapter 3 are based on Nesson and Shieber [2009]. Chapter 4 is based on Nesson

et al. [2008a]. Various portions of Chapters 5 and 6 draw on material from several

papers [Nesson and Shieber, 2008, 2007, 2006]. Some portions of Chapter 7 are based

on Nesson et al. [2005].

viii

Acknowledgments

This dissertation is the culmination of six years graduate education in computer

science and thirty years of formal education in total. Needless to say, many people

deserve my gratitude.

First and foremost, I would like to thank my advisor, Stuart Shieber. He was

the professor of my first course in computer science, which I took in my third year

of law school. A few months into that semester I went to his office hours to tell

him that CS50 had convinced me that I wanted to enroll in a Ph.D. in computer

science and to ask his advice. Although he was soberingly skeptical at that first

meeting, he welcomed me in his computational linguistics course the next year and

the following year, in spite of my limited computer science background, he accepted

my application to work with him on a Ph.D. Throughout graduate school he has been

an ideal advisor. He helped me to find and define interesting research questions and

has always engaged both the high level and the details of our work. He also respected

the diversity of my interests, even when they were time-consuming, and encouraged

and supported me through getting married and having two children. I have learned

an enormous amount from him and had a good time doing it. He is the originator of

the big ideas underlying this thesis and was a true collaborator on every piece of this

work.

I would also like to thank all of the professors and teachers and fellow students

who have supported me in graduate school. Professors Barbara Grosz, Harry Lewis,

and Henry Leitner in particular have believed in me, given me their time, advising

and advice, and repeatedly employed me as a teaching fellow in their courses. My

dissertation committee, Barbara Grosz, Michael Collins, and Stuart Shieber encour-

ix

Acknowledgments x

aged me in this work and contributed helpful comments and advice that improved

the final product.

Almost every chapter in this thesis is the result of collaboration with other schol-

ars. I would like to thank Giorgio Satta who worked with me on many of the results

presented in the first part of the dissertation. I admired his work for years before

I got a chance to work with him myself. He is the acute thinker about computa-

tional complexity that I expected and is also kind, funny, and easy to work with even

over great distance. Alexander Rush, an undergraduate (at that time) whose abili-

ties both in research and engineering far exceeded that of the typical undergraduate

(and graduate) student, collaborated with us on the work on translation that appears

in Chapter 7. Although the resulting work does not appear in this dissertation, I

would also like to thank Floris Roelofsen and Barbara Grosz for collaborating with

me on work on centering theory and anaphora resolution. That work was among

the most exciting I did in graduate school and the underlying thinking is responsible

for some of the ideas about implementing binding theory that appear in Chapter 5.

Lastly, I’d like to thank the research groups of Aravind Joshi, Maribel Romero, and

Laura Kallmeyer for an encouraging and motivating dialogue about Tree-Adjoining

Grammar and its application to natural language semantics.

The Berkman Center for Internet & Society has been my unofficial home at Har-

vard since I began at Harvard Law School more than ten years ago. Jonathan Zittrain

showed me the excitement of studying the Internet and technology and has been an

invaluable advisor and friend ever since. From the time we were fellow students in

Jonathan’s class, John Palfrey has been a great friend, co-teacher, and supporter of

Acknowledgments xi

my work and projects. My father, Charles Nesson, has been my biggest advocate

in general and my collaborator on education and technology projects. The whole

Berkman team has been a wonderful partner in my extracurricular projects over the

past six years.

Finally, I’d like to thank my family. In spite of my inability to truly explain to

them what I was working on, they have trusted me that the work was worthwhile and

supported me every step of the way with love, food, babysitting, and everything else.

I would particularly like to thank my parents, Fern and Charlie Nesson, for giving

me a love of learning and a great education. I have loved being a student from the

beginning and it is not without regret that I leave that phase of my life behind.

For my daughters Nico and Charlie

who encouraged me to finish with many small kicks to the belly

xii

Chapter 1

Introduction

Many natural language processing tasks can be characterized as determining the

relationship between two languages. For instance, the natural language translation

task relates the syntax of two languages. Semantic computation relates the strings of

a language or the syntax of a language to its semantics. In this thesis I explore the

formal mechanism of grammar synchronization as a method for capturing a complex

but close relationship between two languages. Grammar synchronization offers a way

to separate the language-specific differences between two related languages from the

interface between them. In a synchronous grammar the derivations of two distinct

grammars occur in tandem so that a single isomorphic derivation produces distinct

derived structures in each of the synchronized grammars. Using synchronization

implies a strong assumption–one that I seek to justify in the second part of the

thesis–namely that certain critical relationships in natural language applications, such

as the relationship between the syntax and semantics of a language or the relationship

between the syntax of two natural languages, are close enough to be expressed with

1

Chapter 1: Introduction 2

grammars that share a derivational structure but are still sufficiently constrained in

complexity that they can be processed reasonably efficiently.

The extent of the isomorphism between the derived structures of the related lan-

guages is determined only in part by the synchronization. The base formalism chosen

can offer greater or lesser opportunity for divergence in the derived structures. I focus

on the Tree-Adjoining Grammar (TAG) formalism as the underlying basis for synchro-

nization for several reasons. First, and by design, its basic operations of adjunction

and substitution naturally model the primary linguistic operations of modification

and argument substitution. Second, it is widely used and studied in applications to

natural language syntax and has been proposed for use in semantics and translation

but has not prior to the last several years been thoroughly examined for applications

in these areas. Third, it falls in the category of mildly context-sensitive grammar

formalisms which, as a starting point, strike a good balance between expressivity and

computational tractability.

The appropriateness of the choice of TAG as a base formalism is borne out both

by the complexity analyses and processing algorithms for TAG variants presented

in Part I and by the successful application of synchronous TAG-based grammars to

two natural language processing tasks—semantic interpretation and natural language

translation—in Part II. In Part I, I carefully examine a range of TAG variants that

have not previously been studied in this level of detail to determine their computa-

tional properties and to develop algorithms that can be used to process them. In

Part II, I develop applications of synchronous Limited Delay Tree-Local Multicom-

ponent TAG to semantic interpretation and probabilistic synchronous Tree Insertion

Chapter 1: Introduction 3

Grammar to statistical natural language translation.

The remainder of this chapter provides a technical introduction to TAG and its

multicomponent variants that motivates their use in computational linguistics and

sets the stage for the work presented in the following chapters. It is structured as

follows. Section 1.1 introduces the Tree-Adjoining Grammar formalism. In Section 1.2

I introduce the inference rule-based method for parser description used throughout

the thesis using a CKY-style TAG parser. In Section 1.3 I introduce multicomponent

TAGs. Synchronization and synchronous TAG are introduced in Section 1.4. In

Section 1.5 I describe the contents and main contributions of the first part of the

thesis. In Section 1.6 I introduce the applications that will be discussed in the second

part of the thesis and discuss the contributions to current research made by that part.

1.1 Tree Adjoining Grammar

Tree adjoining grammar (TAG) was introduced by Joshi [1985] for use in com-

putational linguistics because of its ability to naturally characterize the linguistic

operations of argument substitution and optional modification without sacrificing

computational efficiency. TAGs consist of elementary structures that, in syntactic

applications, resemble fragments of parse trees and generally represent members of

the lexicon of a natural language. These elementary structures are combined using

two operations: substitution, which models argument substitution, and adjunc-

tion, which models optional modification and predication relations. The inclusion

of the adjunction operation makes TAG more expressive than context-free grammar

(CFG) and allows it to naturally model certain linguistic phenomena such as long

Chapter 1: Introduction 4

John sometimeslaughs

NP

V P

Adv V P∗

S

NP↓ V P

V

S

John

NP

sometimes

V P

Adv

laughs

V P

V

substitution adjunction

1 2

Figure 1.1: An example of TAG operations substitution and adjunction used here
to model natural language syntax.

distance dependencies, that are difficult to model elegantly using CFG. The natural

modeling of syntactic relationships and the relatively tractable computational prop-

erties of TAG have made it a popular formalism choice for computational linguistics

working on natural language syntax since its introduction.

A TAG consists of a set of elementary tree structures of arbitrary depth, which

are combined with two operations, substitution and adjunction. Internal nodes in

the elementary trees are labeled with a nonterminal symbol. Frontier nodes may

be labeled with either terminal symbols or nonterminal symbols annotated with one

of the diacritics ↓ or ∗. The ↓ diacritic marks a frontier nonterminal node as a

substitution node, the target of the substitution operation. The substitution

operation occurs when an elementary tree rooted in a nonterminal symbol A replaces

a substitution node with the same nonterminal symbol.

Auxiliary trees are elementary trees in which the root and a frontier node,

called the foot node and distinguished by the diacritic ∗, are labeled with the same

nonterminal A. The path from root to foot is called the spine. The adjunction

operation involves splicing an auxiliary tree in at an internal node in an elementary

Chapter 1: Introduction 5

John

laughs

sometimes

1 2

Figure 1.2: The derivation tree for the example shown in Figure 1.1. Note that
because we use explicitly notated links, the branches of the tree are labeled by the
links at which operations occur rather than by the addresses at which they occur.

tree also labeled with nonterminal A. Trees without a foot node, intended for substi-

tution rather than adjunction into other trees, are called initial trees. Examples of

the substitution and adjunction operations on sample elementary trees are shown in

Figure 1.1.

A TAG derivation can be fully specified by a derivation tree, which records how

the elementary structures are combined using the TAG operations to form the derived

tree. The nodes of the derivation tree are labeled by the names of the elementary

trees and the edges are labeled by the addresses at which the child trees substitute or

adjoin. In contrast to CFG, the derivation and derived trees of a TAG may be distinct.

The derivation tree for the example shown in Figure 1.1 is given in Figure 1.2.

We depart from the traditional definition in notation only by specifying adjunction

sites explicitly with numbered links.1 Each link may be used only once in a derivation.

A numbered link at a single site in a tree specifies that a single adjunction is available

at that site. Only a single link is permitted at a given node. Because we use explicit

links, the edges in the derivation tree are labeled with the number of the link used

rather than the address at which the operation takes place.

1This is done in order to simplify the presentation of the issues raised by multicomponent ad-
junctions, which will be introduced in Section 1.3.

Chapter 1: Introduction 6

Multiple adjunction refers to permitting an unbounded number of adjunctions

to occur at a single adjunction site [Vijay-Shanker, 1987, Shieber and Schabes, 1994].

Although multiple adjunction appears to be an obvious way to handle certain cases

of modification, in the standard definition of TAG, multiple adjunction is disallowed

in order to avoid spurious ambiguity. Instead, where several auxiliary trees might

attach at the same location, the usual TAG method is to adjoin one auxiliary tree

to another to form a chain. However, as demonstrated by examples of adverbial

and adjectival modification and quantifier scope ambiguities, Shieber and Schabes

[1994] convincingly argue that the use of multiple adjunction is warranted when the

adjoining auxiliary tree models optional modification (as opposed to serving as a

predicative modifier). Both their argument and the contrast between the standard

and multiple adjunction methods are demonstrated well by the following examples

from their paper:

(1) a. Brockway walked his Labrador yesterday.

b. Brockway walked his Labrador yesterday towards the yacht club.

(2) a. Brockway resembled his Labrador yesterday.

b. * Brockway resembled his Labrador yesterday towards the yacht club.

Figure 1.3 contrasts the standard TAG chain method of modification with a deriva-

tion that uses multiple adjunction. The direct relationship between the adverbial

phrase towards the yacht club and the verb that could be used to elegantly draw the

distinction between examples (2) and (1) is present only in the derivation that uses

multiple adjunction. In Chapter 5 we build substantially on the suggestion of using

Chapter 1: Introduction 7

yesterday

towards the yacht club

AdvS∗

S

Brockway resembled his labrador

S

AdvS∗

S

S

Brockway resembled his labrador

towards the yacht club

AdvS∗

S

yesterday

AdvS∗

S

Figure 1.3: Example contrasting the standard TAG chaining method of modification
(left) with the multiple adjunction method of modification (right). This example is
drawn from Shieber and Schabes [1994] and illustrates that it may be desirable to
permit multiple adjunction in order to directly capture constraints on modification
between the modifier and the modified.

multiple adjunction to model scope ambiguity in natural language semantics.

1.1.1 Feature-Based TAG

A commonly used extension to TAG is the addition of feature structures on nodes

to manage certain grammatical relationships, such as agreement or case checking. As

long as the set of feature values is finite, they are computationally benign. Features

are implemented in TAG with a top and bottom feature on each node. When an

Chapter 1: Introduction 8

X

X

X∗

[
t: . . .
b: . . .

]
r

[
t: . . .
b: . . .

]
f

[
t: . . .
b: . . .

]
x

X

X

[
tx ∪ tr

br

]

[
tf

bx ∪ bf

]

Figure 1.4: An example of feature unification in feature-based TAG. Each node has a
top and bottom feature structure. When an adjunction occurs, the top (resp. bottom)
feature of the root (resp. foot) of the adjoining tree unifies with the top (resp. bottom)
feature of the node where it adjoins. When all operations are complete, the top and
bottom features of each node unify.

auxiliary tree adjoins to another tree the top feature of its root node unifies with the

top feature of the adjunction site. The bottom feature of its foot node unifies with the

bottom feature of the adjunction site. Once all operations are complete, top-bottom

unification is performed so that the top and bottom features of each node in the

Chapter 1: Introduction 9

derived tree are unified. If any step in this unification process produces a mismatch

between feature values, the unification fails. Feature unification is demonstrated in

Figure 1.4. For readability we generally omit the feature structures in the lexical

entries used in our analyses in Part II of this thesis, it is assumed that features

are present and are used for the standard grammatical tasks. When we use them

explicitly in an analysis, their content is included.

1.2 TAG Parsing

In this thesis we explore the applicability of TAG variants to computation of nat-

ural language semantics in conjunction with syntactic analysis and natural language

translation. The fundamental computational task required to accomplish these tasks

is the assignment of structure to the input sentences: parsing. As briefly noted above,

one of the appealing features of TAG is that it may be parsed reasonably efficiently.

In this section we introduce one notation for specifying parsers (inference-rule-based

parsing) and one algorithm for parsing TAG (CKY) and use it as an opportunity to

explicate the notation and methods used for all parsing algorithms that appear in

this thesis.

The Cocke-Kasami-Younger (CKY) algorithm is a simple bottom-up parsing algo-

rithm. The simplicity of the algorithm makes it a desirable starting point for designing

and explaining new parsing algorithms. It was first introduced for use with context-

free grammars in Chomsky normal form [Kasami, 1965, Younger, 1967]. Shieber et al.

[1995] and Vijay-Shanker [1987] provide CKY-style TAG parsing algorithms.

Shieber et al. [1995] introduce an inference-rule-based notation for specifying

Chapter 1: Introduction 10

Item Form: 〈A, i, j〉

Goal Item: 〈S, 0, n〉 len = n

Axiom: 〈A, i, i+ 1〉 A→ wi+1

Inference Rule: 〈B, i, j〉〈C, j, k〉 A→ B C

〈A, i, k〉

Figure 1.5: The CKY parsing algorithm for Chomsky normal form CFG.

parsers in which a parser may be fully defined by a set of axioms and inference rules

with consequents that serve as the items in a standard chart-parsing framework. Us-

ing their notation, CKY-style CFG parsing can be implemented in a chart-parsing

framework with just one axiom and one inference rule (for grammars in Chomsky

normal form) as shown in Figure 1.5. Items consist of a nonterminal symbol and two

indices that indicate the span of the target sentence that can be parsed with that

nonterminal at the root of the parse tree. The axiom states that an item should be

added for each word in the target sentence that contains the nonterminal of the rule

in the grammar that produces that word and the indices of the location of the word in

the target sentence. The inference rule states that if two items, rooted in nontermi-

nals B and C have adjacent spans and there exists a rule A→ B C, then a new item

is produced with nonterminal A and the combined span of the two antecedent items.

Figure 1.6 demonstrates an example of the application of the parsing algorithm to

the sentence John sometimes reads the paper using the grammar given.

Shieber et al. [1995] and Vijay-Shanker [1987] generalize the CKY algorithm for

application to TAG. We present the algorithm from Shieber et al. [1995] with minor

modification here. As shown in Figure 1.7, items in CKY-style TAG parsing consist

Chapter 1: Introduction 11

S → NP V P NP → John
V P → V NP Adv → sometimes
V P → Adv V P V → reads
NP → Det N Det → the

N → paper

0 John 1 sometimes 2 reads 3 the 4 paper 5

Rule Rule Application Side Condition Sentence Fragment
1. Axiom 〈NP, 0, 1〉 NP → John 0 John 1

2. Axiom 〈Adv, 1, 2〉 Adv → sometimes 1 sometimes 2

3. Axiom 〈V, 2, 3〉 V → reads 2 reads 3

4. Axiom 〈Det, 3, 4〉 Det → the 3 the 4

5. Axiom 〈N, 4, 5〉 N → paper 4 paper 5

6. Inference 〈Det, 3, 4〉〈N, 4, 5〉 NP → Det N 3 the 4 paper 5

〈NP, 3, 5〉
7. Inference 〈V, 2, 3〉〈NP, 3, 5〉 VP → V NP 2 reads 3 the 4 paper 5

〈V P, 2, 5〉
8. Inference 〈Adv, 1, 2〉〈V P, 2, 5〉 VP → Adv V P 1 sometimes 2 reads 3 the 4 paper 5

〈V P, 1, 5〉
9. Inference 〈NP, 0, 1〉〈V P, 1, 5〉 S → NP V P 0 John 1 sometimes 2 reads 3 the 4 paper 5

〈S, 0, 5〉

Figure 1.6: Example derivation using the CKY CFG parser specified in Figure 1.5 to
derive the sentence John sometimes reads the paper using the given grammar.

of a node in an elementary tree and the indices that mark the edges of the span

dominated by that node. Nodes, notated α@a . `, are specified by three pieces of

information: α, the identifier of the elementary tree of which the node is a part, a,

the address of the node in that tree, and `, the numbered link available at that node

or if none is available.

We use Gorn addresses to specify the address of the nodes within the trees.2 Each

item has four indices, indicating the left and right edges of the span covered by the

node as well as any gap in the node that may be the result of a foot node dominated

by the node. Nodes that do not dominate a foot node will have no gap in them. This

2The root of a tree has Gorn address ε. The jth child of the node with address i has address i · j.

Chapter 1: Introduction 12

is indicated by the use of underscores in place of the indices for the gap. To limit the

number of inference rules needed, we define the following function i∪ j for combining

indices:3

i ∪ j =



i j =

j i =

i i = j

undefined otherwise

The side conditions Init(α) and Aux(α) hold if α is an initial tree or an auxiliary

tree, respectively. Label(α@a) returns the label of the node in tree α at address a.

Link(α@a) returns the link available at node α@a or null if no link is available. Foot(α)

returns the address of the foot node of an auxiliary tree. Adj(α@a . `, β) determines

whether tree β may adjoin into tree α at address a using link `. Sub(α@a . `, β)

determines whether tree β may substitute into tree α at address a using link `.

The algorithm traverses the derived tree bottom-up. The Terminal Axiom gener-

ates items for the nodes of the elementary trees labeled with the words in the target

sentence. The Empty Axiom generates items for frontier nodes of elementary trees

that are labeled with the empty string. Because auxiliary trees must be completely

parsed in order to satisfy the requirements of the Adjoin inference rule, the Foot

Axiom generates items for the feet of auxiliary trees at every possible string position.

The Unary and Binary Complete rules move from children to parents within a single

elementary tree, respecting the structure of the tree as well as the spans of the items

3We also make use of this function for combining other atomic values for which we desire the
same behavior.

Chapter 1: Introduction 13

Item Form:
〈α@a . `, i, j, k, l〉

Goal:
〈α@ε . , 0, , , n〉 Init(α)

Axioms: Label(α@ε) = S

Terminal Axiom:
〈α@a . , i, , , i+ 1〉 Label(α@a) = wi+1

Empty Axiom:
〈α@a . , i, , , i〉 Label(α@a) = ε

Foot Axiom:
〈α@a . `, p, p, q, q〉 Aux(α)

Foot(α) = a
Inference Rules: Link(α@a) = `

Complete Unary:
〈α@(a · 1) . , i, j, k, l〉 α@(a · 2) undefined

〈α@a . `, i, j, k, l〉 Link(α@a) = `
Complete Binary:

〈α@(a · 1) . , i, j, k, l〉, 〈α@(a · 2) . , l, j′, k′,m〉 Link(α@a) = `

〈α@a . `, i, j ∪ j′, k ∪ k′,m〉
Adjoin:

〈β@ε . , i, p, q, l〉, 〈α@a . x , p, j, k, q〉 Adj(α@a . x , β)

〈α@a . , i, j, k, l〉
No Adjoin:

〈α@a . x , i, j, k, l〉
〈α@a . , i, j, k, l〉

Substitute:
〈β@ε . , i, , , l〉 Link(α@a) = x

〈α@a . , i, , , l〉 Sub(α@a . x , β)

Figure 1.7: The CKY algorithm for TAG

they combine. By requiring the antecedent nodes to have null links, these two rules

require that any adjunction at the child nodes be complete before the parent node is

added to the chart. The Adjoin rule takes an item with an unused link, a span from

p to q and a gap from j to k and an item that represents the root of an auxiliary tree

and has a gap from p to q and produces an item that is the result of performing the

Chapter 1: Introduction 14

adjunction operation. The consequent item retains the gap from j to k and the link

that was used is no longer available. The No Adjoin rule leaves an item unchanged

except for the removal of active link. The Substitute rule takes a completed tree in

the antecedent and produces an item corresponding to a substitution node at which

that tree can substitute.

This algorithm works in O(n6 |G|2) time where n is the length of the string to be

parsed and |G| is a measure of the size of the grammar [Vijay-Shanker and Joshi,

1985]. The complexity of the algorithm is easy to compute by looking at the rules

of the parser. The n6 factor comes from the number of independent indices into the

string that may appear in any of the inference rules. This corresponds to the number

of distinct productions the parser could theoretically need to perform in order to parse

a given input string. The measure of grammar size comes from the maximum number

of elementary trees that may be represented in the items of any inference rule. The

two factors are multiplied together to account for any given elementary trees and any

spans of the input string.

A complete listing of the productions of the parser is more overwhelming than

instructive, so Figure 1.8 demonstrates a few key productions of the parser when

applied to the example sentence John sometimes reads the paper using the given

grammar. In the chosen examples, the nodes of the elementary trees to which the

productions correspond are noted with double pointed arrows. Each consequent serves

as proof that it is possible to parse up to the given node in a way that spans the

indices indicated in the item and that corresponds to the input sentence. For the

Foot Axiom, the foot is inserted at each position at which it might possibly adjoin

Chapter 1: Introduction 15

0 John 1 sometimes 2 reads 3 the 4 paper 5

NP

John

V P

V P∗Adv

S

NP↓ V P

V

Det N↓

NP

NP↓

N

sometimes

reads

the

paper1

2

3 1

j : s : r : t : p :

N

paper

Det N↓

NP

the

1

Substitute 〈p@ε " , 4, , , 5〉 Link(t@2) = 1

〈t@2 " , 4, , , 5〉 Sub(t@2 " 1 , p)

Complete Binary 〈t@1 ! , 3, , , 4〉〈t@2 ! , 4, , , 5〉 Link(t@ε) = null

〈t@ε ! , 3, , , 5〉
Det N↓

NP

the

V P

V P∗Adv

S

NP↓ V P

V NP↓

sometimes

reads

1

2

3

Adjoin 〈s@ε " , 1, , , 2〉〈r@2 " 3 , 2, , , 5〉 Adj(r@2 " 3 , s)
〈r@2 " , 1, , , 5〉

V P

V P∗Adv

sometimes

Foot Axiom 〈s@2 ! , 2, 2, 5, 5〉 Aux(s)
Link(s@2) = null

Figure 1.8: A sample TAG for the sentence John sometimes reads the paper and a
few example productions using the parser given in Figure 1.7.

in the continuation of the parse. The production shown is the one that is actually

used in the successful parse of the example sentence. It is possible to constrain the

Chapter 1: Introduction 16

number of items introduced by this axiom by using the position of any anchor in the

auxiliary tree, or by structuring it like the substitution rule so that foot nodes can

only be inserted in the chart once there is an adjunction available for the given span.

It is worth noting that although this example does not take advantage of the

increase in expressivity provided by the ability of the adjunction operation to “wrap”

lexical material around other material, we do make use of this additional expressivity

to analyze certain semantic constructions (Chapters 5 and 6). In addition, even

without the additional expressivity, the TAG adjunction operation and elementary

structures of arbitrary depth allow the CFG-equivalent TAG variant, Tree Insertion

Grammar (TIG), to lexicalize CFG grammars without changing the trees produced

[Schabes and Waters, 1995]. This allows direct expression of the relationships between

lexical items that is not possible using CFG as discussed in Chapter 7.

1.3 Multicomponent TAG

As soon as TAG was defined, its creators offered several multicomponent variants

to increase its expressivity [Joshi et al., 1975, Joshi, 1987]. The motivation for these

variants derives from the conception of the relationship a TAG is intended to have

with the language it characterizes. Each elementary tree is intended to encapsulate

a domain of locality that encompasses the significant syntactic and semantic rela-

tionships into which the lexical item represented by the elementary tree may enter.

Although the adjunction operation allows the expansion of the domain of locality of

its lexical items beyond what is possible with CFG, certain constructions remain that

appear to require a larger domain of locality. For instance, Frank [1992] points out

Chapter 1: Introduction 17

that it is linguistically sensible for a functional head and a lexical head to be gen-

erated in the same derivation step, as in the following example sentences, borrowed

from Schuler et al. [2000]:

(3) Does John seem to sleep?

(4) Does John seem likely to sleep?

In these sentences does is the functional head of the verb seem, making it desirable

that the two appear together in a single elementary structure. Because in TAG raising

verbs such as seem are analyzed as auxiliary trees that adjoin at V P , there is no way

to incorporate the functional head into the elementary tree for seem.

In order to permit a larger domain of locality, multicomponent TAG allows the

elementary structures of the grammar to be sets of trees rather than just single

trees. All the trees in a given set must combine with other elementary structures

simultaneously, so that they continue to act like a single entity in some respects

though they may contribute structure and lexical material to the derived tree at

multiple distinct locations. Constraints placed on where an elementary tree set may

adjoin create a hierarchy of multicomponent TAG formalisms. In sentence (3), the

two trees (one containing the functional head does and the other the lexical head

seem) adjoin to the single elementary tree for sleep. However, in sentence (4), seem

must first adjoin to likely. In order for the functional head to have a place to adjoin

into likely, an additional tree must be added to the elementary set for likely and the

two trees from the seem tree set must adjoin to two different trees in the likely tree

set. This is shown in Figure 1.9, which is based on a figure from Schuler et al. [2000].

Chapter 1: Introduction 18

S

S∗

V P

V P∗

NPdoes

seem

John to sleep

V P

S



S

S∗

V P

V P∗

NPdoes

seem

John to sleep

V P

S



S∗

V P

V P∗




likely

Figure 1.9: Derivations of Does John seem to sleep? and Does John seem likely to
sleep. This example is based on similar figures in Schuler et al. [2000].

1

S

X↓

X

a bX↓ 1

X
{ { { {

X

a b

X

S

X X

S

ab

or

set definition

Figure 1.10: An example of the way in which two tree sets may produce several dif-
ferent derived trees when combined under the standard definition of multicomponent
TAG.

The first of these adjunctions is said to be tree-local because all trees from the seem

tree set adjoin to a single tree and the second is said to be set-local because the

trees from the seem tree set adjoin to different trees from a given tree set.

Another motivation for the move to multicomponent TAG that is cited in the

literature is the encapsulation of coindexed noun phrases within a single elementary

trees [Weir, 1988]. This concern is of particular interest for the work on simultaneous

syntactic and semantic computation that follows in Chapters 5 and 6 because it

combines some arguably syntactic constraints on the distribution of coindexed noun

phrases with some clearly semantic information expressed by a coindexation. The

problem is particularly clearly presented by wh-questions in which the wh-word itself

is introduced in one location in the sentence while the silent noun phrase or trace

Chapter 1: Introduction 19

with which it is coindexed appears in a structurally distant location.

Unfortunately, the increase in domain of locality and expressivity gained with

multicomponent TAG formalisms also increases their complexity. Although multi-

component TAGs have demonstrated benefits in natural language analysis and have

been used widely in the literature, various aspects of their computational complexity

have not been deeply explored or well-understood. Part I of this thesis attempts to

answer some of the unanswered questions about their complexity and then to locate

a multicomponent TAG variant that offers both the flexibility and expressivity neces-

sary for linguistic applications and an acceptable level of computational tractability.

In the remainder of this section we offer a technical introduction to multicomponent

TAG in preparation for the chapters that follow.

Multicomponent TAG (MCTAG) generalizes TAG by allowing the elementary

items to be sets of trees rather than single trees [Joshi and Schabes, 1997]. The basic

operations are the same but all trees in a set must adjoin (or substitute) into another

tree set in a single step in the derivation. To allow for multicomponent adjunction,

a numbered link may appear on two or more nodes in a tree, signifying that the

adjoining trees must be members of the same tree set. Any tree in a set may adjoin

at any link location if it meets other adjunction or substitution conditions such as

a matching node label. Thus a single multicomponent link may give rise to many

distinct derived trees even when the link is always used by the same multicomponent

tree set. An example is given in Figure 1.10. This standard definition of multicompo-

nent adjunction we will call the set definition. An alternative and novel definition

of multicomponent TAG in which the elementary structures are treated as vectors

Chapter 1: Introduction 20

S

X↓ 1.1 1.2 a b only

{ }
X↓

X X

a b

X X

S
{ }

vector definition

Figure 1.11: An example contrasting the set definition of MCTAG (shown in Fig-
ure 1.10) with the vector definition.

S∗

NP

S

ε

S

NP↓ V P

NP↓V

likes

1

1

WH

who

S

NP↓ V P

V

likes

NP

ε

S

WH

who

Figure 1.12: An example TL-MCTAG operation demonstrating the use of TL-
MCTAG to model wh-question syntax.

is suggested by the explicit use of numbered links at the available adjunction sites.

Under this definition, called the vector definition, both the locations of a link and

the trees in a vector are indexed and the index of a tree and a link location must

agree in order for an adjunction to occur. An example contrasting the two definitions

is given in Figure 1.11. A derivation tree for a multicomponent TAG is the same as

for TAG except that the nodes are labeled with the names of elementary tree sets.

An MCTAG is tree-local if all members of a tree set are required to adjoin within

a single elementary tree [Weir, 1988]. Using the numbered link notation introduced

above for adjunction sites, a tree-local MCTAG (TL-MCTAG) is one in which all

locations of a link occur within a single elementary tree. An example TL-MCTAG

Chapter 1: Introduction 21

operation is given in Figure 1.12. Weir [1988] noted in passing that TL-MCTAG

does not increase the generative capacity of TAG; a combination of well-chosen se-

lective and obligatory adjunction constraints and additions of duplicates of trees to

the grammar can produce a weakly equivalent TAG. Alternatively, a feature-based

TAG where the features enforce the same constraints may be used. Although the

generative capacity of the formalism is not increased, conversion from TL-MCTAG

to TAG may in some cases require an exponential increase in the size of the grammar

as we prove in Chapter 2.

An MCTAG is set-local if tree sets are required to adjoin within a single elemen-

tary tree set Weir [1988]. Using the numbered link notation, an MCTAG is set-local if

all locations of a link occur within a single tree set. Set-local MCTAG (SL-MCTAG)

has equivalent expressivity to linear context-free rewriting systems and recognition is

provably PSPACE complete, as we will show in Chapter 3.

MCTAG derivation trees are usually written in the same way as TAG derivation

trees, except that in the MCTAG case the nodes of the derivation tree represent

entire tree sets rather than single trees. This notation is sufficient for TL-MCTAG

and SL-MCTAG because of the locality requirements: a tree set can stand in the

derivational child relationship to only one other tree set. However, it is worth noting

that if the set definition of MCTAG is used, a derivation tree written in this way may

not contain sufficient information to disambiguate how a particular tree set makes

use of a link. In addition, when an MCTAG is non-local, trees from a single set may

adjoin to different tree sets, making this notation insufficient. As an alternative, we

introduce the notion of an elaborated derivation tree in which each tree from a

Chapter 1: Introduction 22

tree set appears as a node in a tree. This notion will be helpful in exploring the

complexity difference between TL-MCTAG and SL-MCTAG in Chapter 2 and again

in defining extensions to TL-MCTAG in Chapter 3.

In multicomponent TAG, multiple adjunction leads to increased expressivity. Be-

cause each available adjunction is explicitly notated with a numbered link, our nota-

tion implicitly disallows multiple adjunction but permits a third possibility: bounded

multiple adjunction. Bounded multiple adjunction permits a specific finite number

of adjunctions to occur at a given adjunction site. With bounded multiple adjunc-

tion, a formalism may obtain some of the potential linguistic advantages of allowing

multiple adjunction while limiting the increase in expressivity and complexity that

results from unbounded multiple adjunction [Nesson and Shieber, 2006]. If bounded

multiple adjunction is desired, the parsers presented in this thesis may all be modified

to allow a list of links at a given node in place of a single link. The spurious ambiguity

resulting from the arbitrary choice of which link to use can be avoided by specifying

an order over links at a particular location (or links at a particular set of locations)

that prevents a link later in the order from being used while a link from earlier in the

order remains unused.

1.4 Synchronous TAG

In the linguistic applications addressed in this thesis, pairs of natural language

inputs—either the syntax and semantics of a single natural language sentence or

the syntactic representations of two sentences of different natural languages that are

translations of each other—are related by drawing on the intuition that the structure

Chapter 1: Introduction 23

of these pairs is shared at some level. That is, although the syntactic structure

of two sentences that are translations of each other may be quite divergent, their

shared meaning suggests that they may share a derivational structure from which the

divergent syntactic structures can be derived.

Focus on TAG as a base formalism for linguistic applications leads to an elegant

way to formally characterize this idea. As discussed earlier, in CFG there is no dis-

tinction between the derived structures of a grammar and the derivational structures

it generates. In TAG, however, the derived structures and the derivation trees need

not be isomorphic. This leads to the observation that two derived trees may exhibit

quite divergent structure while sharing a single derivation tree. Shieber and Schabes

[1990] used this idea as the basis for the definition of synchronous TAG (STAG), a

formalism which they among others proposed for use in solving the two problems

addressed in Part II of this thesis [Abeillé et al., 1990].

The elementary structures of an STAG are triples of the form 〈Li, Ri,_i〉, where

Li is an elementary TAG tree drawn from a TAG grammar GL, Ri is an elementary

TAG tree drawn from a TAG grammar GR, and _i is a linking relation between

nodes of Li and Ri [Shieber and Schabes, 1990]. The nodes of STAG derivation trees

are labeled with the identifier of an elementary structure from the grammar. If γ1

is the parent of γ2 in a well-formed STAG derivation tree, the arc between them is

labeled with the member of _1 that specifies the two nodes from the left and right

trees of γ1 at which the left and right trees of γ2 adjoin, respectively.

A few examples drawn from early work on STAG serve to demonstrate both the

motivation for use of STAG and its operation. Following the proposal of Abeillé and

Chapter 1: Introduction 24

S

NP

V P

V

NP↓

Det N

t

〈e, t〉 e↓ 1

kicks

the bucket

die

1




kick-the-bucket:
NP

George

e

george




george:

george

kick-the-bucket
1

〈 George kicks the bucket, dies(george) 〉

derivation tree:

derived syntax/semantics:

Figure 1.13: Example grammar, derivation tree and derived strings for the sentence
George kicks the bucket under the idiomatic reading. The nodes of the semantic
tree correspond to semantic type. The semantics is read off the tree with the left
most terminal node of a branch interpreted as a functor and its siblings to its right
interpreted as arguments.

Schabes [1989] that lexicalized TAG is well-suited to modeling idiomatic syntactic

constructions, Shieber and Schabes [1990] propose using STAG to extend the model-

ing to include the semantics of idioms of as well. As exemplified by Figure 1.13, based

on an example from Shieber and Schabes [1990], elementary structures for idiomatic

readings can easily be incorporated in a lexicon and can also be used to appropri-

ately constrain aspects of the idiomatic construction, such as whether it is frozen or

flexible. Extending the formalism to allow synchronization of MCTAG and multiple

adjunction, Shieber and Schabes [1990] also propose using it to model quantifiers and

quantifier scope ambiguity. We pursue the application of synchronous MCTAG to

quantifier scoping in substantial depth in Chapters 5 and 6 and so defer its introduc-

tion.

Abeillé et al. [1990] offer several motivating examples for the use of STAG for

natural language translation, from which we present two in Figure 1.14. In the first

example, the English verb leave participates in two distinct elementary tree pairs

corresponding to its transitive and intransitive forms. These two forms correspond to

Chapter 1: Introduction 25

S

V P

V

NP↓

leave

1




leave1:
S

V P

V

NP↓ 1

S

NP↓

V P

V

NP↓

leave

1


2

S

NP↓

V P

V

NP↓ 1

2

quitterpartir

leave2:

NP

George




george:

NP




mary :

Mary

leave1

leave2

george
1

NP

Mary

NP

George

〈 George leaves, George part 〉

george mary
1 2

〈 George leaves Mary, George quitte Mary 〉

derivation trees:

V P

V V P

Adv V P

V P∗

is

likely to

S

V P

V V P

Adv S

S∗

NP

il

est

probable que




is-likely-to:

is-likely-to

3

3

george

leave1

1 3

〈 George is likely to leave,
Il est probable que George partira 〉

derivation tree:

derived sentence pairs:

derived sentence pair:

Figure 1.14: Two examples of using STAG to model natural language translation
based on examples from Abeillé et al. [1990]. In the first example two different lexical
entries for the English verb leave in its transitive and intranstive contexts correspond
to two different French verbs. In the second example two constructions with different
syntactic structures may be paired as translations of each other. Note that in this
case we might also choose to further break down these constructions into separate
lexical entries for be/être and likely to/probable que.

distinct verbs, quitter and partir, respectively, in French. This is modeled easily with

STAG. In the second example, the construction is likely to in English translates to the

French il est probable que even though the syntactic structure of the two constructions

Chapter 1: Introduction 26

differs. An STAG elementary tree pair makes it possible for these divergent structures

to be paired and to combine easily with other elementary tree pairs to generate well-

formed translations.

Perhaps due to lack of sufficiently deep understanding of the complexity of the

underlying formalisms and the complexity introduced by synchronization, research

into both of these applications stagnated for some time. In recent years, however,

interest in the topic has revived both in the translation and TAG semantics research

communities. In machine translation (MT) the desire to incorporate greater syntactic

structure into statistical MT (SMT) systems led to the recognition that many current

SMT systems can be characterized as synchronous grammars that operate by parsing

[Melamed, 2003, 2004]. Because synchronization of even relatively computationally

efficient formalisms is NP complete and those underlying formalisms are demonstra-

bly incapable of capturing many correspondences between languages that appear in

translation, work in this area has focused on ways to eliminate those aspects of a

synchronized grammar that lead to a blow up in parsing complexity [Zhang et al.,

2006, Melamed et al., 2004]. Our work in Chapter 4 falls squarely into this line of

research, as does the work in the other chapters of Part I when one recognizes the very

narrow formal distinction between MCTAG variants and STAG. Chapter 7 describes

the design of an SMT system based on a synchronized grammar and reports on the

preliminary progress we have made toward its realization.

Although proposed long ago, work in TAG semantics has only been undertaken

seriously for the last several years. Due in part to the belief that the TAG syntax

derivation trees did not capture the necessary relationships needed for semantic com-

Chapter 1: Introduction 27

putation, the prevailing line of research in this area does not make use of STAG but

rather uses a complex feature-based system in which semantic representations are

maintained as features on the derived syntax tree and post-processed into a semantic

representation of a sentence once parsing is complete [Kallmeyer and Romero, 2004,

Kallmeyer and Scheffler, 2004, Romero et al., 2004, Kallmeyer and Romero, 2007].

The complexity of this method led to our renewed attention to the adequacy of STAG

as a formalism for TAG semantics. Chapter 5 presents the results of trying to address

the basic aspects of the interface between syntax and semantics that any system must

handle. Chapter 6 addresses some of the challenging cases that have been offered in

the literature as justifications for why the TAG derivation tree is insufficient as an in-

terface. Although they make no attempt to be comprehensive in their coverage, these

chapters are intended to serve as evidence of the potential adequacy and elegance of

using STAG to model the interface between natural language syntax and semantics.

1.5 Part 1: Formalisms, Complexity and Algo-

rithms

Part I of this thesis is devoted to the definition and exploration of a variety of TAG

variants, including several varieties of MCTAG and STAG. Chapter 2 presents tree-

local multicomponent TAG. Prior to the original contributions made by the work

in this chapter, the complexity of TL-MCTAG was not well-understood. It was

known to have expressivity that was equivalent to TAG but no algorithms for parsing

it had been published. In this chapter I present proofs of several original results

Chapter 1: Introduction 28

demonstrating that TL-MCTAG, even under certain restrictions of the size of the

tree sets and the number of links in the tree set, is NP-complete to parse. I then

offer the first published algorithm for directly parsing TL-MCTAG and show that

it is more efficient than the alternative parsing method derived from an algorithm

for parsing multiple context-free grammars. In Chapter 3 I provide original parsing

algorithms and, analogously, analyses of complexity, for several restricted variants of

TL-MCTAG as well as some new variants defined therein and used in Part II of the

thesis. This chapter also discusses SL-MCTAG and explains why the methods applied

in the previous chapters are not applicable. Chapter 4 turns to synchronous TAG

and provides an original, optimal, and efficient algorithm for transforming an input

STAG into an equivalent STAG in which the factor that causes the blow up in parse

complexity is minimized. Together, the chapters in Part I of this dissertation give a

much fuller and deeper picture of the range of TAG variants, their complexity, and

how they may be processed. This serves as the foundation for the choice of formalism

to undergird the linguistic applications addressed in Part II.

1.6 Part 2: Linguistic Applications

Part II of this thesis demonstrates the utility of synchronous TAG variants for nat-

ural language applications by exploring two particular applications, semantic compu-

tation and natural language translation. Chapter 5 defines an STAG-based grammar

fragment for English that incorporates both syntax and semantics. It addresses core

issues in representing the interface between syntax and semantics, such as constraints

on locality and movement and implementation of the binding theory. Chapter 6 tack-

Chapter 1: Introduction 29

les cases of semantic interpretation that were previously thought to be beyond the

limitations of what could be captured using the TAG derivation tree as an interface.

The analyses in these chapters are novel extensions of the ideas suggested in early ex-

ploration of the use of STAG for semantics and represent a proof-of-concept about the

adequacy of STAG for natural language semantics that has led to a renewed interest

in its use among researchers in the field [Han, 2006a,b, Frank, 2008]. Chapter 7 gives

an overview of research that is still in progress. It presents the design of a statistical

machine translation system that, at its core, is based on an STAG in which each side

of the grammar is the syntax of a natural language. The novelty of the system is in

the idea that a statistically induced substrate that is, at its core, an STAG grammar

can then be improved by hybridizing it with elementary tree pairs that have more

complex structure and represent linguistically-motivated relationships between the

two synchronized languages that cannot be estimated efficiently from a corpus but

may be extracted from other sources like bilingual dictionaries or treebanks.

Part I

Formalisms, Complexity and

Algorithms

30

Chapter 2

Tree-Local Multicomponent

Tree-Adjoining Grammar

Tree-local multicomponent Tree-Adjoining Grammar (TL-MCTAG) is an appeal-

ing formalism for natural language representation because it arguably allows the

encapsulation of the appropriate domain of locality within its elementary structures

[Kallmeyer and Romero, 2007]. As a result, it has frequently been put to use in a grow-

ing body of research into incorporating semantics into the TAG framework [Kallmeyer

and Joshi, 2003, Han, 2006b, Nesson and Shieber, 2006, 2007]. Although TL-MCTAG

was first introduced by Weir [1988] and shown at that time to be equivalent in expres-

sivity to TAG, the complexity of TL-MCTAG is still not well-understood. Perhaps

because of its equivalence to TAG, questions of processing efficiency have not ade-

quately been addressed. This chapter offers a thorough examination of the problem

of TL-MCTAG recognition, showing that even highly restricted forms of TL-MCTAG

are NP-hard to recognize. However, in spite of the provable difficulty of the recogni-

31

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 32

tion problem, we offer several algorithms that can substantially improve processing

efficiency. First, we present a parsing algorithm that improves on the baseline parsing

method and runs in polynomial time when both the fan-out—the maximum number

of trees in a tree set—and rank—the maximum number of children of a node in a

valid derivation tree—of the input grammar are bounded.1 Second, we offer an op-

timal, efficient algorithm for factorizing a grammar to produce a strongly-equivalent

TL-MCTAG grammar with the rank of the grammar minimized.

2.0.1 Summary of Results

Recent work on the complexity of several TAG variants has demonstrated indi-

rectly that the universal recognition problem for TL-MCTAG is NP-hard [Søgaard

et al., 2007]. This result calls into question the practicality of systems that employ

TL-MCTAG as the formalism for expressing a natural language grammar. In this

chapter we present a more fine-grained analysis of the processing complexity of TL-

MCTAG. We demonstrate that even under restricted definitions where either the

rank or the fan-out of the grammar is bounded, the universal recognition problem is

NP-complete (Section 2.1) .

We also show that the vector definition of TL-MCTAG (a novel variant defined in

Chapter 1) is consistent with the linguistic applications of the formalism presented

in the literature. Universal recognition of the vector definition of TL-MCTAG is NP-

complete when both the rank and fan-out are unbounded. However, when the rank

is bounded, the universal recognition problem is polynomial in both the length of the

1The terms rank and fan-out are defined in Section 2.1.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 33

input string and the grammar size.

We present a novel parsing algorithm for TL-MCTAG that accommodates both the

set and vector definitions of TL-MCTAG (Section 2.3). Although no algorithms for

parsing TL-MCTAG have previously been published, the standard method for parsing

LCFRS-equivalent formalisms can be applied directly to TL-MCTAG to produce a

quite inefficient algorithm in which the polynomial degree of the length of the input

string depends on the input grammar. We offer an alternative parser for TL-MCTAG

in which the polynomial degree of the length of the input string is constant, though

the polynomial degree of the grammar size depends on the input grammar. This

alternative parsing algorithm is more appealing than the baseline because it performs

universal recognition of TL-MCTAG (vector definition) with constant polynomial

degree in both the length of the input string and the grammar size when rank is

bounded.

It may not be generally desirable to impose an arbitrary rank bound on TL-

MCTAGs to be used for linguistic applications. However, it is possible given a TL-

MCTAG to optimally minimize the rank of the grammar. In the penultimate section

(Section 2.4) we offer a novel and efficient algorithm for transforming an arbitrary

TL-MCTAG into a strongly equivalent TL-MCTAG where the rank is minimized.

In Section 2.5, we conclude with a placement of our results in the context of prior

literature.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 34

2.1 Complexity

We present several complexity results for TL-MCTAG. Søgaard et al. [2007] show

indirectly that TL-MCTAG membership is NP-complete. For clarity, we present

a direct proof here. We then present several novel results demonstrating that the

hardness result holds under significant restrictions of the formalism. Fan-out, f ,

measures the number of trees in the largest tree set in the grammar. We show that

even when the fan-out is bounded to a maximum of two, the NP-completeness result

still holds. The rank, r, of a grammar is the largest number of links in any tree in

the grammar. We show that when rank is bounded, the NP-completeness result also

holds.

A notable aspect of all of the proofs given here is that they do not make use of

the additional expressive power provided by the adjunction operation of TAG. Put

simply, the trees in the tree sets used in our constructions meet the constraints of

Tree Insertion Grammar (TIG), a known context-free–equivalent formalism [Schabes

and Waters, 1995]. As a result, we can conclude that the increase in complexity stems

from the multicomponent nature of the formalism rather than from the power added

by an unconstrained adjunction operation.

2.1.1 Universal Recognition of TL-MCTAG is NP-Complete

In this section we prove that universal recognition of TL-MCTAG is NP-complete

when neither the rank nor the fan-out of the grammar is bounded.

Recall the 3SAT decision problem, which is known to be NP-complete. Let V =

{v1, . . . , vp} be a set of variables and C = {c1, . . . , cn} be a set of clauses; each

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 35

clause in C is represented by a set of three literals over the alphabet of all literals

LV = {v1, v1, . . . , vp, vp}. The language 3SAT is defined as the set of all disjunctive

formulas over the members of C that are satisfiable.

Theorem 1

The universal recognition problem for TL-MCTAG with unbounded rank and fan-out

is NP-hard.

Proof

Let 〈V,C〉 be an arbitrary instance of the 3SAT problem.2 We use the derivations

of the grammar to guess the truth assignments for V and use the tree sets to keep

track of the dependencies among different clauses in C. Two tree sets are constructed

for each variable, one corresponding to an assignment of true to the variable and

one corresponding to an assignment of false. The links in the single initial tree

permit only one of these two sets to be used. The tree set for a particular truth

assignment for a particular variable vi makes it possible to introduce, by means of

another adjunction, terminal symbols taken from the set {1, . . . , n} that correspond

to each clause in C that would be satisfied by the given assignment to vi. In this way,

the string w = 1 · · ·n can be generated if and only if all clauses are satisfied by the

truth assignment to some variable they contain.

We define a tree-local MCTAG G containing the following tree sets. The initial

tree set S contains the single tree:

2We follow the proof strategy of Satta and Peserico [2005] in this and the following proof.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 36

S

X
(1)
1 1 X

(2)
1 1 . . . X

(n)
1 1

X
(1)
2 2 X

(2)
2 2 . . . X

(n)
2 2

X
(1)
p

p X
(2)
p

p . . . X
(n)
p

p

.

.

.

.

.

.

.

.

.

.

.

.

ε ε ε

v2

c2

In this tree, the “rows” correspond to the variables and the “columns” to the

clauses.

For every variable vi, 1 ≤ i ≤ p, tree set Ti, used when representing an assignment

of the value true to vi, contains n trees, one for each clause cj, 1 ≤ j ≤ n, defined as

follows:

X
(j)
k

X
(j)
k ∗

Cj

ε

1

X
(j)
k ∗

vk /∈ cj :vk ∈ cj :

For every variable vi, 1 ≤ i ≤ p, tree set Fi — used when representing an assign-

ment of the value false to vi — contains n trees, one for each clause cj, 1 ≤ j ≤ n,

defined as follows:

X
(j)
k

X
(j)
k ∗

Cj

ε

1

X
(j)
k ∗

vk /∈ cj :vk ∈ cj :

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 37

For every clause cj, 1 ≤ j ≤ n, tree sets C+
j and C−j each contain a single tree as

shown below. These trees optionally allow the corresponding clause number terminal

symbol to be recognized by an appropriate variable instance.

Cj

Cj
∗

Cj

j

Cj
∗

C
+

j : C
−

j :

From the definition of G it directly follows that w ∈ L(G) implies the existence of a

truth-assignment that satisfies C. A satisfying truth assignment can be read directly

off of any derivation tree for w. If Ti (resp., Fi) is a child of S in the derivation tree,

then vk is true (resp., false). The converse can be shown by using a satisfying truth

assignment for C to construct a derivation for w ∈ G. 〈G,w〉 can be constructed

in deterministic polynomial time because the number of tree sets in the grammar is

2p+ 2n+ 1, the total number of trees in the grammar is bounded by n(2p+ 2n+ 1),

and the length of w is n. All trees in the grammar have constant size except for the

initial tree, which has size np. �

Theorem 2

The universal recognition problem for TL-MCTAG with unbounded rank and fan-out

is in NP.

Proof

We show that given an arbitrary TL-MCTAG grammar G and any input string w,

the determination of w ∈ G can be performed in non-deterministic polynomial time.

Note that the collection of elementary tree sets of G that can generate the empty

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 38

string, E , can be generated in time polynomial in |G| using the standard graph reach-

ability algorithm used for context-free grammars in time polynomial in |G| [Sippu

and Soisalon-Soininen, 1988].

We begin by showing that given an arbitrary input string w and derivation tree D

for w ∈ G, there must exist a truncated derivation tree for w that has size no larger

than |G| · |w|. We define a truncated derivation tree as a derivation tree in which

the children of elementary tree sets in E are optionally removed.

Consider D. Each node in D represents an elementary structure of G: a tuple of

one or more TAG trees. We call a node n of D a non-splitting node if a single one

of its children in the derivation tree, ni generates the same lexical material from the

input string as n itself.3 We call it a splitting node if more than one of its children

generate a non-empty part of the portion of the input string generated by n itself

or if n itself contributes lexical material. We proceed from the root of D examining

chains of non-splitting nodes. Assume that the root of D is a non-splitting node.

This means that it has a single child node, ni that generates the lexical material for

the entire input string. Its other children all generate the empty string (and therefore

must also be members of E). We truncate the derivation tree at each child of n other

than ni. We now iterate the process on node ni. If during the examination of a chain

of non-splitting nodes we encounter a node identical to one that we have already seen,

we remove the entire cycle from the derivation tree because it is not essential to the

3The child tree tuple ni may generate the same lexical material in several distinct pieces which
are arranged into the string generated by n when the adjunction occurs. Because the adjunction
necessarily connects all of these pieces into a single string in a single predetermined way, it does not
matter for our proof that the lexical material derived by the child may be in any order before the
adjunctions.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 39

derivation. Because all cycles are removed, the longest possible chain of non-splitting

nodes we can find before encountering a splitting node or reaching the bottom of the

derivation tree is |G|.

If a splitting node is encountered, we truncate all child nodes that generate the

empty string and then iterate the process of non-splitting node identification on those

children that generate lexical material. In the worst case, the process encounters w−1

splitting nodes, each of which may be separated by a chain of non-splitting nodes of

maximum length bounded by |G|. This process, therefore, produces a truncated

derivation tree with size bounded by |G| · |w|.

The truncation of the tree at each node that generates the empty string is nec-

essary because the size of the subderivation tree generating the empty string may

not be bounded by a polynomial in the size of the grammar. However, the content

of the part of the derivation tree used to generate the empty string is not necessary

for determining membership of w ∈ G since we know that each truncated node is a

member of E .

To show that TL-MCTAG membership is in NP, we construct a turing machine

that will non-deterministically guess a truncated derivation tree of size no larger than

|G| · |w|. It then checks that the guessed derivation successfully derives w. Because

the correctness of the derivation can be checked in linear time, this is sufficient to

show that TL-MCTAG membership is in NP. �

We know from the equivalence of LCFRS and SL-MCTAG (and the rule-to-

tree-tuple conversion method used to prove equivalency) [Weir, 1988] and the fact

that LCFRS membership is PSPACE-complete that SL-MCTAG membership is also

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 40

PSPACE-complete [Kaji et al., 1992, 1994]. Until the above proof it was not known

whether TL-MCTAG was in NP. Although the difference in generative capacity be-

tween TL-MCTAG and SL-MCTAG is well-known, this proven difference in complex-

ity (assuming NP 6= PSPACE) is novel.

To understand the reason underlying the difference, we note that the bound on

the length of non-splitting chains does not hold for set-local MCTAG. In set-local

MCTAG a tree tuple may be non-splitting while also performing a permutation of

the order of the lexical output generated by its children. Permutation is possible

because set-locality allows the tuple of strings generated by a tree tuple to be held

separate for an arbitrary number of steps in a derivation. This directly follows the

basis of the reasoning of Kaji et al. [1992] in their proof that LCFRS is PSPACE-

complete.

2.1.2 Universal Recognition of TL-MCTAG with Bounded

Fan-Out is NP-Complete

The grammar constructed in the proof of Theorem 1 has fan-out n, the number of

clauses. However, the hardness result proved above holds even if we restrict tree sets

to have at most two elements (TL-MCTAG(2)). We use the postfix (2) to indicate

the restriction on the fan-out. The result provided here is as tight as possible. If tree

sets are restricted to a maximum size of one (TL-MCTAG(1)), the formalism reduces

to TAG and the hardness result does not hold.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 41

Theorem 3

The universal recognition problem for TL-MCTAG(2) with fan-out limited to two

and unbounded rank is NP-complete.

Proof

Let 〈V,C〉 be an arbitrary instance of the 3SAT problem. We define a more complex

string w = w(1)w(2) · · ·w(p)wc where wc is a representation of C and w(i) controls the

truth assignment for the variable vi, 1 ≤ i ≤ p. Then we construct a TL-MCTAG(2)

grammar G such that each w(i) can be derived from G in exactly two ways using the

left members of tree sets of size 2 that correspond to the variables (and a single initial

tree set of size 1). The form of the prefix string enforces the constraint of permitting

only two derivations by requiring a strictly alternating string of terminal symbols

that can only be generated by the grammar when the truth assignment is stable for

a particular variable. The derivation of the prefix string w(1)w(2) · · ·w(p) therefore

corresponds to a guess of a truth assignment for V . The right trees from the tree sets

derive the components of wc that are compatible with the guessed truth assignments

for v1, . . . , vp. Below we explain how 〈G,w〉 is constructed given an instance of 3SAT

〈V,C〉.

For every variable vi, 1 ≤ i ≤ p, let Ai = {cj | vi ∈ cj} and Ai = {cj | vi ∈ cj} be

the sets of clauses in which vi occurs positively and negatively, respectively; let also

mi = |Ai| + |Ai| be the number of occurrences of the variable vi. Let Σ′ = {ai, bi |

1 ≤ i ≤ p} be an alphabet of not already used symbols; let w(i) (again for 1 ≤ i ≤ p)

denote a sequence of mi + 1 alternating symbols ai and bi such that if mi is even

w(i) = (aibi)
mi/2ai and if mi is odd w(i) = (aibi)

(mi+1)/2. We define three functions,

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 42

α, γ, and γ to aid in the construction. The functions γ and γ are used to produce

pieces of the prefix string and will only produce the correct prefix string for a variable

if the truth assignment is consistent within the derivation. The function α is used to

produce strings representing the clauses satisfied by a particular truth assignment to

a variable. For every variable vi, 1 ≤ i ≤ p, the clauses α(i, 1), α(i, 2), . . . , α(i, |Ai|)

are all the clauses in Ai and the clauses α(i, |Ai|+ 1), . . . , α(i,mi) are all the clauses

in Ai. Further, for every 1 ≤ i ≤ p, let γ(i, 1) = aibi and let γ(i, h) = ai if h is even

and γ(i, h) = bi if h is odd, for 2 ≤ h ≤ mi. For every 1 ≤ i ≤ p, let γ(i, h) = ai if h

is odd, and γ(i, h) = bi if h is even for 1 ≤ h ≤ mi − 1 and let γ(i,mi) = aibi if mi is

odd and biai if mi is even. The crucial property of γ and γ is that a string w(i) can be

parsed either as a sequence of γ(i, ·) or γ(i, ·) strings, not intermixed elements. The

grammar must “commit” to parsing the string one way or the other, corresponding

to committing to a value for the variable vi.

We define a TL-MCTAG(2) G to consist of the tree sets described below. We

construct a tree set of length two for each combination of a variable and clause that

the variable can satisfy under some truth assignment, filler tree sets of length two

that only contribute the string indicating the truth assignment of the variable but no

satisfied clause, and a singleton tree set containing only an initial tree rooted in S.

The initial tree has n+ 1 branches with the first branch intended to yield the prefix

string w(1) · · ·w(p) and the (k + 1)-st branch intended to yield ck where 1 ≤ k ≤ n.

Although it is possible to generate strings not of the form of w using this construction,

given a pair 〈G,w〉 where w respects the definition above, we show that w ∈ L(G) if

and only if C is satisfiable.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 43

The initial tree set S contains the single tree pictured in Figure 2.1.4 The name

of each link in the initial tree set is composed of three indices that indicate the role

of the link. The first index, i, corresponds to variable vi. The second is an index into

the series 1 · · ·mi where mi is defined from vi as described above. The third index, j,

corresponds to a clause cj. The use of multiple indices to name the links is for clarity

only. They may be renamed freely.

For every variable vi, 1 ≤ i ≤ p, and index h, 1 ≤ h ≤ mi:

• if h ≤ |Ai|, tree set T
(h)+
i contains the following two trees:

A
(h)
i

A
(h)
i∗ B

(h)
i∗

B
(h)
i

α(i, h)γ(i, h)

• if h > |Ai|, tree set F
(h)+
i contains the the following two trees:

A
(h)
i

A
(h)
i∗γ(i, h) B

(h)
i∗

B
(h)
i

α(i, h)

• for all h, tree set T
(h)−
i contains the following two trees:

A
(h)
i

A
(h)
i∗γ(i, h)

B
(h)
i∗

• for all h, tree set F
(h)−
i contains the following two trees:

A
(h)
i

A
(h)
i∗γ(i, h)

B
(h)
i∗

4Although we permit the presence of multiple links at a single node in the S tree, as noted earlier
we follow the usual TAG convention of disallowing multiple adjunction. If one of the links at a node
is used, the other links at that node are assumed to be unavailable in the derivation.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 44

S

A
(1)
1

A
(m1)
1

A
(1)
2

A
(m2)
2

A(mp)
p B(mp)

p

B
(m2)
2

B
(1)
2

B
(1)
1

B
(m1)
1

B(mp)
p

B
(m2)
2

B
(1)
2

B
(1)
1

B
(m1)
1

B(mp)
p

B
(m2)
2

B
(1)
2

B
(1)
1

B
(m1)
1

1, 1, 1

1, 1, 2

1, 1, n

. . .

. . .

2, 1, 1

2, 1, 2

2, 1, n

. . .
...

...
...

1, m1, 1

1, m1, 2

1, m1, n

. . .

2, m2, 1

2, m2, 2

2, m2, n

. . .

p, mp, 1

p, mp, 2

p, mp, n

1, 1, 1 1, 1, 2 1, 1, n

...

...

...

...

...

...

...

...

...

ε ε ε ε

. . .

. . .

. . .

. . .

. . .

. . .

1, m1, 1 1, m1, 2 1, m1, n

2, 1, 1 2, 1, 2 2, 1, n

2, m2, 1 2, m2, 2 2, m2, n

p, mp, 1 p, mp, 2 p, mp, n

{v1

{v2

c1 c2 cnprefix string

variable index
m index

clause index

vn

{ { { {

Figure 2.1: The start tree for TL-MCTAG(2) grammar G. The multiply-indexed link
numbers are for clarity only and are treated as simple link names.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 45

S

S

T
(1)+
x

T
(2)−
x

T
(1)+
y T

(2)+
y T

(3)−
y T

(4)−
y F

(1)−
z

F
(2)−
z

F
(3)−
z

F
(1)−
x

F
(2)+
x

F
(1)−
y F

(2)−
y F

(3)+
y F

(4)−
y T

(1)−
z

T
(2)+
z

T
(3)−
z

x, 2, 1x, 1, 2 y, 1, 1 y, 2, 3 y, 3, 1 y, 4, 1 z, 1, 1 z, 2, 1 z, 3, 1

x, 1, 1 x, 2, 1 y, 1, 1 y, 2, 1 y, 3, 2 y, 4, 1 z, 1, 1 z, 2, 3 z, 3, 1

ax bx ax ay by ay by ay az bz az bz 1 2 3

Figure 2.2: Example derivations of two satisfying assignments for the boolean formula
(x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (y ∨ y ∨ z).

An illustrative example is provided in Figure 2.2. In this example we demonstrate

derivations of two possible satisfying truth assignments for boolean formula (x ∨ y ∨

z) ∧ (x ∨ y ∨ z) ∧ (y ∨ y ∨ z). The truth assignments correspond to whether the T or

F tree sets are used in the derivation of the prefix string for a particular variable. As

can be seen from the example, the structure of the prefix string enforces that either

all T tree sets or all F tree sets are chosen for a particular variable. Each tree set

marked with a + is used to satisfy a single clause. Which clause a tree set satisfies

can be read off the link number at which it adjoins.

|G| and |w| are polynomially related to p and n. First note that the sum of all

the mi is maximally 3n because only 3n variables may contribute to the satisfaction

of C. There are three tree sets corresponding to each variable and clause that it

participates in, for a total of no more than 9pn tree sets. With the single initial

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 46

tree, the total number of tree sets is bounded by 9pn + 1. Since every tree set other

than the initial tree has two trees in it, the total number of trees in the grammar is

bounded by 18pn+ 1. The size of all trees other than the initial tree is bounded by a

constant. The size of the initial tree is bounded by 3pn. The length of w is bounded

by 4n+ p.

From a derivation of w ∈ L(G) we can find a truth assignment satisfying C by

examining the derivation. If the tree sets T
(h)+
i or T

(h)−
i are children of S for some i

and all h where 1 ≤ i ≤ p and 1 ≤ h ≤ mi, then vi is true. If the tree sets F
(h)+
i or

F
(h)−
i are children of S for some i and all h where 1 ≤ i ≤ p and 1 ≤ h ≤ mi then vi is

false. By the construction, if w is of the form described above, for a given variable vi

only two derivations of w(i) will be possible, one in which all tree sets corresponding

to that variable are T tree sets and one in which all are F tree sets. Starting from a

truth assignment that satisfies C, we can prove w ∈ L(G) by induction on |V |.

That this problem is in NP can be seen from the same reasoning as in the proof

of Theorem 2. �

2.1.3 Universal Recognition of TL-MCTAG with bounded

rank is NP-Complete

We now show that universal recognition of TL-MCTAG is NP-complete even when

the rank is bounded.

We briefly recall here the definition of a decision problem called 3-partition. Let

t and si ≤ t be positive integers, 1 ≤ i ≤ 3m, m ≥ 1. The language 3PAR is defined

as the set of all tuples 〈s1, . . . , s3m, t〉, satisfying the following condition: the multiset

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 47

Q = {s1, . . . , s3m} can be partitioned into multisets Qi, 1 ≤ i ≤ m, such that |Qi| = 3

and
∑

s∈Qi s = t.

Language 3PAR is strongly NP-complete [Garey and Johnson, 1979]. This means

that 3PAR is NP-complete even in case the integers si are all represented in unary

notation.

Theorem 4

The universal recognition problem for TL-MCTAG with rank 1 and unbounded fan-

out is NP-complete.

Proof

We provide a reduction from 3PAR. Let 〈s1, . . . , s3m, t〉 be an input instance of the

3-partition problem, with all of the integers si represented in unary notation. Our

target grammar G is defined as follows. We use a set of nonterminal symbols {S,A},

with S the start symbol. We also use a set of terminal symbols {a, $}. G contains

two elementary tree sets. The first set has a single elementary tree γ, corresponding

to a context-free production of the form S → (AAA$)m−1AAA:

S

A 1 A 1 A 1 $. . . A 1 A 1 A 1 $ A 1 A 1 A 1

1 m− 1 m

Tree γ has a unique link impinging on all of the 3m occurrences of nonterminal

A. The second (multi)set of G contains elementary trees γi , 1 ≤ i ≤ 3m. Each γi

corresponds to a context-free production of the form A→ asi :

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 48

A

a aa . . .

A

a aa . . .

A

a aa . . .

.

1 . . . s1 1 . . . si 1 . . . s3m

{ {
We also construct a string w = (at$)m−1at.

If there exists a partition for multiset Q = {s1, . . . , s3m} satisfying the 3PAR

requirement, we can directly construct a derivation for w in G, by sorting the ele-

mentary trees in the second set accordingly, and by inserting these trees into the link

of the elementary tree γ. Conversely, from any derivation of w in G, we can read off

a partition for Q satisfying the requirement for membership in 3PAR for the input

instance of the 3-partition problem.

Finally, it is easy to see that G and w can be constructed in linear deterministic

time with respect to the size of the input instance of the 3-partition problem.

That this problem is in NP can be seen from the same reasoning as in the proof

of Theorem 2. �

2.1.4 Universal Recognition of TL-MCTAG with Fixed Input

String is NP-Complete

We now show the unusual complexity result that universal recognition of TL-

MCTAG is NP-complete even when the input string is fixed. Although it is uncommon

to require this result, we rely on it in Section 2.3 to demonstrate that our parser has

better time complexity than the baseline parsing method for TL-MCTAG that we

generalize from the standard parsing method for LCFRS-equivalent formalisms.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 49

We reduce from a variant of the 3-SAT problem introduced above in which each

variable occurs in at most four clauses with no repeats in a clause. This problem was

shown to be NP-complete by Tovey [1984].

Theorem 5

Universal recognition of TL-MCTAG is NP-complete when the input string is fixed.

Proof

Let 〈V,C〉 be an arbitrary instance of the 3SAT problem where each variable occurs in

no more than four clauses and does not repeat within a single clause. As in the proof

of Theorem 1, we use the derivations of the grammar to guess the truth assignments

for V and use the tree sets to keep track of the dependencies among different clauses

in C. Two tree sets are constructed for each variable, one corresponding to a true

assignment and one corresponding to a false assignment. The prohibition on multiple

adjunction ensures that only one of these two tree sets can be used for each variable.

The tree set for a particular truth assignment for a particular variable vi makes

it possible to satisfy obligatory adjunction constraints for nonterminal symbols that

represent each of the clauses vi satisfies in the 3-SAT formula.5 Additional adjunction

sites for each clause provide overflow space in the event that more than one variable

satisfies a particular clause. We fix the input string w to be the empty string. None of

the trees of the grammar contain any terminal symbols. However, a successful parse

5Obligatory adjunction constraints are standard in the definition of TAG and MCTAG [Weir,
1988]. However, obligatory adjunction may be avoided in this proof by creating a larger grammar
in which a separate tree set is created for each combination of clauses that may be satisfied by a
given variable. Because each variable may appear in no more than four clauses, this increases the
number of tree sets in the grammar by 24. We leave the details of this alternative proof strategy to
the reader.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 50

of the empty string can only be achieved if all of the obligatory adjunction constraints

are satisfied and this occurs if and only if all clauses of the formula are satisfied by

the truth assignment to some variable.

We define a tree-local MCTAG G containing the following tree sets. We notate

obligatory adjunction constraints by underlining the nodes at which they apply. The

initial tree set S contains the single tree:

S

VpV2V1C1 C2 Cn

CnC2C1

C1 C2 Cn

ε ε ε

ε ε ε

· · · · · ·

For every variable vi, 1 ≤ i ≤ p, tree set Ti (resp. Fi), used when representing an

assignment of the value true (resp. false) to vi, contains at most five trees, one for

the variable itself and one for each clause cj, 1 ≤ j ≤ n, such that when vi is true

(resp. false) cj is satisfied. More formally, tree set Ti contains trees Vi∗ and Cj∗ if

and only if vi ∈ cj, for 1 ≤ j ≤ n. Tree set Fi contains trees Vi∗ and Cj∗ if and only

if vi ∈ cj, for 1 ≤ j ≤ n.

Note that the diagram of the initial tree does not show the explicitly notated link

locations that we use throughout the chapter. We omit the link locations to avoid

cluttering the diagram. However, because each variable occurs at most four times in

the formula, the total number of links is bounded by pn12.

From the definition of G it directly follows that ε ∈ L(G) implies the existence of a

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 51

truth-assignment that satisfies C. A satisfying truth assignment can be read directly

off of any derivation tree for w. If Ti (resp., Fi) is a child of S in the derivation tree,

then vk is true (resp., false). The converse can be shown by using a satisfying truth

assignment for C to construct a derivation for w ∈ G.

〈G,w〉 can be constructed in deterministic polynomial time because the number

of tree sets in the grammar is 2p + 1, the total number of trees in the grammar is

bounded by n(2p + 1), and the length of w is 0. All trees in the grammar have

constant size except for the initial tree, which has size 3n+ p.

That this problem is in NP can be seen from the same reasoning as in the proof

of Theorem 2.6 �

2.2 TL-MCTAG with Tree Vectors

The proof of NP-hardness of TL-MCTAG in the bounded rank case given above

(Theorem 4) depends crucially on the treatment of the elementary structures of the

TL-MCTAG as unordered sets. In order to produce the satisfying partitions for the

3-partition problem, any tree from the second tree set must be able to adjoin at any

location of link 1 in the first tree set. This is in accordance with the usual definition

of MCTAG.

The dependence of our bounded-rank proof on the set definition of TL-MCTAG

does not in itself show that vector definition TL-MCTAG is polynomial in the bounded

6The use of obligatory adjunction constraints complicates this reasoning because it is not possible
to truncate a branch of the derivation tree that contains an obligatory adjunction. However, if
we omit the obligatory adjunction constraints and instead use an expanded (but still polynomial
size) grammar, as described in footnote 5, the proof that recognition is NP goes through without
modification.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 52

rank case. We show this constructively in Section 2.3 by presenting a parser for vector

definition TL-MCTAG for which the polynomial degree of both the length of the

input string and the grammar size is constant when the rank of the input grammar

is bounded.

The difference in complexity between the set and vector definitions of TL-MCTAG

makes use of the vector definition an appealing possibility for research using TL-

MCTAG for natural language applications. Although all uses of TL-MCTAG in the

computational linguistics literature assume the set definition of TL-MCTAG, the

linguistic analyses therein do not require the additional flexibility provided by the

set definition. In every case of which we are aware, the link locations used by the

multicomponent tree sets are completely determined by the constraints imposed by

the node labels at the adjunction and substitution sites. As a result, these grammars

may be converted to the vector definition without any change in generative capacity

or any increase in grammar size but with crucial gains in processing efficiency.

2.3 Parsing

Although no algorithms for parsing TL-MCTAG have previously been published,

the standard method for parsing LCFRS-equivalent formalisms can be applied directly

to TL-MCTAG to produce an algorithm for which the polynomial degree of both the

length of the input string and the grammar size depends on the input grammar. We

offer a novel parser for TL-MCTAG for which the polynomial degree of the length of

the input string is constant. For the set definition of TL-MCTAG the polynomial

degree of the grammar size depends on both the rank and fan out of the input

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 53

α : A

a B

2 C A∗

c D↓

1

3

〈β, i + 1, m, k, l〉
〈γ,m, p, q, j〉
〈δ, p + 1, , , q〉
〈α, i, j, k, l〉

wi+1 = a
wp+1 = c
Adj(α@2 " 1 , β)
Adj(α@2.1 " 2 , γ)
Sub(α@2.12 " 3 , δ)

Figure 2.3: The deductive rule generated for tree α using the naive TAG parsing
method.

grammar. For the vector definition of TL-MCTAG the polynomial degree of the

grammar size depends on the rank of the input grammar but contains no index of the

fan out.

We begin with some additional comments on TAG parsing before introducing our

novel parsing algorithm.

2.3.1 TAG Parsing

Following the method of Seki et al. [1991], a naive parser for TAG may be con-

structed by generating a single inference rule for each tree in the grammar. For a

tree containing r links, the rule will have r antecedents with each antecedent item

representing a tree that can adjoin at one of the links. Each adjoining tree will cover

a span of the input string that can be represented by four indices, indicating the left

and right edges of the span and of the subspan that will ultimately be dominated by

its foot node. Because the location of the links within the consequent tree is known,

the indices in the antecedent items are not entirely independent. An example is given

in Figure 2.3. Observation shows that there will be a worst case of 2(r+ 1) indepen-

dent indices in a given rule. Since each adjoining tree is independent, there may be

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 54

r + 1 different trees represented in a single rule. This results in a time complexity of

O(n2(r+1) |G|r+1) where n is the length of the input string, |G| is a representation of

the grammar size, and r is the rank of the input grammar.

Following Graham et al. [1980] in their optimization of the Earley parser [Earley,

1970], the identifiers of specific trees need not be represented in the items of the

parser. Rather the tree identifiers may be replaced by the labels of the root nodes of

those trees, effectively bundling items of trees that share a root node label and cover

the same span. This modification to the algorithm reduces the time complexity of the

parser to O(n2(r+1) |G|). We refer to this method of reducing complexity by removing

unnecessary information about specific elementary structures from the items of the

parser as the GHR optimization. When applied it reduces the time complexity in the

grammar size but does not alter the basic form of the time complexity expression. It

remains a single term consisting of the product of a polynomial in the input string

length and a polynomial in the grammar size. We will return to this observation when

examining the complexity of TL-MCTAG parsing.

Shieber et al. [1995] and Vijay-Shanker [1987] apply the Cocke-Kasami-Younger

(CKY) algorithm first introduced for use with context-free grammars in Chomsky

normal form [Kasami, 1965, Younger, 1967] to the TAG parsing problem to generate

parsers with a time complexity of O(n6 |G|2). The speed up in the parser comes from

traversing elementary trees bottom up, handling only one link at a time. As a result,

no inference rule needs to maintain information about more than one link at a time.

If the GHR optimization is applied, the time complexity is reduced to O(n6 |G|). The

inference rules for this parsing algorithm are provided in Chapter 1.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 55

α : A

a B

2 C A∗

c D↓

1a

1b

〈βa, i + 1, m, k, l〉
〈γ,m, p, q, j〉
〈βb, p + 1, , , q〉
〈α, i, j, k, l〉

wi+1 = a
wp+1 = c
Adj(α@2 " 1a , βa)
Adj(α@2.1 " 2 , γ)
Sub(α@2.12 " 1b , βb)

Figure 2.4: The deductive rule generated for tree αi using the naive TL-MCTAG
parsing method.

2.3.2 CKY-Style Tree-Local MCTAG Parsing

As shown in Figure 2.4, the naive algorithm for parsing TAG may also be applied to

TL-MCTAG. The only difference is that each link may have multiple locations within

a given tree. Let r and f represent the rank and fan-out of the input grammar, respec-

tively. The time complexity of the naive parser will therefore be O(n2(rf+1) |G|r+1).

However, the GHR optimization cannot straightforwardly be applied because main-

tenance of tree locality requires items to carry information about the identities of

the specific trees involved rather than just the labels of the root nodes. Theorem 5

addresses the case in which the input string length is 0. Therefore, in this case, any

factor in the complexity including the input string length cannot contribute to the

overall time complexity. By showing that the problem is NP-complete when the in-

put string length is 0, Theorem 5 demonstrates that there must be some exponential

factor or term in the time complexity expression other than the input string length

factor. Due to the earlier observation that the GHR optimization does not change

the form of the time complexity expression, Theorem 5 therefore shows that the GHR

optimization cannot reduce the exponent of the grammar size term to a constant un-

less P = NP . This leaves open the possibility of the existence of an algorithm that is

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 56

polynomial in the grammar size but has an additional exponential term in the time

complexity expression. However, such an algorithm, if it exists, cannot be generated

by application of the GHR optimization to the baseline parser.

Item Form:
〈αx@a . `, i, j, k, l,Λ〉

Goal Item:
〈α1@ε . , 0, , , n, ∅〉 Init(α1)

Label(α1@ε) = S
|α| = 1

Axioms:

Terminal Axiom
〈αx@a . , i, , , i+ 1, ∅〉 Label(αx@a) = wi+1

Empty Axiom
〈αx@a . , i, , , i, ∅〉 Label(αx@a) = ε

Foot Axiom
〈αx@Ft(αx) . `, p, p, q, q, ∅〉 Aux(αx)

Link(αx@Ft(αx)) = `

Figure 2.5: Modified item form, goal, and axioms for the CKY algorithm for tree-local
MCTAG. Inference rules of the algorithm are given in Figure 2.6.

We can improve on the naive algorithm by generalizing the CKY TAG parsing

algorithm presented above to the TL-MCTAG case. The direct specification of a

CKY-style tree-local MCTAG parser is given in Figures 2.5 and 2.6. For a tree set

or vector α from G, we notate the trees in the set or vector using indices that are

indicated as subscripts on the tree set identifier. A tree set or vector α from G with

length two will therefore contain trees α1 and α2. Under the set definition these

indices serve only as a way of differentiating the members of the tree set. Under the

vector definition, the index must match the index of the link location where the tree

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 57

Inference Rules:

Unary Complete
〈αx@(a · 1) . , i, j, k, l,Λ〉 αx@(a · 2) undefined

〈αx@a . `, i, j, k, l,Λ〉 Link(αx@a) = `
Binary Complete
〈αx@(a · 1) . , i, j, k, l,Λ1〉〈αx@(a · 2) . , l, j′, k′,m,Λ2〉 Link(αx@a) = `

〈αx@a . `, i, j ∪ j′, k ∪ k′,m,Λ〉 Valid(Λ1 ∪ Λ2)
Filter(Λ1 ∪ Λ2,

Adjoin (set definition): αx@a . `) = Λ
〈βy@ε . , i, p, q, l, ∅〉〈αx@a . σ z, p, j, k, q,Λ1〉 Adj(αx@a . σ z, βy)

〈αx@a . , i, j, k, l,Λ〉 Valid(Λ1 ∪ {σ z 7→ βy})
Filter(Λ1 ∪ {σ z 7→ βy},

Adjoin (vector definition): αx@a .) = Λ
〈βy@ε . , i, p, q, l, ∅〉〈αx@a . σ y, p, j, k, q,Λ1〉 Adj(αx@a . σ y, βy)

〈αx@a . , i, j, k, l,Λ〉 Valid(Λ1 ∪ {σ 7→ β})
Filter(Λ1 ∪ {σ 7→ β},

Substitute (set definition): αx@a .) = Λ
〈βy@ε . , i, , , l, ∅〉 Link(αx@a) = σ z

〈αx@a . , i, , , l,Λ〉 Subst(αx@a . σ z, βy)
Filter({σ z 7→ βy},

Substitute (vector definition): αx@a .) = Λ
〈βy@ε . , i, , , l, ∅〉 Link(αx@a) = σ y

〈αx@a . , i, , , l,Λ〉 Subst(αx@a . σ y, βy)
Filter({σ 7→ β},

No Adjoin (set definition): αx@a .) = Λ
〈αx@a . σ y, i, j, k, l,Λ1〉 Valid(Λ1 ∪ {σ y 7→ nay})
〈αx@a . , i, j, k, l,Λ〉 Filter(Λ1 ∪ {σ y 7→ nay},

No Adjoin (vector definition): αx@a .) = Λ
〈αx@a . σ y, i, j, k, l,Λ1〉 Valid(Λ1 ∪ {σ 7→ na})
〈αx@a . , i, j, k, l,Λ〉 Filter(Λ1 ∪ {σ 7→ na},

αx@a .) = Λ

Figure 2.6: Modified inference rules for the CKY algorithm for TL-MCTAG. Al-
ternative Adjoin, Substitute, and No Adjoin rules are given for the set and vector
definitions. The item form, goal item and axioms are given in Figure 2.5.

will adjoin.

In order to directly parse tree-local MCTAG, items must keep track of the trees

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 58

set definition:
Valid(Λ) holds if for all links σ i and σ j in Λ, Λ(σ i) = Γx and Λ(σ j) = Γy and x 6= y
for some tree set Γ .

vector definition:
Valid(Λ) holds if for all links σ1 and σ2 in Λ, σ1 6= σ2 .

Figure 2.7: Definition of the Valid condition, which ensures that all locations of a link
are used by unique trees from the same tree set. Under the set definition there is an
entry for each link location and both the identity of the tree set and the uniqueness
of the tree from that tree set must be checked. Under the vector definition only the
link name and the tree vector identifier are stored because the link locations uniquely
select trees from within tree vectors.

that adjoin at each multicomponent link. We handle this by adding a link history

to each item. Under the set definition, a link history is an associative array of links

notated with indices and tree set identifiers notated with indices to identify a unique

tree within the set. Note that because under the set definition a tree may adjoin at any

location of a link, the indices of the link and tree set need not match. The axioms

introduce empty link histories, indicating that no adjunctions have yet occurred.

When an adjunction takes place, the tree identifier of the adjoining tree is associated

with the link at which it adjoins. In order for an adjunction to take place at a

multicomponent link, the adjoining tree’s tree set must be the same as that of any

tree identifier already stored for that link. This is enforced by the Valid(Λ) condition

(Figure 2.7) defined on link histories. The Filter(Λ, α@a . `) function removes links

that are completely used from the argument link history. An empty link history

indicates that tree locality has been enforced for the subtree specified by the item;

thus no additional information need be maintained or passed on to later stages of the

parse.

For the vector definition, the link histories may be simplified because each location

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 59

X

X X

XX

X a

a

a

1, 1 1, 2

1, 3

2, 1

2, 2

X∗

X

X

b

X∗

X

X

c

X∗

X

X

d

X∗

X

X

e{ { { { { {X∗

X

X

e

α : β : γ :

{ 1 !→ γ, 2 !→ β}

{ 1 !→ {γ1, γ2}, 2 !→ {β1}}
{ 1 !→ {γ1, γ3}, 2 !→ {β1}}
{ 1 !→ {γ2, γ3}, 2 !→ {β1}}
{ 1 !→ {γ1, γ2}, 2 !→ {β2}}
{ 1 !→ {γ1, γ3}, 2 !→ {β2}}
{ 1 !→ {γ2, γ3}, 2 !→ {β2}}

set definition

vector definition

link histories:

link history:

Figure 2.8: A sample TL-MCTAG with examples of the possible link histories under
the set and vector definitions when the parser reaches the top of the circled node.

of a link fully specifies which tree from within a set may adjoin there. As a result,

the link history is an associative array of links (not annotated with indices) and tree

vector identifiers. An example contrasting the link histories for the set and vector

definitions is given in Figure 2.8.

The addition of a link history to each item increases the complexity of the al-

gorithm. The maximum link history length is bounded by the rank of the input

grammar, r. Under the set definition, the number of possible values for each element

of a link history is on the order of the number of tree sets in the grammar multiplied

by the power set of the fan-out: |G| ·2f . Thus, for the set definition, the complexity of

the algorithm is O(n6 |G|r+2 2rf). Under the vector definition, the number of possible

values for each element of a link history is on the order of the number of tree sets

in the grammar. Thus, for the vector definition, the complexity of the algorithm is

O(n6 |G|r+2). Note that the variable representing fan-out, f , is present only in the

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 60

complexity of the set definition. This demonstrates that when rank is bounded, even

with unbounded fan-out, parsing the vector definition of TL-MCTAG is polynomial.

Permitting multiple adjunction may be accomplished by a method similar to the

one described for the TAG algorithm. Rather than associating each node with at most

one link, we permit nodes to be accompanied by a set of links. In contrast to the

TAG case, here we must use a set rather than a list in order to allow the expressivity

that multiple adjunction can provide. In the TAG case a list is sufficient because the

links at a node are fully interchangeable. In the TL-MCTAG case, because the links

are defined not just by the node where they appear but by the full set of nodes at

which locations of that link appear, the links at a given node are not interchangeable.

It must be possible to use them in any order.7 Because the links can be used in any

order, the addition of multiple adjunction adds a factor of 2r to the time complexity

of the parsing algorithm.

2.4 Link Factorization

The parser presented in the previous section has the advantage of running in

polynomial time if the elementary structures of the input TL-MCTAG are defined

as vectors and if the rank of the grammar is bounded by some constant. Bounding

the rank by a constant might be too strong a limitation in natural language parsing

applications, however. Thus, in the general case the running time of our algorithm

contains a factor that is an exponential function of the rank of the input grammar.

7For links that share all locations it is still possible to enforce a strict order over them without
compromising expressivity.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 61

To optimize parsing time, then, we seek a method to “factorize” the elementary trees

of the grammar in such a way that the rank is effectively reduced and the set of

derived trees is preserved. In this section we present a novel and efficient algorithm

for factorizing a TL-MCTAG into a strongly equivalent TL-MCTAG in which rank

is minimized across the grammar. Here, strongly equivalent means that the two

grammars generate the same set of derived trees with the exception of permitting a

small, reversible transformation that is necessary to ensure that the factorized trees

obey the TAG constraint that auxiliary trees must have matching root and foot node

labels.

2.4.1 Preliminaries

Let α be some elementary tree. We write |α| to denote the number of nodes of α.

For a link l, we write |l| to denote the number of nodes of l.

For an elementary tree α, we call a fragment of α a complete subtree rooted at

some node n of α, written α(n), or else a subtree rooted at n with a gap at node n′

in its yield, written α(n, n′). See Figure 2.9 for an example. We also use ϕ to denote

a generic fragment with or without a gap node in its yield.

Consider some fragment ϕ of α. Let Nα be the set of all nodes of α and let Nϕ be

the set of nodes of ϕ with the exclusion of the gap node, in case ϕ has such a node.

We say that ϕ is an isolated fragment if ϕ includes at least one link and no link in

α impinges both on nodes in Nϕ and on nodes in Nα − Nϕ. See Figure 2.9 for an

example.

Intuitively, we can “excise” an isolated fragment from α without splitting apart

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 62

D

E F

A

B

C

1

2

3

4

y z

γ :

x

G

n1 :

n2 :

n4 :

n5 :3 4

Figure 2.9: An elementary tree demonstrating fragments, isolation, and maximal
nodes. Fragment ϕ1 = α(n1, n2) contains all locations of links 2 and 3 , because
links at the root node of a fragment are contained within that fragment. It does not
contain any locations of link 4 , because links at the gap node of a fragment are not
contained within that fragment. Because links 2 and 3 impinge only on nodes in
ϕ1 and all other links impinge only on nodes not in ϕ1, ϕ1 is an isolated fragment.
Fragment ϕ2 = α(n4) is not an isolated fragment because it contains only one of the
link locations of 4 . Note also that n4 is a maximal node but n5 is not.

the links of α itself, and therefore preserving the tree locality. This operation may also

reduce the number of links in α, which is our main goal. The factorization algorithm

we present in Subsection 2.4.2 is based on the detection and factorization of isolated

fragments.

Let n be a node from some elementary tree α. We write lnodes(n) to denote the

set of all nodes from fragment α(n) that are part of some link from α. Node n is

maximal if

• lnodes(n) 6= ∅; and

• n is either the root node of α or, for its parent node n′, we have lnodes(n′) 6=

lnodes(n).

Note that for every node n′ of α such that lnodes(n′) 6= ∅ there is always a unique

maximal node n such that lnodes(n′) = lnodes(n). See Figure 2.9 for an example.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 63

Thus, for the purpose of TL-MCTAG factorization, we can consider only maximal

nodes. The first item in the definition of maximal node, stating that a maximal node

always dominates (possibly reflexively) some node involved in a link, will often be

implicitly used below.

We need to distinguish the nodes in lnodes(n) depending on their impinging links.

Assume that {l1, l2, . . . , lr} is the set of all links occurring in α. For 1 ≤ j ≤ r, we

write lnodes(n, lj) to denote the set of all nodes from fragment α(n) with impinging

link lj. Thus,
⋃r
j=1 lnodes(n, lj) = lnodes(n). We associate with each maximal node n

of α a signature σ(n), defined as an integer vector of size r. For each j, 1 ≤ j ≤ r,

we define

σ(n)[j] =



lnodes(n, lj), if 0 < |lnodes(n, lj)| < |lj| ;

∅, if |lnodes(n, lj)| = 0 or

|lnodes(n, lj)| = |lj| .

Observe that, in the above definition, σ(n)[j] = ∅ means that none or all of the

nodes of lj are found within fragment α(n). The empty signature, written 0, is the

signature with all of its components set to ∅.

Consider maximal nodes n1 and n2 such that n1 6= n2, σ(n1) 6= 0 and σ(n2) 6= 0.

It is not difficult to see that σ(n1) = σ(n2) always implies that one of the two nodes

dominates the other. This observation is implicitly used in several places below.

When visiting nodes of α in a path from some leaf node to the root node,8 one

may encounter several maximal nodes having the same non-empty signature. In our

8We view trees as directed graphs with arcs directed from each node to its parent.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 64

factorization algorithm, we need to consider pairs of such nodes that are as close as

possible. Consider two maximal nodes n1 and n2, n1 6= n2, such that n1 dominates

n2. The ordered pair (n1, n2) is called a minimal pair if σ(n1) = σ(n2) 6= 0 and, for

every maximal node n3 in the path from n2 to n1 with n3 6= n1 and n3 6= n2, we have

σ(n3) 6= σ(n1). Consider now a sequence 〈n1, n2, . . . , nq〉, q ≥ 2, of nodes from α.

Such a sequence is called a maximal chain if each pair (ni−1, ni) is a minimal pair,

2 ≤ i ≤ q, and all nodes n from α with σ(n) = σ(n1) are included in the sequence

itself.

Notice that two maximal nodes belonging to two different maximal chains must

have different signatures, and thus one maximal node cannot belong to more than

one maximal chain. We now prove some basic properties of the notions introduced

above, that will be used later in the development of our factorization algorithm and

in the proof of some of its mathematical properties.

Lemma 1

Let α be an elementary tree and let n, n′ be maximal nodes, with n properly domi-

nating n′ in (ii) below.

(i) σ(n) = 0 if and only if α(n) is an isolated fragment;

(ii) σ(n) = σ(n′) if and only if α(n, n′) is an isolated fragment.

Proof

(i). If σ(n) = 0, then for each link l we have that either all nodes impinged on by

l are dominated (possibly reflexively) by n or none of these nodes is dominated by

n. Since n is maximal, we further conclude that at least some link l is found within

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 65

α(n).

Conversely, if α(n) is an isolated fragment then all or none of the nodes impinged

on by some link l are dominated by n, and thus σ(n) = 0.

(ii). Let σ(n) = σ(n′), with n properly dominating n′. For each link lj, there are

two possible cases. First consider the case where σ(n)[j] = σ(n′)[j] = ∅. In order for

this to be true, the link must be in one of three configurations, all of which satisfy the

requirement that the locations of lj must be all inside or all outside of the fragment

α(n1, n2).

• lnodes(n, j) = ∅. In this configuration no one of the nodes on which lj impinges

is dominated by n.

• |lnodes(n, j)| = |lj|. We distinguish two possible cases.

– lnodes(n′, j) = ∅. In this configuration all the nodes on which lj impinges

are within the fragment α(n1, n2).

– |lnodes(n′, j)| = |lj|. In this configuration all the nodes on which lj im-

pinges are “below” the fragment α(n, n′).

Now consider the case where σ(n)[j] = σ(n′)[j] 6= ∅. The nodes in lnodes(n′, j)

are dominated (possibly reflexively) by n′ and therefore fall “below” α(n, n′). The

remaining nodes on which lj impinges cannot be dominated (possibly reflexively) by

n. We thus conclude that no nodes impinged on by lj occur within the fragment

α(n, n′).

Assume now that α(n, n′) can be isolated. We can use exactly the same arguments

as above in the analysis of sets lnodes(n, j) and lnodes(n′, j), and conclude that σ(n) =

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 66

σ(n′). �

The next lemma will be useful later in establishing that the factorization found

by our algorithm is optimal.

Lemma 2

Let (n1, n2) be some minimal pair. Then

(i) for any node n3 in the path from n2 to n1, σ(n3) 6= 0;

(ii) for any minimal pair (n3, n4), neither or both of n3 and n4 are found in the path

from n2 to n1.

Proof

(i). Because σ(n2) 6= 0, there is some link lj for which σ(n2)[j] = lnodes(n2, j) 6= ∅.

Because n3 dominates n2, n3 dominates the nodes in lnodes(n2, j). Therefore, the

only way σ(n3) could equal 0 is if |lnodes(n3, j)| = |lj|. But then σ(n1)[j] = ∅ because

n1 dominates n3. This is a contradiction.

(ii). Assume that n4 is on the path from n2 to n1. From the definition of minimal

pair, there must exist a link lk such that σ(n4)[k] 6= σ(n2)[k]. By the same reasoning

as in the proof of statement (i) above, for any link lj such that σ(n2)[j] 6= ∅, we

must have σ(n2)[j] = σ(n4)[j] = σ(n1)[j]. We thus conclude that σ(n2)[k] = ∅ and

σ(n4)[k] 6= ∅. Since σ(n4)[k] = σ(n3)[k] 6= ∅ and σ(n2)[k] = σ(n1)[k] = ∅, node n3

must be in the path from n2 to n1.

By a similar argument, we can argue that if n3 is on the path from n2 to n1, then

node n4 must be in that path as well. �

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 67

1: Function Chain(α) {α an elementary tree from a TL-MCTAG}
2: L ← ∅; {associative array mapping signatures into node lists}
3: for all maximal nodes n from α, in top down order do
4: if σ(n) 6= 0 then
5: append n to list L(σ(n));
6: mark as maximal chain each list in L

Figure 2.10: Construction of maximal chains in the factorization algorithm.

2.4.2 Factorization algorithm

Let G be an input TL-MCTAG grammar. In this subsection we provide a method

for the construction of a TL-MCTAG that is strongly equivalent in generative power

to G and that has minimal rank. We start with the discussion of some preprocessing

of the input.

We annotate each elementary tree α as explained in what follows: We compute

sets lnodes(n, lj) for all nodes n and all links lj of α. This can easily be done with a

bottom up visit of α, by observing that if an internal node n has children n1, n2, . . . , nk

then lnodes(n, lj) =
⋃k
i=1 lnodes(ni, lj). Using sets lnodes(n, lj), we can then mark all

nodes n in α that are maximal, and compute the associated signatures σ(n).

We also mark all maximal chains within α. This simple procedure is reported in

Figure 2.10. We maintain an associative array with node signatures as entries and

node lists as values. We visit all maximal nodes of α in a top down fashion, creating

a list for each different signature and appending to such a list all nodes having that

signature.

In the algorithm below we excise isolated fragments from each elementary tree α.

We now introduce some conventions for doing this. Although it would be possible

to excise fragments without the introduction of additional tree structure, we adopt

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 68

A

B

α :

n :

A

B1 Bn : 1

B′

B′
↓ 2

A

B

α :

n :

A

B1

B′

Cn′ : 2 B′ 3

C 2

Bn : 1

Cn′ :

B′
∗

Figure 2.11: Diagrams of the tree transformations performed when fragments α(n)
and α(n, n′) are removed.

instead two simple tree transformations that preserve auxiliary tree root and foot label

matching and result in some simplification of the notation used by the algorithm,

particularly in case the root node of a fragment is the same as the gap node of a

second fragment within α. A schematic depiction of both transformations is given in

Figure 2.11.

When a fragment α(n) is excised, we leave a copy of the root node n without its

impinging links that dominates a fresh node n′ with a fresh link indicating obligatory

substitution of the excised fragment. The excised fragment consists of α(n) including

any links impinging on n, but has a fresh root node immediately dominating n with

the same label as n′. After substitution of the excised fragment α(n) back into node

n′, the original tree can be easily regenerated by removing the fresh node n′ and by

merging the two copies of node n.

A similar transformation is used to excise a fragment α(n, n′) that does not collapse

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 69

the root node n and the gap node n′. Nodes n and n′ of the original tree are not

altered, and thus they retain their names. The material between them is replaced

with a single new node with a fresh nonterminal symbol and a fresh link. This link

indicates the obligatory adjunction for a transformation of the excised fragment. The

transformation adds to α(n, n′) a new root node and a new gap node, both with the

same label, in order to make it technically possible to perform adjunction. We remark

that any link impinging on the root node of the excised fragment is by our convention

included in the excised fragment, and any link impinging on the gap node is not.

To regenerate the original tree, the excised fragment α(n, n′) can be adjoined back

into the tree from which it was excised. The new nodes that have been generated

in the excision may be removed and the original root and gap nodes may be merged

back together retaining any impinging links, respectively. Note that if there was a

link on either the root or gap node in the original tree, it is not lost or duplicated in

the process.

We need to introduce one more convention for tree excision. Consider a maximal

chain c = 〈n1, n2, . . . , nq〉 in α, q ≥ 2. In case q = 2, our algorithm processes c

by excising a fragment α(n1, n2) from α, exactly as explained above. In case q >

2, a special processing is required for c. Chain c represents q − 1 minimal pairs,

corresponding to fragments α(ni−1, ni), 2 ≤ i ≤ q. We do not excise these q − 1

fragments one by one, because this would create q − 1 > 1 new links within α. We

follow instead a procedure that “binarizes” c, as explained below.

Let us recursively define elementary tree αc as follows.

• In case q = 3, αc is a tree composed of two nodes n and n′, with n immedi-

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 70

A

B

C

D

E

n1 :

n2 :

n3 :

n4 :

α :

1

2

3

4

A

B

En4 : 4

B′ 5 C ′

B′′6

7

B

C

n1 : 1

B′′

B′′
∗

C

D

n2 : 2

C ′

C ′
∗

B′

B′∗

F

F∗

F

D′

8

9

D

E

n3 : 3

D′

D′
∗

Figure 2.12: The binarization procedure applied to maximal chain c = 〈n1, n2, n3, n4〉.

ately dominating n′. Node n hosts the (obligatory) adjunction of the fragment

α(n1, n2) and node n′ hosts the (obligatory) adjunction of α(n2, n3). Both frag-

ments are transformed as previously discussed.

• In case q > 3, αc is a two node tree specified as above, with n′ hosting the

(obligatory) adjunction of the transformed fragment α(nq−1, nq). Node n hosts

the adjunction of tree αc′ , with c′ = 〈n1, . . . , nq−1〉.

Note that each tree αc has rank two.

When processing a maximal chain c with q > 2, the whole fragment α(n1, nq) is

excised, using the convention above. This results in a single fresh link added to α.

In this case the link refers to the adjunction of a newly created elementary tree αc,

defined as above. An example of the binarization of a maximal chain with q = 4 is

reported in Figure 2.12.

We can now discuss the factorization algorithm, reported in Figure 2.13. For a

maximal node n in an elementary tree α, we write links(n) to denote the number of

links from α that are entirely contained in fragment α(n). We process each tree set

Γ of the source grammar and each elementary tree α in Γ as follows.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 71

1: Function Factorize(G) {G a tree-local MCTAG}
2: G′ ← tree-local MCTAG with no tree sets;
3: for all tree sets Γ from G do
4: for all elementary trees α in Γ do
5: B ← ∅; {priority queue used as an agenda}
6: for all maximal nodes n from α other than the root do
7: if σ(n) = 0 then
8: add n to B with score links(n);
9: for all maximal chains 〈n1, . . . , nq〉 from α do

10: add 〈n1, . . . , nq〉 to B with score links(n1)− links(nq);
11: while B 6= ∅ do
12: pop from B item I with smallest score, discarding items with score = 1;
13: if I = n then
14: α← excise α(n) from α;
15: add to G′ tree set {α(n)};
16: if I = 〈n1, n2〉 then
17: α← excise α(n1, n2) from α;
18: add to G′ tree set {α(n1, n2)};
19: if I = 〈n1, . . . , nq〉, q > 2 then
20: α← excise α(n1, nq) from α;
21: for all i with 2 ≤ i ≤ q do
22: add to G′ tree set {α(ni−1, ni)};
23: add to G′ tree set {αc} with c = 〈n1, . . . , ni〉;
24: add tree set Γ to G′

25: return G′

Figure 2.13: The factorization algorithm for tree-local MCTAG.

On a first phase, we add to an agenda B each maximal node n different from the

root of α and such that σ(n) = 0. We associate this agenda item with the score

links(n). At the same time, each maximal chain 〈n1, n2, . . . , nq〉, q ≥ 2, is added to

B, with associated score links(n1)− links(nq).

On a second phase, we process all items in B, in order of increasing score and

ignoring those items that have score of one. If the current item is a maximal node

n, we excise the fragment α(n) from α, leaving in place a fresh node with a single

node link denoting obligatory substitution. If the current item is a maximal chain of

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 72

the form 〈n1, n2〉, we excise from α the fragment α(n1, n2), leaving in place a fresh

node with a single node link denoting obligatory adjunction of the excised fragment.

Finally, if the current item is a maximal chain c = 〈n1, . . . , nq〉 with q > 2, we excise

from α the whole fragment α(n1, nq), and we apply to the chain the binarization

procedure described in this subsection. This results in the addition to the output

grammar of fragments α(ni−1, ni), for 2 ≤ i ≤ q, and of newly created elementary

tree αc and elementary trees αc′ for each chain c′ that is a proper prefix of c. After

the processing of all elementary trees in tree set Γ is completed, the resulting version

of set Γ is also added to the output grammar.

The discussion of the correctness of the algorithm is reported in the next subsec-

tion, along with some other mathematical properties.

2.4.3 Mathematical properties

We discuss in this subsection some mathematical properties of our factorization

algorithm. Let G be the input TL-MCTAG and let G′ be the output of the algorithm.

We start with the issue of correctness. First, notice that our algorithm stops after a

finite number of steps, since the number of possible excisions for G is finite. Assume

now that ϕ and ϕ′ are two isolated fragments within some elementary tree α, and ϕ′

is itself a fragment within ϕ. It is easy to see that excising ϕ′ from ϕ results in a

new fragment of α that is still an isolated fragment. Using this observation together

with Lemma 1, we can then conclude that all fragments that are excised by the

algorithm are isolated fragments. This in turn implies that each fragment excision in

our algorithm preserves tree locality, and G′ is still a TL-MCTAG.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 73

Each fragment that is excised from some source tree must obligatorily be adjoined

back into that tree, at the point from which it was removed. Thus, G′ is generatively

equivalent in the strong sense to G, modulo our trivial tree transformation for the

root and the gap nodes. This proves the correctness of our factorization algorithm.

One remark is in order here. Note that we always excise fragments that have at

least two links. This can be shown inductively as follows. Consider first the smallest

fragments that are excised from some elementary tree α, that is, those fragments that

do not contain any other fragment within themselves. These fragments always have

at least two links, because of the requirement stated in line 12 in the algorithm. In

the inductive case, let ϕ be some fragment of α from which a second fragment ϕ′ has

been already excised in some iteration of the loop at lines from 11 to 23. Fragment

ϕ′ is thus replaced by some link l′. Because of the definition of maximal node, ϕ

must contain at least one link l that is not contained in ϕ′. In case l itself is part

of some excised fragment ϕ′′, there will still be some other fresh link replacing ϕ′′.

We thus conclude that, when excised, ϕ always has at least two links. Since excised

fragments always have at least two links and since we never consider elementary trees

as candidate fragments (line 6), we can conclude that our algorithm always finds a

non-trivial factorization of G.

We can now turn to an analysis of the computational complexity of our algorithm.

Consider an elementary tree α of G with r links and with a maximum of f nodes per

link. In the preprocessing phase of the algorithm, the computation of sets lnodes(n, lj)

can be carried out in time O(|α| · r · f). To see this, notice that there are no more

than |α| · r sets lnodes(n, lj). Furthermore, we have |lnodes(n, lj)| ≤ f , and each

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 74

node in lnodes(n, lj) is processed in constant time through the union operator, when

constructing set lnodes(n′, lj) for the parent node n′ of n. Clearly, O(|α| · r · f) is also

a time upper bound for the computation of quantities σ(n) and links(n) for all nodes

in α, and for extracting a list of the maximal nodes therein as well.9

In what follows, we will need to compare signatures of different nodes for equality.

Despite the fact that each signature has r elements, and each element of a signature

is a set with O(|f |) elements, there are at most |α| different signatures. We can

therefore use an atomic symbol to name each signature (perfect hashing). In this

way, signatures can be compared in constant time.

The marking of all maximal chains within α, as specified by the algorithm in Fig-

ure 2.10, can be implemented in time O(|α|). This is done by encoding the associative

array L in the algorithm through a one-dimensional array indexed by signature names.

Each element of the array points to a linked list of nodes, representing a maximal

chain.

We now analyze the running time of the factorization function in Figure 2.13.

Let us first consider a single elementary tree α. We implement the priority queue B

through a heap data structure. The loops at lines 6 and 9 run in time O(|α| · log(|α|)):

this is the standard result for populating a heap; see for instance Cormen et al. [2001].

At each iteration of the while loop at lines 11 to 23, we extract some fragment α(n)

or α(n1, nq). The processing of each such fragment ϕ takes an amount of time O(|ϕ|),

where |ϕ| is the number of nodes of ϕ. In such an iteration, α needs to be re-edited into

9We remark here that a further improvement in efficiency could be achieved by replacing the
sets of nodes in a signature with the single node that is the least common ancestor of the set of
nodes. However, using the set of nodes substantially improves the clarity of the presentation of the
algorithm, so we do not pursue this optimization here.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 75

a new elementary tree with a number of nodes |α|− |ϕ|+ c, where c ≤ 3 is a constant

that depends on the specific transformation in Figure 2.11 that was applied in the

excision of the fragment tree. Nonetheless, if a suitable representation is maintained

for α, making use of nodes and pointers, the re-editing of α can be done in constant

time. Then a single iteration of the while loop takes time O(|ϕ|), with ϕ the excised

fragment. We can then conclude that all iterations of the while loop take an amount

of time O(|α| · log(|α|)), where the log(|α|) factor accounts for the management of

the heap; see again Cormen et al. [2001].

Now let αM be the elementary tree of G with largest size, and let rG and fG be

the rank and fan-out of G, respectively. Putting everything together, the total run-

ning time of the factorization algorithm is a function in O(|G| · (rG · fG + log(|αM |))),

where |G|, the size of the input grammar, is defined as the sum of terms |α| for all

elementary trees α of G. Since we always have fG ≤ |αM |, the previous upper bound

can be rewritten as O(|G| · |αM | · rG).

A special case is worth discussing here. If the maximum number of links impinging

on a node of our elementary trees is bounded by some constant, we have rG · fG =

O(|αM |). In this case, the above bound reduces to O(|G| · |αM |). The constant

bound on the number of links impinging on the nodes of a grammar holds for all of

the grammars we have exploited in Section 2.1.

We now argue that our algorithm provides the factorization G′ of G with the

smallest possible rank, under the assumption that G and G′ are strongly equivalent,

that is, they generate the same derived trees.

A factorization f of G is called maximal if no one of its fragments has a smaller

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 76

isolated fragment within itself. We start by observing that the factorization ofG found

by our algorithm is maximal. To see this, consider the excision by our algorithm of

a maximal chain 〈n1, . . . , nq〉 within an elementary tree α. This item is added to

the priority heap at line 10, with a score of links(n1) − links(nq). The score is the

number of links found in fragment α(n1, nq), with the exclusion of the links at the

gap node nq. The chain is then factorized into fragments α(ni−1, ni), for each i with

2 ≤ i ≤ q. Assume that some fragment α(ni−1, ni) contains in turn a maximal

chain 〈n′1, . . . , n′q′〉 or else an isolated fragment of the form α(n′). In the first case

we have links(n′1) − links(n′q′) < links(n1) − links(nq) and in the second case we have

links(n′) < links(n1) − links(nq). Thus the smaller chain or fragment is processed

earlier than our maximal chain, and by the time our maximal chain is processed, the

smaller chain or fragment has already been excised. A similar argument shows that

the excision by our algorithm of an isolated fragment of the form α(n) happens after

the excision of any maximal chain or fragment included within α(n) itself.

We now show that the maximal factorization of G is unique. Let ϕ and ϕ′ be

two isolated fragments of some elementary tree α. We say that ϕ and ϕ′ partially

overlap if the set of nodes shared by ϕ and ϕ′ is not empty and is a proper subset

of the nodes of both fragments. It is not difficult to see that if ϕ and ϕ′ partially

overlap, then at least one among ϕ and ϕ′ must have the form α(n1, n2).

Without any loss of generality, we assume that the elementary trees of G are

always factorized at their maximal nodes, as discussed in Subsection 2.4.1. Let us

assume that f and f ′ are two distinguishable maximal factorizations of G. Since no

fragment of one factorization can be a sub-fragment of some fragment of the other

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 77

factorization, there must be some fragment ϕ of f and some fragment ϕ′ of f ′ such

that f and f ′ partially overlap.

Assume that ϕ has the form α(n1). Then ϕ′ must have the form α(n2, n3), and

n1 must be in the path from n3 to n2. Since ϕ′ is as small as possible, (n2, n3) must

be a minimal pair. We have then established a violation of Lemma 2(i). Assume now

that ϕ has the form α(n1, n2). Again, (n1, n2) must be a minimal pair. If ϕ′ has the

form α(n3), the above argument applies again, resulting in a violation of Lemma 2(i).

If ϕ′ has the form α(n3, n4), then (n3, n4) must be a minimal pair. Furthermore, n1,

n2, n3 and n4 must all be on the same path within α, with n1, n2 in alternation

with n3, n4. This establishes a violation of Lemma 2(ii). The assumption that f

and f ′ partially overlap then leads to a contradiction, and we must conclude that the

maximal factorization of G is unique.

We can also use the above argument against the existence of overlapping fragments

to show that any factorization f of G other than the unique maximal factorization

fM must be coarser than fM , meaning that each fragment ϕ of f is a also a frag-

ment of fM , or else ϕ can be represented as a combination of the fragments of fM

(through substitution and adjunction). This means that no factorization of G can

have rank smaller than the rank of the maximal factorization fM . We conclude that

our algorithm is optimal.

The above discussion on the optimality of the factorization algorithm crucially

assumes strong equivalence with the source TL-MCTAG G. Of course there might

be TL-MCTAGs that are weakly equivalent to G, that is, they generate the same

language, and have rank strictly smaller than the rank of G′. However, finding such

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 78

structurally different grammars is a task that seems to require techniques quite differ-

ent from the factorization techniques we have developed in this section. Furthermore,

the task might be computationally unfeasible, considering the fact that the weak

equivalence problem for TL-MCTAG is undecidable. (Such a problem is undecidable

even for context-free grammars).

We remark here that if we are allowed to change G by recasting its elementary

trees in some suitable way, we might still be able to further reduce the rank with

respect to the algorithm we have presented in this section. In this case the output

grammar would not preserve the derived trees, that is, we lose the strong equivalence,

but still retain the derivation trees unaltered. One such case arises when the input

TL-MCTAG is not in binary form, that is, some nodes have more than two children.

If we allow binarization of the elementary trees of the source grammar, then we might

be able to isolate sets of links that could not be factorized in the source grammar

itself. Currently, the definition of fragment does not allow splitting apart a subset

of the children of a given node from the remaining ones. However, the number

of binarizations of an elementary tree is not bounded by a polynomial function of

the size of the tree itself, and choosing the binarization that leads to optimal rank

reduction is a challenging problem. This new optimization task has the flavor of other

unsupervised learning problems from the literature on machine learning and grammar

induction that are computationally hard. We leave this problem for future work.

A second case arises when multiple links impinge on the same node of an elemen-

tary tree. As presented, the factorization algorithm is designed to handle grammars

in which multiple adjunction is permitted. However, if multiple adjunction is disal-

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 79

lowed and the grammar contains trees in which multiple links impinge on the same

node, the use of one link at a node will disqualify any other impinging links from use.

This opens up the possibility of further reducing the rank of the grammar by produc-

ing tree sets that do not contain any nodes on which multiple links impinge. This

can be accomplished by performing a first pass grammar transformation in which a

copy of each elementary tree set is added to the grammar for each distinct, maximal,

non-conflicting set of links appearing in the tree set. This transformation in itself

may result in a reduction of the rank of the source grammar. The factorization al-

gorithm can then be applied on the new grammar. However, if the elementary trees

in the source grammar contain clusters of links that are mutually overlapping, the

suggested transformation may blow up the size of the input grammar in a way that

is not bounded by any polynomial function.

2.5 Conclusion

This chapter explores the complexity of TL-MCTAG, showing that recognition

is NP-complete under a range of interesting restrictions. It then provides a parsing

algorithm that performs better than the extrapolation of the standard multiple CFG

parsing method to TL-MCTAG. As shown by our proofs, the difficulty in parsing TL-

MCTAG stems from the rank of the input grammar. We offer a novel and efficient

algorithm for minimizing the rank of the input grammar while preserving its strong

generative capacity.

Our work on TL-MCTAG complexity bears comparison to that of several others.

Kallmeyer [2007] provides a clear and insightful breakdown of the different character-

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 80

istics of MCTAG-variant grammars and the effect of these characteristics on expres-

sivity and complexity. That work clarifies the definitions of MCTAG variants and the

relationship between them rather than presenting new complexity results. However,

it suggests the possibility of proving results such as ours in its assertion that after

a standard TAG parse a check of whether particular trees belong to the same tree

set cannot be performed in polynomial time. Kallmeyer [2007] also addresses the

problem of parsing MCTAG, although not specifically for TL-MCTAG. The method

proposed differs from ours in that MCTAGs are parsed first as a standard TAG with

any conditions on tree or set locality checked on the derivation forest as a second

step. No specific algorithm is presented for performing the check of tree-locality on

a TAG derivation forest, so it is difficult to directly compare the methods. However,

that method cannot take advantage of the gains in efficiency produced by discarding

inappropriate partial parses at the time that they are first considered. Aside from

Kallmeyer’s work, little attention has been paid to the problem of directly parsing

TL-MCTAG.

Søgaard et al. [2007] present several proofs regarding the complexity of the recog-

nition problem for some linguistically motivated extensions of TAG that are similar

to TL-MCTAG. Their work shows NP-hardness of the recognition problem for these

variants and, as an indirect result, also demonstrates the NP-hardness of TL-MCTAG

recognition. This work differs from ours in that it does not show the NP-completeness

of TL-MCTAG recognition and does not further locate and constrain the source of

the NP-completeness of the problem to the rank of the input grammar nor does it

provide mitigation through rank reduction of the grammar.

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 81

Our work on TL-MCTAG factorization is thematically though not formally related

to the body of work on induction of TAG grammars from a treebank exemplified by

Chen and Shanker [2004b]. The factorization performed in their work is done on

the basis of syntactic constraints rather than with the goal of reducing complexity.

Working from a treebank of actual natural language sentences, their work does not

have the benefit of explicitly labeled adjunction sites but rather must attempt to

reconstruct a derivation from complete derived trees.

The factorization problem we address is more closely related to work on factorizing

synchronous CFG [Gildea et al., 2006, Zhang and Gildea, 2007] and on factorizing

synchronous TAG [Nesson et al., 2008a]. Synchronous grammars are a special case

of multicomponent grammars, so the problems are quite similar to the TL-MCTAG

factorization problem. However, synchronous grammars are fundamentally set-local

rather than tree-local formalisms, which in some cases simplifies their analysis. In the

case of CFG, the problem reduces to one of identifying problematic permutations of

non-terminals [Zhang and Gildea, 2007] and can be done efficiently by using a sorting

algorithm to binarize any non-problematic permutations until only the intractable

correspondences remain [Gildea et al., 2006]. This method is unavailable in the TAG

case because the elementary structures may have depth greater than one and therefore

the concept of adjacency relied upon in their work is inapplicable. The factorization

algorithm of Nesson et al. [2008a] presented in this thesis in Chapter 4 is the most

closely related to this one but is not directly applicable to TL-MCTAG because each

link is presumed to have exactly two locations.

In conclusion, this work falls in an active line of research into efficient processing of

Chapter 2: Tree-Local Multicomponent Tree-Adjoining Grammar 82

multicomponent and synchronous formalisms that appear computationally intractable

but have desirable characteristics for meeting the expressive needs of natural language.

It presents novel complexity results and algorithms for TL-MCTAG, a widely known

and used formalism in computational linguistics that may be applied more effectively

in natural-language processing with the introduction of algorithms to process it as

efficiently as possible.

Chapter 3

Extensions to Tree-Local MCTAG

Although much work in TAG syntax and semantics makes use of TL-MCTAG to

model phenomena such as quantifier scoping, Wh-question formation, and many other

constructions [Kallmeyer and Romero, 2004, Romero et al., 2004], certain applications

appear to require even more flexibility than is provided by TL-MCTAG. Scrambling

is one well-known example [Rambow, 1994]. In addition, in the semantics domain, the

use of a new TAG operation, flexible composition, is used to perform certain semantic

operations that seemingly cannot be modeled with TL-MCTAG alone [Chiang and

Scheffler, 2008] and in work in synchronous TAG semantics, constructions such as

nested quantifiers require a set-local analysis [Nesson and Shieber, 2006].

One potential solution is to extend the domain of locality beyond that of TL-

MCTAG. SL-MCTAG is the obvious choice for an extension, but, as was discussed

in the previous chapter, it is substantially more difficult to parse even than TL-

MCTAG. In addition, it is not clear that the extension is sufficient to handle the

linguistic challenges posed by the abovementioned problems.

83

Chapter 3: Extensions to Tree-Local MCTAG 84

In this chapter we suggest addressing this problem with a shift in focus from

constraining locality and complexity through restrictions that all trees in a tree set

must adjoin within a single tree or tree set to constraining locality and complexity

through restrictions on the derivational distance between trees in the same tree set

in a valid derivation. We examine three formalisms, two of them introduced here for

the first time, that use derivational distance to constrain locality and demonstrate

by construction of parsers their relationship to TL-MCTAG in both expressivity and

complexity.

In Section 3.1 we elaborate further the distinction between these two types of

locality restrictions using TAG derivation trees. In Section 3.2 we address the simul-

taneity condition present in all MCTAGs and discuss the consequences of dropping it.

In Sections 3.3 and 3.4 we introduce two novel formalisms, restricted non-simultaneous

MCTAG and restricted Vector-TAG, respectively, and define a CKY-style parsers for

them. We also introduce a variant of restricted Vector TAG, Limited Delay Vector-

TAG, which we make use of as the base formalism for our work in Chapter 6. In

Section 3.5 we recall the delayed TL-MCTAG formalism introduced by Chiang and

Scheffler [2008] and define a CKY-style parser for it as well. In Section 3.6 we explore

the complexity of all three parsers, the relationship between the formalisms.

3.1 Domains of Locality and Derivation Trees

The domains of locality of TL-MCTAG and SL-MCTAG (and trivially, TAG) can

be thought of as lexically defined. That is, all locations at which the adjunction of

one tree set into another may occur must be present within a single lexical item.

Chapter 3: Extensions to Tree-Local MCTAG 85

However, we can also think of locality derivationally. In a derivationally local system

the constraint is on the relationships allowed between members of the same tree set

in the derivation tree.

TAG derivation trees provide the information about how the elementary structures

of the grammar combine that is necessary to construct the derived tree. Nodes in

a TAG derivation tree are labeled with identifiers of elementary structures. One

elementary structure is the child of another in the derivation tree if it adjoins or

substitutes into it in the derivation. Arcs in the derivation tree are labeled with the

address in the target elementary structure at which the operation takes place.

In MCTAG the derivation trees are often drawn with identifiers of entire tree

sets as the nodes of the tree because the lexical locality constraints require that each

elementary tree set be the derivational child of only one other tree set. This method

of drawing derivation trees obfuscates a stark contrast in the derivational locality of

these two formalisms. As an alternative, we use an elaborated derivation tree in

which each tree from a tree set appears as a node in a tree. In TL-MCTAG all trees

in a set must adjoin to the same tree. This means that they must all be siblings

in the elaborated derivation tree. In SL-MCTAG, on the other hand, it is possible

to generate derivations with arbitrarily long distances before the nearest common

ancestor of two trees from the same elementary tree set is reached. An example SL-

MCTAG grammar that can produce an arbitrarily long derivational distance to the

nearest common ancestor of the trees in a given tree set is given in Figure 3.1 along

with an example standard and elaborated derivation tree.

Chiang and Scheffler [2008] recently introduced one variant of MCTAG, delayed

Chapter 3: Extensions to Tree-Local MCTAG 86

S

A B

ε ε

A∗ B∗a

b

{ }A

a

B

A∗ B∗

A B

b{ }

1:

2:

3:

1

2a 2b

3a 3b

3a 3b

2a 2b

···

···

2

3

1

2

3
···

Figure 3.1: An example SL-MCTAG grammar that generates the language ww and
associated derivation trees. The derivation tree in the center is the standard derivation
tree. The elaborated derivation tree on the right demonstrates an arbitrarily long
derivational distance between the trees of a given tree set and their nearest common
ancestor. Note that if this grammar is interpreted as a TL-MCTAG grammar only
two derivations are possible (for the strings aa and bb).

Tree-Local MCTAG (delayed TL-MCTAG) that uses a derivational notion of locality.

In this chapter we introduce two additional derivationally local MCTAG formalisms,

restricted non-simultaneous MCTAG (restricted NS MCTAG) and restricted Vector

TAG (restricted V-TAG) and demonstrate by construction of parsers how each gives

rise to a hierarchy of derivationally local formalisms with a well-defined efficiency

penalty for each step of derivational distance permitted.

Although it would be possible to explicitly mark adjunction and substitution sites

with link numbers in a derivationally local grammar, the loss of lexical locality means

that the link numbers would be global in the grammar and would no longer provide the

simplifications in presentation or in complexity analysis that they provide in previous

chapters. In this chapter we use the more traditional method of leaving adjunction

and substitution sites unmarked and relying on the prohibition on multiple adjunction

Chapter 3: Extensions to Tree-Local MCTAG 87

and the maximum number of nodes in a given tree of the grammar to constrain the

number of operations that occur. This results in one change in our notation for

parsers. Rather than associating a potential link ` with an item we instead mark

the item with one of two diacritics: ◦, indicating that an adjunction or substitution

is still available at the current node, or •, indicating that an adjunction has already

taken place at the item’s node.

3.2 The Simultaneity Requirement

In addition to lexical locality constraints the definition of MCTAG requires that

all trees from a set adjoin simultaneously. In terms of well-formed derivation trees,

this amounts to disallowing derivations in which a tree from a given set is the ancestor

of a tree from the same tree set. For most linguistic applications of TAG, including

all of the analyses presented in Chapters 5 and 6, this requirement seems natural

and is strictly obeyed. There are a few applications, including flexible composition

and scrambling in free-word order languages that benefit from TAG-based grammars

that drop the simultaneity requirement Chiang and Scheffler [2008], Rambow [1994].

From a complexity perspective, however, checking the simultaneity requirement is

expensive Kallmeyer [2007]. As a result, it can be seen as advantageous to select a

base formalism that does not require simultaneity even if the grammars implemented

with it do not make use of that additional freedom.

Chapter 3: Extensions to Tree-Local MCTAG 88

3.3 Restricted Non-Simultaneous MCTAG

The simplest version of a derivationally local TAG-based formalism is similar

to non-local MCTAG. We call this formalism restricted non-simultaneous MCTAG

(restricted NS MCTAG). There is no lexical locality requirement at all. In addition,

we drop the simultaneity requirement. Thus the only constraint on elementary tree

sets is the limit, d, on the derivational distance between the trees in a given set and

their nearest common ancestor. Note that if we constrain d to be one, this happens

to enforce both the derivational delay limit and the lexical locality requirement of

TL-MCTAG.

A CKY-style parser for restricted NS MCTAG with a restriction of d is given in

Figure 3.2. The items of this parser contain d lists, Λ1–Λd, called histories that

record the identities of the trees that have already adjoined in the derivation in order

to enforce the locality constraints. The identities of the trees in a tree set that have

adjoined in a given derivation are maintained in the histories until all the trees from

that set have adjoined. Once the locality constraint is checked for a tree set, the

Filter side condition expunges those trees from the histories. A tree is recorded in this

history list with superscript i, where i is the derivational distance between the location

where the recorded tree adjoined and the location of the current item. The locality

constraint is enforced at the point of adjunction or substitution where the history at

the limit of the permissible delay must be empty for the operation to succeed.

Chapter 3: Extensions to Tree-Local MCTAG 89

Goal Item Init(α1)
〈α0@ε

•, 0, , , n, ∅, . . . , ∅〉 Label(α0@ε) = S
|α| = 1

Terminal Axiom
〈αx@a•, i, , , i+ 1, ∅, . . . , ∅〉 Label(αx@a) = wi+1

Empty Axiom
〈αx@a•, i, , , i, ∅, . . . , ∅〉 Label(αx@a) = ε

Foot Axiom
〈αx@Ft(αx)

◦, p, p, q, q, ∅, . . . , ∅〉 Aux(αx)

Unary Complete
〈αx@(a · 1)•, i, j, k, l,Λ1, . . . ,Λd〉 αx@(a · 2) undefined

〈αx@a◦, i, j, k, l,Λ1, . . . ,Λd〉

Binary Complete
〈αx@(a · 1)•, i, j, k, l,Λ1

1, . . . ,Λ
d
1〉 Filter(Λ1

1 ∪ Λ1
2, . . . ,Λ

d
1 ∪ Λd

2)
〈αx@(a · 2)•, l, j′, k′,m,Λ1

2, . . . ,Λ
d
2〉 = Λ1, . . . ,Λd

〈αx@a◦, i, j ∪ j′, k ∪ k′,m,Λ1, . . . ,Λd〉

Adjoin:
〈βy@ε•, i, p, q, l,Λ1

1, . . . ,Λ
d−1
1 , ∅〉 Adj(αx@a, βy)

〈αx@a◦, p, j, k, q,Λ1
2, . . . ,Λ

d
2〉 Filter(Λ1

2 ∪ {βy},Λ2
2 ∪ Λ1

1, . . . ,

〈αx@a•, i, j, k, l,Λ1, . . . ,Λd〉 Λd
2 ∪ Λd−1

1) = Λ1, . . . ,Λd

Substitute:
〈βy@ε•, i, , , l,Λ1

1, . . . ,Λ
d−1
1 , ∅〉 Subst(αx@a, βy)

〈αx@a•, i, , , l,Λ1, . . . ,Λd〉 Filter({βy},Λ1
1, ldots,Λ

d−1
1)

= Λ1, . . . ,Λd

No Adjoin:
〈αx@a◦, i, j, k, l,Λ1, . . . ,Λd〉
〈αx@a•, i, j, k, l,Λ1, . . . ,Λd〉

Figure 3.2: Axioms and inference rules for the CKY algorithm for restricted NS
MCTAG with a restriction of d.

3.4 Restricted V-TAG

A Vector-TAG (V-TAG) [Rambow, 1994] is similar to an MCTAG in that the

elementary structures are sets (or vectors) of TAG trees. A derivation in a V-TAG is

Chapter 3: Extensions to Tree-Local MCTAG 90

defined as in TAG. There is no locality requirement or other restriction on adjunction

except that if one tree from a vector is used in a derivation, all trees from that

vector must be used in the derivation. The trees in a vector may be connected by

dominance links between the foot nodes of auxiliary trees and any node in other trees

in the vector. All adjunctions must respect the dominance relations in that a node η1

that dominates a node η2 must appear on the path from η2 to the root of the derived

tree. The definition of V-TAG is very similar to that of non-local MCTAG as defined

by Weir [1988] except that in non-local MCTAG all trees from a tree set are required

to adjoin simultaneously.

Restricted V-TAG constrains V-TAG in several ways. First, the dominance chain

in each elementary tree vector is required to define a total order over the trees in the

vector. This means there is a single base tree in each vector. Note also that all trees

other than the base tree must be auxiliary trees in order to dominate other trees in

the vector. The base tree may be either an initial tree or an auxiliary tree. Second,

a restricted V-TAG has a restriction level, d, that determines the largest derivational

distance that may exist between the base tree and the highest tree in a tree vector in

a derivation. Restricted V-TAG differs from restricted NS MCTAG in one important

respect: the dominance requirements of restricted V-TAG require that trees from the

same set must appear along a single path in the derived tree, whereas in restricted

NS MCTAG trees from the same set need not adhere to any dominance relationship

in the derived tree.

A CKY-style parser for restricted V-TAG with restriction level d is given in Fig-

ure 3.3. Parsing is similar to restricted NS MCTAG in that we have a set of histories

Chapter 3: Extensions to Tree-Local MCTAG 91

Unary Complete
〈αx@(a · 1)•, i, j, k, l,Λ1, . . . ,Λd〉 αx@(a · 2) undefined

〈αx@a◦, i, j, k, l,Λ1, . . . ,Λd〉

Binary Complete
〈αx@(a · 1)•, i, j, k, l,Λ1

1, . . . ,Λ
d
1〉

〈αx@(a · 2)•, l, j′, k′,m,Λ1
2, . . . ,Λ

d
2〉

〈αx@a◦, i, j ∪ j′, k ∪ k′,m,Λ1
1 ∪ Λ1

2, . . . ,Λ
d
1 ∪ Λd

2〉

Adjoin base:
〈β1@ε

•, i, p, q, l,Λ1
1, . . . ,Λ

d−1
1 , ∅〉 Adj(αx@a, β1)

〈αx@a◦, p, j, k, q,Λ1
2, . . . ,Λ

d
2〉 Filter(Λ1

2 ∪ {β1},Λ2
2 ∪ Λ1

1,

〈αx@a•, i, j, k, l,Λ1, . . . ,Λd〉 . . . ,Λd
2 ∪ Λd−1

1) = Λ1, . . . ,Λd

Adjoin non-base:
〈βy@ε•, i, p, q, l,Λ1

1, . . . ,Λ
d−1
1 , ∅〉 Adj(αx@a, βy)

〈αx@a◦, p, j, k, q,Λ1
2, . . . ,Λ

d
2〉 for single Λi

2 s.t. βy−1 ∈ Λi
2,

〈αx@a•, i, j, k, l,Λ1, . . . ,Λd〉 Λi
2′ = (Λi

2 ∪ Λi−1
1 ∪ {βy})− {βy−1}

for Λi
2 s.t. βy−1 /∈ Λi

2,
Λi

2′ = Λi
2 ∪ Λi−1

1

Filter(Λ1
2′ ,Λ

2
2′ ∪ Λ1

1, . . . ,
Λd

2′ ∪ Λd−1
1) = Λ1, . . . ,Λd

Substitute:
〈β1@ε

•, i, , , l,Λ1
1, . . . ,Λ

d−1
1 , ∅〉 Subst(αx@a, β1)

〈αx@a•, i, , , l,Λ1, . . . ,Λd〉 Filter({β1},Λ1
1, . . . ,Λ

d−1
1)

= Λ1, . . . ,Λd

No Adjoin:
〈αx@a◦, i, j, k, l,Λ1, . . . ,Λd〉
〈αx@a•, i, j, k, l,Λ1, . . . ,Λd〉

Figure 3.3: Inference rules for the CKY algorithm for restricted V-TAG with a re-
striction of d. Item form, goal item and axioms are omitted because they are identical
to those in the restricted NS MCTAG parser.

for each restriction level. However, because of the total order over trees in a vector,

the parser only needs to maintain the name of the highest tree from a vector that

has been used in the derivation along with its distance from the base tree from that

vector. The Filter side condition accordingly expunges trees that are the top tree in

Chapter 3: Extensions to Tree-Local MCTAG 92

the dominance chain of their tree vector. The side conditions for the Adjoin non-base

rule enforce that the dominance constraints are satisfied and that the derivational

distance from the base of a tree vector to its currently highest adjoined tree is main-

tained accurately. We note that in order to allow a non-total ordering of the trees in

a vector we would simply have to record all trees in a tree vector in the histories as

is done in the restricted NS MCTAG parser.

3.4.1 Limited Delay V-TAG

We also introduce a slightly more constrained version of Restricted V-TAG, called

Limited Delay V-TAG, that we make use of as our formalism in the linguistic analyses

in Chapter 6. In this version of the formalism all trees must adjoin tree-locally unless

they are explicitly marked for delay with a diacritic (↑). Only the single tree at the

top of the dominance chain may be marked for delay. If a tree set adjoins at a link

that has explicit positions for each of the trees in the set, then the delay tree may

either adjoin at its link location or it may be delayed to a position higher in the

derived tree so long as that position dominates the original link location (which must

in turn dominate the other link locations in order for the dominance constraints to

be satisfied). If a tree set adjoins at a link that has a link location for each tree other

than the tree marked for delay, then the delayed tree must adjoin at a higher location

in the derived tree that dominates the root of the tree where it’s tree set adjoined. As

in Vector TAG, nodes may possess integrity constraints. An integrity constraint

∆ : τ on a node n is violated if the path from a delayed tree to the tree it dominates

from a tree set of category τ passes through n.

Chapter 3: Extensions to Tree-Local MCTAG 93

This alteration effects the parser as follows. If the base tree of tree set β adjoins

to tree α, the highest tree in the β dominance chain that is not marked for delay must

appear in the first history list of α when the root of α is reached and all operations

are complete. This enforces tree locality for all trees other than those marked for

delay. The Filter side condition can check this constraint. That only one tree from a

given tree set is marked for delay may be checked on the lexicon.

3.5 Delayed TL-MCTAG

β11

β12

β2

β4

β21

β22

{ }
β3

β21

β3

β11

β12

{ }{ } β4

β2 β3

β11 β12

β3

β21

β11

β22

β12

Figure 3.4: Examples of 1-delay (top) and 2-delay (bottom) reproduced from Chiang
and Scheffler [2008]. The delays are marked with dashed boxes on the derivation
trees.

Chiang and Scheffler [2008] introduce the delayed TL-MCTAG formalism which

Chapter 3: Extensions to Tree-Local MCTAG 94

makes use of a derivational distance restriction in a somewhat different way. Rather

than restricting the absolute distance between the trees of a set and their nearest

common ancestor, given a node α in a derivation tree, delayed TL-MCTAG restricts

the number of tree sets that are not fully dominated by α. Borrowing directly from

Chiang and Scheffler [2008], Figure 3.4 gives two examples.

Parsing delayed TL-MCTAG is not discussed by Chiang and Scheffler [2008] but

can be accomplished using a similar CKY-style strategy as in the two parsers above.

We present a parser in Figure 3.5. Rather than keeping histories that record deriva-

tional distance, we keep an active delay list for each item that records the delays that

are active (by recording the identities of the trees that have adjoined) for the tree

of which the current node is a part. At the root of each tree the active delay list is

filtered using the Filter side condition to remove all tree sets that are fully dominated

and the resulting list is checked using the Size to ensure that it contains no more than

d distinct tree sets where d is the specified delay for the grammar. The active delays

for a given tree are passed to its derivational parent when it adjoins or substitutes.

Delayed TL-MCTAG differs from both of the previous formalisms in that it places

no constraint on the length of a delay. On the other hand while the previous for-

malisms allow unlimited short delays to be pending at the same time, in delayed

TL-MCTAG, only a restricted number of delays may be active at once. Similar to

restricted V-TAG, there is no simultaneity requirement, so a tree may have another

tree from the same set as an ancestor.

Chapter 3: Extensions to Tree-Local MCTAG 95

Goal Item: Init(α1)
〈α0@ε

•, 0, , , n, ∅, . . . , ∅〉 Label(α0@ε) = S
|α| = 1

Terminal Axiom
〈αx@a•, i, , , i+ 1, ∅, . . . , {αx}〉 Label(αx@a) = wi+1

Empty Axiom
〈αx@a•, i, , , i, ∅, . . . , {αx}〉 Label(αx@a) = ε

Foot Axiom
〈αx@Ft(αx)

◦, p, p, q, q, ∅, . . . , {αx}〉 Aux(αx)

Unary Complete
〈αx@(a · 1)•, i, j, k, l,Λ〉 αx@(a · 2) undefined

〈αx@a◦, i, j, k, l,Λ〉

Binary Complete
〈αx@(a · 1)•, i, j, k, l,Λ1〉〈αx@(a · 2)•, l, j′, k′,m,Λ2〉

〈αx@a◦, i, j ∪ j′, k ∪ k′,m,Λ1 ∪ Λ2〉
Adjoin:

〈βy@ε•, i, p, q, l,Λβ〉〈αx@a◦, p, j, k, q,Λα〉 Adj(αx@a, βy)

〈αx@a•, i, j, k, l,Λ′β ∪ Λα〉 Filter(Λβ,Λ
′
β)

Size(Λ′β) ≤ d
Substitute:

〈βy@ε•, i, , , l,Λβ〉 Subst(αx@a, βy)

〈αx@a•, i, , , l,Λ′β ∪ {αx}〉 Filter(Λβ,Λ
′
β)

Size(Λ′β) ≤ d
No Adjoin:

〈αx@a◦, i, j, k, l,Λ〉
〈αx@a•, i, j, k, l,Λ〉

Figure 3.5: Axioms and inference rules for the CKY algorithm for delayed TL-
MCTAG with a delay of d.

3.6 Complexity

The complexity of the restricted NS MCTAG and restricted V-TAG parsers pre-

sented above depends on the number of possible histories that may appear in an item.

For each step of derivational distance permitted between trees of the same set, the

Chapter 3: Extensions to Tree-Local MCTAG 96

corresponding history permits many more entries. History Λ1 may contain trees that

have adjoined into the same tree as the node of the current item. The number of

entries is therefore limited by the number of adjunction sites in that tree, which is in

turn limited by the number of nodes in that tree. We will call the maximum number

of nodes in a tree in the grammar t. Theoretically, any tree in the grammar could

adjoin at any of these adjunction sites, meaning that the number of possible values

for each entry in the history is bounded by the size of the grammar |G|. Thus the

size of Λ1 is O(|G|t). For Λ2 the entries correspond to tree that have adjoined into

a tree that has adjoined into the tree of the current item. Thus, for each of the t

trees that may have adjoined at a derivational distance of one, there are t more trees

that may have adjoined at a derivational distance of two. The size of Λ2 is therefore

|G|t2 . The combined size of the histories for a grammar with a delay or restriction of

d is therefore O(|G|
Pd
i=1 t

d

). Replacing the sum with its closed form solution, we have

O(|G| t
d+1−1
t−1

−1) histories.

Using the reasoning about the size of the histories given above, the restricted NS

MCTAG parser presented here has a complexity of O(n6 |G|1+ td+1−1
t−1), where t is as

defined above and d is the limit on delay of adjunction. For a tree-local MCTAG,

the complexity reduces to O(n6 |G|2+t). For the linguistic applications that moti-

vate this chapter no delay greater than two is needed, resulting in a complexity of

O(n6 |G|2+t+t2).

The same complexity analysis applies for restricted V-TAG. However, we can

provide a somewhat tighter bound by noting that the rank, r of the grammar—how

many tree sets adjoin in a single tree–and the fan out, f of the grammar—how many

Chapter 3: Extensions to Tree-Local MCTAG 97

trees may be in a single tree set, are limited by t. That is, a complete derivation

containing |D| tree sets can contain no more than t |D| individual trees and also no

more than rf |D| individual trees. In the restricted V-TAG algorithm we maintain

only one tree from a tree set in the history at a time, so rather than maintaining O(t)

entries in each history, we only need to maintain the smaller O(r) entries.

The complexity of the delayed TL-MCTAG parser depends on the number of

possible active delay lists. As above, each delay list may have a maximum of t entries

for trees that adjoin directly into it. The restriction on the number of active delays

means that the active delay lists passed up from these child nodes at the point of

adjunction or substitution can have size no more than d. This results in an additional

td(f − 1) possible entries in the active delay list, giving a total number active delay

lists of O(|G|t(1+d(f−1))). Thus the complexity of the parser is O(n6 |G|2+t(1+d(f−1))).

3.7 Conclusion

Each of the formalisms presented above extends the flexibility of MCTAG beyond

that of TL-MCTAG while maintaining, as we have shown herein, complexity much

less than that of SL-MCTAG. They permit modeling of flexible composition, analyses

of scrambling, the various challenging semantic constructions that we will address in

Chapter 6. We conclude that extending locality by constraining derivational distance

may be an effective way to add flexibility to MCTAG without losing computational

tractability.

Chapter 4

Synchronous Tree-Adjoining

Grammar

Recently, the desire to incorporate syntax-awareness into machine translation sys-

tems has generated interest in the application of synchronous tree-adjoining gram-

mar (STAG) to this problem [Nesson et al., 2006, Chiang and Rambow, 2006]. In a

parallel development, interest in incorporating semantic computation into the TAG

framework has led to the use of STAG for this purpose [Nesson and Shieber, 2007,

Han, 2006a,b, Nesson and Shieber, 2006]. Although STAG does not increase the ex-

pressivity of the underlying formalisms [Shieber, 1994], STAG parsing is known to

be NP-hard due to the potential for intertwined correspondences between the linked

nonterminal symbols in the elementary structures [Satta, 1992, Weir, 1988]. Without

efficient algorithms for processing it, its potential for use in machine translation and

TAG semantics systems is limited.

Given a particular grammar, the polynomial degree of efficient STAG parsing

98

Chapter 4: Synchronous Tree-Adjoining Grammar 99

A

B

C

D

w

A

B

C

DE F G

1

2

3

4

A

B C

D E F G

A

B C

D

2

3

1

4

1 2 3 4 2 4 31

w
′

w w
′

x x
′

y
′

y z z
′

A

B C

D 1

w

3 4

E 2

x

5 A

B C

D

1

3 4E

2

5

w
′

x
′

γ1 : γ2 : γ3 :

Figure 4.1: Example of intertwined links that cannot be binarized. No two links can
be isolated in both trees in a tree pair. Note that in tree pair γ1, any set of three
links may be isolated while in tree pair γ2, no group of fewer than four links may be
isolated. In γ3 no group of links smaller than four may be isolated.

algorithms depends directly on a factor k: the maximum number of intertwined

correspondences that appear within a single elementary structure of the grammar.

This is illustrated by the tree pairs given in Figure 4.1 in which no two numbered

links may be isolated. (By “isolated”, I mean that the links can be contained in a

fragment of the tree that contains no other links and dominates only one branch not

contained in the fragment. A precise definition is given in Section 4.2.)

An analogous problem has long been known to exist for synchronous context-free

grammars (SCFG) [Aho and Ullman, 1969]. The task of producing efficient parsers for

SCFG has recently been addressed by binarization or k-arization of SCFG grammars

that produce equivalent grammars in which the degree of intertwined correspondences

between synchronous rules has been minimized [Zhang and Gildea, 2007, Zhang et al.,

2006, Gildea et al., 2006]. The methods for k-arization of SCFG cannot be directly

applied to STAG because of the additional complexity introduced by the expressivity-

increasing adjunction operation of TAG. In SCFG, where substitution is the only

available operation and the depth of elementary structures is limited to one, the

k-arization problem reduces to analysis of permutations of strings of nonterminal

Chapter 4: Synchronous Tree-Adjoining Grammar 100

symbols. In STAG, however, the arbitrary depth of the elementary structures and

the lack of restriction to contiguous strings of nonterminals introduced by adjunction

substantially complicate the task.

In this chapter I offer the first algorithm addressing this problem for the STAG

case. I present a compile-time algorithm for transforming a STAG into a strongly-

equivalent STAG that optimally minimizes k across the grammar. This is a critical

minimization because k is related to the feature of the grammar that appears in

the exponent of the complexity of parsing algorithms for STAG. The complexity

for a standard STAG parser implementation is O(n4·(r+1) · |G|(r+1)) where r is the

rank of the grammar (see Section 4.1). When k is minimized and the grammar is

factorized, r is equal to k. Thus, by minimizing k, the worst-case complexity of a

parser instantiated for a particular grammar is optimized. The k-arization algorithm

performs in O(|G|+ |Y | · L3
G) time where LG is the maximum number of links in

any single synchronous tree pair in the grammar and Y is the set of synchronous

tree pairs of G. By comparison, a baseline algorithm performing exhaustive search

requires O(|G|+ |Y | · L6
G) time.1

The remainder of this chapter proceeds as follows. In Section 4.1 I provide a

brief introduction to the STAG formalism. I present the k-arization algorithm in

Section 4.2 and an analysis of its complexity in Section 4.3. I prove the correctness

of the algorithm in Section 4.4.

1In a synchronous tree with L links, there are O(L4) pairs of valid fragments, and it takes O(L)
time to check whether the two components in a pair have the same set of links. Once the synchronous
fragment with the smallest number of links is excised, the above process must be iterated at most
L times, resulting in overall time O(L6

G).

Chapter 4: Synchronous Tree-Adjoining Grammar 101

S

V P

V

likes

red candies

aime

les bonbonsrouges

Det

NP↓

S

V P

V NP↓

NP

N

NP

NN∗

N

Adj N∗

N

Adj

S

NP V P

John V

likes

Jean

aime

S

NP V P

V

les

Det

NPNP

red

N

Adj

candies

N

bonbons

N

rouges

N

Adj

2

1

2

1 Jean

NPNP

JohnNP↓ 1 NP↓1

likes

John candies

red

1 2

1

(a)

(b) (c)













Figure 4.2: An example STAG derivation of the English/French sentence pair “John
likes red candies”/“Jean aime les bonbons rouges”. The figure is divided as follows:
(a) the STAG grammar, (b) the derivation tree for the sentence pair, and (c) the
derived tree pair for the sentences.

4.1 Synchronous Tree-Adjoining Grammar

As introduced in Chapter 1, in a synchronous TAG (STAG) the elementary struc-

tures are ordered pairs of TAG trees, with a linking relation specified over pairs of

nonterminal nodes. Each link has two locations, one in the left tree in a pair and the

other in the right tree. An example of an STAG derivation including both substitution

and adjunction is given in Figure 4.2.

Although it is not immediately obvious, STAG is a special case of SL-MCTAG. To

see this, consider how one might convert an arbitrary STAG to an SL-MCTAG. This

can be accomplished simply by adding a single new tree set of length 1 containing

a tree that is rooted in a new start symbol and with a fringe consisting of two sub-

stitution nodes labeled with the start symbols of the source and target grammars of

Chapter 4: Synchronous Tree-Adjoining Grammar 102

the STAG and annotated with a matching link number. For any valid STAG deriva-

tion a final step is added in which the source and target start trees are substituted

into the new start tree to produce a complete and equivalent SL-MCTAG derivation.

The change in formalism does not make any new derivations possible as long as the

non-terminal symbols of the source and target grammars are renamed apart if they

are not already disjoint.

It is worth noting, however, that this SL-MCTAG derivation has some very par-

ticular characteristics. First, it might be called a strictly set-local derivation in that

all tree sets except the new start tree set have length 2 and, if each tree in the tree set

is indexed according to whether it is a source or target tree, all operations will occur

only between trees that have the same index. That is, source trees will only combine

with source trees and target trees will only combine with target trees. Strictness does

not generally hold for SL-MCTAG derivations. Second, an SL-MCTAG grammar may

contain tree sets with length greater than 2 and correspondingly it will also contain

links with more than two link locations.

Although SL-MCTAG parsing is known to be PSPACE-complete, these differences

between STAG and SL-MCTAG result in some efficiency gains in parsing STAG. The

strictness of STAG essentially enforces that STAG operates under the vector definition

rather than the set definition. That is, because each link has exactly one location in

each of the synchronized grammars and that link location can only be used by a tree

from the same grammar, there is no possibility to permute how links are used. In

addition, in STAG the fan out of the grammar, f , is limited to 2. As a result, STAG

parsing can be accomplished using the standard method in O(n4(r+1) |G|(r+1)).

Chapter 4: Synchronous Tree-Adjoining Grammar 103

D

E F

A

B

C

1

2

3 4

y z

5

H

I J2 3

1

NM 4

w
′

x
′

5

L

y
′

K

γ :

x

G

z
′

n1 :

n2 :

n3 :

n4 :

n5 :

Figure 4.3: A synchronous tree pair containing fragments αL = γL(n1, n2) and
αR = γR(n3). Since links(n1, n2) = links(n3) = {2 , 4 , 5}, synchronous fragment
α = 〈αL, αR〉 is valid. Note also that node n3 is a maximal node and node n5 is not.
σ(n1) = 2 5 5 3 3 2 4 4 ; σ(n3) = 2 5 5 4 4 2 .

4.2 k-arization Algorithm

In this section I present the k-arization algorithm. This algorithm factorizes an

STAG grammar into a strongly equivalent STAG grammar in which each tree pair

contains a set of links that cannot be factorized further. I begin by presenting several

definitions that are of use in the algorithm.

For a synchronous tree pair γ = 〈γL, γR〉, a fragment of γL (or γR) is a complete

subtree rooted at some node n of γL, written γL(n), or else a subtree rooted at n

with a gap at node n′, written γL(n, n′); see Figure 4.3 for an example. links(n) and

links(n, n′) are written to denote the set of links of γL(n) and γL(n, n′), respectively.

When the root or gap nodes of some fragment αL are unknown, links(αL) is written.

A set of links Λ from γ can be isolated if there exist fragments αL and αR of γL

and γR, respectively, both with links Λ. If this is the case, a synchronous fragment

α = 〈αL, αR〉 can be constructed. The goal of the algorithm is to decompose γ into

synchronous fragments such that the maximum number of links of a synchronous frag-

Chapter 4: Synchronous Tree-Adjoining Grammar 104

1 1 0 0 0 0 0 0 0 0 1

2 0 1 0 0 0 0 1 0 1 0

5 0 0 1 1 0 0 0 0 0 0

5 0 0 1 1 0 0 0 0 0 0

3 0 0 0 0 0 0 0 1 1 0

3 0 0 0 0 0 0 0 1 1 0

2 0 1 0 0 0 0 1 0 0 0

4 0 0 0 0 1 1 0 0 0 0

4 0 0 0 0 1 1 0 0 0 0

1 1 0 0 0 0 0 0 0 0 1

1 2 5 5 4 4 2 3 3 1

Figure 4.4: Table π with synchronous fragment 〈γL(n1, n2), γR(n3)〉 from Figure 4.3
highlighted.

ment is kept to a minimum, and γ can be obtained from the synchronous fragments

by means of the usual substitution and adjunction operations. In order to simplify

the presentation of the algorithm it is assumed without any loss of generality that all

elementary trees of the source STAG have nodes with at most two children.

4.2.1 Maximal nodes

A node n of γL (or γR) is called maximal if (i) links(n) 6= ∅, and (ii) it is

either the root node of γL or, for its parent node n′, links(n′) 6= links(n). Note that

for every node n′ of γL such that links(n′) 6= ∅ there is always a unique maximal

node n such that links(n′) = links(n). Thus, for the purpose of the algorithm, one

need only look at maximal nodes as places for excising tree fragments. It can be

shown that the number of maximal nodes Mn in a subtree γL(n) always satisfies

|links(n)| ≤Mn ≤ 2× |links(n)| − 1.

Let n be some node of γL, and let l(n) be the (unique) link impinging on n if

Chapter 4: Synchronous Tree-Adjoining Grammar 105

such a link exists, and l(n) = ε otherwise. Let n be associated with a string σ(n),

defined by a pre- and post-order traversal of fragment γL(n). The symbols of σ(n)

are the links in links(n), viewed as atomic symbols. Given a node n with p children

n1, . . . , np, 0 ≤ p ≤ 2, define σ(n) = l(n)σ(n1) · · ·σ(np) l(n). See again Figure 4.3 for

an example. Note that |σ(n)| = 2× |links(n)|.

4.2.2 Excision of Synchronous Fragments

Although it would be possible to excise synchronous fragments without creating

new nonterminal nodes, for clarity a simple tree transformation that leaves existing

nodes intact is used when a fragment is excised. A schematic depiction is given

in Figure 4.5. In the figure the excision process is demonstrated on one half of a

synchronous fragment: γL(n1, n2) is excised to form two new trees. The excised tree

is not processed further. In the excision process the root and gap nodes of the original

tree are not altered. The material between them is replaced with a single new node

with a fresh nonterminal symbol and a fresh link number. This nonterminal node

and link form the adjunction or substitution site for the excised tree. Note that any

link impinging on the root node of the excised fragment is by convention included in

the fragment and any link impinging on the gap node is not.

To regenerate the original tree, the excised fragment can be adjoined or substituted

back into the tree from which it was excised. The new nodes that were generated

in the excision may be removed and the original root and gap nodes may be merged

back together retaining any impinging links, respectively. Note that if there was a

link on either the root or gap node in the original tree, it is not lost or duplicated in

Chapter 4: Synchronous Tree-Adjoining Grammar 106

3

1

1

1

1

2

2

2

2

X X X X

R R
R

R

R

R

G

G

G

G

G

G
X

′

X
′

X
′

∗

X
′

X
′

excise replace transform

γL :

n1 :

n2 :

Figure 4.5: A diagram of the tree transformation performed when fragment γL(n1, n2)
is removed. Shaded or patterned triangles represent segments of the tree that may
comprise multiple nodes and may contain links.

the process.

4.2.3 Method

Let nL and nR be the root nodes of trees γL and γR, respectively. It is clear that

links(nL) = links(nR), and |σ(nL)| = |σ(nR)|, the second string being a rearrange-

ment of the occurrences of symbols in the first one. The main data structure of the

algorithm is a Boolean matrix π of size |σ(nL)| × |σ(nL)|, whose rows are addressed

by the occurrences of symbols in σ(nL), in the given order, and whose columns are

similarly addressed by σ(nR). For occurrences of links j1 , j2 , the element of π at a

row addressed by j1 and a column addressed by j2 is 1 if j1 = j2, and 0 otherwise.

Thus, each row and column of π has exactly two non-zero entries. See Figure 4.4 for

an example.

For a maximal node n1 of γL, let π(n1) denote the stripe of adjacent rows of π

Chapter 4: Synchronous Tree-Adjoining Grammar 107

1: Function Karize(G) {G a binary STAG}
2: G′ ← STAG with empty set of synch trees;
3: for all γ = 〈γL, γR〉 in G do
4: init π and B;
5: while B 6= ∅ do
6: αL ← next fragment from B;
7: αR ← Isolate(αL, π, γR);
8: if αR 6= null then
9: add 〈αL, αR〉 to G′;

10: excise 〈αL, αR〉 from γ;
11: update π and B;
12: add γ to G′;
13: return G′

Figure 4.6: Main algorithm.

addressed by substring σ(n1) of σ(nL). If n1 dominates n2 in γL, let π(n1, n2) denote

the rows of π addressed by σ(n1) but not by σ(n2). This forms a pair of horizontal

stripes in π. For nodes n3, n4 of γR, similarly π(n3) and π(n3, n4) are defined as

vertical stripes of adjacent columns. See again Figure 4.4.

The algorithm is reported in Figure 4.6. For each synchronous tree pair γ =

〈γL, γR〉 from the input grammar, an agenda B is maintained with all candidate

fragments αL from γL having at least two links. These fragments are processed

greedily in order of increasing number of links. The function Isolate(), described

in more detail below, looks for a right fragment αR with the same links as αL. Upon

success, the synchronous fragment α = 〈αL, αR〉 is added to the output grammar.

Furthermore, α is excised from γ and data structures π and B are updated. The

above process is iterated until B becomes empty. Section 4.4 shows that this greedy

strategy is sound and complete.

The function Isolate() is specified in Figure 4.7. It takes as input a left fragment

Chapter 4: Synchronous Tree-Adjoining Grammar 108

1: Function Isolate(αL, π, γR)
2: select n ∈ γR such that σ(n) is the narrowest string within σ(nR) including

left/right boundaries of αL in π;
3: if |σ(n)| = 2× |links(αL)| then
4: return γR(n);
5: select n′ ∈ γR such that σ(n′) is the gap string within σ(n) for which links(n) −

links(n′) = links(αL);
6: if n′ is not defined then
7: return null; {more than one gap}
8: return γR(n, n′);

Figure 4.7: Find synchronous fragment.

αL, which is associated with one or two horizontal stripes in π, depending on whether

αL has a gap node or not. The left boundary of αL in π is the index j1 of the column

containing the leftmost occurrence of a 1 in the horizontal stripes associated with αL.

Similarly, the right boundary of αL in π is the index j2 of the column containing the

rightmost occurrence of a 1 in these stripes. It retrieves the narrowest substring σ(n)

of σ(nR) that spans over indices j1 and j2. This means that n is the lowest node from

γR such that the links of αL are a subset of the links of γR(n).

If the condition at line 3 is satisfied, all of the matrix entries of value 1 that

are found from column j1 to column j2 fall within the horizontal stripes associated

with αL. In this case it reports the right fragment αR = γR(n). Otherwise, it checks

whether the 1 entries that fall outside of the two horizontal stripes in between columns

j1 and j2 occur within adjacent columns, say from column j3 ≥ j1 to column j4 ≤ j2.

In this case, it then checks whether there exists some node n′ such that the substring

of σ(n) from position j3 to j4 is an occurrence of string σ(n′). This means that n′ is

the gap node, and it reports the right fragment αL = γR(n, n′). See again Figure 4.4.

Chapter 4: Synchronous Tree-Adjoining Grammar 109

4.3 Complexity

This section presents an implementation of the algorithm of section 4.2 resulting

in time complexity O(|G|+ |Y | · L3
G), where Y is the set of synchronous tree pairs of

G and LG is the maximum number of links in a synchronous tree pair in Y .

Consider a synchronous tree pair γ = 〈γL, γR〉 with L links. If M is the number

of maximal nodes in γL or γR, then M = O(L) (Section 4.2.1). The sparse table π

is implemented in O(L) space, recording for each row and column the indices of its

two non-zero entries. It is assumed that it is possible to go back and forth between

maximal nodes n and strings σ(n) in constant time. Here each σ(n) is represented by

its boundary positions within σ(nL) or σ(nR), nL and nR the root nodes of γL and

γR, respectively.

At line 2 of the function Isolate() (Figure 4.7) the left and right boundaries are

retrieved by scanning the rows of π associated with input fragment αL. Node n is

then retrieved by visiting all maximal nodes of γL spanning these boundaries. Under

the above assumptions, this can be done in time O(L). Line 5 is implemented in a

similar way, resulting in overall run time O(L) for function Isolate().

The function Karize() (Figure 4.6) uses buckets Bi, 1 ≤ i ≤ L, where each Bi

stores the candidate fragments αL with |links(αL)| = i. To populate these buckets, it

first processes fragments γL(n) by visiting bottom up the maximal nodes of γL. The

quantity |links(n)| is computed from the quantities |links(ni)|, where ni are the highest

maximal nodes dominated by n. (There are at most two such nodes.) Fragments

γL(n, n′) can then be processed using the relation |links(n, n′)| = |links(n)|−|links(n′)|.

In this way each fragment is processed in constant time, and population of all the

Chapter 4: Synchronous Tree-Adjoining Grammar 110

buckets takes O(L2) times.

Now consider the while loop at lines 5 to 11 in function Karize(). For a syn-

chronous tree pair γ, the loop iterates once for each candidate fragment αL in some

bucket. There are a total of O(L2) iterations, since the initial number of candidates

in the buckets is O(L2), and the possible updating of the buckets after a synchronous

fragment is removed does not increase the total size of all the buckets. If the links in

αL cannot be isolated, one iteration takes time O(L) (the call to function Isolate()).

If the links in αL can be isolated, then π must be restructured and the buckets re-

populated. The former can be done in time O(L) and the latter takes time O(L2), as

already discussed. Crucially, the updating of π and the buckets takes place no more

than L − 1 times. This is because each time a synchronous fragment is excised, the

number of links in γ is reduced by at least one.

In conclusion, function Karize() takes time O(L3) for each synchronous tree γ,

and the total running time is O(|G|+ |Y | · L3
G), where Y is the set of synchronous

tree pairs of G. The term |G| accounts for the reading of the input, and dominates the

complexity of the algorithm only in case there are very few links in each synchronous

tree pair.

4.4 Proof of Correctness

The algorithm presented in the previous sections produces an optimal k-arization

for the input grammar. In this section I sketch a proof of correctness of the strategy

Chapter 4: Synchronous Tree-Adjoining Grammar 111

A

B C

D 1

w

3 4

E 2

x

5

B

D 1

w

3

6

n1 :

n2 :

n3 :

n4 :

γ : γ
′
:

A
′

A

Figure 4.8: In γ links 3 and 5 cannot be isolated because the fragment would have
to contain two gaps. However, after the removal of fragment γ(n1, n2), an analogous
fragment γ′(n3, n4) may be removed.

employed by the algorithm.2

The k-arization strategy presented above is greedy in that it always chooses the

excisable fragment with the smallest number of links at each step and does not per-

form any backtracking. It must therefore be shown that this process cannot result

in a non-optimal solution. If fragments could not overlap each other, this would be

trivial to show because the excision process would be confluent. If all overlapping

fragments were cases of complete containment of one fragment within another, the

proof would also be trivial because the smallest-to-largest excision order would guar-

antee optimality. However, it is possible for fragments to partially overlap each other,

meaning that the intersection of the set of links contained in the two fragments is

non-empty and the difference between the set of links in one fragment and the other

is also non-empty. Overlapping fragment configurations are given in Figure 4.9 and

discussed in detail below.

The existence of partially overlapping fragments complicates the proof of optimal-

2Note that the soundness of the algorithm can be easily verified from the fact that the removal
of fragments can be reversed by performing standard STAG adjunction and substitution operations
until a single STAG tree pair is produced. This tree pair is trivially homomorphic to the original
tree pair and can easily be mapped to the original tree pair.

Chapter 4: Synchronous Tree-Adjoining Grammar 112

ity for two reasons. First, the excision of a fragment α that is partially overlapped

with another fragment β necessarily precludes the excision of β at a later stage in

the excision process. Second, the removal of a fragment may cause a previously non-

isolatable set of links to become isolatable, effectively creating a new fragment that

may be advantageous to remove. This is demonstrated in Figure 4.8. These possi-

bilities raise the question of whether the choice between removing fragments α and

β may have consequences at a later stage in the excision process. The proof below

demonstrates that this choice cannot affect the k found for a given grammar. I begin

by sketching the proof of a lemma that shows that removal of a fragment β that

partially overlaps another fragment α always leaves an analogous fragment that may

be removed.

4.4.1 Definition: validity preserving

Consider a STAG tree pair γ containing the set of links Λ and two synchronous

fragments α and β with α containing links links(α) and β containing links(β) and

links(α) (Λ, links(β) (Λ.

If α and β do not overlap, the removal of β is trivially defined as validity preserving

with respect to α. If α and β overlap, removal of β from γ is validity preserving with

respect to α if after the removal there exists a valid synchronous fragment (containing

at most one gap on each side) that contains all and only the links (links(α)−links(β))∪

{x} where x is the new link added to γ.

Chapter 4: Synchronous Tree-Adjoining Grammar 113

(1, 1′)

[[

A

B

C

D

n1 :

n2 :

n3 :

n4 :

A

B C

n5 :

n6 : n7 :

A

B

C D

n8 :

n9 :

n10 : n11 :

(2) (3)

Figure 4.9: The four possible configurations of overlapped fragments within a single
tree. For type 1, let α = γ(n1, n3) and β = γ(n2, n4). The roots and gaps of the
fragments are interleaved. For type 1′, let α = γ(n1, n3) and β = γ(n2). The root
of β dominates the gap of α. For type 2, let α = γ(n5, n6) and β = γ(n5, n7). The
fragments share a root and have gap nodes that do not dominate each other. For
type 3 let α = γ(n8, n10) and β = γ(n9, n11). The root of α dominates the root of β,
both roots dominate both gaps, but neither gap dominates the other.

4.4.2 Lemma: Fragment Excision is Validity Preserving

The lemma presented here proves that removal of any synchronous fragment from

an STAG tree pair is validity preserving with respect to all of the other synchronous

fragments in the tree pair. It suffices to show that for two arbitrary synchronous

fragments α and β, the removal of β is validity preserving with respect to α. This is

shown by examination of the possible configurations of α and β.

Consider the case in which β is fully contained within α. In this case links(β) (

links(α). The removal of β leaves the root and gap of α intact in both trees in the

pair, so it remains a valid fragment. All of the links from links(β) are in links(α),

so links(α) ∩ links(β) = links(β). The new link is added at the new node inserted

where β was removed. Since β is fully contained within α, this node is below the

Chapter 4: Synchronous Tree-Adjoining Grammar 114

remove α

remove β

A

B

C

D

E

F G

n1 :

n2 :

n3 :

n4 :

n5 :

n6 : n7 :

An1 : En5 :

Cn3 :

x x

Dn4 :

Fn6 :

H I

An1 :

Bn2 :

J x

Dn4 :

En5 :

K x

Dn4 :

Figure 4.10: Removal from a tree pair γ containing type 1–type 2 fragment overlap.
The fragment α is represented by the horizonal-lined pieces of the tree pair. The
fragment β is represented by the vertical-lined pieces of the tree pair. Cross-hatching
indicates the overlapping portion of the two fragments.

root of α but not below its gap. Thus, the removal process leaves α with the links

(links(α) − links(β)) ∪ {x}, where x is the link added in the removal process; the

removal is validity preserving.

Synchronous fragments may partially overlap in several different ways. There are

four possible configurations for an overlapped fragment within a single tree, depicted

in Figure 4.9. These different single-tree overlap types can be combined in any way

to form valid synchronous fragments. I consider two illustrative cases here. Note

that in the diagrams that follow, patterned or shaded triangles represent segments

of the tree that contain multiple nodes and at least one link. Where the pattern or

shading corresponds across trees in a tree pair, the set of links contained within those

triangles are equivalent.

An example of removing fragments from a tree set containing type 1–type 2 over-

lapped fragments is given in Figure 4.10. Let α = 〈γL(n1, n3), γR(n5, n6)〉. Let

β = 〈γL(n2, n4), γR(n5, n7)〉. If α is removed, the validity preserving fragment for

Chapter 4: Synchronous Tree-Adjoining Grammar 115

β is 〈γ′L(n1, n4), γ
′
R(n5)〉. It contains the links in the vertical-lined part of the tree

and the new link x . This forms a valid fragment because both sides contain at most

one gap and both contain the same set of links. In addition, it is validity preserving

for β because it contains exactly the set of links that were in links(β) and not in

links(α) plus the new link x . If we instead choose to remove β, the validity preserving

fragment for α is 〈γ′L(n1, n4), γ
′
R(n5)〉. The links in each side of this fragment are the

same, each side contains at most one gap, and the set of links is exactly the set left

over from links(α) once links(β) is removed plus the newly generated link x .

An example of removing fragments from a tree set containing type 1′–type 3

(reversed) overlapped fragments is given in Figure 4.11. If α is removed, the validity

preserving fragment for β is 〈γ′L(n1), γ
′
R(n4)〉. If β is removed, the validity preserving

fragment for α is 〈γ′L(n1, n8), γ
′
R(n4)〉.

Similar reasoning follows straightforwardly for all remaining types of overlapped

fragments.

4.4.3 Proof Sketch: Smallest-First Removal of Fragments is

Optimal

Consider a decision point at which a choice is made about which fragment to

remove. Call the size of the smallest fragments at this point m, and let the set of

fragments of size m be X with α, β ∈ X.

There are two cases to consider. First, consider two partially overlapped fragments

α ∈ X and δ /∈ X. Note that |links(α)| < |links(δ)|. Validity preservation of α with

respect to δ guarantees that δ or its validity preserving analog will still be available

Chapter 4: Synchronous Tree-Adjoining Grammar 116

remove α
remove β

A

B

C

n1 :

n2 :

n3 :

E

F G

n5 :

n6 : n7 :

Dn4 : An1 :

Cn3 :

xH
En5 :

x

Fn6 :

I

Dn4 : An1 :

Bn2 :

xJ↓

Dn4 :

K x

Gn7 :

n8 :

Figure 4.11: Removal from a tree pair γ containing a type 1′–type 3 (reversed) frag-
ment overlap. The fragment α is represented by the horizontal lined pieces of the
tree pair. The fragment β is represented by the vertical-lined pieces of the tree pair.
Cross-hatching indicates the overlapping portion of the two fragments.

for excision after α is removed. Excising δ increases k more than excising α or any

fragment that removal of α will lead to before δ is considered. Thus, removal of δ

cannot result in a smaller value for k if it is removed before α rather than after α.

Second, consider two partially overlapped fragments α, β ∈ X. First note that due

to the validity preservation lemma, an arbitrary choice between the fragments in X

does not affect the opportunity to remove other fragments (or their validity preserving

analogs) in that set at a later point. Removal of fragment α cannot increase the size

of any remaining fragment.

Removal of α or β may generate new fragments that were not previously valid and

may reduce the size of existing fragments that it overlaps. In addition, removal of α

may lead to availability of smaller fragments at the next removal step than removal

of β (and vice versa). However, since removal of either α or β produces a k of size at

least m, the later removal of fragments of size less than m cannot affect the k found

by the algorithm. Finally, note that due to validity preservation, removal of any of

these smaller fragments will still permit removal of all currently existing fragments

Chapter 4: Synchronous Tree-Adjoining Grammar 117

or their analogs at a later step in the removal process.

If the removal of α generates a new fragment δ of size larger than m all remaining

fragments in X (and all others smaller than δ) will be removed before δ is considered.

Therefore, if removal of β generates a new fragment smaller than δ, the smallest-first

strategy will properly guarantee its removal before δ.

4.5 Conclusion

The potential for the use of STAG in machine translation and other natural-

language processing tasks has been limited by the challenges of processing it efficiently.

The difficulty in parsing STAG stems directly from the factor k which indicates the

degree to which the correspondences are intertwined within the elementary structures

of the grammar. The algorithm presented in this chapter is the first method available

for k-arizing a synchronous TAG grammar into an equivalent grammar with an op-

timal value for k. The algorithm operates offline and requires only O(|G|+ |Y | · L3
G)

time. Both the derivation trees and derived trees produced are trivially homomorphic

to those that are produced by the original grammar.

Part II

Linguistic Applications

118

Chapter 5

Modeling the Syntax-Semantics

Interface using Synchronous TAG

Syntactic and semantic structure are so closely related as to suggest a direct

correspondence between them. However, efforts to draw such a connection quickly

encounter the many situations in which they are divergent, such as in the case of

quantifiers and other scope taking elements that appear in vastly different locations

in the syntactic structure than they do in the semantic structure. In this chapter we

propose modeling the syntactic-semantic interface by formally connecting syntactic

and semantic grammars using grammar synchronization. Grammar synchronization

captures the tight coupling between syntax and semantics by enforcing the constraint

that both the syntax and semantics of a sentence must share the same derivational

structure. Intuitively, the derivational structure forms a highly appropriate interface

between the syntax and semantics of natural language. It encapsulates the minimal

information necessary to know which lexical items have combined with each other,

119

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 120

defining the basic semantic relationships present in a sentence. However, derived syn-

tactic and semantic structures are often starkly divergent. Synchronization through

the derivational structure provides sufficient flexibility to support this divergence be-

cause it permits great difference in the syntactic and semantic lexicons.

This chapter makes the first attempt to thoroughly explore the proposal described

in Shieber and Schabes [1990] for using synchronous TAG to model the syntactic-

semantic interface by taking the tree pairs to represent a syntactic analysis synchro-

nized with a semantic analysis. TAG is particularly well-suited as a base formalism

to synchronize for several reasons. First, it naturally models the basic linguistic

operations of argument substitution and optional modification using its operations

substitution and adjunction. Second, it is widely used for analysis of syntactic phe-

nomena by computational linguistics researchers, research into how to incorporate

semantic interpretation into the TAG framework has lagged behind. We offer an al-

ternative to other methods also currently under development. Third, it is potentially

a computationally appealing formalism if a variant that can be processed efficiently

is chosen. Although Part I of this thesis showed that synchronization even of the

simple TAG formalism leads to NP-complete recognition and that recognition of TL-

MCTAG alone is NP-complete, heuristic algorithms may yet be developed that can

run efficiently and in practice even the exact algorithms may run in far less than the

worst case time.

I begin in Section 5.1 by introducing the use of STAG for syntax and semantics

with a simple example and revisit the highly motivating example of quantifier scope

discussed in Shieber and Schabes [1990], showing how use of TL-MCTAG and multiple

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 121

adjunction to model quantifiers can result in a natural prediction of scope ambiguity.

From among the formalisms discussed in Part I, I begin with a focus on synchronous

TL-MCTAG as a base formalism. As is apparent even from the introductory exam-

ples, two aspects of TL-MCTAG are critical to the correct predictions made by the

grammars presented in this chapter: multicomponent tree sets, a tree-level domain of

locality. Multicomponent tree sets in combination with multiple adjunction are used

to model noun phrases, and in particular quantifiers and Wh-words, to produce the

flexibility in quantifier scope ordering that we find in natural language. The tree-

local domain of locality contributes to correct predictions about a wide variety of

locality constraints and movement restrictions including restrictions on scoping out

of the finite clause, limits on extraction such as the Complex NP constraint, and

topicalization and covert movement.

Certain phenomena and constructions cannot be modeled with TL-MCTAG alone

as the base formalism. We explore these cases and how they can be handled using

limited delay V-TAG (see Chapter 3) in Chapter 6.

5.1 Background

The underlying idea in using synchronous TAG to model the syntax-semantics

interface is that each lexical item is comprised of one or more trees that model its

syntactic structure paired with one or more trees modeling its semantic structure.

Although the structure of the syntactic pieces and the semantic pieces may differ

substantially, it is intuitively clear that there are relationships between internal lo-

cations with the syntax and semantics of each of the lexical items. We make these

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 122

connections explicit by linking them in the formalism. When two lexical items com-

bine, the syntax of one item connects to the syntax of the other at the same time the

semantics of one item connects to the semantics of the other. The way in which the

items combine is governed by the linked locations: a syntax operation occurring at a

given link must occur in tandem with a semantic operation at the same link.

The syntactic trees in the elementary tree sets will likely appear familiar to those

commonly seen in TAG syntactic analyses. The internal nodes of these trees are

labeled with syntactic categories. The frontier nodes are either terminal nodes labeled

with words from the lexicon or nonterminal nodes marked for use by one of the TAG

operations and labeled with with syntactic categories. The semantic trees are less

familiar but are similar in concept. The lexical content of a semantic tree is a λ-term

representing the meaning of the lexical item. The internal nodes of the semantic trees

are marked with semantic types. The frontier nodes are either terminal nodes labeled

with meanings of words from lexicon or other elements of the λ-term such as λs or

variables, or nonterminal nodes marked for use by a TAG operation and labeled with

semantic types.

We proceed in this chapter to build up a grammar beginning with the most ba-

sic grammatical constructions, such as predication and modification, and then pro-

ceeding through increasingly complex constructions (quantification, wh-movement,

embedding verbs, restrictions on movement out of islands and clauses, and binding

theory) showing how they can be analyzed using synchronous TL-MCTAG. In the

process we demonstrate the elegance with which TL-MCTAG handles (and sometimes

predicts) the constraints on locality and movement that often pose challenges even

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 123

NP e

John john




S

NP↓ 〈e, t〉 e↓

V

escaped
escaped

1 V P

t


1

Figure 5.1: A STAG grammar for the sentence “John escaped.”

for systems that produce syntax alone and certainly for systems that seek to provide

semantics as well.

5.2 Predication

We begin with a simple example of predication:

(1) John escaped.

The elementary tree pairs used to derive sentence (1) are given in Figure 5.1. The

syntax of john is a noun phrase nonterminal node dominating the single terminal

node containing the lexical content. The semantics of john is a nonterminal node

labeled with type e for entity and dominating the representation of the meaning of

john. The syntax for the verb escaped demonstrates the expected structure for an

intransitive verb with the location for the subject position marked for substitution of

a noun-phrase in order to form a complete sentence. The semantics similarly shows

escaped to be a function of type 〈e, t〉 (entity to truth value) applied to an entity that

will be received by substitution in order to produce a complete sentence with a truth

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 124

e

john

S

〈e, t〉

V

escaped
escaped

V P

t

NP

John

derived tree pair:

〈 John escaped, escaped(john) 〉

escaped

john

1

derivation tree:

Figure 5.2: The derived tree pair and derivation tree for the sentence “John escaped.”

value as its semantic type.

The derivation of sentence (1) is accomplished by a single TAG substitution op-

eration in which john substitutes into escaped at link 1 in the escaped tree. The

resulting trees as well as the derivation tree are given in Figure 5.2. The sentence

can be read off the resulting derived syntactic tree by reading the terminal symbols

from left to right. The λ-term for the meaning of the sentence can be read off the

semantic tree by treating the leftmost terminal symbol on a branch as a functor and

the remaining siblings as its arguments. Standard β-reduction can be used to reduce

the λ-term if necessary. In the case of sentence (1), the lexical content of the derived

tree is “John escaped” and the semantic content is escaped(john).

The derivation tree fully specifies the operations necessary to reproduce this

derivation. In the derivation tree john is a child of escaped because it substitutes

into escaped in the derivation. The arc connecting them is marked with the link at

which the operation occurred to specify the locations in the escaped tree set at which

the substitution took place.

A transitive verb, such as likes, provides a slightly more complex example:

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 125

maryMary




NP eS

NP↓ 〈e, t〉 e↓

V

likes likes

1

2

V P

NP↓

t

〈e, 〈e, t〉〉 e↓




1

2

S

〈e, t〉

V

likes likes

V P

t

〈e, 〈e, t〉〉

mary

e

Mary

NP

NP e

John john

derived tree pair: derivation tree:

〈 John likes Mary, likes(mary,john) 〉

likes

john mary

1 2

Figure 5.3: Additional lexical items for an STAG grammar for the sentence “John
likes Mary” as well as the derived tree pair and the derivation tree for the sentence.

(2) John likes Mary.

The additional lexical items as well as the derived tree pair and derivation tree for

sentence (2) are given in Figure 5.3. In this example, the syntax of the verb offers two

sites for substitution, one for the subject and one for the object. In correspondence,

the semantics also contains two substitution sites for the two semantic roles. The

links are numbered so that the subject in the syntax corresponds to the subject in

the semantics and the object in the syntax corresponds to the patient in the semantics.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 126

V P

Adv V P∗

t

allegedly allegedly

〈t, t〉 t∗




V P

AdvV P∗

t

〈t, t〉 t∗




twice twice

S

NP↓ 〈e, t〉 e↓

V

escaped
escaped

1 V P

t


1

1 11 1

2

2

Figure 5.4: Lexical entries for the adverbs in the sentences “John allegedly escaped”
and “John allegedly escaped twice” as well as an updated entry for escaped containing
a link to permit modification.

5.3 Modification

We now augment our verb trees with additional links to permit optional modifi-

cation so that we can derive sentences such as:

(3) John allegedly escaped.

(4) John allegedly escaped twice.

The adjunction operation in TAG allows for very natural modeling of modification

such as in the above examples. In our grammar, this analysis is embodied in the

elementary tree sets for adverbs such as allegedly and twice, which appear as auxiliary

trees. These trees as well as the verb tree for escaped updated with a link to permit

modification are given in Figure 5.4. The analysis of sentence (3) is straighforward

and is given in Figure 5.5. The adverb adjoins at link 2 , which is the verb phrase

node in the syntax but which results in the adverb modifying the entire proposition

in the semantics.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 127

V P

Adv

t

allegedly

allegedly

〈t, t〉

S

〈e, t〉

V

escaped
escaped

V P

tNP

eJohn

john

derived tree pair: derivation tree:

escaped

john allegedly

1 2

〈 John allegedly escaped, allegedly(escaped(john)) 〉

Figure 5.5: Derived tree pair and derivation tree for the sentence “John allegedly
escaped.”

Sentence (4) provides an interesting example of the semantic ambiguity that can

arise from multiple modifications. This sentence produces two readings, one in which

the proposition that is alleged is that John escaped twice and one in which has

twice been the case that John allegedly escaped (whether or not he actually escaped

in either attempt). The usual method for handling multiple modification in TAG

syntax is to have one modifier adjoin to the other modifier so as to avoid use of

multiple adjunction. Now that we have incorporated semantics, the choice of which

adverb adjoins to the other adverb will also determine the order in which they take

scope in the semantics. If we adjoin allegedly into twice we will produce the read-

ing where allegedly outscopes twice: allegedly(twice(escaped(john))). If we adjoin

twice into allegedly we will produce the reading in which twice outscopes allegedly :

twice(allegedly(escaped(john))). Although the resulting sentence is the same, these

are two distinct derivations in which both the syntactic and semantic trees exhibit

different structure. These two analyses are shown in Figure 5.6.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 128

V P

Adv

t

allegedly

allegedly

〈t, t〉

S

〈e, t〉
V

escaped
escaped

V P

t

NP

e

John

john

derived tree pair:

derivation tree:

escaped

john

allegedly

1 2

〈 John allegedly escaped twice,
allegedly(twice(escaped(john))) 〉

V P

Adv

t

〈t, t〉

twice

twice

twice
1

V P

Adv

t

allegedly

allegedly

〈t, t〉

S

〈e, t〉
V

escaped
escaped

V P

t

NP

e

John

john

derived tree pair:

V P

Adv

t

〈t, t〉

twice

twice

derivation tree:

escaped

john allegedly

1 2

twice
1

〈 John allegedly escaped twice,
twice(allegedly(escaped(john))) 〉

Figure 5.6: Derived tree pairs and derivation trees for the two readings of “John
allegedly escaped twice.” using the usual TAG method of adjoining multiple modifiers
into each other before attaching to the main verb.

A third analysis of sentence (4) makes use of multiple adjunction to capture the

semantic (and syntactic) ambiguity. In this analysis, both allegedly and twice are held

in an equal relationship with respect to the verb and the scope ambiguity between

them is captured in the derivation, which may be resolved with either one taking the

wider scope. The derived trees and resulting strings and interpretations are the same

as given in Figure 5.6 but they are produced from a single derivation tree in which the

order of attachment at link 2 in the escaped tree is underspecified. This derivation

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 129

derivation tree:

escaped

john allegedly

1
2

twice

2

〈 John allegedly escaped twice, allegedly(twice(escaped(john))) 〉
〈 John allegedly escaped twice, twice(allegedly(escaped(john))) 〉

Figure 5.7: Derivation tree and derived syntax and semantic pairs for the sentence
“John allegedly escaped twice” using an analysis where the adverbs multiply adjoin
into the main verb.

tree is given in Figure 5.7.

Although there is no ambiguity in the derived string, the ambiguity in the derived

trees exists in the syntax as well as the semantics because both adverbs adjoin at

the verb phrase node. This naturally raises the question whether the disambiguation

order in the syntax must match the disambiguation order in the semantics. In our

example, it is not possible to tell. However, in cases in which the adverbs appear on

the same side of the verb in the derived syntax, this ordering between the multiply

adjoined elements on the syntactic side appears to govern the scope ordering on the

semantic side as well as shown by the contrast between the following sentences:

(5) John almost heroically escaped.

(6) John heroically almost escaped.

These two sentences have subtly different meanings that correspond to the different

scope orderings of almost and heroic. This is a specific example of a widely accepted

linguistic generalization that scope taking elements take scope in the order they ap-

pear along the V P spine in the syntax.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 130

Although the same derived trees are produced for sentence (4) (“John allegedly

escaped twice”) by the two methods of analysis, other examples offer reasons to prefer

the multiple adjunction analysis. Consider the phrases:

(7) roasted red pepper

(8) baked red pepper

In the analysis in which roasted or baked must adjoin into red before the two adjoin

to pepper we break the direct relationship between the first adverb and the noun it

modifies. However, as evidenced by this example, for applications in which one is

trying to predict the likelihood of the occurrence of the word pepper in the context,

this relationship is critical. The occurrence of pepper is much greater in the first

phrase than the second because it is typical to refer to the process of cooking peppers

in an oven as roasting rather than baking.

5.4 Basic Quantification

The semantics of quantification can be modeled easily using synchronous TL-

MCTAG by augmenting our analysis of noun phrases to account for their potential

to act as scope-taking elements. Consider the sentence:

(9) Everyone escaped.

Figure 5.8 shows the lexical items necessary to analyze sentence (9). The elemen-

tary tree set for every consists of two syntax and two semantic trees. The semantic

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 131

S∗

NP

Det N↓

every

t

every x t∗t

〈e, t〉↓ e

x x

e


1 1

N 〈e, t〉

one person




S

NP↓ 〈e, t〉 e↓

V

escaped
escaped

1 V P

t


12

21 1

NP e

John john




S∗ t∗

Figure 5.8: The elementary tree pairs for the sentence “Everyone escaped”.

tree encodes a four-part quantifier analysis. The top tree is an auxiliary tree giving

the quantifier itself, its variable, and its restriction. This tree adjoins into the nuclear

scope of the quantifier. The bottom tree is an initial tree containing just the bound

variable that substitutes into the nuclear scope of the quantifier. In the syntax the

top tree is an auxiliary tree consisting of a single node so that when it adjoins it has

no effect on the structure of the derived tree. For now, this tree is included in the

tree set for symmetry with the make up of the semantic trees of the tree set, but later

in this chapter its inclusion will be motivated by the analysis of other noun phrases

such as Wh words and other configurations such as topicalization. The bottom tree

in the syntax is the usual noun phrase tree that one expects in noun phrase syntax.

In order for quantifiers to adjoin they require links that have positions for both trees

in the syntax and semantics.1 As a result, the links intended for use by noun phrases

are updated to have two locations in the syntax and two locations in the semantics.

1The multicomponent approach to quantifiers in STAG was first suggested by Shieber and Schabes
[1990] under the rewriting definition of STAG derivation where the order of rewriting produced the
scope ambiguity. Williford [1993] explored the use of multiple adjunction to achieve scope ambiguity.
The multicomponent quantifier approach followed by Joshi et al. [2003] is syntactically based. In
their work, a single-node auxiliary tree is used for the scope part of the syntax in order to get
the desired relationship between the quantifier and the quantified expression in features threaded
through the derivation tree and hence in the semantics. The additional node in the syntax is not
needed for this purpose because the semantics are modeled explicitly. However, as noted, its inclusion
will be independently motivated.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 132

NP

Det

every

t

every x t

e

x x

eN 〈e, t〉

one person

S

〈e, t〉V

escaped escaped

V P t

escaped

every

person

1

1

derived tree pair: derivation tree:

〈 Everyone escaped, every(x,person(x),escaped(x)) 〉

Figure 5.9: Derived tree pair and derivation tree for the sentence “Everyone escaped”.

This is shown in the lexical entry for escaped in Figure 5.8. For uniformity the lexical

entries for non scope-taking noun phrases such as john are also updated so that they

may use these expanded links. As with the vestigial tree in the syntax of quanti-

fiers, these vestigial trees in non-quantificational noun phrases will be independently

motivated later in this chapter.

To derive sentence (9), every adjoins into escaped at link 1 . The node labels of

the trees determine which trees adjoin at which locations of the link.2 This produces

the derived tree pair and derivation tree shown in Figure 5.9.

The following sentence provides a more interesting and complex example:

(10) Everyone likes someone.

every(x, person(x), some(z, person(z), like(x, z)))

some(z, person(z), every(x, person(x), like(x, z)))

2Although in an implementation we would use the vector definition and index the trees in the
elementary tree vectors, we omit indices in the elementary structures for simplicity of presentation
in this chapter because the intended adjunction sites are clear from the node labels and the implicit
dominance relations within elementary tree sets.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 133

S∗

NP

Det N↓

t

t∗t

〈e, t〉↓ e

some

some y

y y

e


11

S

NP↓ 〈e, t〉 e↓

V

likes likes

1

2

3V P

NP↓

t

〈e, 〈e, t〉〉 e↓




1

2

31 1 22

Figure 5.10: Additional elementary tree pairs for the sentence “Everyone likes
someone”.

For sentence (10), we would like to generate a scope-neutral semantic representation

that allows both the reading where some takes scope over every and the reading

where every takes scope over some. Similar to the use of multiple adjunction to model

modifiers, we propose a solution in which a derivation tree with multiple adjunction

nondeterministically determines multiple derived trees each manifesting explicit scope

[Schabes and Shieber, 1993]; the derivation tree itself is therefore the scope neutral

representation.

This results in the derivation tree and derived trees shown in Figure 5.11 for sen-

tence (10). Note that the resulting derivation tree necessarily incorporates multiple

adjunction. The scope parts of both every and some attach at the root of the se-

mantic tree of likes. This induces ambiguity: the derivation is ambiguous as to which

quantifier scopes higher than the other. This ambiguity in the derivation tree thus

models the set of valid scopings for the sentence. In essence, this method uses multiple

adjunction to model scope-neutrality.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 134

〈e, t〉

likes

t

〈e, 〈e, t〉〉

NP

Det

every

S

V

likes

V P

N

one

NP

Det

some

N

one

t

every x t

e

x

x

e

t

t

e

some y

y

y

e

〈e, t〉

person 〈e, t〉
person

〈e, t〉

likes

t

〈e, 〈e, t〉〉

t

every x

t

e

x x

e

t

t

e

some

y

y

e

〈e, t〉
person 〈e, t〉

person

y

likes

every some

person person

1

1 1

2

derived trees (1 syntax, 2 semantic):

derivation tree:

〈 Everyone likes someone,
every(x, person(x), some(y, person(y), likes(y, x))) 〉

〈 Everyone likes someone,
some(y, person(y), every(x, person(x), likes(y, x))) 〉

Figure 5.11: The derivation tree and derived syntactic and semantic trees for the
sentence “Everyone likes someone”. Note that the derivation tree is a scope neutral
representation: depending on whether every or some adjoins higher, different semantic
derived trees and scope orderings are obtained.

5.5 Wh Questions

In TAG syntax, Wh questions are typically formed using special alternative verb

trees that have a location for the Wh word and lack a location for one of the usual

noun phrase arguments. The inclusion of semantics in this system and the structure

already adopted for noun phrases suggests a more semantically plausible method of

analyzing Wh words that does not require the addition of alternative verb trees.

Rather than marking the coindexation of the Wh word and its trace on the verb

tree (or failing to mark it at all), Wh words are treated much like quantifiers with

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 135

S

S∗

t

t∗z

whoi

who

e

z

NP

NP

ti




S

S∗

t

t∗z

e

z

NP

NP

ti


N↓whichi

which t

e

z

〈e, t〉↓1 1

Figure 5.12: The lexical entry for who.

tree sets in which both the syntax and semantics of the Wh word contain two trees.

In the syntax, one tree contains the lexical content of the Wh word and the other

tree contains the coindexed trace in a noun phrase that can fill one of the argument

positions of the verb to which the Wh word attaches. In the semantics, a Wh word

consists of a auxiliary tree that includes the wh word, and its variable and adjoins

into its scope and an initial tree that contains only the bound variable and substitutes

into the scope of the Wh question. Structurally, then, Wh word lexical entries are

very similar to those of other noun phrases: they consist of two syntactic trees (an

auxiliary tree with root and foot labeled with S and an initial tree with root labeled

with NP) and two semantic trees (an auxiliary tree with root and foot labeled with

t and an initial tree with root labeled with e). The form and use of Wh words is

demonstrated by the analysis of the following sentences using the lexical entries for

who and which given in Figure 5.12:

(11) Who escaped? (Whoi escaped ti?)

(12) Which person escaped? ([Which person]i escaped ti?)

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 136

For both sentence (11) and sentence (12), the Wh word adjoins to the main verb,

both filling the argument position and forming the Wh question with the Wh word

fronted. The resulting derived tree pairs and derivation trees are given in Figure 5.13.

escaped

who
1

e

tS

NP V P

V

escaped

S

NP

whoi

escaped

〈e, t〉

t

zwho

escaped
1

e

tS

NP V P

V

escaped

S

NP

escaped

〈e, t〉

t

z

whichi N

person

which t

e

z

〈e, t〉

person

which

person
1

ti z ti z

derived tree pairs:

derivation trees:

〈 Who escaped,
who(z,escaped(z)) 〉

〈 Which person escaped,
which(z, person(z), escaped(z)) 〉

Figure 5.13: The derived tree pairs and derivation trees for the sentences “Who
escaped?” and “Which person escaped?”.

It is necessary to add something additional to prevent the formation of multiple

wh-questions within the same finite clause as exemplified by the following sentence:

(13) *Who does who like? (Whoi does whoj tj like ti?)

We use finite features in the semantic tree to enforce this restriction. We introduce a

feature wh that has values drawn from the set {+,-}. An example of how this feature

is used to rule out Sentence (14) is given in Figure 5.14.

The interaction of quantifiers and Wh words falls out naturally from the lexical

items already introduced, as exemplified by the following sentence:

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 137

WH

t

t∗

[
t: [wh: -]
b: []

]
t

FINITE
VERB

[
t: []
b: [wh: -]

]
t

t∗

[
t: []
b: [wh: x]

]
[

t: [wh: x]
b: []

]
OTHER

t

FINITE
VERB

WH

tWH

t

[wh: -]

[wh: +]

t

FINITE
VERB

WH

tWH

t

[
t: [wh: -]
b: [wh: -]

]
[

t: [wh: -]
b: [wh: +]

]
[

t: []
b: [wh: +]

]

X

[
t: []
b: [wh: +]

]

[
t: [wh: -]
b: [wh: +]

]

Figure 5.14: Schematic representations of lexical items for Wh words and finite verbs
and other lexical items that adjoin at t are given along with a diagram demonstrating
the invalidity of the sentence “Whoi does whoj tj like ti?”. Note that other lexical
items that adjoining at t do not affect the number of Wh words permitted to adjoin
to a single finite verb because they simply pass along the wh feature. (Analysis of
do-support is omitted for simplicity.)

(14) Who does everyone like? (Whoi does everyone like ti?)

who(z, every(x, person(x), like(z, x)))

every(x, person(x),who(z, like(z, x)))

The derived trees and derivation tree for sentence (14) are given in Figure 5.15. As

with sentences with multiple quantifiers, the scope ambiguity between the Wh word

and the quantifier arises directly from the multiple adjunction of their scope parts at

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 138

likes

everywho

1 2

e

t

S

V P

V NP

likes

S

NP

whoi

likes

〈e, t〉
〈e, 〈e, t〉〉 e

t

zwho

z

ti

NP

Det

every

N

one

t

every x t

e

x

〈e, t〉
person x

e

t

likes

〈e, t〉
〈e, 〈e, t〉〉 e

t

zwho

z

t

every x t

e

x

〈e, t〉
person

x

person
1

derived trees (1 syntax, 2 semantic):

derivation tree:

〈 Who does everyone like,
every(x, person(x),who(z, likes(z, x))) 〉

〈 Who does everyone like,
who(z, every(x, person(x), likes(z, x))) 〉

Figure 5.15: Derived trees and derivation tree for the sentence “Who does everyone
like?”

the root of the tree for likes in the semantics.

5.6 In Situ Wh Questions and Topicalization

The two-part analysis of the syntax and semantics of Wh words suggests a simple

and elegant correspondence between their usual fronted location in the syntax and

their unmoved location in in situ Wh questions (also called covert movement). An

alternative elementary tree set is added for each Wh word that characterizes the

in situ Wh question syntax. In these tree sets the lexical content of the Wh word

is moved to the NP -rooted tree rather than appearing in the S-rooted tree. The

semantic trees from these alternative sets are the same as in the standard Wh word

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 139

S∗ t

t∗z

whoi

who

e

z

NP




S∗ t

t∗z

e

z

NP


N↓whichi

which t

e

z

〈e, t〉↓1 1

Figure 5.16: Alternative elementary tree sets for Wh words used to model in situ
Wh questions. Note that the semantics is unchanged from the standard Wh word
elementary tree sets and that the syntactic trees have the standard noun phrase
signature of an S-rooted auxiliary tree and and NP -rooted initial tree.

S

〈e, t〉V

likes

likes

V P t

〈e, 〈e, t〉〉

t

z

who

who

e

z

NP

john

e

NP

John

likes

john who

1 2

derived tree pair: derivation tree:

〈 John likes who?,
who(z, likes(z, john)) 〉

Figure 5.17: Derived tree pair and derivation tree for the sentence “John likes who?”

elementary tree sets and the syntactic signature—the number of trees in the set and

their root and foot node labels—is the same as in the standard Wh word elementary

tree sets. Using the alternative syntax tree set given in Figure 5.16 we model in-place

use of wh-words as in sentence (15) while still maintaining the usual semantic analysis

(Figure 5.17).

(15) John likes who?

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 140


NP e

S

S∗

t∗

Johni john

S∗NP

Det N↓

t

x t∗t

〈e, t〉↓ e

x x

e


1 1

two

twoi

NP

ti

S

NP

ti

Figure 5.18: Alternative tree pairs for John and two that model topicalization. Note
that the semantics are unchanged from the standard elementary tree sets.

This insight extends to an elegant analysis of topicalization as well. The vestigial

S∗ tree that we added to the tree set for the syntax of every non-quantificational noun

phrase need not always be contentless. Just as we moved the lexical content of who

from the S-rooted tree in its set to the NP -rooted tree to model in situ wh-words, the

lexical content of noun phrases may be moved to the top tree in their sets to model

topicalization. For instance, the alternative tree pair for John shown in Figure 5.18

provides for an analysis of sentence (16) (Figure 5.19).

(16) Johni, Mary likes ti.

The analysis also works for topicalized quantificational NPs so that sentence (17)

follows from the tree pair for two also given in Figure 5.18. The analysis sentence (17)

is given in Figure 5.19.

(17) [Two books]i, Mary likes ti.

Although the structure of the semantic trees is the same in the usual elementary tree

sets and the alternative elementary tree sets presented in this section, there are likely

to be subtle differences in the semantics that will be represented by a difference in

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 141

NP

S

Johni

S 〈e, t〉

V

likes

likes

V P

t

〈e, 〈e, t〉〉 e

NP

e

NP

likes

john
1 2

derived tree pair: derivation tree:

john

mary

ti

Mary

mary

S

〈e, t〉

V

likes likes

V P

t

〈e, 〈e, t〉〉 eNP

eNP

likes
1 2

derived tree pair: derivation tree:

〈 Two books, Mary likes.
two(x, book(x), like(x,mary)) 〉

mary

ti

Mary

maryNP

Det

t

x t

e

x

two

twoi

S

x

N 〈e, t〉

books books

two

books
1

〈 John, Mary likes.
likes(john,mary) 〉

Figure 5.19: Derived tree pairs and derivation trees for the sentences “John, Mary
likes.” and “Two books, Mary likes.”

features in the elementary tree sets. For instance, in the topicalization case a feature

in the semantics may indicate a focus on the topicalized entity.

5.7 Raising, Embedding and Control Verbs

5.7.1 Raising Verbs

Structural differences in the lexical entries for embedding, raising, and control

verbs can straightforwardly account for their different properties. Raising verbs, such

as seem, do not themselves assign a semantic role to their subjects. Even though

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 142

V P

V V P∗

t

seem seem

〈t, t〉 t∗




S

NP↓ 〈e, t〉 e↓

V

1 V P

t




1

1 1

think think

〈t, 〈e, t〉〉S∗ t∗




S

NP↓ V P

V S∗

NP

ε

try

t

e↓〈e, t〉
λx

x

t

e〈e, t〉
〈t, 〈e, t〉〉 t∗

try

x

e

11

1 1

S

NP↓ 〈e, t〉 e↓

V

escaped
escaped

1 V P

t


12

21 13 3

2 2

S

NP↓ 〈e, t〉 e↓

V

likes likes

1

2

3V P

NP↓

t

〈e, 〈e, t〉〉 e↓




1

2

31 1 22 4 4

Figure 5.20: Lexical entries for example raising (seem), embedding (think), and con-
trol (try) verbs. The raising verb does not take its own subject but adjoins in under
the subject of another verb. The embedding verb has its own subject independent
from the subject of the verb it adjoins to. The control verb takes a subject and uses a
bound variable to control the subject (or object) of the verb it adjoins to. An updated
lexical entries for verbs escape and like are also included showing an additional link
at the root of the syntax and semantics trees that can be used by embedding and
control verbs.

the subject appears in the subject position of the raising verb, the semantic role is

assigned by the verb in the lower clause. Consider the sentence:

(18) John seemed to escape.

For this sentence we wish to generate the semantics seem(escape(john)). Typically

in TAG syntax, raising verbs are analyzed as verb phrase modifiers so that they do

not contribute their own subject to the syntactic tree but instead insert themselves

underneath the subject of the lower verb in the sentence. Following this practice, if

we analyze raising verb semantics the same way that we analyze other verb phrase

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 143

V P

V

t

seem

seem

〈t, t〉

S

〈e, t〉

V

escape
escape

V P

t

1 2

NP

eJohn

john

escape

john seem

derived tree pair: derivation tree:

〈 John seemed to escape, seem(escape(john)) 〉

Figure 5.21: Derived tree pair and derivation tree for the sentence “John seemed to
escape”. Aspects of the derivation that are accomplished with syntactic features such
as verb form and tense are omitted for simplicity.

modifiers in our lexicon such as adverbs, we produce the desired result. That is, we

analyze the semantics of raising verbs as auxiliary trees that adjoin at the level of the

proposition in the semantics. The lexical entry for seem demonstrating this analysis

is given in Figure 5.20. The derived trees and derivation tree for sentence (18) are

given in Figure 5.21.3

5.7.2 Embedding Verbs

Embedding verbs, such as think and say, take complete sentences as their com-

plements and also have a syntactic subject to which they assign a semantic role. This

exemplified by the following sentence:

3This analysis makes the prediction that quantifiers and raising verbs should scope freely with
respect to each other. This is clearly true in sentences such as the following in which both a de dicto
and de re reading are available:

(19) Someone seemed to escape.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 144

escaped

john

john

e

escaped

t

〈e, t〉thinks

t

〈e, t〉
〈t, 〈e, t〉〉 mary

e thinks

mary

1

1

3

S

V

V P

thinks

NP

S

V

escaped

V PNP

John

Mary

derived tree pair: derivation tree:

〈 Mary thinks John escaped,
thinks(escaped(john),mary)) 〉

Figure 5.22: Derived tree pair and derivation tree for the sentence “Mary thinks John
escaped”.

(20) Mary thinks John escaped.

It is standard in TAG syntax to analyze embedding verbs as auxiliary trees that

take their complements by adjoining into them. Straightforward extension of this

analysis to include semantics (Figure 5.20) produces a satisfactory analysis for sen-

tence (20), as shown by the derived trees and derivation tree given in Figure 5.22. The

motivation for this analysis of embedding verbs as opposed to one in which the verb

takes its complement by substitution arises from the acceptability of unbounded long-

distance movement of Wh words (and pied-piped accompaniments to them) beyond

the boundary of the finite clause. This is exemplified by the following sentence:

(21) Whoi does Bill think Paul says John likes ti?

As shown in the derivation tree in Figure 5.23, in sentence (21), the Wh word adjoins

to the main verb likes. The embedding verbs adjoin to each other in a chain and

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 145

likes

whojohn says

paul think

bill

1
2

4

1 2

1

S

〈e, t〉
V

likes likes

V P

t

〈e, 〈e, t〉〉

S

〈e, t〉
V

V P

t

think think

〈t, 〈e, t〉〉S

V

V P

say

NP

e

john

NP

Bill

Paul

NP

John

S t

z

whoi

who

e

z

NP

NP

ti

〈e, t〉
t

〈t, 〈e, t〉〉

say

e

bill

e

paul

derived tree pair:

derivation tree:

〈 Who does Bill think Paul says John likes,
who(z, thinks(says(likes(z, john), paul), bill)) 〉

Figure 5.23: Derived tree pair and derivation tree for the sentence “Who does Bill
think Paul says John likes?”. The tree pair for says is omitted because it are isomor-
phic the one for think. Similarly, we leave lexical items for Bill and Paul implicit.

ultimately adjoin to the main verb. Because the embedding verbs adjoin to the main

verb, an arbitrary distance can arise between the Wh word and its trace. Syntacti-

cally, this analysis works well but Kallmeyer and Romero [2004] highlight this case as

difficult for TAG semantics because the derivation tree appears to lack the necessary

direct relationships: there is no link in the derivation tree between who and thinks or

between thinks and likes, but in the desired semantics who takes scope over the thinks

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 146

proposition and the likes proposition is an argument to thinks. In our analysis, how-

ever, the semantics follows quite naturally because who and the chain of embedding

verbs multiply adjoin at the level of the proposition of the main verb.

The lexical ordering of the Wh word with the embedding verbs in the syntax

(where there is multiple adjunction at the sentence level) dictates as desired that

the Wh word should outscope the embedding verbs in the semantics. However, this

alone is not necessarily sufficient to enforce the requirement that Wh words outscope

embedding verbs. For instance, in cases in which the Wh word is not fronted (as in

covert movement) there is no lexical information in the syntax that can be used to

dictate the relative scope of the Wh word and the embedding verbs.

A similar problem is posed by the relationship between quantifiers and embedding

verbs. That quantifiers cannot scope out of their clause is modeled directly by the

locality constraints of TL-MCTAG and the design of the lexicon. Due to the tree

locality constraint, when the quantifier adjoins to a main verb or other lexical ele-

ment, the scope of the quantifier is limited to the highest t node within the tree to

which it adjoins. However, this picture is complicated by embedding verbs. Because

embedding verbs such as thinks multiply adjoin with quantifiers in the semantics, it

possible for a quantifier to scope over an embedding verb, a result that contradicts

widely-accepted syntactic theory.

Sentence (22) illustrates the problem:

(22) Bill thinks John likes two books.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 147

S∗

NP

Det N↓

two

t

two x t∗t

〈e, t〉↓ e

x x

e


1 1

N 〈e, t〉

books books




Figure 5.24: Lexical entries for two and books.

Additional lexical items are given in Figure 5.24 and the derivation tree and derived

semantics are given in Figure 5.25. The potential for multiple derivations for this

sentence is made possible by the multiple adjunction of thinks and two at the same

node in the semantics with nothing to specify which of these two elements should

adjoin higher. In this case, the embedding verb must somehow be constrained to

adjoin higher than the quantifier.

If this were the only complication it could be fixed simply by separating the t

node into two nodes and enforcing that the embedding verbs adjoin at the higher

node and the quantifiers at the lower node. However, as shown above, Wh words

and quantifiers can scope freely with respect to each other when no embedding verb

intervenes between them. If embedding verbs were forced to adjoin at a higher node

than quantifier scopes, this desirable outcome would be lost. Quantifiers must scope

under embedding verbs and Wh words must scope over them but Wh words and

quantifiers must remain free to scope in either order when embedding verbs are not

present. This state of affairs is exemplified by sentence (23).

(23) Whoi does Bill think everyone likes ti?

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 148

john

e

likes

t

〈e, t〉

〈e, 〈e, t〉〉

two

books

〈e, t〉

t

x t

e

x e

x

likes

john two

books

thinks

t

〈e, t〉
〈t, 〈e, t〉〉 bill

e

john

e

likes

t

〈e, t〉
〈e, 〈e, t〉〉 e

x

thinks

t

〈e, t〉
〈t, 〈e, t〉〉 bill

e

two

books

〈e, t〉

t

x t

e

x

thinks

bill

1

1 1

2
4

S

V

likes

V P

S

V

V P

think

NP

Bill

NP

John NP

Det N

two books

derived trees (1 syntax, 2 semantic):

derivation tree:

〈 Bill thinks John likes two books.
thinks(two(x, book(x), likes(x, john)), bill) 〉

〈 Bill thinks John likes two books.
two(x, book(x), thinks(likes(x, john), bill)) 〉

Figure 5.25: Derived trees and derivation tree for the sentence “Bill thinks John likes
two books.” The derived semantics on the left is the desired semantics. The one on
the right demonstrates the quantifier scoping out of the finite clause. Both semantic
trees are represented by the single derivation tree shown.

Semantic features can be used enforce the valid orderings. Two features, ae and

be, which stand for above embed and below embed, respectively, are sufficient. Each

of these features has two values, + and -. The features are distributed as shown in

Figure 5.26. As shown in Figure 5.26, the given distribution of features prevents the

quantifier from scoping above the embedding verb and the Wh word from scoping

below the embedding verb but leaves the quantifier and Wh word free to scope in

either order when no embedding verb is present.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 149

t

t∗EMBED WH QUANT

t

t∗

t

t∗

t

EMBED

[ae: +]

[be: +]

WH

t [be: -]

QUANT

t

[ae: -]

WH

t [be: -]

QUANT

t

[ae: -]

QUANT

t

WH

t

[
ae: -
be: -

]

t

EMBED

[ae: +]

WH

t [be: +/-] QUANT

t

t

EMBED [be: +]

[ae: +/-]

tt

t

t t

X X

valid orderings:

invalid orderings:

[
t: []
b: [be: +]

]
[

t: []
b: [ae: +]

] [
t: []
b: [be: -]

]
[

t: []
b: []

]
[

t: []
b: []

]
[

t: []
b: [ae: -]

]

Figure 5.26: Schematic versions of the semantic parts of the lexical entries for em-
bedding verbs, Wh words, and quantifiers that show the distribution of features used
to regulate scope ordering and examples of valid and invalid orderings as determined
by the features.

5.7.3 Control Verbs

Like embedding verbs, control verbs such as try have their own subject. Their

subject, however, controls the subject (or, in some cases, object) of the lower verb as

in the example sentence:

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 150

S

V P

V

NP

ε

try

t

〈e, t〉
λx

x

t

e〈e, t〉

〈t, 〈e, t〉〉

try

x

e

S

〈e, t〉

V

likes

likes

V P

t

〈e, 〈e, t〉〉

1 2

NP

Mary

likes

try mary
NP

John john

e

mary

e

john
1

derived tree pair: derivation tree:

〈 John tried to like Mary,
λx.try(likes(mary , x), x)(john)
try(likes(mary , john), john) 〉

Figure 5.27: Derived trees and derivation tree for the sentence “John tried to like
Mary.” The lexical entry for try is given in Figure 5.20. The details of generating
the infinitival verb form for likes are omitted.

(24) John tried to like Mary.

The critical aspect of a subject control verb is that the lower verb cannot have an

independent subject:

(25) *John tried Bill to like Mary.

As shown in Figure 5.20, this control is accomplished using a method similar to that

used for bound variables in Wh words and quantifiers. The subject of the control verb

substitutes into it as expected. The control verb captures that subject in a variable

and then uses it in two places, its own subject and an initial tree that substitutes

into the subject (or object) position of the lower verb. Figure 5.27 demonstrates this

using Sentence (24) as an example.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 151

about

∧

〈e, 〈e, t〉〉

〈e, t〉

〈e, t〉∗
e↓ 1

N

N∗ PP

P NP↓

about

1




S∗ t∗1 1 S∗

NP

Det N↓

two

t

two x t∗t

〈e, t〉↓ e

x x

e


1 1

1 1

〈e, t〉
N 〈e, t〉

books books




S∗ t∗1 1

1 1

Figure 5.28: Lexical entry for the preposition about given as an example of a prepo-
sition modifying a noun phrase and taking a noun phrase complement. An updated
lexical entry for books shows the addition of vestigial trees and a link. The addition
of the vestigial trees gives a location where the scope parts of quantified noun phrases
that adjoin into constituents headed by nouns can attach. An updated lexical entry
for two is also given to show the updated link at which nouns may adjoin.

In contrast to embedding verbs, control verbs do not mark a finite clause bound-

ary. As a result, the linguistic generalization that dictates that quantifiers attaching

below an embedding verb cannot scope above them does not apply in the case of

control verbs. This means that features are not needed to prevent quantifiers from

outscoping them. However, it gives rise to another complication. Under our cur-

rent analysis, when a quantifier attaches to a control verb its scope part becomes

indivisibly attached to the semantics of the control verb. This prevents the scope

of a quantifier that attaches to the lower verb from intervening between them. This

behavior is undesirable. We defer the treatment of this issue to Chapter 6.

5.8 Prepositional Phrases

Prepositional phrases may modify noun phrases (attaching to the right), verb

phrases (attaching to the right) or sentences (attaching to the left). In addition, they

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 152

about

〈e, t〉

〈e, 〈e, t〉〉PP

P

about

S

〈e, t〉V

likes

likes

V P t

〈e, 〈e, t〉〉 e

e

NP mary

Mary

NP

Det

t

x t

e

x

two

two xN

〈e, t〉

books

books

NP

John e

john

derived tree pair: derivation tree:
likes

john two

books

about

mary

1 2

1

1

〈 John likes two books about Mary.
two(x, book(x) ∧ about(mary)(x), likes(x, john)) 〉

∧

〈e, t〉
1

N

Figure 5.29: Derived tree pair and derivation tree for the sentence “John likes two
books about Mary.”

may take noun phrase complements, sentential complements, or no complement at

all. Although all combinations are possible, we demonstrate our analysis with a few

instructive examples. Consider the following sentence:

(26) John likes two books about Mary.

In sentence (26), about modifies the noun books and takes a noun phrase comple-

ment. The lexical entry for about used in this sentence is given in Figure 5.28 along

with updated entries for books and two. The derived tree pair and derivation tree are

given in Figure 5.29. The meaning of about makes use of a higher order and operator

(∧) defined as λxPQ.P (x) ∧Q(x).

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 153

Because the preposition can take a quantified noun phrase complement, both the

lexical entries for prepositions and nouns must include a location for the scope part of

a noun phrase to attach.4 This is accomplished by adding vestigial trees to the lexical

entries where the scope of noun phrases may attach either directly or in multiple steps.

This solution poses a significant cost in terms of grammar complexity: these lexical

entries are no longer tree-local, they are set-local. We solve this problem in Chapter 6

and also address the complex and interesting issue of available scope readings for

sentences in which a quantificational noun phrase complement of a preposition nests

inside the quantificational noun phrase that the preposition modifies.

The following sentence demonstrates a preposition without a complement modi-

fying a verb phrase:

(27) John sat inside.

The lexical entries for inside and sat are given in Figure 5.30. The entry for

sat is isomorphic to the one for escaped but is augmented with an additional link to

accommodate the preposition. The derived tree pair and derivation tree are given in

Figure 5.31.

Finally, the following sentence demonstrates a preposition with a small clause

complement modifying a sentence:

(28) With Mary gone, John escaped.

4Although we could analyze non-quantificational noun phrases without a scope part, it is clear
that prepositions can take quantificational noun phrases as complements, making this solution plainly
inadequate.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 154

S

NP↓ 〈e, t〉 e↓

V

sat
sat

1 V P

t


12

21 13 3

inside

〈〈e, t〉, 〈e, t〉〉

〈e, t〉

〈e, t〉∗

V P

V P∗ PP

P

inside


 4 4

inside: 〈〈e, t〉, 〈e, t〉〉
λF.inside ◦ F

Figure 5.30: Lexical entry for inside modeling a verb-phrase modifying pronoun that
does not take a complement. Also included is the lexical entry for sat which is
isomorphic to that for escaped and also includes an additional link to accommodate
verb phrase modifying prepositions.

S

〈e, t〉
V

sat

sat

V P

inside

〈〈e, t〉, 〈e, t〉〉

t

V P

PP

P

inside

NP

John

e

john

sat
1 4

john inside

derived tree pair: derivation tree:

〈 John sat inside.
inside(sat(john)) 〉

〈e, t〉

Figure 5.31: Derived tree pair and derivation tree for the sentence “John sat inside.”

The lexical entry for with is given in Figure 5.32. The derived tree pair and

derivation tree are given in Figure 5.33. For simplicity, we do not include an analysis

of the small clause.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 155

with

〈t, t〉

t

t∗

S

S∗PP

P

with


S↓ t↓1 1

Figure 5.32: Lexical entry for with modeling a sentence modifying pronoun that takes
a sentential complement.

with

〈t, t〉

tS

PP

P

with

S

Mary gone

t

mary gone

S

〈e, t〉
V

escaped

escaped

V P

t

NP

John

e

john

derived tree pair: derivation tree:

escaped

john
1 3

with

mary gone
1

〈 With Mary gone, John escaped.
with(mary gone, escaped(john)) 〉

Figure 5.33: Derived tree pair and derivation tree for the sentence “With Mary gone,
John escaped.”

5.9 Noun Phrase Complements and Relative Clauses

Two common types of subordinate clauses that both modify noun phrases are

noun phrase complements and relative clauses. Their analysis shows how subordinate

clauses may be modeled and also demonstrates the accurate prediction that movement

out of such clauses should not be possible.

Consider the following sentence in which the clause introduced by that modifies

the noun phrase the report, giving additional information about the contents of the

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 156

that t↓

N

N∗

1

S

S↓C

that
1




S

NP↓ 〈e, t〉 e↓

V

believes believes

1

2

3V P

NP↓

t

〈e, 〈e, t〉〉 e↓




1

2

31 1 22 4 4

〈e, t〉∗

that: 〈t, 〈e, t〉〉
λP.contains(P, x)

5 5
N 〈e, t〉

report report




S∗ t∗1 1

1 12 2

〈e, t〉

〈e, t〉∧

Figure 5.34: Lexical entry for that as a noun phrase modifier introducing a subor-
dinate sentence. An updated entry for report is also included showing an additional
link to which that can adjoin. Although it is isomorphic to the entry for likes, the
lexical entry for believes is included for convenience.

noun phrase:

(29) John believes the report that Mary likes Bill.

The lexical entry for that along with the other necessary lexical items are provided

in Figure 5.34. The derived tree pair and derivation tree for sentence (29) are given

in Figure 5.35.

Relative clauses add another level of complexity because the head noun for the

subordinate clause is coindexed with a noun in the modifying clause. As a result, the

relative pronoun must somehow contribute or connect a variable in both the lower

and upper verbs in the sentence. Consider the following sentence:

(30) Bill has two brothersi whoi ti like Mary.

This sentence can be analyzed by treating the relative pronoun as a composite

of two lexical items, one that is structured similarly to the lexical entry for that

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 157

likes

〈e, t〉

〈e, 〈e, t〉〉 e

e

t

〈e, t〉
〈e, 〈e, t〉〉

t

x t

x e

x

e

S

NP V P

V NP

N

Det

S

NP V P

V NP

likes

mary

John

believes

the

report

likes

the

report

mary

bill

believes

john

believes

john the

report

that

bill

Bill

Mary

1 2

1

1

1 2

e

〈e, t〉

derived tree pair: derivation tree:

〈 John believes the report that Mary likes Bill.
the(x, report(x) ∧ contains(likes(bill,mary), x), believes(x, john)) 〉

that

2

〈e, t〉
〈e, t〉∧

N

S

C

that

t

Figure 5.35: Derived tree pair derivation tree for the sentence “John believes the
report that Mary likes Bill”.

above and introduces the subordinate clause and a second one that abstracts over the

coindexed noun phrase. These lexical entries are given in Figure 5.36 along with the

lexical entry for likes, which is updated to show the rel feature. The lexical entry

for has is isomorphic to the one for likes. Features ensure that a sentence that is the

complement of a relative pronoun is in fact expecting to receive one of its arguments

from the relative pronoun. The rel feature is represented on the syntax in the lexical

entries but would have the same effect if it were included on the corresponding nodes

in the semantics or if it were duplicated in both places. The derived tree pair and

derivation tree for sentence last are given in Figure 5.37.5

5Although the type of who (rel) 1 is 〈〈e, t〉, 〈〈e, t〉, 〈e, t〉〉〉, the node label for its substitution nodes
is t↓. This is because who (rel) 2 adjoins at t into a sentence and effectively changes the type of

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 158

t∗

〈e, t〉

∧ 〈e, t〉∗

who (rel) 1: who (rel) 2:

e

x

N

N∗
S∗

NP

ti

S↓
λx

S


t↓

t


11
Rel

who

[
t: []
b: [rel: -]

]
S

NP↓ 〈e, t〉 e↓

V

likes likes

1

2

3V P

NP↓

t

〈e, 〈e, t〉〉 e↓


1

2

31 1 22 4 4

[rel: -]

[rel: +]

[rel: +] 55

Figure 5.36: Lexical entries that make up the relative pronoun who as well as an
updated entry for likes that demonstrates its rel feature value.

like

t

〈e, t〉
〈e, 〈e, t〉〉

mary

bill

e

e

t

〈e, t〉
〈e, 〈e, t〉〉

brothers have

two

t

x t

e

x e

x

〈e, t〉

e

y

S

NP V P

V NP

N

Det

Rel S

NP V P

V NP

Bill

has

two

brothers

whoi

ti

like Mary

S

derived tree pair: derivation tree:

〈 Bill has two brothers who like Mary.
two(x, brothers(x) ∧ like(mary, x), has(x, bill)) 〉

have

bill two

brothers

who (rel) 1

who (rel) 2

like

mary

1

1 2

1

21

2

〈e, t〉
∧N

λy

t

Figure 5.37: Derived tree pair and derivation tree for the sentence “Bill has two
brothers who like Mary.”

the sentence from t to 〈e, t〉 by abstracting over one of the arguments. However, the adjunction
operation requires that the root and node labels of the tree match the site at which they adjoin.
The rel feature can be thought of as a marking that signals that who (rel) 1 is looking for an
argument that exhibits this mismatch between the label on the root node and the actual type of the
substituting λ-term.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 159

5.9.1 Restricting Movement Out of Islands

Movement is modeled in this system using multicomponent tree sets in which one

tree contains the moved constituent and the other contains the trace that anchors the

moved element to its original position. Constraints on movement therefore fall out

naturally from the locality constraints imposed by the grammar formalism. Islands—

syntactic constructions out of which constituents cannot move—also arise naturally

if they do not provide appropriate locations for a moved version of a lexical item

to adjoin. That is, the moved portion of the lexical item will need an adjunction

site at an S node at which to adjoin. If the lexical item into which the adjunction

must take place does not contain such a node, the movement will not be possible.

We demonstrate this using the Complex NP constraint. The Complex NP constraint

states that constituents cannot move out of a clause modifying a head noun. We use

the two constructions introduced above as examples. Consider the following sentences

demonstrating unacceptable movement:

(31) *Whoi does John believe the report that Mary likes ti?

(32) *Whoj does Bill have two brothersi whoi ti like tj?

It is impossible to produce sentence (32) from our lexicon. The problem with the

movement arises because the moved noun phrase must adjoin to the verb likes. As in

our analysis of sentence (29), likes substitutes into that. This means that the moved

element cannot end up higher in the tree than the root of the likes tree. It cannot

move beyond the clause boundary.6

6It is notable that our lexicon does not rule out the ungrammatical:

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 160

NP

himself

〈e, t〉
λx t

e

x

〈e, t〉∗
e

x




NP

λx

e

x




t

t∗him

Figure 5.38: Possible lexical entries for himself and him.

Sentence (32) also cannot be produced for the same reason: the moved noun

phrase adjoins to likes which in turn substitutes into the relative pronoun. Again, as

a result, there is no way for the movement to escape the clause boundary.

5.10 Binding Theory

Binding of pronouns presents a challenging problem for STAG semantics. Un-

like the other long-distance dependencies, many binding phenomena resist even the

extended domains of locality that STAG can provide. Thus far, long-distance depen-

dencies have been represented using multicomponent tree sets and explicitly named

and bound variables within those tree sets. However, pronouns, almost by definition,

must be bound by binders that do not originate in their own tree set. A few sim-

ple examples help to demonstrate how binding within an elementary tree set quickly

breaks down for pronoun binding.

(33) *John believes the report that whoi Mary likes ti?

A separate mechanism, beyond the scope of this chapter, is needed to govern the availability of
indirect question formation.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 161

S

〈e, t〉
V

likes

likes

V P

t

〈e, 〈e, t〉〉

S

〈e, t〉V

likes

likes

V P
t

〈e, 〈e, t〉〉

eNP

John john
NP

himself

〈e, t〉
λx t

e

x
e

x

NP

John e

johne

x

NP

λx

t

him

likes

john himself

him

1 ?

2

likes

john

1

derived tree pair: derivation tree:

〈 John likes himself.
λx.likes(x,x)(john)
likes(john,john) 〉

〈 John likes him.
λx.likes(john,x) 〉

Figure 5.39: Derived tree pairs and derivation trees for the sentences “John likes
himself.” and “John likes him.”

(34) Johni likes himselfi.

(35) Johni likes himj. (i 6= j)

Sentences (35) and (34) can be analyzed using the lexical entries for himself and

him given in Figure 5.38. The derived tree pairs and derivation trees are given in

Figure 5.39. The successful analysis of these two examples relies on the ability of

the tree set for the pronoun to capture (or prevent capture) the meaning of john and

store it in a variable when it adjoins. In the case of himself, the lexical entry ensures

that the entity in subject position is also interpreted as the object of the verb. In the

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 162

case of him the lexical entry ensures that some entity from higher in the sentence or

from the context occurs in object position.

Even for these simple sentences, the presented analyses have several drawbacks.

First, the tree set for himself must adjoin at an 〈e, t〉 node in the semantics, which

diverges from the usual structure of noun phrases in our grammar and for which we

would have to add a special link to each tree to which it could adjoin. Second, the

lexical entry for him constrains the location at which the λ abstraction can occur

according to our usual movement rules. Further empirical examples would have to

be tested to determine whether this prediction is desirable. However, even though

we may discard these first objections, more complex sentences demonstrate that this

method of capturing the desired entity and representing it with a variable breaks

down. Consider the following example:

(36) Johni likes the book about himselfi.

In sentence (36) the reflexive must adjoin to the tree set for the preposition in any

reasonable syntactic and semantic analysis. However, in order to “capture” john,

the tree containing the λ abstraction must adjoin to the main verb likes. Without

dropping all locality constraints, this forces a highly improbable and costly analysis.7

We therefore pursue a different strategy.

7Assuming that we added a vestigial tree 〈e, t〉∗ to the tree set for about, we could keep the λ
abstraction of himself free until later in the derivation. However, about must then adjoin to two,
which would also need an additional vestigial tree 〈e, t〉∗. With that tree added, then by modifying
the links in the likes tree we could allow the λ abstraction to adjoin at the 〈e, t〉 node of likes. This
proliferation of vestigial trees to thwart the locality requirements is clearly less than desirable.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 163

To handle this case and others, we use a different method for representing the

semantics of bound pronouns. Rather than using explicitly named variables and cor-

responding lambda abstractions, we use an alternative formulation of the lambda

calculus called De Bruijn notation that dispenses with explicit naming. The follow-

ing section provides an introduction to De Bruijn notation before returning to its

application to binding theory.

5.10.1 De Bruijn Notation

De Bruijn notation is an alternative notation for the lambda calculus that dis-

penses with free variables by replacing explicitly named variables with natural num-

bers that indicate the distance (in terms of number of enclosing λ-terms) of the

binding λ. Although the de Bruijn notation is equivalent to the usual lambda calcu-

lus notation, the absence of free variables makes it possible to generate lexical items

that are well-formed but that include a variable that will be bound by a λ that occurs

in an entirely separate lexical item. This idea, in which the variable “cares” not about

the specific λ that binds it but rather about some notion of the distance of the λ that

binds it meshes extremely well with the way in which pronomials find their referents.

The notation can be understood informally by comparison to standard notation:

λ.λ.2 is equivalent to λxy.x

This equivalence holds because the outermost λ is the second λ enclosing the variable

2. If the variable were 1 instead, then the term would be equivalent to λxy.y. When a

β-reduction is performed, the substituted variable replaces all variables bound by the

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 164

given λ, however the value of the substituted variable may itself have to be augmented

in order to remain bound by its binder. In addition, other variables in the term may

have to be decremented because of the reduction of one of the enclosing λs.

Formally, lambda terms in de Bruijn notation are defined [Hankin, 2004] induc-

tively as the least set in which:

(i) any natural number greater than zero is a term,

(ii) if M and N are terms, then (MN) is a term,

(iii) if M is a term, (λM) is a term.

The β rule is replaced by:

(λP)Q = P [1 := Q]

where:

n[m := N] ≡



n if n < m

n− 1 if n > m

renamen,1(N) if n = m

(M1M2)[m := N] ≡ (M1[m := N])(M2[m := N])

(λM)[m := N] ≡ λ(M [m+ 1 := N])

renamem,i(j) ≡


j if j < i

j +m− 1 if j ≥ i

renamem,i(N1N2) ≡ renamem,i(N1)renamem,i(N2)

renamem,i(λN) ≡ λ(renamem,i+1(N))

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 165

Some explication helps to elucidate these rules. The first rule governs the updat-

ing of variables themselves. In the first rule, m is a counter of how many λs deep

the substitution is nested. If the counter equals the value of the variable, then we

substitute for it using the rename rules. If the counter is greater than the variable,

then the relative relationship of the variable to its binder is not affected by the re-

duction so it remains unchanged. If the counter is less than the variable, then one

of the λs between the variable and its binder is being reduced, so the variable must

be decremented to remain bound by the same λ. The second rule simply passes the

substitution to both terms in an application. The third rule increments the counter

as a λ is entered by the substitution.

The first rename rule handles the case where a variable is substituted. The variable

itself must be renamed to preserve its binding. Here, both m and i are counters. The

level of nesting of the variable to be substituted within the term to be substituted is

counted by i. If the variable is bound within the term (j < i), then it is not changed.

However, if it is bound outside of the term being β-reduced, it is incremented by the

new levels of nesting being counted by m. The remaining rename rules simply pass

the renaming through the term that is being substituted, augmenting the counter i

for that term as necessary.

Although we include the β rule for completeness, rather than applying the de

Bruijn β rule, for readability we will convert all of our derived semantics to standard

notation and use standard β-reduction.

We benignly extend the de Bruijn notation in several respects. First, in certain

cases we specify variables using inequalities that symbolize ranges of natural numbers

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 166

rather than single natural numbers. In these cases we intend this notation to indicate

that the variable may take on any single value within the range. Its value is not to be

interpreted as a range of numbers. The convention in de Bruijn notation for numbers

larger than the number of nesting λs is that they index into an ordered list of free

variables. Thus we allow readings where variables remain free. We make use of this

in our analyses to model pronomials finding referents outside of the sentence. We

leave open the possibility of treating the referents in the context in a way that makes

a greater range of values meaningful by picking out different referents in the discourse

context.

Second, in some cases lexical items in our grammar contain lambda terms that

use the standard variable notation. These cases are those in which both the binder

and the bound variable appear within the same lexical item. We assume that these λs

bind only the named variables for which they are defined and are ignored as potential

binders by the variables in de Bruijn notation. After the derivation is complete and

before the lambda terms are reduced, a conversion is performed so that all lambda

terms share the same notation. It is most common to use the standard notation for

readability and to convert to the de Bruijn notation to simplify processing. In our

case, we wish to maintain readability so we convert the de Bruijn λs and numbers to

standard notation.

The conversion from de Bruijn to standard notation is defined as follows.

S i (x1, . . . , xn) = xi

S(λM) (x1, . . . , xn) = λy.(S M (y, x1, . . . , xn)) FreshVar(y)

S(MN) (x1, . . . , xn) = (S M (x1, . . . , xn))(S N (x1, . . . , xn))

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 167

An example helps to elucidate the application of the conversion:

S((λλλ.321)(λλ.2)) ()

(S λλλ.321 ())(S λλ.2 ())

(λy1.S λλ.321 (y1))(S λλ.2 ())

(λy1λy2.S λ.321 (y2, y1))(S λλ.2 ())

(λy1λy2λy3.(S 32 (y3, y2, y1)(S 1 (y3, y2, y1)))(S λλ.2 ())

(λy1λy2λy3.(S 3 (y3, y2, y1))(S 2 (y3, y2, y1))(S 1 (y3, y2, y1)))(S λλ.2 ())

(λy1λy2λy3.y1(S 2 (y3, y2, y1))(S 1 (y3, y2, y1)))(S λλ.2 ())

(λy1λy2λy3.y1y2(S 1 (y3, y2, y1)))(S λλ.2 ())

(λy1λy2λy3.y1y2y3)(S λλ.2 ())

(λy1λy2λy3.y1y2y3)(λy4.S λ.2 (y4))

(λy1λy2λy3.y1y2y3)(λy4λy5.S 2 (y5, y4))

(λy1λy2λy3.y1y2y3)(λy4λy5.y4)

With the conversion complete, we can do standard β-reduction to produce the final

result:

(λy1λy2λy3.y1y2y3)(λy4λy5.y4)

λy2λy3.(λy4λy5.y4)y2y3

λy2λy3.(λy5.y2)y3

λy2λy3.y2

The conversion from mixed notation to standard notation is similar. The ad-

ditional rules simply pass over the parts of the term that are already in standard

notation:

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 168

S i (x1, . . . , xn) = xi

S(λM) (x1, . . . , xn) = λy.(S M (y, x1, . . . , xn)) FreshVar(y)

S(MN) (x1, . . . , xn) = (S M (x1, . . . , xn))(S N (x1, . . . , xn))

S x (x1, . . . , xn) = x

S(λxM) (x1, . . . , xn) = λx.(S M (x1, . . . , xn))

Again, an example helps to elucidate its application:

S(λx1λλλz.1x2z) ()

λx1.(S(λλλz.1x2z) ())

λx1λy1.(S(λλz.1x2z) (y1))

λx1λy1λy2.(S(λz.1x2z) (y2, y1))

λx1λy1λy2λz.(S(1x2 (y2, y1))S(z (y2, y1)))

λx1λy1λy2λz.(S(1x (y2, y1))S(2 (y2, y1))S(z (y2, y1)))

λx1λy1λy2λz.(S(1 (y2, y1))S(x (y2, y1))S(2 (y2, y1))S(z (y2, y1)))

λx1λy1λy2λz.y2S(x (y2, y1))S(2 (y2, y1))S(z (y2, y1)))

λx1λy1λy2λz.y2xS(2 (y2, y1))S(z (y2, y1)))

λx1λy1λy2λz.y2xy1S(z (y2, y1)))

λx1λy1λy2λz.y2xy1z

5.10.2 Using De Bruijn Notation to Model Binding Theory

With de Bruijn notation available to us we can update our analysis of pronouns. As

with other variables in our grammar, we use de Bruijn indices to represent entities. In

the case of a pronoun, a de Bruijn index represents the pronoun. Unlike in our earlier

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 169

e

1

likes

t

e↓〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉
e↓

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

1

1 2a

2b

3a

3b

4a

4b

NP

himself




eNP




him

S

NP↓

V

likes

1

2

3V P

NP↓




1 2 4

2

> 1

S∗ t∗

S∗ t∗

5

5a

5b

Figure 5.40: The lexical entries for himself and him using de Bruijn indices. The
lexical entries for verbs and other lexical items that take noun phrase/entity argu-
ments are also updated to include λs that can bind any de Bruijn indices that may
be contained in their entity arguments. Note that in the semantics of likes certain
links, such as 2 are annotated in some locations with additional subscripts (2a or
2b). These annotated link locations are to be interpreted as alternative link locations
for the primary link; one or the other of the subscripted locations must be used in an
adjunction, but not both.

analysis, we do not require the λ that will eventually bind the variable to originate in

the same lexical item. Instead, we augment the lexical entries that expect to receive

entities by substitution with λs designed to make use of the de Bruijn indices that

may appear in those entities. Figure 5.40 contains the new lexical entries for himself

and him as well as the updated entry for likes that makes use of the de Bruijn indices

in the pronouns.

The lexical entry for likes bears some explanation. At each location at which

an entity argument is expected, the tree is expanded with a λ abstraction that can

potentially bind de Bruijn indices that occur within that argument entity. When the

expansion entails splitting a node at which a link was present, that link location is

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 170

〈e, α〉

α

e↓

λ α

〈e, α〉
1

e

〈e, α〉

α

e↓

1 1a

1b

2 2a

2b

3 3

likes

t

e↓〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉
e↓

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

1

1 2a

2b

3a

3b

4a

4b

2

〈e, t〉 e↓

likes

t

〈e, 〈e, t〉〉 e↓

1

2

31 2 4

5

5a

5b

Figure 5.41: A schematic representation of the transformation of a simplified tree
into its full form as an expanded tree and an example of the application of the rule
to the elementary tree for likes. Note that the transformation is bidirectional.

split into two alternative link locations (subscripted with lowercase letters). Those

subscripted link locations are to be interpreted as alternative locations within their

link. One and only one of the alternative locations of a link must be used when an

adjunction takes place at that link. For instance, if a tree set adjoins at link 2 , it

must adjoin at all of locations marked 2 and also at either 2a or 2b .8

8In the tree for likes, link 1 does not include a link site on the lower t node created by the
expansion. This is because of an assumed dominance relationship between the trees in the tree set
that adjoin at link 1 . We explore making these dominance relationships explicit in Chapter 6.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 171

john

e

e

1

likes

t

〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

likes

john himself

1 2
S

V

likes

V PNP

John NP

himself

derived tree pair:

himself

derivation tree:

〈 John likes himself.
(λ.(λ.likes(1))11)(john)
(λx.(λy.likes(y))xx)(john)
likes(john, john) 〉

Figure 5.42: The derived tree pair and derivation tree for the sentence “John likes
himself.” Both the conversion from mixed notation to standard notation and the β-
reduction of the derived semantics are shown. Where link 2 is indicated in the derived
tree either link 2a or link 2b may be used without altering the derived semantics
produced.

The expansion of semantic trees expecting entity arguments is schematic and can

be applied mechanically. Figure 5.41 shows the operation of the expansion schemati-

cally. In this section we show the trees in expanded form. However, elsewhere we use

the unexpanded versions as a shorthand with the understanding that all trees that

fit the schema do in fact include the expanded structure.

We are now prepared to analyze the simple sentences addressed in the introduction

to this chapter, repeated here for convenience:

(37) Johni likes himselfi.

(38) Johni likes himj. (i 6= j)

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 172

john

e

e

likes

t

〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

likes

john him

> 1

1 2

S

V

likes

V PNP

John NP

him

derived tree pair: derivation tree:

〈 John likes him.
(λ(λ.likes(1))(>1)(1))(john)
(λx.(λy.likes(y))zx)john
(λx.likes(z)(x))john
likes(z)(john) 〉him

Figure 5.43: The derived tree pair and derivation tree for the sentence “John likes
him.” Both the conversion from mixed notation to standard notation and the β-
reduction of the derived semantics are shown. Where link 2 is indicated in the derived
tree either link 2a or link 2b may be used without altering the derived semantics
produced.

The derived tree pair and derivation tree for sentence (37) are given in Figure 5.42.

Figure 5.43 gives the derived tree pair and derivation tree for sentence (38).

The interaction of the de Bruijn indices for pronouns with the analyses for quan-

tifiers are unproblematic in simple sentences. The derived tree pair and derivation

for sentence (39) are given in Figure 5.44:

(39) Everyone likes himself.

The addition of de Bruijn notation also permits analysis of more complex sentences

containing pronouns. Consider the following sentence:

(40) Mary told Johni about himselfi.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 173

e

e

1

likes

t

〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

likes

himself

t

x t

e

x

every

person

〈e, t〉
x

every

person

1 2

1

himself

NP

Det

every

S

V

likes

V P

N

one

NP

himself

derived tree pair: derivation tree:

〈 Everyone likes himself.
every(x, person(x), (λ.(λ.likes(1))(1)(1)))(x))
every(x, person(x), (λy.(λz.likes(z))(y)(y)))(x))
every(x, person(x), likes(x)(x)) 〉

Figure 5.44: The derived tree pair and derivation tree for the sentence “Everyone
likes himself.”

The lexical entries for about and told are given in Figure 5.45. Once again we

are presented with the complication of needing non-tree-local adjunction sites for

the scope parts of noun phrases to prepositions that take noun phrase complements.

As in Section 5.8, we address this here with the addition of vestigial trees in the

lexical entries for the prepositions to receive these scope parts but again note that

we will resolve this problem in a more satisfactory (and with less consequence to the

complexity of our formalism) in Chapter 6. A related issue is that link 5 in the lexical

entry for told now also requires additional locations. These locations are marked as

5a′ and 5b′ . To use link 5 a tree set must use either location 5a or 5b and either

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 174

about

〈〈e, t〉, 〈e, t〉〉

〈e, 〈e, t〉, 〈e, t〉〉

〈e, t〉

〈e, t〉∗
e↓ 1

t∗ 1

V P

V P∗ PP

P

about

NP↓ 1

S∗ 1



told

t

e↓〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉
e↓

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

1

1 2a

2b

3a

3b

4a

4b

S

NP↓

V

told

1

2

3V P

NP↓




1 2 4

2

5

5a

5b

5 5a′

5b′

about: 〈e, 〈e, t〉, 〈e, t〉〉
λxF.about(x) ∧ F

Figure 5.45: Lexical entries for about as a verb phrase modifier and told. The entry
for told is isomorphic to the one for likes. An additional link location has been added
to link 5 to account for the preposition taking a noun phrase argument (in contrast to
inside, the only verb phrase modifying pronoun we have introduced thus far). Because
this link location is on an expanded node, it generates two locations in the expanded
tree. These locations are marked with links 5a′ and 5b′ .

location 5a′ or 5b′ .9

The derived tree pair and derivation tree for sentence (40) are given in Figure 5.46.

Because the preposition adjoins at link 5b , the lower of the two locations for link 5 ,

the de Bruijn index contributed by himself corresponds to the λ that takes the object

entity (john) as its argument.10 This produces the desired reading.

We can contrast this with the equally acceptable sentence in which the reflexive

pronoun refers to the subject entity rather than the object entity:

9The careful reader may observe that the addition of these locations to link 5 undermines the
earlier use of the analogous link by inside in the sentence “John sat inside.” Either a separate link
with only two locations will be required or the addition of vestigial trees to verb phrase modifying
prepositions will have to be made across the board regardless of whether they accept noun phrase
arguments. Because we anticipate resolving the issue by a different method in Chapter 6, we do not
take a position on this issue here.

10Because himself is non-quantificational it doesn’t matter whether its vestigial t∗ tree adjoins at
link 5a′ or 5b′ , so we do not specify this in the derivation tree.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 175

john

e

e

1about

〈〈e, t〉, 〈e, t〉〉
〈e, 〈e, t〉, 〈e, t〉〉

〈e, t〉

told

t

〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉

λ

〈e, t〉
e

1

〈e, 〈e, t〉〉

mary

e

told

mary john about

himself

1

1

2
5b

V P

PP

P

about

S

V

told

V P

NP

himself

NP

John

NP

Mary

derived tree pair: derivation tree:

〈 Mary told John about himself.
(λ.(λ.(about(1))(told(1)))(john)(1))(mary)
(λ.(λ.((λxFy.about(x) ∧ F (y))(1))(told(1)))(john)(1))(mary)
(λv.(λw.((λxFy.about(x) ∧ F (y))(w))(told(w)))(john)(v))(mary)
(λv.(λw.λy.about(w) ∧ told(w)(y))(john)(v))(mary)
(λv.about(john) ∧ told(john)(v))(mary)
about(john) ∧ told(john)(mary) 〉

himself

Figure 5.46: The derived tree pair and derivation tree for the sentence “Mary told
John about himself.”

(41) Maryi told John about herselfi.

The lexical entry for herself is the same as that for himself except for an assumed

difference in a gender feature, which we do not show. The derived tree pair and

derivation tree for sentence (41) are given in Figure 5.47. In this case, the preposition

adjoins at 5a so that the de Bruijn index introduced by the pronoun corresponds

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 176

john

ee

1about

〈〈e, t〉, 〈e, t〉〉
〈e, 〈e, t〉, 〈e, t〉〉

〈e, t〉

told

t

〈e, t〉

〈e, 〈e, t〉〉

1

tλ

e

〈e, t〉

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

mary

e

told

mary john about

herself

1

1

2
5a

V P

PP

P

about

S

V

told

NP

herself

NP

John

NP

Mary

derived tree pair: derivation tree:

〈 Mary told John about herself.
(λ.(((about(1))((λ.told(1))(john)))(1))(mary)
(λv.(((about(v))((λw.told(w))(john)))(v))(mary)
(λv.((about(v))(told(john)))(v))(mary)
((about(mary))(told(john)))(mary)
about(mary) ∧ told(john)(mary) 〉

V P

herself

Figure 5.47: The derived tree pair and derivation tree for the sentence “Mary told
John about herself.”

to the λ that takes the subject entity as an argument. Again, the desired reading

is produced.11 Note that the possibility of two attachment points also predicts the

availability of two readings for sentence (42).

(42) Johni told Billi about himselfi/j.

The last several examples dealt with cases in which the pronoun appeared in a

VP-modifying prepositional phrase. Similar methods also allow us to account for

11We assume that a gender mismatch in the features on john (resp. mary) and herself (resp.
himself) will prevent the reading in which they coindex.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 177

likes

t

〈e, t〉

〈e, 〈e, t〉〉 1

t

λ

e〈e, t〉

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

two

books

〈e, t〉

t

x t

e

x e

x

john

e
likes

john two

books

about

himself

1 2b

1

1

about

〈e, t〉

〈e, 〈e, t〉〉

PP

P

about

e

1

himself

S

V

likes

V PNP

John

derived tree pair: derivation tree:

〈 John likes two books about himself.
λ.two(x, book(x) ∧ about(1)(x), (λ.likes(1))(x)(1)))(john)
λy.two(x, book(x) ∧ about(y)(x), (λz.likes(z))(x)(y)))(john)
two(x, book(x) ∧ about(john)(x), likes(x)(john) 〉

NP

Det

two

NPbooks

himself

N

〈e, t〉
∧

N
1

Figure 5.48: The derived tree pair and derivation tree for the sentence “John likes
two books about himself.”

NP-modifying prepositional phrases that contain pronouns. The derived tree pair

and derivation tree for sentence (44) are given in Figure 5.48.12

(44) Johni likes two books about himselfi

12Note that correct binding for himself requires that the quantifier in object position to adjoin at
the lower t node (2b) in the main verb. If the object quantifier is allowed to adjoin at the higher t
node (2a) we would predict the acceptability of sentences such as (43), which are generally thought
to be unacceptable.

(43) ??Johni thinks Mary likes two books about himselfi.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 178

thinks

t∗

t

e↓〈e, t〉

1

tλ

e〈e, t〉
〈t, 〈e, t〉〉

1

1 2a

2b

eNP




he

S

NP↓

V

thinks

1 3V P

1 2S∗ t∗

>0

3a

3b

4a

4b

4a′

4b′
4


S∗

Figure 5.49: Lexical entries for he and thinks.

The current lexicon correctly predicts the grammaticality and ungrammaticality

of the following three sentences as well.

(45) *Johni thinks Mary likes himselfi.

(46) Johni thinks Maryk likes himi/j (i 6= j 6= k).

(47) Johni thinks hej likes himselfj.

The additional lexical entries for thinks and he are given in Figure 5.49. The

derived tree pair and derivation tree for sentence (45) are given in Figure 5.50. The

undesired reading is prevented because himself is bound by the lambda term to which

mary is an argument. We discard this bound reading because of the gender mismatch

between mary and himself.13

There are two acceptable readings for sentence (46), one in which him is coindexed

with john and one in which the pronoun remains free. Because of the semantics of

13No reading where himself is coindexed with John is available because the extrapolation of the
embed features introduced earlier in the chapter prevent thinks from adjoining at link 4b when mary
adjoins at link 1 .

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 179

thinks

t

〈e, t〉

1

tλ

e〈e, t〉
〈t, 〈e, t〉〉

john

mary

e

e

likes

t

〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

e

1

likes

john

thinksmary himself
1

1
2

4a

himself

NP

S

V

likes

V PNP

derived tree pair:derivation tree:

〈 John thinks Mary likes himself.
λ.thinks((λ.(λ.likes(1))(1)(1))(mary))(1))(john)
λx.thinks((λy.(λz.likes(z))(y)(y))(mary))(x))(john)
thinks(likes(mary)(mary))(john) 〉

himself

S

V

thinks

V PNP

John

Mary

thinks

t

〈e, t〉

1

tλ

e〈e, t〉
〈t, 〈e, t〉〉

john

mary

e

e

likes

t

〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

e

likes

john

thinksmary

4a

1

1
2

>1

him

NP

S

V

likes

V PNP

derived tree pair:derivation tree:

him

S

V

thinks

V PNP

John

Mary

〈 John thinks Mary likes him.
λ.thinks((λ.(λ.likes(1))(>1)(1))(mary))(1))(john)
λx.thinks((λy.(λz.likes(z))(x)(y))(mary))(x))(john)
thinks(likes(john)(mary))(john)
or
λx.thinks((λy.(λz.likes(z))(w)(y))(mary))(x))(john)
thinks(likes(w)(mary))(john) 〉

him

Figure 5.50: The derived semantics and derivation tree for the sentences “John thinks
Mary likes himself” and “John thinks Mary likes him”.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 180

thinks

t

〈e, t〉

1

tλ

e〈e, t〉

〈t, 〈e, t〉〉

john

e

e

likes

t

〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

e

1

likes

john

thinkshe himself
1

1
2

4a

himself

NP

S

V

likes

V PNP

derived tree pair:derivation tree:

〈 John thinks he likes himself.
λ.thinks((λ.(λ.likes(1))(1)(1))(>0))(1))(john)
λx.thinks((λy.(λz.likes(z))(y)(y))(x))(x))(john)
thinks(likes(john)(john))(john)
or
λx.thinks((λy.(λz.likes(z))(y)(y))(w))(x))(john)
thinks(likes(w)(w))(john) 〉

himself

S

V

thinks

V PNP

John

he
>0

he

Figure 5.51: The derived tree pair and derivation tree for the sentence “John thinks
he likes himself.”

him in our grammar, we produce both readings. If him takes on the value 2, we get

the bound reading. If it takes on a higher value, we produce the free reading. The

derivation tree and derived semantics are shown in Figure 5.50.

For sentence (47) there are also two acceptable readings, both shown in Fig-

ure 5.51. In both readings, himself is coindexed with he. However, there is one

reading in which he is coindexed with john and one in which he remains free. If he

takes on the value 1, we produce the reading in which john, he and himself are all

coindexed. If he takes on a higher value, we produce a reading in which he and himself

are coindexed with each other but not with john.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 181

S∗

NP

N↓

t

the x t∗t

〈e, t〉↓

e

x x

e


1

1

2

2

〈e, t〉

〈e, t〉∧

poss e↓

NP↓ ’s

1 12 2

Figure 5.52: A first attempt at a lexical entry for ’s.

Possessives present another interesting context because both the possessor and

the possessed can be coindexed with a pronoun. Consider the following sentences:

(48) John’s motheri likes herselfi.

(49) *Johni’s mother likes himselfi.

(50) Johni’s mother likes himi.

Sentence (50) can be analyzed with a treatment of possessives that structures them

similar to quantifiers. This first pass analysis of possessives is given in Figure 5.52.

Using this lexical entry we produce the derived tree pair and derivation tree for

sentence (48) given in Figure 5.53. It is easy to see that sentence (49) will never be

derivable because the reflexive pronoun will always coindex with the subject of the

sentence. However, sentence (50) poses a conundrum because it is possible for the

pronoun to “reach in” to the possessive to coindex with john. Based on our current

lexical entry for possessives this is not possible because john does not appear as the

argument to a λ and further, even if it did, that λ would not be a binder for a de

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 182

NP

t

the x t

e

x x

e〈e, t〉

〈e, t〉∧
poss’s

john
e

1

likes

t

〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

likes

john

herself

1 2
S

V

likes

V P

NP

John

NP

herself

derived tree pair:

herself

derivation tree:

〈 John’s mother likes herself.
the(x,mother(x) ∧ poss(john)(x), (λ.(λ.likes(1))(1)(1))(x))
the(x,mother(x) ∧ poss(john)(x), (λy.(λz.likes(z))(y)(y))(x))
the(x,mother(x) ∧ poss(john)(x), likes(x)(x)) 〉

mother

N

’s

mother

1

e

〈e, t〉
mother

2

Figure 5.53: Derived tree pair and derivation tree for the sentence “John’s mother
likes herself.”

S∗

NP

N↓

t

the x t∗t

〈e, t〉↓

e

x x

e


1

1

2

2

〈e, t〉

〈e, t〉∧
poss

e↓

NP↓ ’s

t

〈e, t〉

1

λ

e

2

21a

1b

Figure 5.54: A revised lexical entry for ’s that exposes the entity argument so that
it can be coindexed with a pronoun.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 183

NP

x

e
’s

e

likes

t

〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

likes

john

him

1 2
S

V

likes

V P

NP

John

NP

him

derived tree pair:

him

derivation tree:

〈 John’s mother likes him.
(λ.the(x,mother(x) ∧ poss(1)(x), (λ.(λ.likes(1))(>1)(1))(x)))(john)
(λw.the(x,mother(x) ∧ poss(w)(x), (λy.(λz.likes(z))(w)(y))(x)))(john)
the(x,mother(x) ∧ poss(john)(x), likes(john)(x)) 〉

mother

N

’s

mother

1t

the x t

e

x

〈e, t〉

〈e, t〉∧
poss

t

〈e, t〉

1

λ

e

john

e

>1

〈e, t〉
mother

2

Figure 5.55: Derived tree pair and derivation tree for the sentence “John’s mother
likes him.”

Bruin index in the object entity position. An updated lexical entry for ’s, given

in Figure 5.54 remedies this problem by exposing its internal entity argument and

making it the argument of a λ in much the same way entity arguments are made

available in the lexical entries for verbs.

Using this new lexical entry we are able to analyze sentence (50) as shown by

the derived tree pair and derivation tree given in Figure 5.55.14 In addition, we also

produce the correct readings for sentences using quantifiers in the possessive, such as:

14Note also that the analysis for sentence (48) continues to be correct with the updated lexical
entry for ’s.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 184

t

e↓〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉
e↓

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

gave

e↓〈e, 〈e, 〈e, t〉〉〉

λ 〈e, 〈e, t〉〉

e

1

〈e, 〈e, 〈e, t〉〉〉

subject

indirect object

direct object

1

1

2a

2b

3a 4a

3b 4b

5a

5b

6a

6b

S

NP↓ V P

V NP↓NP↓subject

indirect object direct object

gave

1

1

2

2

2

3

4

5

6

6




Figure 5.56: The lexical entry for gave.

(51) Everyone’s mother likes him.

Ditransitive verbs also present a tricky problem because they give rise to cases in

which the distribution of reflexive and non-reflexive pronouns overlap. In many of

these cases, one reading is preferred but the other reading is still possible given an

appropriate context. Consider the following sentences.

(52) John gave Billi himselfi.

(53) Johni gave Bill himselfi.

(54) Johni gave Bill two books about himselfi.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 185

t

〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

gave

〈e, 〈e, 〈e, t〉〉〉

λ 〈e, 〈e, t〉〉
e

1

〈e, 〈e, 〈e, t〉〉〉

john

bill

e

e

e

1

gave

john himself bill

1
2

6

himself

S

V P

V

gave

NP

John NP

Bill

NP

himself

derived tree pair:derivation tree:

〈 John gave Bill himself.
(λ.(λ.(λ.gave(1))(1)(1))(bill)(1))(john)
(λx.(λy.(λz.gave(z))(y)(y))(bill)(x))(john)
gave(bill)(bill)(john) 〉

Figure 5.57: Derived tree pair and derivation tree for the sentence “John gave Bill
himself” producing only the reading in which bill is coindexed with himself.

(55) John gave Billi two books about himselfi.

(56) John gave Billi two books about himi.

To analyze these sentences, a lexical entry for a ditransitive verb such as gave is

needed. The structure of the lexical entries for transitive verbs suggests what it might

be (Figure 5.56), and this structure allows generation of some the above sentences.

Consider sentences (52) and (53). The sentence itself is odd, making it difficult

to have a strong intuition about which reading is preferred. However, it appears that

both the reading in which himself coindexes with bill and the one in which it coin-

dexes with john are available. Figure 5.57 demonstrates the only analysis available

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 186

t

〈e, t〉

〈e, 〈e, t〉〉 1

t

λ

e〈e, t〉

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

gave

〈e, 〈e, 〈e, t〉〉〉

λ 〈e, 〈e, t〉〉

e

1

〈e, 〈e, 〈e, t〉〉〉

john

bill

e

e

e

x

gave

john

himself

bill

1 6

two

books

about

2b

1

1

1

derived tree pair:derivation tree:

〈 John gave Bill two books about himself.
(λ.two(x, book(x) ∧ about(1)(x), (λ.(λ.gave(1))(x)(1))(bill)(1)))(john)
(λw.two(x, book(x) ∧ about(w)(x), (λy.(λz.gave(z))(x)(y))(bill)(w)))(john)
two(x, book(x) ∧ about(john)(x), gave(x)(bill)(john)) 〉

about

〈e, t〉

〈e, 〈e, t〉〉 e

t

x t

e

x

two

〈e, t〉
books

1

PP

P

about

NP

NP

Det

two N

books

S

V P

V

gave

NP

John

Bill

NP

himself

himself

∧
〈e, t〉N

Figure 5.58: Derived tree pair and derivation tree for the sentence “John gave bill
two books about himself” producing only the reading in which himself is coindexed
with john.

with the lexical entry for gave, which produces the reading from sentence (52). Be-

cause the indirect object intervenes between the subject and the direct object in the

semantic tree, this analysis does not produce the arguably acceptable reading from

sentence (53).

Next consider sentences (54) and (55). Again, both readings are available, but

with these sentences the contrast is clear. The reading in which himself is coindexed

with john is much preferable to the one in which it is coindexed with bill. As shown in

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 187

t

e↓

〈e, t〉
t

e↓

λ t

e

1

〈e, t〉

gave

e↓〈e, 〈e, t〉〉

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

indirect object

subject

direct object

1

1 2a

2b

〈e, t〉

λFx.io(F, x)

λ t

e

1

〈e, t〉

S

NP↓ V P

V NP↓NP↓subject

indirect object direct object

gave

1

1

2

2

3

4

5

6


2

6

6

3a

3b

4a

4b

5a

5b

Figure 5.59: An additional lexical item for gave.

Figure 5.58, the preferred reading is the one produced by the current lexicon. How-

ever, the reading in which himself is coindexed with bill is unavailable. In addition,

sentence (56) cannot be produced from the lexicon (although the arguably preferred

unbound reading of him is available).

To analyze the sentences that are not captured by the current lexical entry for

gave one can observe that what is needed is a treatment of ditransitives where the

indirect object is the outermost argument to the verb. It is possible to generate an

alternative lexical item for gave that achieves this by analyzing the indirect object

with a relation that holds between the proposition generated by a transitive version

of gave and the indirect object entity, as is shown in Figure 5.59. This additional

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 188

1 6

john billhimself

gave (2)

2
1 6

john bill

himself

gave (2)

two

books

about
1

1

2a
1 6

john bill

gave (2)

two

books

about

1

1

2b

him

〈 John gave Bill himself.
(λ.(λFx.io(F, x))((λ.(λ.gave(1))(1)(1))(john))(1))(bill)
(λw.(λFx.io(F, x))((λy.(λz.gave(z))(y)(y))(john))(w))(bill)
io(gave(john, john), bill) 〉

〈 John gave Bill two books about himself.
(λ.two(x, book(x) ∧ about(1)(x), (λFx.io(F, x))((λ.(λ.gave(1))(x)(1))(john))(1)))(bill)
(λw.two(x, book(x) ∧ about(w)(x), (λFx.io(F, x))((λy.(λz.gave(z))(x)(y))(john))(w))(bill)
two(x, book(x) ∧ about(bill)(x), io(gave(x)(john), bill)) 〉

〈 John gave Bill two books about him.
(λ.(λFx.io(F, x))((λ.two(x, book(x) ∧ about(>1)(x), (λ.gave(1))(x)(1)))(john))(1)(bill)
(λw.(λFx.io(F, x))((λy.two(x, book(x) ∧ about(w)(x), (λz.gave(z))(x)(y)))(john))(w)(bill)
io(two(x, book(x) ∧ about(bill)(x), gave(x)(john)), bill) 〉

1

1

Figure 5.60: Derivation trees using the additional lexical entry for gave and the
readings that they produce.

lexical entry generates readings for the remaining example sentences. The derivation

trees for sentences (53), (55), and (56) are given in Figure 5.60.

Finally, we examine the issue of crossover. In linguistics, crossover refers to phe-

nomena in which a potential binder, such as a Wh-word or a quantifier moves across a

pronomial. Strong crossover refers to those cases in which the pronomial c-commands

the extraction site in the syntax and weak crossover to those in which it does not.

A canonical example of strong crossover is given in Sentence (57).

(57) *Whoi does hei like ti?

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 189

likes

whohe

likes

t

〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

1 2a

t

zwho

e

z

>0
e

S

V P

V NP

likes

S

NP

whoi

ti

NP

he
he

derived tree pair: derivation tree:

〈 Who does he like?
who(z, (λ.(λ.likes(1))(z)(1))(>0))
who(z, (λx.(λy.likes(y))(z)(x))(w))
who(z, likes(z)(w)) 〉

likes

who himself

likes

t

〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉

〈e, t〉
e

1

〈e, 〈e, t〉〉

t

zwho

e

e

z

1

1 2aS

V P

V NP

likes

S

NP

whoi NP

derived tree pair: derivation tree:

〈 Who likes himself?
who(z, (λ.(λ.likes(1))(1)(1))(z))
who(z, (λx.(λy.likes(y))(x)(x))(z))
who(z, likes(z)(z)) 〉

λ

ti

himself

himself

Figure 5.61: At the top, the derived tree pair and derivation tree for the sentence
“Who does he like?”, demonstrating the impossibility of coindexing who with he.
Below, the derived tree pair and derivation tree for the sentence “Who likes himself?”

The ungrammaticality of this coindexation is predicted because the only way that the

Wh-word and the pronoun could be coindexed is if the bound variable for the Wh-

word is the argument to the lambda that binds the pronoun. Because the pronoun

is the subject and the bound variable of the Wh-word is the object, resulting in

the pronoun appearing higher in the semantic tree than the bound variable of the

Wh-word, this cannot happen. This orientation of the pronoun and Wh-word bound

variable is directly related to the c-command relationship in the syntax, although the

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 190

t

the x t∗t

〈e, t〉↓

e

x

x

e

1

〈e, t〉

〈e, t〉∧
poss

t

〈e, t〉

1

λ

e

1a

1b

e

>0NP

Det

his

N↓ 1

S∗ 1



Figure 5.62: The lexical entry for his.

relationship can be directly stated in the semantics in this system. The analysis of

this sentence is given in Figure 5.61. Contrast it with the successful coindexation of

who and himself in the following sentence (also given in Figure 5.61):

(58) Whoi ti likes himselfi?

The analysis of weak crossover effects falls out directly from the semantics of

pronomial constructions such as his mother (Figure 5.62). Because possessives are

analyzed like quantifiers, they attach at t. If the pronomial is in the subject of the

sentence, it is forced to attach at the highest t node (link 1), which prevents it from

being bound by a binder within the same clause. Consider the example given in

Sentence (59) and the analysis of it in Figure 5.63. Regardless of the order in which

who and his take scope, the bound reading of his mother cannot be produced.

(59) *Whoi does hisi mother like ti?

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 191

likes

whohis

mother

2a1

1

t

the x t

e

x

〈e, t〉

〈e, t〉∧
poss

t

〈e, t〉

1

λ

e

e

>0

t

zwho

likes

t

〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

e

z

e

x

S

V P

V NP

like

S

NP

whoi

ti

derived tree pair: derivation tree:

〈 Who does his mother like?
who(z, (λ.the(x,mother(x) ∧ poss(1)(x), (λ.(λ.likes(1))(z)(1))(x)))(>0))
who(z, (λw.the(x,mother(x) ∧ poss(w)(x), (λy.(λv.likes(v))(z)(y))(x)))(u))
who(z, the(x,mother(x) ∧ poss(u)(x), likes(z)(x))) 〉

NP

Det

his

N

mother

mother

〈e, t〉

Figure 5.63: Derived tree pair and derivation tree for the sentence “Who does his
mother like?”. Although only one derived semantics is shown here, the bound reading
of his mother cannot be produced even if his outscopes who.

The grammar also correctly predicts the ungrammaticality of sentence (60) under

the bound reading. In this case, although it is possible for the scope part everyone

to attach higher than his mother, because his mother is in the subject position, its

attachment point must be higher than the bound variable of everyone, preventing

coindexation. The analysis is shown in Figure 5.64.

(60) *Hisi mother likes everyonei.

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 192

likes

t

〈e, t〉

〈e, 〈e, t〉〉 1

tλ

e〈e, t〉

λ 〈e, t〉
e

1

〈e, 〈e, t〉〉

e

x

e

y

t

t

e

the y

∧ y

〈e, t〉
〈e, t〉
poss e

1

〈e, t〉
mother

t

x t

e

x

every

person

〈e, t〉

likes

everyhis

mother

1

1

2a

person
1

t

〈e, t〉
λ

e

>0

S

V P

V

likes

NP

Det

his

N

mother

NP

Det

every

N

one

derived tree pair: derivation tree:

〈 His mother likes everyone
every(x, person(x), (λ.the(y,mother(y) ∧ poss(1)(y), (λ.(λ.likes(1))(x)(1))(y)))(>0))
every(x, person(x), (λw.the(y,mother(y) ∧ poss(w)(y), (λz.(λv.likes(v))(x)(z))(y)))(u))
every(x, person(x), the(y,mother(y) ∧ poss(u)(y), likes(x)(y))) 〉

Figure 5.64: The derived tree pair and derivation tree for the sentence “His mother
likes everyone.”

5.11 Conclusion

This chapter addresses a wide range of constructions of English using synchronous

TL-MCTAG to model the interface between syntax and semantics. The fragment of

English covered includes phenomena in which the syntactic and semantic structures

are so divergent that many thought a synchronous TAG analysis would not be pos-

sible. In particular, cases of long distance movement, scope ambiguity, and pronoun

binding that have been considered hard are successfully addressed here in novel ways.

However, this chapter also pushes the boundaries of synchronous TL-MCTAG and

Chapter 5: Modeling the Syntax-Semantics Interface using Synchronous TAG 193

demonstrates that there are certain constructions of English that cannot readily be

analyzed within this formalism. These include nested quantifiers, the interaction of

control verbs with quantifiers and other scope-taking elements, and certain sentences

in which quantifiers take scope above the relative clause in which they appear. Anal-

yses of these hard cases are the subject of the following chapter.

Chapter 6

Modeling the Syntax-Semantics

Interface: Beyond TL-MCTAG

6.1 Introduction

Certain phenomena and constructions cannot be modeled with TL-MCTAG alone

as the base formalism. In this chapter we explore these cases and how they can be

handled using an extension to TL-MCTAG introduced in Chapter 3. The challenges

of these cases uniformly arise from situations in which movement beyond the usual

locality boundaries appears to occur. These cases include constraints on quantifica-

tional elements that attach along the VP-spine, nested quantifiers or inverse linking,

and escape of quantifiers from islands. We use a limited extension to TL-MCTAG,

Limited Delay V-TAG (LDV-TAG), to analyze these cases without substantially in-

creasing the complexity of the base formalism.

194

Chapter 6: Modeling the Syntax-Semantics Interface: Beyond TL-MCTAG 195

6.1.1 Introducing Dominance and Delay

Although the locality constraints of TL-MCTAG naturally produce appealing pre-

dictions about locality and movement in most of the cases we have examined, in a few

examples scope-taking elements appear to be able to take scope higher in the derived

tree than synchronous TL-MCTAG permits. We return to the concept of limited

delay, introduced in Chapter 3, in order to permit analyses of these cases without

losing the constraints imposed by TL-MCTAG locality or the processing advantage

of TL-MCTAG over SL-MCTAG and non-local MCTAG. We do this by changing

our base formalism from TL-MCTAG to LDV-TAG. LDV-TAG allows us to maintain

the efficiency of TL-MCTAG while also taking advantage of certain characteristics of

our lexicon and providing the flexibility needed for those cases where TL-MCTAG

constrains locality too much.

We begin by noting that in all of the multicomponent tree sets we have introduced,

and particularly in those that model scope-taking elements we have assumed an im-

plicit dominance relation between the trees in the set. In the scope-taking elements

we have assumed that the scope tree must dominate the variable tree in the derived

semantics. We now make these relations explicit by adding dominance links to our

lexicon. This change is required by the LDV-TAG formalism and helps to constrain

its complexity by allowing the parser to keep track of only tree in a set at a time as

it processes the derived tree bottom-up.

We also add delayed trees to some of our tree sets. Recall the highest tree in

the dominance chain of an LDV-TAG tree set may be marked with a diacritic (↑)

to indicate that it may adjoin in a different tree than the other trees in its tree set

Chapter 6: Modeling the Syntax-Semantics Interface: Beyond TL-MCTAG 196

so long as it obeys its dominance requirement. Noting that the cases in which more

flexibility in movement is required are those in which we need a scope-taking element

to take scope higher than its TL-MCTAG domain of locality, we employ this delay for

trees that represent scope takers. Although it is not part of the LDV-TAG formalism,

we employ a principle of preference for least delay. Although we permit delayed trees

to rise to any point in the derived tree, we expect that readings that use no delay or

less delay will generally be preferred to those that employ long delays.

6.2 Nested Quantifiers

Consider the sentence:

(1) Someone likes every character in two books.

Although a nested quantifier may take scope over the quantifier within which it is

nested (so-called “inverse linking”) not all permutations of scope orderings of the

quantifiers are available [Joshi et al., 2003]. In particular, at least one and perhaps

both readings in which a quantifier intervenes between a nesting quantifier and its

nested quantifier are not valid [VanLehn, 1978, Hobbs and Shieber, 1987]. In the

example sentence (1), this predicts that the reading two > some > every should

under no circumstances be available and, according to some, that the reading every >

some > two should also not be valid.

The lexicon introduced Chapter 5 (with minor modification) produces the four

widely accepted readings for this sentence. The key lexical items used in this deriva-

tion are shown in Figure 6.1. Only the lexical item for quantifiers is changed in that

Chapter 6: Modeling the Syntax-Semantics Interface: Beyond TL-MCTAG 197

in

〈e, t〉

〈e, 〈e, t〉〉

〈e, t〉

〈e, t〉∗
e↓ 1

N

N∗ PP

P NP↓

in

1




S∗ t∗1 1 S∗

NP

Det N↓

every

t

every x t∗t

〈e, t〉↓ e

x x

e


1 1

S

NP↓ 〈e, t〉 e↓

V

likes likes

1

2

3V P

NP↓

t

〈e, 〈e, t〉〉 e↓




1

2

31 1 22 4 4

5 5

∧

1 1a

1b

Figure 6.1: Representative lexical entries for a set-local analysis of the sentence
“Someone likes every character in two books.” The lexical entry for the quantifier is
updated by splitting the adjunction site for the scope part of noun phrase meanings
into two locations (1a and 1b). The lexical entries for in and likes are provided for
convenience.

it now has two locations for the scope part to attach in the semantics. The derived

trees and derived semantics for sentence (1) are given in Figure 6.2. In this analysis,

because the nested quantifier is introduced through the prepositional phrase, which

in turn modifies the noun phrase containing the nesting quantifier, the two quantifiers

already naturally form a set that operates as a unit with respect to the rest of the

derivation. The four readings are produced by the combination of the alternative

locations for the adjunction of the noun into the nesting quantifier and the multiple

adjunction of the nesting quantifier and the third quantifier at the root of the verb.

However, a serious problem with this analysis is that it is set-local rather than tree-

local. That is, the lexical entries for prepositions and nouns contain links that have

locations in more than one tree in the set. As discussed in the first part of this thesis,

the computational ramifications of this are unacceptable. In addition, even with the

move to set locality, the fifth arguably acceptable reading cannot be derived.

Chapter 6: Modeling the Syntax-Semantics Interface: Beyond TL-MCTAG 198

likes

some

person

every

character

in

two

books

1

1

1

1

likes

some

person

every

character

in

two

books

1

1

1

1

S

V

likes

V P

NP

Det

every PP

P

in

NP

Det

NP

Det

N

N

N

someone

two

character

books

in

〈e, t〉
〈e, 〈e, t〉〉

t

x t

e

x x

e〈e, t〉

likes

t

〈e, 〈e, t〉〉

22

e

some

person

〈e, t〉

t

t

e

〈e, t〉

every y

y

y

t

t

〈e, t〉 e

two z

z

e

z

character

books

derived syntax: derivation trees:

example derived semantic tree: 〈 Someone likes every character in two books,
two(z, book(z),

every(y, character(y) ∧ in(z, y),
some(x, person(x),

likes(y, x)))) 〉
〈 Someone likes every character in two books,

some(x, person(x),
two(z, book(z),

every(y, character(y) ∧ in(z, y),
likes(y, x)))) 〉

〈 Someone likes every character in two books,
every(y, two(z, book(z),

character(y) ∧ in(z, y)),
some(x, person(x), likes(y, x))) 〉

〈 Someone likes every character in two books,
some(x, person(x),

every(y, two(z, book(z),
character(y) ∧ in(z, y)),

likes(y, x))) 〉

N

1 1

1a 1b

〈e, t〉
∧

Figure 6.2: Derived trees and derivation trees the sentence “Someone likes every
character in two books.” Only a single derived semantic tree is given as an example.
The derived semantics for all four readings are provided. Note that each derivation
tree corresponds to two derived semantic trees.

Using delay, the original structure for prepositions no longer poses a problem or

requires the proliferation of vestigial t∗ trees throughout the grammar. Figure 6.3

shows the lexical entries under an LDV-TAG analysis. Because there is no adjunc-

tion site for the scope part of the object of a preposition in the semantic trees of the

preposition or noun, the scope part must delay and attach higher. There are several

Chapter 6: Modeling the Syntax-Semantics Interface: Beyond TL-MCTAG 199

(↑)S∗

NP

Det N↓

every

t

every x t∗t

〈e, t〉↓ e

x x

e


1 1

S

NP↓ 〈e, t〉 e↓

V

likes likes

1

2

3V P

NP↓

t

〈e, 〈e, t〉〉 e↓




1

2

31 1 22 4 4

5 5

(↑)

in

〈e, t〉

〈e, 〈e, t〉〉

〈e, t〉

〈e, t〉∗
e↓ 1

N

N∗ PP

P NP↓

in

1




∧

Figure 6.3: Lexical entries for a delay-based analysis of the sentence “Someone likes
every character in two books.”

possible adjunction sites where it may attach, which correspond to the desired five

readings of the example sentence. This results in the possible derivations for sen-

tence (1), shown in Figure 6.4. The four readings in which some does not intervene

between two and every are produced by delaying the attachment of the scope part of

two until one of the attachment points in the every tree. That is, because there is no

location for the scope part of two to adjoin in character or in, it must delay higher in

the derived tree. The next t node on the path up the derived tree is the lower t node

in the every tree. If two attaches at this node, every and two will become indivisibly

attached in the every > two ordering. Together, they will multiply adjoin with some

at the root of the likes tree to produce the scope orderings every > two > some and

some > every > two. If the scope part of two attaches at the higher t node in the

every tree, it will become indivisibly attached in the two > every ordering. Once

again, they will multiply adjoin with some at the root of the likes tree to produce the

scope orderings two > every > some and some > two > every . The fifth reading is

produced if the scope part of two delays until after every has adjoined to the likes tree.

At that point, two may adjoin above every at the root of the likes tree. This permits

Chapter 6: Modeling the Syntax-Semantics Interface: Beyond TL-MCTAG 200

likes

some

person

every

character

in

two

books

1

1 1

1

1

two
top : ε/top : 3

likes

some

person

every

character

in

two

books

1

1 1

1

1

two

likes

some

person

every

character

in

two

books

1

1 1

1

1

two
top:ε/top : ε

ε/ε2 2
2

〈 Someone likes every character in two books,
two(z, book(z),

some(x, person(x),
every(y, character(y) ∧ in(z , y)),

likes(y, x))) 〉

1 1 1

Figure 6.4: The three derivation trees produced for the sentence “Someone likes every
character in two books.” as well as the fifth semantic reading that is derived. The
other four semantic readings are the same as those produced by the non-delay lexicon.
The locations at which the delayed trees adjoin are labeled in the derivation tree with
their Gorn addresses in the syntax and semantics because the adjunctions do not
occurring at links.

the scope ordering two > some > every . The reading in which every outscopes two

with some intervening is unavailable.

It is interesting to note that the disputed fifth reading requires the scope part of

two to delay further both as measured in the derived tree and in the derivation tree.

Although it is not clear how to block this reading entirely without something like

a hard bound on the degree of delay, the principle of least delay does provide some

justification for it being dispreferred with respect to the four other readings produced.

Chapter 6: Modeling the Syntax-Semantics Interface: Beyond TL-MCTAG 201


S

NP↓ V P

V S∗

NP

ε

tries

t

e↓〈e, t〉
λx

x

t

e〈e, t〉
〈t, 〈e, t〉〉 t∗

tries
x

e

V P∗Adv

V P

always

t∗〈t, t〉

always




1 1

1
1 3

31 12 2 t

Figure 6.5: The lexical items for an initial analysis of the sentence “Every person
always tries to read two books.” The structure of read is assumed to be the same as
likes.

6.3 Quantificational Elements Along the VP-Spine

It is widely accepted that quantificational elements take scope in the order in

which they attach along the VP spine. However, they appear to scope freely with

respect to quantificational elements that do not attach along the VP spine. This

poses problems for the analysis of adverbs, which are represented as single tree sets

that take scope where they attach. Consider the following sentence:

(2) Every person always tries to read two books.

In this sentence always and tries both attach along the VP spine and must take scope

in the order in which they appear. However, two is free to scope in any order with

respect to always and tries, and every is free to scope anywhere above tries because

its bound variable is in the subject position of tries. An intuitive structure for this

sentence and lexical items based on those introduced in the previous chapter are given

in Figure 6.5.

Chapter 6: Modeling the Syntax-Semantics Interface: Beyond TL-MCTAG 202

tries

every

person

always

read

two

books

1

1

1

13

2

S

V P

V

NP

ε

tries

Adv

V P

always

NP

Det N

every person S

V

to read

V P

NP

Det N

two books

t

t

〈e, t〉
every z

t

t

〈e, t〉 e

two y

y

person

books e 〈t, t〉

always

t

t

〈e, t〉
λx

x

t

e〈e, t〉
〈t, 〈e, t〉〉

tries

z e

z

x

e〈e, t〉

read

t

〈e, 〈e, t〉〉 e
y

derived syntax and example derived semantics:

derivation tree:

〈 Every person always tries to read two books,
two(y, book(y),

every(z, person(z),
always(tries(read(z, y), z)))) 〉

〈 Every person always tries to read two books,
two(y, book(y),

always(every(z, person(z),
tries(read(z, y), z)))) 〉

〈 Every person always tries to read two books,
every(z, person(z),

always(tries(two(y, book(y),
read(z, y), z)))) 〉

〈 Every person always tries to read two books,
always(every(z, person(z),

tries(two(y, book(y),
read(z, y), z)))) 〉

Figure 6.6: The derived syntax and an example derived semantic tree for the sentence
“Every person always tries to read two books.” The derivation tree and all of the
derived semantics are also included.

Chapter 6: Modeling the Syntax-Semantics Interface: Beyond TL-MCTAG 203


S

NP↓ V P

V S∗

NP

ε

tries

t

e↓〈e, t〉
λx

V P∗Adv

V P

always




1 1

11 3

31 12 2

x

t

e〈e, t〉
〈t, 〈e, t〉〉 t∗

tries

x

e

t

t∗〈t, t〉
always t∗

(↑)

Figure 6.7: The lexical items for the sentence “Every person always tries to read two
books.” The altered lexical item for always permits delay and allows the generation
of a sixth reading for the sentence as well as readings in which two immediately
outscopes tries but scopes under every and always.

The problem with the analysis given in Figure 6.6 is that the scope order of every,

always and tries becomes fixed (every > always > tries or always > every > tries)

before they adjoin to the read tree. This permits four scope readings:

• every > always > tries > two

• two > every > always > tries

• always > every > tries > two

• two > always > every > tries

However, we cannot generate the reading always > two > every > tries . This

is the reading in which at any given time there are two specific books, say the top

two books on the New York Times bestseller list, that every person is trying to read.

Contrast this with the scope ordering two > always > every > tries where the two

Chapter 6: Modeling the Syntax-Semantics Interface: Beyond TL-MCTAG 204

tries

every

person

always

read

two

books

1

1

1

13
always

ε

tries

every

person

always

read

two

books

1

1

1

13
always

ε
tries

every

person

always

read

two

books

1

1

1

13
always

ε
every

ε2
2 2

〈 Every person always tries to read two books,
always(two(y, book(y),

every(z, person(z),
tries(read(z, y), z)))) 〉

Figure 6.8: The derivation trees for the sentence “Every person always tries to read
two books.” The derivation tree at the right corresponds to the additional semantic
reading shown. The two left hand derivation trees correspond to the semantic readings
shown under the previous analysis.

books that everyone is trying to read do not change over time, perhaps challenging

classics such as Swann’s Way and The Sound and the Fury. In order to generate this

reading, always needs to remain unattached until it multiply adjoins with two at the

root of read. For this, we can use delay. Figure 6.7 gives a modified lexicon where

the scope of always is permitted to delay. Figure 6.8 shows the derivations produced

by this altered lexicon.1

Allowing the scope part of VP-spine attachers such as adverbs to delay addresses

the challenge of this particular example but raises question of how to ensure that

VP-spine attachers will remain fixed in the order in which they attach in the syntax.

This problem is exemplified by the following sentences:

1We also do not obtain certain readings in which two immediately outscopes tries. These can
now be obtained by delaying both every and always so that all four scope-taking elements can adjoin
multiply at the root of read. Alternatively (and without use of delay), they can be produced by
breaking the tries tree into three trees so that the scope parts of every and always do not attach to
the scope part of tries until they multiply adjoin at the root of read.

Chapter 6: Modeling the Syntax-Semantics Interface: Beyond TL-MCTAG 205

S∗Adv

S

apparently




1 1t

t∗〈t, t〉
apparently

likes

john apparentlybill always

1
2 3

4

likes

john bill

1
2

3

always

grudgingly
1

[
t: []
b: [avp: +]

]
∆ : vpsp

V P∗Adv

V P

always




1 1t

t∗〈t, t〉

always t∗

(↑)

[
t: []
b: [avp: -]

]

Figure 6.9: The lexical entries for apparently and always and the derivation trees for
the sentences “Apparently John always likes Bill” and “John always grudgingly likes
Bill.”

(3) Apparently John always likes Bill.

(4) John always grudgingly likes Bill.

In sentence (3), apparently must outscope always. In sentence (4), always must

outscope grudgingly. In sentence (4), the ordering between always and grudgingly

is maintained because the foundation tree of always adjoins at the root of the scope

tree of grudgingly, so the dominance constraints on always guarantee that its scope

part will attach higher than that of grudgingly (Figure 6.9). However, for sentences

like sentence (3), apparently must outscope always even though they multiply adjoin

at the root of likes. We use a feature to ensure that the foundation tree of always

adjoins below apparently. Then, in order to block always from delaying past appar-

ently, we add an integrity constraint to the foot of the semantic tree for apparently

Chapter 6: Modeling the Syntax-Semantics Interface: Beyond TL-MCTAG 206

that blocks the passage of VP spine attachers.2 The necessary lexical items and the

derivation tree for sentence (3) are given in Figure 6.9.

6.4 Quantifiers Scoping Out of Islands

Although syntactic movement out of islands is prevented by the locality constraints

of our grammar in most cases, there are cases of quantifier scope in which we need to

allow the scope part of a quantifier to escape the tree set into which it adjoins. For

example, consider the sentence:

(5) John saw the person who everyone likes.

There is a strained but arguably available reading for this sentence in which each

person likes a different person, implying that every outscopes the relative pronoun

(and the other quantifier).3 Because we permit delay of the scope part of generalized

quantifiers, this reading is available. However, it requires the scope part of every to

delay all the way to the root of the scope part of the, perhaps explaining why the

reading in which every remains local to the relative clause is preferred.

The reader may note that this poses a problem for our earlier analysis of movement

of Wh words out of subordinate clauses, such as the earlier examples repeated here

for convenience:

2Because t attaching modifiers such as apparently do not delay, there is no need for an integrity
constraint on the 〈e, t〉 attaching modifiers to block their passage. However, if there were reason to
allow t attachers to delay, an additional integrity constraint could be added to the foot of the scope
tree of the 〈e, t〉 attachers that blocks passage of VP spine attachers.

3If we replace every with each as in “John saw the boy that each girl likes.”, the reading becomes
less strained.

Chapter 6: Modeling the Syntax-Semantics Interface: Beyond TL-MCTAG 207

∆ : wh

〈e, t〉

∧ 〈e, t〉∗

who (rel) 1:

N

N∗ S↓


t↓ 1

1 [rel: +]
∆ : whthat t↓

N

N∗

1

S

S↓C

that

1


〈e, t〉∗

〈e, t〉

〈e, t〉∧

Figure 6.10: Lexical entries for that and the relative pronoun who updated with
integrity constraints that prevent the delay of Wh words beyond their substitution
nodes.

(6) *Whoi does John believe the report that Mary likes ti?

(7) *Whoj does Bill have two brothersi whoi ti like tj?

In order to allow Wh words to be the objects of prepositions (as in sentences like

“Whoi does John like a book about ti?”), we have to either create an adjunction site

for them in the lexical entries for prepositions and nouns—an alternative we discarded

before because it makes our grammar set-local—or we have to allow the scope parts

of Wh words (and other noun phrases) to delay. However, we wish to limit the extent

to which a Wh word can delay so that we do not generate sentences like sentence (6)

and (7). In order to prevent this kind of movement we add an integrity constraint that

blocks movement of Wh words (but not the scope of other NPs) at the substitution

nodes of words that delimit extraction islands such as the instances of that and the

relative pronoun who introduced in the previous chapter. These integrity constraints

are shown in the updated lexical entries for that and the relative pronoun who in

Figure 6.10.

Chapter 6: Modeling the Syntax-Semantics Interface: Beyond TL-MCTAG 208

who

john

likes

a

book

about

who

1

1

1 ε/ε
2

about

〈e, t〉

〈e, 〈e, t〉〉PP

P

about

S

〈e, t〉V

likes

likes

V P t

〈e, 〈e, t〉〉 e

e

NP

NP

Det

t

x t

e

x

a

a xN

〈e, t〉

book

books

NP

John e

john

derived tree pair: derivation tree:

〈 Who does John like a book about?
who(z , a(x , book(x) ∧ about(z)(x), likes(x , john)) 〉

∧

〈e, t〉
N

S t

z

whoi

whoNP

ti

z

1

Figure 6.11: Derived tree pair and derivation tree for the sentence “Who does John
like a book about?” Note that the delay takes place in the syntax as well as the
semantics in order for who to end up at the front of the sentence.

This still allows us to handle cases of long distance Wh movement out of prepo-

sitional phrases, a construction that has posed problems for other systems of TAG

semantics [Kallmeyer and Scheffler, 2004]. Consider, for instance, the sentence:

(8) Who does john like a book about?

The analysis given in Kallmeyer and Scheffler [2004] requires a non-local MCTAG,

while our analysis is straightforward using the lexical items we have already intro-

duced. The analysis this sentence is given in Figure 6.11.

Chapter 6: Modeling the Syntax-Semantics Interface: Beyond TL-MCTAG 209

6.5 Conclusion

The chapter employs an extension to TL-MCTAG, limited delay V-TAG, to handle

certain constructions in which the tree-local domain of locality is too constraining to

capture the necessary relationship between the syntax and semantics of a sentence.

Each of these cases arise when a scope-taking element takes scope outside of the usual

tree-local domain of locality. LDV-TAG is well-suited to handle this because it allows

analyses that permit non-local adjunction only for the scope parts of certain lexical

items. Because LDV-TAG extends TL-MCTAG in a limited way, it also allows the

maintenance of the analyses presented in the previous chapter and maintains a similar

processing efficiency to that of TL-MCTAG.

Chapter 7

STAG for Machine Translation

7.1 Introduction

Machine translation research has gone through two distinct phases. Initially trans-

lation was most successfully performed via the engineering of natural language gram-

mars that mapped the syntax and lexicon of one language into that of another lan-

guage using detailed knowledge of the structure and vocabularies of both languages.

However, the construction of such systems required a very large amount of work

by skilled model designers and, even with the large input of resources, resulted in

systems that had unacceptably narrow coverage. In the second phase, statistical

machine translation (SMT) became ascendant. Using large quantities of data and

simple, efficient statistical models, broad coverage translation systems could be de-

veloped quickly and without any requirement of skilled work from people versed in

the languages to be translated. Although at first the quality of the translations

was quite low, more recent advances in the methods of sentence alignment, word

210

Chapter 7: STAG for Machine Translation 211

alignment, translation model, and, lately, phrase-based and hierarchical phrase-based

translation, have resulted in state-of-the-art systems that generally produce accept-

able translations where sufficient training data for the language pair is available.

However, the incremental improvements in SMT are getting smaller over time as

the sentences that are mistranslated are narrowed down to those where the syntactic

divergence between the two sentences cannot be captured by the model being used

by the translation system. The crux of this problem lies in the trade-off between

efficiency and syntactic complexity inherent in the statistical machine translation

model. Efficient translation depends on a simple model of transfer from a source

language to a target language. However, an examination of sentences in translation

reveals that a simple correspondence is not always sufficient to capture the full extent

of the relationship between two sentences that are translations of each other.

This chapter proposes as as yet unfinished program of research that reaches back

to draw on the wisdom of the first phase of machine translation research and combine

it with current SMT techniques to create a hybridized, syntax-aware, synchronous

grammar-based system that has broad coverage but also exhibits the capability to

handle the more difficult sentence pairs that are beyond the scope of what word- and

phrase-based translation systems can translate. The system we propose has two main

components. First, it has a statistically induced substrate that uses a polynomially

parsable constrained version of synchronous Tree Insertion Grammar (STIG) to gen-

erate a broad coverage MT grammar. Second, we hybridize the grammar by adding

syntactically motivated tree pairs that allow the complete system to capture more

complex linguistic correspondences between the two languages in the pair. These

Chapter 7: STAG for Machine Translation 212

additional tree pairs follow the spirit of the hand-crafted MT phase discussed above,

but not the method of generation. Rather than generating these pairs by hand, we

extract them automatically from two sources. First, we propose using the as yet

untapped resource of bilingual dictionaries, which give phrasal translation examples

for the entries that can be automatically converted into tree pair templates. Second,

we will extract lexical tree pairs from full parse trees for aligned sentence pairs. To

perform this extraction we rely on our own work on minimal factorization of trees as

well as that of others on the extraction of trees from treebank data. Once the two

levels of the system are present, they can be combined to form one single SMT system.

The method of combination of the two levels is an open question for our research.

One promising option is to reserve probability for the syntactically motivated trees

and then retrain the entire system using both the normal form trees of the statistical

substrate and the more complex syntactically motivated trees.

A schematic diagram of the structure of the complete MT system is given in

Figure 7.1. In Section 7.2 I present the statistical substrate for the system and

some preliminary evaluations of it in some detail. In Section 7.3 I briefly introduce

proposals for generating syntactically motivated trees by harvesting from bilingual

dictionaries and extracting from treebanks. In Section 7.4, I propose two methods for

combining the substrate and the lexicon of statistically motivated trees into a single

hybrid system. I conclude in Section 7.5.

Chapter 7: STAG for Machine Translation 213

Sentence
Aligned Bilingual

Corpus

Broad Coverage
Statistical
Substrate

Normal Form
Bilingual
Grammar

Bilingual
Dictionary

Syntactically
Motivated Tree

Pairs

Bilingual
Treebank

Complete SMT
System

Tree Pair
Extraction

Bilingual
Treebank

Generation

Bilingual
Grammar
Extraction

Decoder
Training by

EM

Hybridization
and

Retraining

Figure 7.1: A schematic diagram showing the structure of the proposed MT system

Chapter 7: STAG for Machine Translation 214

7.2 The Statistically Induced Substrate

The statistically induced substrate of the system differs substantially from a typ-

ical SMT system because it contemplates hybridization of the system—the addition

of syntactically-motivated trees—from the outset. Most SMT systems use the finite-

state transducer as a base formalism because finite-state mechanisms can be trained

very efficiently on large corpora. However, these systems do not provide any clear

way to incorporate additional information about correspondences between words or

phrases that may be useful in improving translations. By basing this system on a

synchronous grammar in which all translation is done by parsing, we leave open the

possibility of adding additional tree pairs to the lexicon that capture more complex

lexical and syntactic relationships.

Recent work in statistical machine translation by parsing has identified a set of

characteristics an ideal base formalism should have for the translation task [Melamed,

2003, Melamed et al., 2004, Melamed, 2004]. What is desired is a formalism that has

the substitution-based hierarchical structure of context-free grammars and the lexical

relationship potential of n-gram models. Further, it should allow for discontinuity in

phrases and be synchronizable, to allow for multilinguality. Finally, in order to sup-

port automated induction, it should allow for a probabilistic variant, and a reasonably

efficient parsing algorithm. The more expressive and flexible a formalism is, the less

efficient parsing of it will be. Therefore, the primary trade-off to be made is between

parsing efficiency on one hand and the rest of the desired characteristics on the other.

However, even among formalisms with the same parse complexity, some formalisms

better satisfy the desiderata than others.

Chapter 7: STAG for Machine Translation 215

Finite-state word-based models, such as IBM Model 5 [Brown et al., 1993], use a

base formalism that allows for synchronization, probabilistic variants, very efcient pro-

cessing, and good ability to capture lexical and bilexical relationships. However, they

are limited by the inability to use hierarchical information in the interlingual map-

ping. The ability to incorporate hierarchical information by substitution of subparts

is the hallmark of context-free grammars. A natural approach, then is to incorporate

synchronization of context-free structures to allow for these kinds of mappings. How-

ever, probabilistic context-free grammars (PCFG) are well known to perform poorly

as language models compared to nite-state models; they gain the ability to substi-

tute according to abstract categories at the expense of stating lexical relationships

directly. Although arbitrary CFGs can be weakly lexicalized by other CFGs, this can

require changing the shape of the derived trees produced, and more critically, changes

the structure of the derivation [Schabes and Waters, 1993, 1995]. Because synchro-

nization requires substantial isomorphism of the derivation trees, synchronization of

lexicalized CFGs becomes problematic. A different form of hybridization, combining

both a CFG-based grammar and n-gram-based phrases is the current state-of-the-art

[Chiang, 2007].

Tree-adjoining grammars and their synchronous variants (STAG) are natural

choices to capture lexically-based dependencies while also allowing the substitution

of subparts. Importantly, Schabes and Waters [1995] show that TAG can lexicalize

CFG without changing the trees produced. That is, given a CFG a lexicalized TAG

can be constructed that will produce the same set of derived structures produced

by the CFG. Because each elementary tree contains a lexical item, the operations

Chapter 7: STAG for Machine Translation 216

of substitution and adjunction implicitly manifest a lexical relationship. In addition,

the two operations, substitution and adjunction, are exactly what is needed to handle

noncontiguity.

However, as addressed in the early chapters of this thesis, the TAG formalism’s

additional expressivity leads to additional processing complexity. Because training an

MT system based on synchronous TAG would require repeated parsing of the training

corpus, this time complexity is prohibitive. Tree-insertion grammars (TIG) are a

computationally attractive alternative to TAG [Schabes and Waters, 1993]. TIGs are

similar to TAGs except that restrictions are placed on the form of elementary trees

and on the adjunction operation that cause it to have CFG-equivalent expressivity

and parsing complexity. Schabes and Waters [1995] demonstrate that TIG, like TAG,

can lexicalize CFGs without changing the shape of the trees produced. Hwa [2001]

shows that a probabilistic variant of TIG can have language modeling performance at

the level of bigram models thereby capturing lexical relationships, while also retaining

the advantages of CFGs in capturing syntactic structure.

The advantage of STIG as a formalism for MT is its naturalness in describing

relations between constructions in different languages. Nonetheless, to make use of

that ability it must be embeddable in a system that can show at least the robustness

of performance of the nite-state methods that have become standard. Our induced

probabilistic STIG is structured as a normal form grammar in which adjunction

parameters are estimated by expectation maximization. The normal forms specify

both the shape of the trees in the tree pair as well as the links between them. For

every observed word cooccurence in the training set, we introduce one of each of the

Chapter 7: STAG for Machine Translation 217

normal form auxiliary tree pairs anchored by the cooccurring words. The parser learns

the adjunction parameters unsupervised on a bilingual corpus using an adaptation of

the PCFG inside-outside algorithm developed by Lari and Young [1991].

In this section I first introduce synchronous Tree-Insertion Grammar (Section 7.2.1)

and present a parser for a polynomially-parsable restricted subset of it (Section 7.2.2).

I then describe the implementation of a probabilistic system based around the parser

that uses expectation maximization to learn a grammar from a corpus (Sections 7.2.3

and 7.2.4) and present our preliminary empirical results (Section 7.2.5).

7.2.1 Synchronous Tree-Insertion Grammars

TIGs are similar to TAGs except that restrictions are placed on the form of el-

ementary trees and on the adjunction operation. In particular, the foot node of an

auxiliary tree is required to be at the left or right edge of the frontier, so that all

textual material dominated by the spine will fall to the right or left, respectively, of

the foot. The auxiliary trees can thus be classified as either right or left auxiliary

trees, respectively, as determined by the location of the non-foot material.

To maintain the invariant that textual material falls only on a single side of the

spine, adjunction must be restricted so that left auxiliary trees may not adjoin into a

node on the spine of a right auxiliary tree and vice versa. This prevents the formation

of “wrapping” trees in which there are terminal symbols on both sides of the foot node.

To implement this restriction we augment adjuction links to indicate a required side

of the node where they appear. Substitution links have no side. Notationally, we

accomplish this by placing adjunction links on the side of the node on which the

Chapter 7: STAG for Machine Translation 218

Jean Jean

NP NP




candies bonbons

N N




Det

les

NP

N↓

NP

N↓1 1




1 1




S

NP↓1

S

NP↓ 1V P

NP↓ 2

V P

NP↓ 2V

likes aime

V

Adj

red rouges

Adj




N N

N∗N∗

Figure 7.2: An STIG for a sample English/French grammar fragment. Note that
although there is a tree with no lexical material, all tree pairs are lexicalized.

adjunction must take place. That is, a link appearing on the left (resp. right) side of

a node can only be used by an auxiliary tree with its foot at its right (resp. left) edge.

The side of a node on which a substitution link appears carries no special meaning.

This restriction coupled with the requirement that all elementary auxiliary trees

be non-wrapping is sufficient to limit the formalism to context-free expressivity and

O(n3) parsability. In addition, Schabes and Waters [1993] demonstrate that TIG, like

TAG, can lexicalize context-free grammars without changing the shape of the trees

produced. For further background and discussion of TIGs and LTIGs, see the papers

by Schabes and Waters [1993, 1995] and Hwa [2001].

Synchronous TIG (STIG) extends TIG just as STAG extends TAG, by making

elementary structures pairs of TIG trees with links between particular nodes in those

trees. Figure 7.2 contains a sample English/French grammar fragment and Figure 7.3

shows the derivation of the paired sentences: “Jean likes red candies” and “Jean aime

les bonbons rouges”.

Chapter 7: STAG for Machine Translation 219

Jean/Jean

likes/aime

ε/les

candies/bonbons

red/rouges

1 2

1

1

Figure 7.3: The derivation of “Jean really likes candies.”/“Jean aime les bonbons
rouges.”

In support of the hypothesis about the utility of STIG in providing the proper-

ties desired in a synchronous grammar formalism for engineering translation systems,

Hwa [2001] shows that a probabilistic version of TIG can have language modeling

performance at the level of bigram models thereby capturing lexical relationships,

while also retaining the advantages of context-free grammars in capturing syntactic

structure. A STIG can easily express lexically-based dependencies, can be parsed in

O(n6) time when restricted in ways described below, and can handle both the sub-

stitution and adjunction requirements described above. Thus, a probabilistic version

of STIG seems to possess all of the properties that we would like as the basis for a

the substrate of our syntax-aware translation system.

In the succeeding sections, we develop parsing, parameter estimation, and transla-

tion algorithms for probabilistic synchronous TIGs. We follow the useful synchronous

parsing framework laid out by Melamed et al. [2004]. Following Melamed, we dis-

tinguish multilingual parsing, in which a pair of sentences is analyzed as per a mul-

tilingual grammar, from translation, in which a single sentence is analyzed as per a

multilingual grammar so as to determine all multilingual tuples in which the sentence

Chapter 7: STAG for Machine Translation 220

is admitted. In addition, Melamed et al. [2004] breaks generalized parsers into four

distinct pieces, each of which may be analyzed separately: a grammar, a logic, a

semiring, and a search strategy. The grammar is the language-specific set of rules

and/or lexical items used by the parser. The logic is a set of inference rules that

determine how the items of the grammar may be combined to form a derivation.

The semiring determines what is computed by the parser as it parses; for instance,

it might determine simple acceptability of a sentence by a grammar or it might de-

termine the probability of the sentence being produced by the grammar. The search

strategy refers to the order in which the inference rules are applied when more than

one rule can apply.1

7.2.2 Parsing Synchronous Tree-Insertion Grammars

For reasons to be discussed below, the choice of parsing algorithm has significant

consequences. Schabes and Waters [1995] give an Earley-style parsing algorithm for

TIGs. Schabes and Waters [1993] give a CKY-style parsing algorithm for a slight

variant, lexicalized context-free grammars (LCFG), which can straightforwardly be

used to create a CKY-style parsing algorithm for TIGs. We use CKY-style parsing

because of the simplicity and clarity of the algorithm and for consistency with parsers

presented earlier in this work. Figure 7.4 presents inference rules for a CKY-style

parsing algorithm for TIG. This algorithm is an adaptation of the algorithm given

in Schabes and Waters [1993] and will appear similar to the TAG parsing algorithm

1Melamed draws on previous work by Shieber et al. [1994] for his inference-rule-based separation
of logics, grammars, and search strategy. He draws on previous work by Goodman [1999] for the
method of parameterizing the parser by a semiring.

Chapter 7: STAG for Machine Translation 221

presented in Chapter 1. The primary difference between the TAG and TIG parsers is

that TIG items do not correspond to subtrees containing gaps, so they require only

two indices to demarcate the left and right edges of the input string that they span.

To reduce the number of inference rules needed, we make use of an interval union

operation ∪x distinct from the union operation introduced for our earlier parsers. It

is parameterized by the order in which the intervals abut, where x is either L or R,

defined by

(i, j) ∪L (j, k) = (i, k)

(j, k) ∪R (i, j) = (i, k) ,

and is otherwise undefined.

As discussed in Chapter 4, parsing of any synchronous variant of a CFG-equivalent

formalism is NP-complete. Because induction of a probabilistic grammar from data

using expectation maximization requires repeated parsing of the corpus, we require

a polynomial parsing algorithm with a practically tractable polynomial degree. As

a result, we restrict STIG to exclude the configurations of links that can lead to

exponential parsing behavior. The critical issue is that links may be intertwined in

such a way that the number of discontinuous spans the parser must keep track of

in order to ensure adherence to locality restrictions can grow exponentially during

parsing. By placing an arbitrary bound on the number of discontinuous spans that

may be maintained simultaneously, we reduce the parsing complexity to a polynomial

in the length of the input string but also exclude derivations that are valid STIG

derivations but violate the bound.

We implement the strictest version of the bound: each item of the parser represents

Chapter 7: STAG for Machine Translation 222

Item Form: 〈α@a . `, (i, j)〉

Goal: 〈α@ε . , (0, n)〉 Init(α)
Label(α@ε) = S

Axioms:

Terminal Axiom: 〈α@a . , (i, i+ 1)〉 Label(α@a) = wi+1

Empty Axiom: 〈α@a . , (i, i)〉 Label(α@a) = ε

Foot Axiom: 〈α@Ft(α) . , (i, i)〉 Aux(α)

Inference Rules:

Complete Unary: 〈α@(a · 1) . , (i, j)〉 α@(a · 2) undefined

〈α@a . `, (i, j)〉 Link(α@a) = `

Complete Binary: 〈α@(a · 1) . , I〉, 〈α@(a · 2) . , J〉 Link(α@a) = `

〈α@a . `, I ∪L J〉

Adjoin: 〈β@ε . , I〉, 〈α@a . x , J〉 Adj(α@a . x , β, x)

〈α@a . , I ∪x J〉

No Adjoin: 〈α@a . x , (i, j)〉
〈α@a . , (i, j)〉

Substitute: 〈β@ε . , (i, j)〉 Link(α@a) = x

〈α@a . , (i, j)〉 Sub(α@a . x , β)

Figure 7.4: Inference rules for the CKY algorithm for TIG.

two synchronized subtrees that each dominate a single contiguous span. This limits

the polynomial degree of the parser to O(n6), a reasonably tractable bound for our

application.

An interesting aspect of enforcing this limitation is that the order in which the

nodes of the trees are traversed affects which configurations of links are excluded by

Chapter 7: STAG for Machine Translation 223


X

X∗ A

B

C

D

w1 w2

X

X∗1 2

12 A↓ B↓ C↓

Y1 Y2

X X

C↓

A↓

B↓

1

1

2

2

3 3




D

D

(a) (b)

Figure 7.5: STIG links that pose a problem for CKY parsing.

the parser. This is most easily illustrated by an example, such as the tree pair in

Figure 7.5(a).

In CKY parsing, traversal of the trees proceeds from all the leaves simultaneously

up to the root of the tree. When the parsing algorithm has finished processing all

children of a node, it proceeds to the parent. Thus, in order to make use of the link

between node B and node C (in Figure 7.5(a)), the parsing algorithm must first finish

with node D. However, in order to make use of the link between node A and node

D, the parser must first finish with node B. Thus, although a tree pair such as the

one in Figure 7.5 is permitted by the STIG formalism, the parser will rule out any

derivation that makes use of both of links in the tree pair.

In Earley’s algorithm, the nodes are parsed in a top-down, left-first order; the

left branches precede the right branches and the left sides of nodes precede the right

sides of nodes. Thus, the trees in Figure 7.5(a) would be parsable using a version of

Earley’s algorithm for STIG, because the right side of node B and the left side of

node C would both be reached before the right side of node A and the left side of

node D. However, only derivations that make use of a combination of left and right

adjunctions that correspond to the traversal order would be generated.

Chapter 7: STAG for Machine Translation 224

Because of the branching structure of trees, unparsable configurations can arise

even with nodes that have no links between them. When two synchronized pairs

of nodes cross each other across the boundaries of a branch in the tree, the parser

can also become stuck. This problem is illustrated in Figure 7.5(b). In order to

perform a sibling concatenation to reach nodes Y1 and Y2, the derivation must have

reached all of their daughter nodes. If a pair of nodes, such as those labeled D, are

not both daughters or descendants of Y1 and Y2, the derivation will not be able to

proceed. Note that although the nodes labeled D are not explicitly linked, because

they dominate nodes that are synchronized with each other, they will be synchronized

in a single item when the parser reaches them. Thus the problem persists even when

the pairing is not of a daughter of Y2 with an ancestor of Y1 but also any descendant

of Y2 with an ancestor of Y1.

To formalize the problematic situation, we introduce the notion of a cover. We

say that set of nodes S covers an ancestor node X if all descendants of X that are

paired nodes are contained in S. We prohibit tree structures in which the set of nodes

that cover a node, here Y1, are not paired with the set of nodes that cover Y1’s paired

node Y2.

We define a restricted subset of STIG: restricted STIG (RSTIG), for which we

assert that the given CKY parsing algorithm is complete. An RSTIG is a STIG where

the linking relation in the elementary trees obeys the following rules:

• If a particular elementary tree pair contains a link between node A and node B,

it may not also contain a link between: (a) an ancestor of A and a descendant

of B, or (b) an ancestor of B and a descendant of A.

Chapter 7: STAG for Machine Translation 225

Item Form:
{s : 〈αs@as . `s, (is, js)〉, t : 〈αt@at . `t, (it, jt)〉}

Goal:
{s : 〈αs@ε . , (0, ns)〉, t : 〈αt@ε . , (0, nt)〉} Init(α)

Label(αs@ε) = Ss

Axioms: Label(αt@ε) = St

Terminal Axiom:
{x : 〈α@a . , (i, i+ 1)〉, x : } Label(α@a) = wi+1

Empty Axiom:
{x : 〈α@a . , (i, i)〉, x : } Label(α@a) = ε

Foot Axiom:
{x : 〈α@Ft(α) . , (i, i)〉, x : } Aux(α)

Figure 7.6: The item form, goal item, and axioms for the CKY algorithm for RSTIG

• If a set of nodes form a cover of an ancestor, X, then the nodes with which

those nodes are paired must form a cover of any nodes with which X may be

paired.

The following definitions apply:

• Paired. Two nodes are paired if they may form an item in the course of a

derivation.

• Cover. A set of nodes S covers an ancestor node X if all descendants of X

that are paired nodes are contained in S.

Given this definition, we can define a parser for RSTIG. The inference rules for

the CKY-style RSTIG parsing algorithm are shown in Figures 7.6 and 7.7.

Each item is represented as a two element set where the elements have the same

form as the items of the TIG parser presented above. For notational convenience,

the two members are labeled as source (s) or target (t). When a rule applies to

Chapter 7: STAG for Machine Translation 226

Inference Rules:

Complete Unary:
{x : 〈α@(a · 1) . , (i, j)〉, x : X} α@(a · 2) undefined

{x : 〈α@a . `, (i, j)〉, x : X} Link(α@a) = `

Complete Binary 1:
{x : 〈αx@(ax · 1) . , Ix〉, x : 〈αx@(ax · 1) . , Ix〉}, Link(αx@ax) = `x
{x : 〈αx@(ax · 2) . , Jx〉, x : 〈αx@(ax · 2) . , Jx〉} Link(αx@ax) = `x
{x : 〈αx@ax . `x, Ix ∪L Jx〉, x : 〈αx@ax . `x, Ix ∪L Jx〉}

Complete Binary 2:
{x : 〈αx@(ax · 1) . , Ix〉, x : 〈αx@(ax · 2) . , Ix〉}, Link(αx@ax) = `x
{x : 〈αx@(ax · 2) . , Jx〉, x : 〈αx@(ax · 1) . , Jx〉} Link(αx@ax) = `x
{x : 〈αx@ax . `x, Ix ∪L Jx〉, x : 〈αx@ax . `x, Ix ∪R Jx〉}

Complete Binary 3:
{x : 〈αx@(ax · 1) . , Ix〉, x : X1}, Link(αx@ax) = `x
{x : 〈αx@(ax · 2) . , Jx〉, x : X2} Link(αx@ax) = `x

{x : 〈αx@ax . `x, Ix ∪L Jx〉, x : X1 ∪ X2}

Adjoin:
{s : 〈αs@as . x , Is〉, t : 〈αt@at . x , It〉} Adj(αs@as . x , βs, x1)
{s : 〈βs@ε . , Js〉, t : 〈βt@ε . , Jt〉} Adj(αt@at . x , βt, x2)

{s : 〈αs@as . , Is ∪x1 Js〉, t : 〈αt@at . , It ∪x2 Jt〉}

No Adjoin:
{x : 〈α@a . x , (i, j)〉, x : X}
{x : 〈α@a . , (i, j)〉, x : X}

Substitute:
{s : 〈βs@ε . , (is, js)〉, t : 〈βt@ε . , (it, jt)〉} Link(αs@as) = x

{s : 〈αs@as . , (is, js)〉, t : 〈αt@at . (it, jt)〉} Link(αt@at) = x

Sub(αs@as . x , βs)
Merge: Sub(αt@at . x , βt)

{s : 〈αs@as . `s, (is, js)〉, t : }
{s : , t : 〈αt@at . `t, (it, jt)〉}

{s : 〈αs@as . `s, (is, js)〉, t : 〈αt@at . `t, (it, jt)〉}

Figure 7.7: The inference rules for the CKY algorithm for RSTIG.

Chapter 7: STAG for Machine Translation 227

only one member of the set without regard for which side, the label x is used to

represent either s or t and the label x is used to represent the other element. The

axioms introduce what may be thought of as unsynchronized items in which only

one of the two elements of the set is instantiated. Those rules that do not require

synchronization, such as Complete Unary and Complete Binary 3, operate on just

one side of the synchronous pair leaving the other side of the pair unchanged.2 This

allows for arbitrary unpaired structure in the elementary trees. Operations such as

Adjoin, Substitute, and Complete Binary 1 and 2, require a synchronous pair of

nodes in order to properly enforce synchronization. When the parser reaches a link

or a location that cannot be processed without synchronization, the Merge rule is

applied to form a synchronized item from two unsynchronized items.3

We include a No Adjoin rule but note that it would be possible to omit this rule.

When the rule is omitted and the parser needs to skip a particular link, it is simulated

by adjoining in a special auxiliary tree pair in which each tree is a single node that

is both root and foot. Thus, it does not change the shape of the derived tree.4

This change eliminates the tricky problem of estimating no-adjunction parameters.

However, we note that grammar size may increase as a result of this change because

2Note that in Complete Binary 3 we make use of the union operator introduced in earlier parsers.
This operator takes two inputs and selects whichever one is non-null. If both are null, the result is
null. If both are non-null, then the operation fails.

3Although as written the Merge rule can apply at any time, we assume a constraint on its
application that allows it to be used only when no other rule can be applied. This prevents spurious
ambiguity arising from its application.

4The addition of empty trees breaks lexicalization of an otherwise lexicalized grammar, but
neither removes the linguistic advantages of lexicalization nor the parsing advantage that comes
from not allowing adjunctions that don’t increase the span of the item. The reason the latter is not
a problem is that an empty tree can only adjoin to a link once because the link is then removed.
Thus no spurious adjunctions are introduced. In our implementation we do not actually add the
empty tree nodes to the chart but instead just make them available in every chart cell with no cover.

Chapter 7: STAG for Machine Translation 228

the parser can no longer skip any links in a derivation. With the No Adjoin rule in

place, trees with unparsable link configurations may exist in the grammar as long as

only a parsable subset is used in the derivation. Without it, the lexicon itself may

not include any unparsable link configurations.

Allowing Translations of Differing Lengths

The rules presented above allow the introduction of trees with empty anchors,

breaking lexicalization. Allowing empty anchors permits us to model cases in which

a word in one language translates into the empty string in another language.5 Even

if we restrict the Merge rule to prevent the synchronization of tree pairs that contain

no lexical material on either side, this can as much as triple the size of the grammar,

which will have a detrimental effect on the space and time complexity of the parsing

algorithm as well as the space and time complexity of the expectation maximization

algorithm based on it. However, because each operation that combines trees (except-

ing the adjunction of empty trees discussed above) still increases the cover of the

item in at least one of the sentences, the time complexity of the algorithm in terms

of sentence length remains the same.

It also affects the time and space complexity of the translation process. The

translator has only the source sentence as input and it must guess if there are any

tree pairs in the parse that have a tree anchored with the empty string on the source

side. Theoretically there can be arbitrarily many such tree pairs in the translation.

5It also gives us a simple way to handle cases in which multiword phrases translate to phrases
of differing lengths, although this is more elegantly handled by the use of the ability to parse
unsynchronized structure. In our implementation we use canonical trees that do not exhibit any
non-isomorphic structure in the tree pairs, so in effect we do not make use of the asynchronous rules.
They could, however, be useful when the grammar is hybridized with linguistically-motivated trees.

Chapter 7: STAG for Machine Translation 229

We use a heuristic that limits the size of the target sentence relative to the source

sentence to prevent the parser from searching a potentially very large set of possible

translations.

7.2.3 Parsing Probabilistic RSTIG

In order to use the RSTIG parser to induce an RSTIG grammar from data, we

need to add probabilities to each item, corresponding to the inside probability of the

source and target nodes in that item covering their respective parts of the source and

target input sentences. Following the Melamed et al. [2004] framework and the work

of Goodman [1999] on parameterizing parsers with semirings, we are able to do this

quite easily. In this section, we review the concept of a semiring and demonstrate how

several useful semirings can be applied to the RSTIG inference rules and grammar.

Semirings

Goodman [1999] demonstrates that the quantities most commonly computed by

parsers can all be computed using the same parsing algorithm by simply swapping in

a semiring that aids in calculating the particular quantity desired. The basic idea is

that the parsing algorithm can be written to compute a quantity, such as acceptance

or inside probability, by using a set of semiring operators in certain places. To change

the quantity computed is to change the semiring being used.

A semiring contains two operators, a product (⊗) and sum (⊕), and two iden-

tities, 0 and 1. We require that ⊕ be associative and commutative and that ⊗ be

associative and distribute over ⊕. 0 is an additive identity element and 1 is a mul-

Chapter 7: STAG for Machine Translation 230

tiplicative identity element. We will write 〈S,⊕,⊗, 0, 1〉 for the semiring over set S

with multiplicative operator ⊗ and identity 1 and additive operator ⊕ and identity

0.

In addition to the above, Goodman [1999] also includes a requirement that the

semiring be complete. A complete semiring also allows for infinite sums that are

associative and commutative and allows the multiplicative operator to distribute over

infinite sums. Completeness is necessary to handle parsers in which there may be an

infinite number of derivations for a particular item. This occurs when an item can

derive itself, either directly or through a series of steps. Although all the semirings

we describe here are complete, because operations can only take place at links and

links are removed after an operation occurs, there will never be an infinite number of

derivations of an item in our system.

To parameterize the parser by a semiring, each item and inference rule will have a

semiring value associated with it. The semiring value associated with the consequent

will be the product of the antecedent items’ semiring values and the semiring value

of the inference rule itself. When an item is added to the chart, if it is not present

in the chart it will be added with this computed value. If it is already present in the

chart, the new value will be its semiring value in the chart plus the value computed

by the inference rule that just generated it. Note that if we use the Boolean semiring

and give each inference rule the semiring value 1, we yield the same results as we did

with the unparameterized parsing algorithm.

In addition to replicating the recognizer previously presented, we can also use

semirings to compute inside probabilities and Viterbi derivations for the items in the

Chapter 7: STAG for Machine Translation 231

chart. The inside probability of an item is the probability of that item being produced

by the grammar starting at any point within the grammar. This probability is used

in expectation maximization to induce a synchronous TIG grammar from data. The

Inside semiring is defined as 〈R∞0 ,+,×, 0, 1〉. We set the semiring values associated

with each inference rule as follows:

• The semiring value associated with all axiom rules will be 1. Since no decisions

have been made in the parse at this point, each axiom item has probability 1

of being generated in the position in which it is inserted into the chart.

• The semiring values associated with the Complete Unary, Complete Binary and

Merge rules will be 1. They are entirely determined by the structure of the trees

themselves. There is nothing probabilistic in their application.6

• The semiring value associated with substitution of item B into item A will be

the probability that B substitutes into A. Thus there will be a probability

distribution over all items that can substitute into A. This probability will be

given as part of the grammar and could be learned from a corpus.

• The semiring value associated with adjunction of item B into item A will be the

probability that B adjoins into A. Again, there will be a probability distribution

over all items that can adjoin into A given as part of the grammar or learned

from a corpus. Note that we do not need to maintain a separate probability of no

6As noted above, a requirement on the Merge rule is necessary to constrain its application so that
it does not give rise to spurious ambiguity. In our implementation, due to the highly constrained
structure of our canonical trees we actually use a simplified version of the parsing rules in which every
node is synchronized. This may be thought of as equivalent to applying the merge rule immediately
following the introduction of two unsynchronized items by the axioms.

Chapter 7: STAG for Machine Translation 232

Semiring S ⊕ ⊗ 0 1

Recognition {FALSE, TRUE} ∨ ∧ FALSE TRUE

Inside [0, 1] + × 0 1
Viterbi [0, 1] max × 0 1
Viterbi Derivation [0, 1]×D maxvit (×, ·) (0, ∅) (1, 〈〉)

Figure 7.8: Summary of the semirings used. D is the set of derivations.

adjunction occurring because that probability is maintained as the probability

of the appropriate empty tree within this distribution.

The Viterbi derivation is the derivation tree of the most probable parse for a

given input. This value will be of use when we use our induced grammar to translate

new sentences. The Viterbi derivation semiring is given in Figure 7.8 along with

the others used in the translation system. The elements of the semiring are pairs

consisting of the probability of the item and the derivation of the item. The additive

operator takes the maximum probability item and its associated derivation. Although

retaining only a single derivation when multiple derivations have the same probability

destroys associativity, Goodman [1999] notes that in practice this is not a problem.7

The multiplicative operator is just × for the probability and concatenation for the

derivations. The additive identity is 0 for the probability and the empty set for

the derivation. The multiplicative identity is 1 for the probability and the empty

derivation. Concatenation with the empty derivation is an identity operation. The

semiring values associated with the rules will use the same probabilities as with the

Inside semiring. The pairs will be filled out with the empty derivation so that they

7To maintain associativity, we just keep a forest of best derivations rather than a single best
derivation.

Chapter 7: STAG for Machine Translation 233

will be identity elements when multiplied in.

RSTIG Parsing Parameterized by a Semiring

The semiring values associated with the application of each inference rule are the

parameters that must be learned from the corpus. Thus we present these parameters

as well. Figure 7.9 contains a sampling of the inference rules modified to include the

calculation of the semiring values associated with each item.

The semiring value calculated for the string is then the sum of the values associ-

ated with the goal items multiplied by their probability of rooting the corresponding

derivation: ∑
{s:〈αs@ε. ,(0,ns)〉,t:〈αt@ε. ,(0,nt)〉,p}

SP (α)⊗ p .

To make this more concrete, consider the application of the Inside semiring to the

adjunction operation. The inside probability of the consequent item is the probabili-

ties of the individual antecedent items, p1 ⊗ p2, multiplied by the probability, pa, of

those two items being adjoined together.

The semiring values associated with each rule are the parameters that will be

estimated by the expectation maximization algorithm as described in Section 7.2.4.

Since the application of the semiring makes explicit the parameters that will have

to be estimated, these parameters are explained here. There are three categories of

parameters to be estimated:

(i) Adjunction Parameters. Each adjunction link has an associated probability

distribution over all of the tree pairs that could adjoin at that link. We further

restrict the use of links by having each link specify on which side of the node

Chapter 7: STAG for Machine Translation 234

Item Form:
{s : 〈αs@as . `s, (is, js)〉, t : 〈αt@at . `t, (it, jt)〉, p}

Goal:
{s : 〈αs@ε . , (0, ns)〉, t : 〈αt@ε . , (0, nt)〉, p} Init(α)

Label(αs@ε) = Ss

Axioms: Label(αt@ε) = St

Terminal Axiom:
{x : 〈α@a . , (i, i+ 1)〉, x : , 1} Label(α@a) = wi+1

Inference Rules:

Complete Binary 1:
{x : 〈αx@(ax · 1) . , Ix〉, x : 〈αx@(ax · 1) . , Ix〉, p1}, Link(αx@ax) = `x
{x : 〈αx@(ax · 2) . , Jx〉, x : 〈αx@(ax · 2) . , Jx〉, p2} Link(αx@ax) = `x

{x : 〈αx@ax . `x, Ix ∪L Jx〉,
x : 〈αx@ax . `x, Ix ∪L Jx〉, p1 ⊗ p2}

Adjoin:
{s : 〈αs@as . x , Is〉, t : 〈αt@at . x , It〉, p1} Adj(αs@as . x , βs, x1, pa)
{s : 〈βs@ε . , Js〉, t : 〈βt@ε . , Jt〉, p2} Adj(αt@at . x , βt, x2, pa)

{s : 〈αs@as . , Is ∪x1 Js〉,
t : 〈αt@at . , It ∪x2 Jt〉, p1 ⊗ p2 ⊗ pa}

Substitute:
{s : 〈βs@ε . , (is, js)〉, t : 〈βt@ε . , (it, jt)〉, p} Link(αs@as) = x

{s : 〈αs@as . , (is, js)〉, t : 〈αt@at . (it, jt)〉, p⊗ ps} Link(αt@at) = x

Sub(αs@as . x , βs, ps)
Sub(αt@at . x , βt, ps)

Figure 7.9: Representative inference rules for the CKY algorithm for PRSTIG

the adjunction must take place. This means that only a subset of the total tree

pairs will be represented in any adjunction link’s distribution. In addition, the

nonterminal symbols at the nodes linked further restrict which tree pairs may

adjoin.

(ii) Substitution Parameters. Each substitution link has an associated proba-

Chapter 7: STAG for Machine Translation 235

bility distribution over all of the tree pairs that could substitute at that link.

The nonterminal symbols at the linked nodes restrict the tree pairs that will be

represented in this distribution.

(iii) Start Tree Parameter. This parameter specifies for each initial tree pair the

of its serving as the root of a derivation, and is associated with the root nodes

of the paired trees with the initial tree pairs of the grammar that are rooted in

the start symbols of the grammars. This value is represented in the rules by

a value for each pair of paired root nodes, SP (α), that is multiplied into the

semiring value of the goal item.

7.2.4 Induction from Sentence-Aligned Text

The synchronous parser presented above comes to life when put in the context

of an algorithm that can estimate the necessary parameters of the grammar. In

this section we review the Inside-Outside algorithm, which is a special case of the

expectation maximization algorithm used for estimating the parameters of a grammar

[Prescher, 2001]. We apply the algorithm to synchronous tree-insertion grammars in

a straightforward generalization of the algorithm presented by Hwa [2001].

The Inside-Outside Algorithm

The Inside-Outside algorithm was proposed by Baker [1979] and refined by Lari

and Young [1991] as a method for performing maximum likelihood estimation for

probabilistic context-free grammars. The objective of the algorithm is to estimate a

probability to associate with each rule of a grammar so that the grammar can then

Chapter 7: STAG for Machine Translation 236

Initialize the parameters of the grammar randomly
Repeat until convergence:

E Step:
Compute the Inside and Outside probabilities for the grammar

M Step:
Update the parameters to maximize the likelihood of the training data

Figure 7.10: High-Level View of the Inside-Outside Algorithm.

be used to produce the most likely parse of unseen sentences.

In an unambiguous grammar these probabilities can be estimated directly by

parsing a training corpus and keeping track of the number of times each rule is used.

These counts can then be normalized to produce a probability to associate with each

rule of the grammar using the following formula [Jurafsky and Martin, 2000]:

P (α→ β | α) = Count(α→β)P
γ

Count(α→γ)
= Count(α→β)

Count(α)

However, grammars are rarely unambiguous and our initial grammar will certainly

be ambiguous. Thus, these values cannot be computed directly. Instead we must

keep track of all of the different parses for a given sentence and a weight for each

of those parses. The Inside-Outside algorithm allows us to do just this. It begins

with randomly initialized probabilities for each parameter (Initialization Step). It

then uses these rules to parse a training corpus and calculate the expected frequency

with which each rule is used (E Step). These expected frequencies are then used to

compute new probability estimates for the rules (M Step). The process continues

until the rule probabilities converge to a local maximum for the training corpus. A

high-level description of the algorithm is given in Figure 7.10.

In the E step we calculate the inside and outside probabilities for each of the

parameters of the grammar. In the case of PCFGs, the inside probabilities correspond

Chapter 7: STAG for Machine Translation 237

X X

0 0n ni ij j

(a) (b)

Figure 7.11: The (a) inside and (b) outside probability of the nonterminal symbol X
deriving the substring from i to j.

to the probability that a given nonterminal in the grammar derives a given substring

of the current input sentence. The outside probabilities correspond to the probability

that the entire input sentence is derived with a given nonterminal in the grammar

covering a given substring in the input sentence. These two quantities are depicted

as the striped areas in Figure 7.11.

In the M step we use the inside and outside probabilities calculated in the E Step

to update the parameter probabilities. When multiplied together, the inside and

outside probabilities for a particular rule and sentence give the probability that the

rule was used in the parse of the sentence. When divided by the probability of the

sentence given all possible parses, we get the updated probability for the rule.

The Inside-Outside Algorithm for STIG

The biggest decision to be made in adapting the Inside-Outside algorithm to

STIG is to determine the tree pairs that make up the grammar and over which the

Chapter 7: STAG for Machine Translation 238

X

X∗

S

ε

ws wt

X

X∗




X

S

ε

X




(a)

(b)

(c) X

X∗

ws wt

X

X∗


X X

X

X∗

ws wt

X

X∗


X X

S

ε

X

S

ε

X




X X

X

X∗

ws wt

X

X∗


X X

X

X∗

ws


X

X

X

X∗

ws

X

X

X

X∗

ws

 X

X


X

X∗

ws

X

X

X

X∗

ws

 X

X

wt

X

X∗

X

X

S

ε

X

S

ε

X




1 1

1 1

12 12 12 12 12 12

1 1

23 23

1 1

23 23 23 23

1 1

1

23

1

23

12 12

Figure 7.12: Possible canonical forms for synchronous TIG tree pairs: (a) the bigram
model, (b) the extended bigram model, (c) our canonical tree pair form.

probability distributions will be specified. We do not have a bank of tree pairs to

draw on for our elementary trees, so we must construct them. In addition, because

we are going to iteratively refine the parameters, we need to make sure that the initial

grammar is sufficiently general to capture any pair of input sentences. In order to do

this, we define a canonical tree form.

Chapter 7: STAG for Machine Translation 239

Following Hwa [2001], we note that the very simple tree pairs shown in Figure

7.12(a) allow us to simulate a bigram model. Expanding to capture some of the

benefit of tree structure, the trees can be modified to have their anchors on the left

as well as the right and to have an additional adjunction node between the root

and the anchor where both right and left trees can adjoin. This is depicted in Figure

7.12(b). Note that the simple modification of allowing both left and right trees results

in four different types of tree pairs. Finally, we add an additional adjunction node,

again following Hwa’s empirical findings that two adjunction sites were required in

the monolingual TIG case to handle the variety and number of modifiers in natural

language data [Hwa, 2001]. This tree form is shown in Figure 7.12(c). Other canonical

forms may be imagined as well. In order to ensure full coverage of the input strings

we generate tree pairs for each pair of source and target language words that appear

in the source and target dictionaries.

In addition to the shape of the trees, we also have to specify the links. Since

these links determine both where and how many adjunctions may take place, their

placement is quite important. Different types of links help to express different depen-

dencies. In particular, links between two nodes on the same side express dependencies

where the order of the dependent with respect to the anchors are the same in the

two languages. For instance, if adjectives precede nouns in both languages we would

want left-left links between noun nodes to express this dependency. Links between

two nodes on different sides would correspondingly allow us to express dependencies

where adjectives appear on different sides of the noun they modify in the two lan-

guages. Differences in the order of modifiers of the same lexical item can be expressed

Chapter 7: STAG for Machine Translation 240

by links that change level in the tree. Links to nodes closer to the anchor will result

in the dependent words appearing closer to the anchor. This difference could be used

to express differences in the order of modifiers, for instance different orderings for

attachment of prepositional phrases. There are many possible combinations of links,

even with our restrictions on link placement. In the experiments reported here, we

use the links depicted in Figure 7.12(c).

In the E step we parse all of the sentences in the training corpus while maintaining

expected counts. The inside probabilities are calculated simply by parameterizing the

parser with the Inside semiring as described above. The outside probabilities are then

calculated in a pass over the chart, this time working from the root of the start trees

down to the leaves. The intuitive idea is that we work backwards, undoing each

operation that was done to parse each sentence. That is, we work from a consequent

item back to its antecedent. The outside probability of an antecedent item is the

product of the outside probability of the consequent item, the inside probability of

the other antecedent item, and the semiring value of the operation being undone.

In the M step we update the probabilities of all of the parameters by normalizing

the counts produced in the E step received for each parameter.

7.2.5 Preliminary Empirical Results

As an initial empirical test of the formalism and algorithms described here, we

chose a simple, artificial language problem: translation of arithmetic expressions from

postfix to infix, from ABA+* to A*(B+A) for instance.

The expression language includes constants A and B and operators + and *. This

Chapter 7: STAG for Machine Translation 241

translation problem, though contrived, has several attractive properties as a simple

test of syntax-aware MT techniques. First, it exhibits the type of hierarchical organi-

zation that we expect is difficult for non-syntax-aware translation systems. Second,

the aligned corpora are easy to automatically generate, and translation correctness

to automatically verify, even though, like natural language, there may be multiple

correct target translations (differing in parenthesization) for a given source expres-

sion. Third, the need for extra parentheses in the target language forces differing

lengths of source and target strings, so that this aspect of the translation formalism

is exercised. Fourth, correctly aligned operators can be arbitrarily far apart in correct

translations; in the terminology of IBM-style models, large distortions are manifest

in translations, and these distortions are best characterized syntactically. Finally, the

languages have very small vocabularies, which makes it possible to test the ability of

our system in the absence of a fully optimized implementation.

We generated a corpus of aligned postfix and infix arithmetic expressions us-

ing a synchronous probabilistic expression-term-factor grammar that allows a single

postfix expression to have several distinct infix translations that differ in the num-

ber and placement of parentheses, so long as sufficient parentheses are available to

disambiguate properly according to the standard associativity and precedence of ex-

pressions. The inference rules used in the evaluation allow one tree in a tree pair to

be anchored by ε, as in Section 7.2.2 and omit the use of unsynchronized tree pairs.8

The full canonical form in Figure 7.12(c) was used, allowing (initially at least) any

8In practice this is done by using axioms that introduce paired nodes rather than unsynchronized
trees but it is equivalent to requiring the Merge rule to apply immediately following the introduction
of an item using the unsynchronized axioms.

Chapter 7: STAG for Machine Translation 242

Input expression STIG Model Translation

B A B + B * + B + (A + B) * B

A B A * + A * (A + B * A) * A

A B B A + A * + + A + B + ((B + A) * A)

B A A + A A + + + B * (B + (A + A) + A + A) * B

Figure 7.13: Representative examples of correct translations of postfix arithmetic
expressions to infix arithmetic expressions by our system.

symbol in the source language to translate as any symbol in the target language, and,

through pairing with ε anchors, any symbol in either langauge to be inserted freely.

We trained the system on 411 aligned pairs of postfix and infix expressions with

a maximum sentence length of 8 for the postfix expressions. We then tested the

system on 90 test expressions without restriction on the length of the expressions,

although most were not longer than 12 characters. The system produced correct infix

expressions for 87 of the 90 test sentences, giving an error rate of 3.3%. Trained on

5000 pairs of aligned expressions, the system achieved 100% accuracy on the test set.

Figure 7.13 shows representative examples of input expressions and their generated

translations using the system trained on the small training set.

Of the three errors made by our system, two were relatively minor: in one of them

a necessary set of parentheses around an addition is missing, the other is missing

a right parenthesis. In the third erroneous translation it appears that the trained

grammar was more seriously off track. Figure 7.14 shows the erroneous translations

by our system.

As a baseline, we also trained GIZA++, a widely used implementation of an IBM-

style system, on the same 411 training sentence pairs. The GIZA model trained on

Chapter 7: STAG for Machine Translation 243

Input expressions Translation

A A A B + * + A A + * (A * (A + B) + A) * A + A

A A B B * + + A + A + (B * B

B A A * + B B + B * + B + ((A + ((A)) * + B) * B

Figure 7.14: The three test expressions on which our MT system produced an incor-
rect result.

the small training set correctly translated 52 of 90 test sentences for an error rate of

42.2%. Unsurprisingly, GIZA performed quite poorly because of its lack of syntax

awareness. To verify that the problem was not merely a lack of training data, we also

trained GIZA on a training set consisting of 10,000 aligned sentence pairs to see if

the additional training data would improve its performance. Again, the GIZA model

trained on the large training set performed poorly, correctly translating only 53 of

the 90 test sentences for an error rate of 41.1%. As expected, the GIZA models did

well with the shorter, simpler sentences that did not require significant long-distance

movement of any operators or parenthesization in the infix translation. Both models

exhibited a tendency not to move constants or operators long distances and neither

ever correctly parenthesized an infix expression. Figure 7.15 shows the output of GIZA

on some sample expressions that our system translated correctly. Figure 7.16 shows

the GIZA translations of the three sentences that our system translated incorrectly.

In only one case did the GIZA system trained on 10,000 sentences produce a correct

translation where our model erred.

Given the small size of the training set, the error rate for our system is quite

low on the test data and demonstrates that our system appropriately learned to

translate postfix arithmetic expressions to infix arithmetic expressions. Further, the

Chapter 7: STAG for Machine Translation 244

Input expression GIZA translations

small training set large training set

B A B + B * + B A + B * B) B * (B + A + B

A B A A A + + B * + + A + B * A * A A * (A + A *

A B B A + A * + + A + B B A * A) A + A * (A + B +

B A A + A A + + + B * B A + A A + A) * B B + A + A) * B

Figure 7.15: Results of GIZA on the sample sentences correctly translated by our
system as shown in Figure 7.13.

Input expression GIZA translations

small training set large training set

A A A B + * + A A + * ((A + B * A * A) A + A + A + A * B *

A A B B * + + (A * B + B A + A + B * B

B A A * + B B + B * + B A * A + B + B * B) B * (A + B + B * B) *

Figure 7.16: Translations produced by GIZA on the three sentences on which the
STIG model produced an incorrect result.

large gap in quality and accuracy of translations between our system and the GIZA

models shows that the capacity of our system to model hierarchical relationships with

substitution does help our system to correctly translate sentences that are difficult

for an IBM-style model.

The system used in these experiments used relatively aggressive thresholding.

Even so, training took an hour four 411 sentence pairs. By contrast, GIZA took

only seconds to train on the same data. Our system run without the thresholding

and optimizations achieved a similar error rate to the optimized system but took

approximately 30 hours to train. Since implementing the thresholding and other

optimizations we have been able to train our system on 5000 pairs of arithmetic

expressions. Training took approximately 12 hours. With this greater volume of

Chapter 7: STAG for Machine Translation 245

training data our system achieved 100% accuracy on the test set.

7.3 Syntactically-Motivated Trees

The statistically induced substrate is intended to be hybridized by the inclusion

of syntactically-motivated trees. In this section we explore possible methods of gen-

erating syntactically-motivated trees for inclusion in the grammar.

7.3.1 Bilingual Dictionaries

S

NP↓

V P

V

[NP↓]

S

NP↓

V P

V

NP↓

take

V P

PP

P NP

by surprise cogliere

V P

PP

P NP

di sopresa

1 1

2 2




Figure 7.17: A tree pair that might be extracted from the bilingual dictionary entry
〈take sb by surprise / cogliere qn di sorpresa〉. Note that the link between the two
object noun phrases marked for substitution comes directly from the variables in the
dictionary entry. The internal syntactic structure as well as the linked positions for
the subjects of the verbs would be generated by parsing and a basic verb template.
The subject position in the Italian is bracketed to indicate that it is optional.

As argued in Shieber [2007], bilingual dictionaries offer a substantial repository of

construction-based aligned trees that might be extracted. Additionally, for construction-

based MT, reconstruction of tree alignments from data is much more difficult than

for phrase-based MT, and hence extracting them from a dictionary becomes quite

Chapter 7: STAG for Machine Translation 246

appealing. We propose to repurpose bilingual dictionaries as banks of aligned trees

for construction-based MT. Using simple parsing techniques and the already present

variable notation, STIG tree pairs can be constructed directly and automatically

from dictionary entries. Consider the example 〈take sb by surprise / cogliere qn di

sorpresa〉 taken from the HarperCollins Italian College Dictionary (HCICD) [Clari

and Love, 1995]. Figure 7.17 shows two tree pairs that could be extracted from this

dictionary entry. Obtaining a processable copy of a bilingual dictionary presents a

challenge. Corpus development efforts, such as EuroWordNet9, provide one easily

accessible place to begin. We also intend to pursue direct agreements with dictionary

publishers to obtain data from sources such as HCICD.

7.3.2 Harvesting from a Treebank

Although generation of tree alignment is a challenging task to automate, several

lines of research have made inroads that we believe will make it possible to extract

aligned trees from an aligned treebank of parsed sentence pairs. Intuition as to how

this might be done on a particular example helps to illustrate the idea. Consider

the sentence pair The dog took Nina by surprise/Il cane ha colto Nina di sopresa.

Using word and small phrase alignments (for instance, the dog/il cane, Nina/Nina,

and by surprise/di sopresa) we can identify places where the parse tree might be

factorized. Simple syntactic information, such as that noun phrases are likely to

serve as arguments and combine by substitution helps to decide how to slice the

tree. Syntactic patterns such as the repeating V P nodes provide a suggestion of

9<http://www.illc.uva.nl/EuroWordNet/>

Chapter 7: STAG for Machine Translation 247

S

V P

V

S

V P

V

V P

PP

P NP

by surprise

V P

PP

P NP

di sopresa

Det N

the dog Ninail canetook ha colto

NP

NP

Det N

NP

Nina

NP

S

V P

V

S

V P

V

V P

PP

P NP

by surprise

V P

PP

P NP

di sopresa
took ha colto

NP↓ NP↓

NP↓ NP↓

the dog

Det N

NP

Det N

il cane

NP

Nina

NP

Nina

NP

S

V P

V

took

NP↓

NP↓

V P

PP

P NP

by surprise

S

V P

V

ha colto

NP↓

NP↓

V P

PP

P NP

di sopresa

V P∗V P∗

1 1

22







1 1

2 2







Figure 7.18: Possible tree extraction from the parse trees for the sentence pair The
dog took Nina by surprise./Il cane ha colto di sopresa Nina.

where an auxiliary tree might be extracted. This could result in a set of tree pairs

being extracted as shown in Figure 7.18. Note that while the extraction can break

the tree down into these small pieces, it can also retain tree pairs that are larger

fragments of the sentence. This would result in retention of the desired tree in which

the prepositional phrase remains combined with the verb as well as the two smaller

tree pairs in which the verb and prepositional phrase have been separated.

Chapter 7: STAG for Machine Translation 248

Groves et al. [2004] present an automated algorithm for aligning subtrees of pairs

of parse trees of sentences that are translations of each other. The algorithm relies on

a small amount of syntactic information and a word-alignment that is internal to the

trees. It produces the equivalent of STAG elementary tree pairs that could be added

to our substrate grammar to hybridize it. Although the alignments produced by this

method are not as good as manual alignments, the results presented in their work

demonstrate that they are usable. In our system in which we propose an additional

round of statistical training using the syntactically motivated trees obtained in this

step, tree pairs that are misaligned are likely to be infrequently useful and therefore

to be assigned low probability of adjoining into other tree pairs.

Another related line of work on which we expect to draw is the body of work on

induction of TAG grammars from a treebank exemplied by Chen and Shanker [2004a].

Working from a treebank of natural language sentences, this work extracts a TAG

grammar using syntactic constraints. The work relies heavily on syntactically moti-

vated rules for identifying elementary structures within the derived trees. Although

it is focused solely on monolingual sentences, we would seek to apply its insights to

extracting aligned trees.

Finally, our own work on the factorization of synchronous TAGs (Chapter 4)

explores breaking down a pair of trees into smaller fragments that can be used to

reconstruct the original tree. This work focuses on reducing the parsing complexity

of an input synchronous TAG and contemplates working to reduce the size of the ele-

mentary trees of a grammar rather than working with complete parse trees. However,

there is nothing to prevent the application of the methodology to a complete parse

Chapter 7: STAG for Machine Translation 249

tree. Additionally, the insight of this work into the effect of the location of alignments

within elementary trees on parsing complexity will be extremely valuable in ensuring

that the trees used to hybridize the system do not increase the parsing complexity

beyond acceptable bounds.

7.4 Combining the Two Grammars

Two methods seem promising for initial exploration of combining the statistically

induced substrate PSTIG grammar and the STIG elementary trees harvested from

bilingual dictionaries and treebanks. A first option is to add the additional trees

produced in the harvesting stage directly into the substrate grammar produced in

the statistical induction stage. Since the harvested trees have no accompanying ad-

junction probabilities, some form of retraining of the grammar would have to be done

after they are combined. One possibility is to randomly or equally assign adjunction

counts to the harvested trees (and also randomly or equally generate counts for their

adjunction parameters). Once their parameters and the probability of their adjunc-

tion into the substrate trees are set, the expectation maximization algorithm can be

run again to retrain the parameters. A second possibility is to train both the normal

form and the harvested trees together as a single grammar in a single step.

A second, simpler option is to use the statistical substrate grammar as a backoff for

the grammar generated by harvesting. That is, knowing that the harvested grammar

will necessarily be a low coverage grammar but is likely to capture some important

construction-based translations, the system might seek to produce a translation using

only trees from the harvested grammar and only resort to the substrate grammar when

Chapter 7: STAG for Machine Translation 250

all or a part of a parse cannot be obtained using the harvested grammar.

7.5 Conclusion

This chapter presents a research program for building a synchronous-grammar-

based statistical machine translation system that, through hybridization, captures

the benefits both of traditional SMT systems and hand-coded translation systems.

The initial work to create a statistically-induced substrate based in synchronous TIG

is presented here with results and a roadmap for the incorporation of syntactically-

motivated trees to improve performance.

Chapter 8

Conclusion

In this dissertation I have argued for the sufficiency of synchronous grammar for-

malisms to express complex relationships between related natural language inputs

such as the syntax and semantics of a language or the syntax of two different lan-

guages. The crux of this issue is whether it is possible to find a base formalism to

synchronize that is at once sufficiently flexible and expressive to capture the complex

structure of each of the linguistic inputs and their relationship and sufficiently simple

that the synchronization provides meaningful constraint and processing can be accom-

plished reasonably efficiently. I chose to focus on formalisms in the Tree-Adjoining

Grammar family when seeking a base formalism to synchronize both for historical

reasons and because it is particularly well suited to modeling syntactic structure.

The first part of the thesis explored the question of processing efficiency for gram-

mar formalisms in the multicomponent and synchronous TAG family. It proved novel

results showing that Tree-Local MCTAG (and everything above it in the multicom-

ponent TAG hierarchy) is hard to process under most conditions. It also provided

251

Chapter 8: Conclusion 252

various algorithms to help mitigate the potential inefficiency of working with a TL-

MCTAG or closely related formalism with preprocessing algorithms that optimize the

grammars and efficient parsing algorithms. This part of the thesis narrowed the focus

of the search for a good base formalism to those that are at least no less efficient to

process than TL-MCTAG and raised the question of whether even TL-MCTAG will

be too inefficient to process in practice. Empirical questions about how much actual

input grammars can be optimized and how inefficient recognition will be in practice

remain.

In addition, in the first part of the thesis I presented an algorithm for optimizing

a synchronous TAG because, as I discussed in Chapter 4, all synchronous grammars

where the base formalism is at least as expressive as CFG are NP-hard to recognize.

The hardness of processing synchronous grammars still stands as a challenge to im-

plementations of systems based on a synchronous grammar framework. The work

in this thesis treated all linguistic inputs equally rather than treating one input as

a source and the other as a target. However, in practice most applications will be

directional. In translation we are generally given a sentence of one language and

asked to produce a sentence of another. In the domain of semantics it is easy to

imagine a system in which we receive a surface sentence or even a syntactic parse

tree as input and are asked to produce the semantics. A generation application might

begin with the semantics and produce the syntax. Given this directionality, research

into algorithms for using the information that is given on one side of a synchronous

grammar to constrain the search space for a synchronous parse should be fruitful.

Chapters 5 and 6 in the second part of the thesis applied synchronous TL-MCTAG

Chapter 8: Conclusion 253

and synchronous LDV-TAG to the analysis of the interface between syntax and se-

mantics. By covering a wide range of phenomena these chapters showed that a syn-

chronous grammar can capture the highly divergent structures of syntax and seman-

tics and their interface. Although the range of phenomena covered is broad, it only

scratches the surface of the English language both in breadth and depth. This work,

therefore, might serve as the kernel to an implementation of a synchronous LDV-TAG

for English syntax and semantics that could over time be built into a broad coverage

system. Rather than presenting finished research, Chapter 7 laid out a research pro-

gram for using synchronous grammars in machine translation. Following this program

through to an implementation would further support the thesis of this dissertation.

Taken individually, the results in this dissertation are both useful and suggestive

of avenues for future research. Taken collectively, they demonstrate the clear but not

obvious potential of synchronous grammars to efficiently model complex linguistic

relationships.

Bibliography

Anne Abeillé and Yves Schabes. Parsing idioms in tree adjoining grammars. In
Proceedings of the Fourth Conference of the European Chapter of the Association
for Computational Linguistics, 1989.

Anne Abeillé, Yves Schabes, and Aravind K. Joshi. Using lexicalized tree adjoining
grammars for machine translation. In Proceedings of the Thirteenth International
Conference on Computational Linguistics (COLING ’90), Helsinki, August 1990.

Alfred V. Aho and Jeffrey D. Ullman. Syntax directed translations and the pushdown
assembler. Journal of Computer and System Sciences, 3(1):37–56, 1969.

J.K. Baker. Trainable grammars for speech recognition. In D.H. Klatt and J.J.
Wolf, editors, Speech Communication Papers for the 97th Meeting of the Acoustical
Society of America, pages 547–550, 1979.

P.F. Brown, S.A. Della Pietra, V.J. Della Pietra, and R.L. Mercer. The mathematics
of statistical machine translation: Parameter estimation. Computational Linguis-
tics, 19(2):263–311, 1993.

John Chen and Vijay K. Shanker. Automated extraction of tags from the penn
treebank. New Developments in Parsing Technology, pages 73–89, 2004a.

John Chen and Vijay K. Shanker. Automated extraction of TAGs from the penn
treebank. New developments in parsing technology, pages 73–89, 2004b.

David Chiang. Hierarchical phrase-based translation. Computational Linguistics, 33
(2):201–228, 2007.

David Chiang and Owen Rambow. The hidden TAG model: synchronous grammars
for parsing resource-poor languages. In Proceedings of the 8th International Work-
shop on Tree Adjoining Grammars and Related Formalisms (TAG+ 8), pages 1–8,
2006.

David Chiang and Tatjana Scheffler. Flexible composition and delayed tree-locality.
In The Ninth International Workshop on Tree Adjoining Grammars and Related
Formalisms (TAG+9), 2008.

254

Bibliography 255

Michela Clari and Catherine E. Love, editors. HarperCollins Italian College Dictio-
nary. Harper-Collins Publishers, Inc., New York, NY, 1995.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms. The MIT Press, 2nd edition, 2001.

J. Earley. An efficient context-free parsing algorithm. PhD thesis, University of
California, Berkeley, California, 1970.

Robert Frank. Reflexives and tag semantics. In The Ninth International Workshop on
Tree Adjoining Grammars and Related Formalisms (TAG+9), T ubingen, Germany,
June 2008.

Robert Frank. Syntactic Locality and Tree Adjoining Grammar: Grammatical Aqui-
sition and Processing Perspectives. PhD thesis, University of Pennsylvania, 1992.

M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman and Co.,
New York, NY, 1979.

Daniel Gildea, Giorgio Satta, and Hao Zhang. Factoring synchronous grammars by
sorting. In the International Conference on Computational Linguistics/Association
for Computational Linguistics (COLING/ACL-06) Poster Session, 2006.

Joshua Goodman. Semiring parsing. Computational Linguistics, 25(4):573–605, 1999.

S.L. Graham, M.A. Harrison, and W.L. Ruzzo. An improved context-free recognizer.
ACM Transactions on Programming Languages and Systems, 2:415–462, 1980.

Declan Groves, Mary Hearne, and Andy Way. Robust sub-sentential alignment of
phrase-structure trees. In In Proceedings of the 20th International Conference on
Computational Linguistics (COLING-04), pages 1072–1078, 2004.

Chung-Hye Han. A tree adjoining grammar analysis of the syntax and semantics
of it-clefts. In Proceedings of the 8th International Workshop on Tree Adjoining
Grammars and Related Formalisms (TAG+ 8), pages 33–40, Sydney, Australia,
2006a.

Chung-Hye Han. Pied-piping in relative clauses: Syntax and compositional semantics
based on synchronous tree adjoining grammar. In Proceedings of the 8th Interna-
tional Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+ 8),
pages 41–48, Sydney, Australia, 2006b.

Chris Hankin. An Introduction to Lambda Calculi for Computer Scientists. King’s
College Publications, 2004.

Bibliography 256

Jerry Hobbs and Stuart M. Shieber. An algorithm for generating quantifier scopings.
Computational Linguistics, 13(1-2):47–63, 1987.

Rebecca Hwa. Learning Probabilistic Lexicalized Grammars for Natural Language
Processing. PhD thesis, Harvard University, 2001.

A. K. Joshi. An introduction to tree adjoining grammars. In A. Manaster-Ramer,
editor, Mathematics of Language. John Benjamins, 1987.

A. K. Joshi, L. S. Levy, and M. Takahashi. Tree adjunct grammars. Journal of
Computer and System Sciences, 10(1), 1975.

Aravind K. Joshi. How Much Context-Sensitivity Is Necessary for Characterizing
Structural Descriptions—Tree-Adjoining Grammar. Cambridge University Press,
1985.

Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, pages 69–124. Springer, 1997.

Aravind K. Joshi, Laura Kallmeyer, and Maribel Romero. Flexible composition in
LTAG: Quantifier scope and inverse linking. In Ielka van der Sluis Harry Bunt
and Roser Morante, editors, Proceedings of the Fifth International Workshop on
Computational Semantics IWCS-5, pages 179–194, Tilburg, January 2003.

Daniel Jurafsky and James H. Martin. Speech and Language Processing. Prentice-
Hall, 2000.

Yuichi Kaji, Ryuchi Nakanishi, Hiroyuki Seki, and Tadao Kasami. The universal
recognition problems for multiple context-free grammars and for linear context-
free rewriting systems. IEICE Transactions on Information and Systems, E75-D
(1):78–88, 1992.

Yuichi Kaji, Ryuchi Nakanishi, Hiroyuki Seki, and Tadao Kasami. The computational
complexity of the universal recognition problem for parallel multiple context-free
grammars. Computational Intelligence, 10(4):440–452, 1994.

Laura Kallmeyer. A declarative characterization of different types of multicomponent
tree adjoining grammars. In Andreas Witt Georg Rehm and Lothar Lemnitzer,
editors, Datenstrukturen für linguistische Ressourcen und ihre Anwendungen, pages
111–120, 2007.

Laura Kallmeyer and Aravind K. Joshi. Factoring predicate argument and scope
semantics: Underspecified semantics with LTAG. Research on Language and Com-
putation, 1:3–58, 2003.

Bibliography 257

Laura Kallmeyer and Maribel Romero. LTAG semantics with semantic unification. In
Proceedings of the 7th International Workshop on Tree-Adjoining Grammars and
Related Formalisms (TAG+7), pages 155–162, Vancouver, May 2004.

Laura Kallmeyer and Maribel Romero. Reflexives and reciprocals in ltag. In
Harry Bunt Jeroen Geertzen, Elias Thijsse and Amanda Schiffrin, editors, Proceed-
ings of the Seventh International Workshop on Computational Semantics ICWS-7,
pages 271–282, Tilburg, January 2007.

Laura Kallmeyer and Tatjana Scheffler. LTAG analysis for pied-piping and strand-
ing of WH-phrases. In Proceedings of TAG+7, pages 32–39, Vancouver, British
Columbia, May 2004.

T. Kasami. An efficient recognition and syntax algorithm for context-free languages.
Technical Report AF-CRL-65-758, Air Force Cambridge Research Laboratory, Bed-
ford, MA, 1965.

K. Lari and S.J. Young. Applications of stochastic context-free grammars using the
inside-outside algorithm. Computer Speech and Language, 5:237–257, 1991.

I. Dan Melamed. Multitext grammars and synchronous parsers. In Proceedings of the
2003 Human Language Technology Conference of the North American Chapter of
the Association for Computational Linguistics, pages 79–86, 2003.

I. Dan Melamed. Statistical machine translation by parsing. Technical Report 04–024,
Proteus Project, 2004.

I. Dan Melamed, Giorgio Satta, and Ben Wellington. Generalized multitext gram-
mars. In Proceedings of the 42nd Annual Conference of the Associate for Compu-
tational Linguistics (ACL-04), 2004.

Rebecca Nesson and Stuart Shieber. Efficiently parsable extensions to tree-local mul-
ticomponent tag. In Proceedings of the North American Chapter of the Association
for Computational Linguistics (NAACL), Boulder, CO, 2009.

Rebecca Nesson and Stuart M. Shieber. Extraction phenomena in synchronous TAG
syntax and semantics. In Proceedings of Syntax and Structure in Statistical Trans-
lation (SSST), Rochester, NY, April 2007.

Rebecca Nesson and Stuart M. Shieber. Synchronous vector tag for syntax and se-
mantics: Control verbs, relative clauses, and inverse linking. In The Ninth Interna-
tional Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+9),
T ubingen, Germany, June 2008.

Bibliography 258

Rebecca Nesson and Stuart M. Shieber. Simpler TAG seman-
tics through synchronization. In Proceedings of the 11th Confer-
ence on Formal Grammar, Malaga, Spain, 29–30 July 2006. URL
http://www.eecs.harvard.edu/ shieber/Biblio/Papers/Nesson-2006-SSS.pdf.

Rebecca Nesson, Alexander Rush, and Stuart M. Shieber. Induction of probabilistic
synchronous tree-insertion grammars. Technical Report TR-20-05, Harvard Uni-
versity, 2005.

Rebecca Nesson, Stuart M. Shieber, and Alexander Rush. Induction of prob-
abilistic synchronous tree-insertion grammars for machine translation. In
Proceedings of the 7th Conference of the Association for Machine Translation in
the Americas (AMTA 2006), Boston, Massachusetts, 8-12 August 2006. URL
http://www.eecs.harvard.edu/ shieber/Biblio/Papers/Nesson-2006-IPS.pdf.

Rebecca Nesson, Giorgio Satta, and Stuart Shieber. Optimal k-arization of syn-
chronous tree-adjoining grammar. In the Association for Computational Linguistics
(ACL-2008), Columbus, OH, June 2008a.

Rebecca Nesson, Giorgio Satta, and Stuart M. Shieber. Complexity, parsing, and fac-
torization of tree-local multi-component tree-adjoining grammar. Technical report,
Harvard University, 2008b.

D. Prescher. Inside-outside estimation meets dynamic EM. In In Proceedings of
IWPT-2001, 2001.

Owen Rambow. Formal and computational aspects of natural language syntax. PhD
thesis, University of Pennsylvania, Philadelphia, PA, 1994.

Maribel Romero, Laura Kallmeyer, and Olga Babko-Malaya. Ltag semantics for
questions. In Proceedings of the 7th International Workshop on Tree-Adjoining
Grammars and Related Formalisms (TAG+7), pages 186–193, Vancouver, May
2004.

Giorgio Satta. Recognition of linear context-free rewriting systems. In Proceed-
ings of the 10th Annual Meeting of the Association for Computational Linguistics
(ACL92), pages 89–95, Newark, Delaware, 1992.

Giorgio Satta and Enoch Peserico. Some computational complexity results for syn-
chronous context-free grammars. In Proceedings of Human Language Technology
Conference and Conference on Empirical Methods in Natural Language Processing
(HLT05/EMNLP05), pages 803–810, Vancouver, British Columbia, 2005.

Yves Schabes and Stuart M. Shieber. An alternative conception of tree-adjoining
derivation. Computational Linguistics, 20(1):91–124, 1993.

Bibliography 259

Yves Schabes and Richard C. Waters. Lexicalized context-free grammars. In Pro-
ceedings of the 31st Conference on Association for Computational Linguistics, pages
121–129. Association for Computational Linguistics, 1993.

Yves Schabes and Richard C. Waters. Tree insertion grammar: A cubic time, parsable
formalism that lexicalizes context-free grammars without changing the trees pro-
duced. Computational Linguistics, 21(4):479–512, 1995.

William Schuler, David Chiang, and Mark Dras. Multi-component tag and notions of
formal power. In Proceedings of the Thirty-Eighth Annual Meeting of the Associa-
tion for Computational Linguistics (ACL’00), pages 448–455, Hong Kong, China,
2000.

H. Seki, T. Matsumura, M. Fujii, and T. Kasami. On multiple context-free grammars.
Theoretical Computer Science, 88:191–229, 1991.

Stuart M. Shieber. Probabilistic synchronous tree-adjoining grammars for machine
translation: the argument from bilingual dictionaries. In Dekai Wu and David
Chiang, editors, Proceedings of the Workshop on Syntax and Structure in Statistical
Translation, Rochester, NY, April 2007.

Stuart M. Shieber. Restricting the weak-generative capacity of synchronous tree-
adjoining grammars. Computational Intelligence, 10(4):371–385, 1994.

Stuart M. Shieber and Yves Schabes. An alternative conception of tree-adjoining
derivation. Computational Linguistics, 20(1):91–124, 1994.

Stuart M. Shieber and Yves Schabes. Synchronous tree adjoining grammars. In Pro-
ceedings of the 13th International Conference on Computational Linguistics (COL-
ING ’90), Helsinki, August 1990.

Stuart M. Shieber, Yves Schabes, and Fernando Pereira. Principles and implementa-
tion of deductive parsing. Journal of Logic Programming, 24:503–512, 1994.

Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Principles and im-
plementation of deductive parsing. Journal of Logic Programming, 24(1–2):3–36,
July–August 1995. Also available as cmp-lg/9404008.

S. Sippu and E. Soisalon-Soininen. Parsing Theory: Languages and Parsing. Springer-
Verlag, Berlin, Germany, 1988.

Anders Søgaard, Timm Lichte, and Wolfgang Maier. On the complexity of linguis-
tically motivated extensions of tree-adjoining grammar. In Recent Advances in
Natural Language Processing 2007, 2007.

Bibliography 260

C. A. Tovey. A simplified NP-complete satisfiablity problem. Discrete Applied Math-
ematics, 8(1):85–90, 1984.

Kurt VanLehn. Determining the scope of English quantifiers. Technical Report 483,
MIT Artificial Intelligence Laboratory, Cambridge, MA, 1978.

K. Vijay-Shanker. A study of tree-adjoining grammars. PhD Thesis, Department of
Computer and Information Science, University of Pennsylvania, 1987.

K. Vijay-Shanker and Aravind K. Joshi. Some computational properties of tree-
adjoining grammars. In Proceedings of the 23rd Annual Meeting of the Association
for Computational Linguistics, pages 82–93, 1985.

David Weir. Characterizing mildly context-sensitive grammar formalisms. PhD The-
sis, Department of Computer and Information Science, University of Pennsylvania,
1988.

Sean Williford. Application of synchronous tree-adjoining grammar to quantifier
scoping phenomena in English. Undergraduate Thesis, Harvard College, 1993.

D.H. Younger. Recognition and parsing of context-free languages in time n3. Infor-
mation and Control, 10(2):189–208, 1967.

Hao Zhang and Daniel Gildea. Factorization of synchronous context-free grammars in
linear time. In NAACL Workshop on Syntax and Structure in Statistical Translation
(SSST), 2007.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin Knight. Synchronous binarization
for machine translation. In Proceedings of the Human Language Technology Con-
ference/North American Chapter of the Association for Computational Linguistics
(HLT/NAACL), 2006.

