Cost Analyses for VBR Video Servers
Ed Chang and Avideh Zakhor
University of California, Berkeley, CA 94720

e-mail: changed@robotics.eecs.berkeley.edu, avz@eecs.berkeley.edu

Abstract

In this paper we compare techniques for storage and real-time retrieval of Variable Bit Rate (VBR) video
data for multiple simultaneous users. The motivation for considering VBR is that video results in inherently
time varying data, and as such, with the same average bit rate, higher quality can be achieved with VBR than
with Constant Bit Rate (CBR). We propose and compare the following three classes of VBR data placement and
retrieval techniques: Constant Time Length (CTL) places and retrieves data in blocks corresponding to equal
playback durations, Constant Data Length (CDL) places and retrieves constant-sized data blocks, and a hybrid
solution uses CDL placement but retrieves a variable number of blocks in each service round. We have found
that CTL data placement has much lower buffer requirements than CDL but suffers from fragmentation during
video editing. We show hybrid placement to have both advantages of high efficiency and low fragmentation.

We also address the issue of admission control policies by comparing statistical and deterministic techniques.
“Statistical” admission control uses statistics of the stored data to ensure that the probability of “overload”
does not exceed a prespecified threshold. “Deterministic” control uses the actual stored video bit traces to
regulate the number of admitted users. We consider two types of deterministic admission control: data-limit
and ideal deterministic. Data-limit admission control admits users based on precomputing the total amount of
data requested by all users in future service rounds. In contrast, Ideal deterministic admission control not only
precomputes the total amount of data requested, but also assumes we have control of data placement at the disk
sector level in order to precompute the future seek and rotation times.

We provide a cost/benefit analysis of the above placement /retrieval /admission control techniques and con-
clude that CTL and hybrid placement/retrieval techniques can reduce the total system cost by up to a factor
of 3 in comparison with the strategy of padding the VBR video trace to achieve a constant data rate. For
read-only systems, CTL has the lowest cost per user. For writable systems, the hybrid technique achieves a good
compromise between low cost and low fragmentation. We find that all forms of deterministic admission control
can outperform statistical, but the greatest gain comes from using ideal deterministic admission control. We
note, however, that this admission control may be difficult to implement on standard disk controllers. Finally,
we have implemented a full disk model simulator that operates 1000 times faster than the real-time disk. Results
using the simulator are very close to those measured on the real disk, making the simulator useful for future
experiments.

Keywords: cost, VBR, video storage, video servers, disk arrays, admission control, data placement

1 Introduction

Video on demand applications are becoming increasingly more important in entertainment, education and telecom-
munications industries. Video data placement and admission control for video servers are two of the most important
challenges of video on demand applications. In this paper, we investigate storage and real-time retrieval of video
data for multiple simultaneous users. We choose a disk as our storage medium, as disk arrays have been shown to
provide cost-effective storage [15] and high-bandwidth transfer capabilities and are becoming popular in video on
demand systems [9].

For storage efficiency we compress the data before writing to disk. Since there are several different modes of
encoding, a major question to address is the type of rate control mechanism, if any, to be applied in generating the
compressed bit stream. One option would be to generate a truly VBR, constant quality stream without any rate
control, buffers or quantization feedback. Another possibility is to generate a Constant Bit Rate (CBR) stream in
which quantization feedback is applied to implement a leaky bucket rate control mechanism in order to avoid buffer
overflow or underflow [17, 27].

It is generally believed that video inherently results in variable bit rate data and as such, the main advantage
of true VBR over CBR is its true constant quality. As a result, when using CBR, one must choose between low
bandwidth and nonuniform quality, or very high bandwidth and uniform quality. In order to maintain uniform
quality, the CBR bandwidth is chosen at such a high level so as to ensure the quality remains above a certain

1

threshold at high motion parts of the video sequence. This latter approach results in overallocation of storage
resources in storing CBR data. Since it has been shown that typical VBR video may have a peak to mean ratio
of 3:1 even averaged over a few seconds [10], it is conceivable to achieve the same quality of video at about 1/3 of
the cost, by storing VBR rather than CBR video data on disks. Therefore, the same statistical multiplexing ideas
that have traditionally been used in networking applications can be exploited to reduce the cost per stream in VBR
video storage applications. There is however, one major difference between networking and storage applications in
that unlike the networking applications, in the storage scenario, one can exploit the a priori knowledge of the video
bit trace in order to optimize both the data placement algorithms and the admission control algorithms.

The choice of true VBR versus CBR also influences the data units in which the compressed bit stream is stored
on the disks. For CBR video, the data can be stored and retrieved in constant-sized data blocks without risking
Jitter free, real-time video delivery [2, 22]. For VBR data, the block sizes to be written to and read from the disk can
not be chosen as easily as for CBR data. The basic 1ssue is whether to store and retrieve data in unequal amounts
to conform to the real-time playback duration, or to store and retrieve the data in equal-sized blocks for each user,
utilizing buffer memory to provide real-time variable bit rate for playback. We call the first method Constant Time
Length (CTL) data placement and the second method Constant Data Length (CDL).

CTL-stored videos are characterized by a unique pattern of variable data block lengths that may be derived
from the video bit trace and the real-time duration of the blocks. Because data blocks may be interleaved across
many disks [2], the stored blocks may not be contiguous. In this case, replacing or editing the video will result in
disk fragmentation problems. To avoid this, we consider a CDL system. However, as we will see in Sect. 3.2, CDL
may result in large buffer usage. We therefore consider a hybrid system in which data is stored in CDL blocks, but
the number of blocks to be retrieved varies with the playback consumption requirements. This strategy reduces the
buffer requirements and will be shown to result in a good compromise between low cost and low fragmentation.

To ensure that the system resources are not overallocated when too many users request data simultaneously, we
require admission control algorithms. We consider two main classes of admission control: statistical and determin-
istic. A statistical admission control exploits the bit rate statistics of the videos on the disk. The advantage of such
a strategy over network admission control schemes is that it uses the actual histograms of the data to be read rather
than generic video statistics for all possible video sequences. Alternatively, we can apply a deterministic admission
control strategy by exploiting the specific knowledge of the bit traces of requested videos rather than their statistics.
Since the disk system has full knowledge of the future bit rate traces needed to service all user requests, we can
decide if the admission of a new request will cause a system overflow during the length of the request.

Other researchers have considered the issues of data placement and admission control for VBR video servers.
Anderson et al. [1] read a variable number of fixed size blocks and use contiguous allocation to avoid extra disk
seeks between blocks of one request. The drawback of contiguous allocation is fragmentation as experienced in a
CTL scheme. Vin et al. [25] compare the performance of CTL and hybrid systems for a multiple-disk multimedia
network server. As for admission control, Vin et al. propose statistical [23] and adaptive [24] policies. Gemmell [12]
also considers a variable number of fixed size blocks which may be grouped into sorting sets to reduce disk latencies.
Rosario et al. [18, 19] consider pure CDL data placement and describe a deterministic admission control algorithm.

In this paper we provide a cost/benefit analysis of the above placement /retrieval/admission control techniques
and conclude that CTL and hybrid placement/retrieval techniques can reduce the total system cost by up to a
factor of 3 in comparison with the strategy of padding the VBR video trace to achieve a constant data rate. For
read-only systems, CTL has the lowest cost per user. For writable systems, the hybrid technique achieves a good
compromise between low cost and low fragmentation. We find that all forms of deterministic admission control
can outperform statistical, but the greatest gain comes from using ideal deterministic admission control. We note,
however, that this admission control may be difficult to implement on standard disk controllers. Finally, we have
implemented a full disk model simulator that operates 1000 times faster than the real-time disk. Results using the
simulator are very close to those measured on the real disk, making the simulator useful for future experiments.

In this paper we decouple the issues of data placement/retrieval and admission control as follows. We begin
by defining our system metrics and parameters in Sect. 2 and comparing the three data placement and retrieval
techniques using a simple disk model and basic statistical admission control in Sect. 3. In Sect. 4 we choose the
hybrid data placement strategy to compare admission control techniques using a more explicit disk simulator and
an actual disk-based video server. We present our conclusions in Sect. 5.

2 System Metrics and Parameters

To evaluate our strategies, we must specify the operation of our video server system and consider various quality
metrics. The periodic nature of video service naturally leads to a round-robin scheduling scheme. We define a
service round as the smallest periodic unit of time in which the server sends some data to each user to ensure
real-time playback capability. Specifically, we use the common assumption of a dual buffer system [4, 12, 14, 22] in
which data is read from disk and sent to the disk buffer, while previously-read data is sent from the network buffer
to each user at each user’s corresponding playback consumption rate. Data is transferred instantaneously from the
disk buffer to the network buffer at the end of each service round. Thus the size of the total system buffer is the
sum of the sizes of the disk and network buffers.!

Using this dual buffer assumption, we are not constrained to schedule the users on the disk in any given order,
other than to ensure every user is scheduled within a given service round. We assume the user requests in each
service round are scheduled according to the SCAN algorithm. A more complex grouping strategy can reduce the
seek times or amount of buffer required [12, 29] but is beyond the scope of this paper.

We consider the following quality metrics. Our first metric is probability of service round failures. We define
a service round failure as any service round in which not all of the admitted users receive their requested data,
and we choose a threshold P;,; as the upper bound on probability of service round failures. Next, the cost per
stream should be as low as possible. This is accomplished by maximizing the throughput, measured in number
of simultaneous users, and minimizing the disk and buffer memory cost. We measure the average buffer per user,
B(L), by dividing the maximum total system buffer used, Bioq1, by the average number of users served, U(L), for
a given request length L.

Our final considerations are start delay and jump delay. Start delay, also known as latency, measures the amount
of time between the admission of a user onto the system and the actual delivery of data from the network buffer
to the user. The delay between the appearance of a user request and admission is simply a function of the rate of
incoming user requests and the average number of users that the system can serve; we do not consider this queueing
delay as a part of our latency.? Jump delay is defined as the amount of time between the end of a service round
that contains a jump request and actual playback of jump destination data.

An important issue throughout this paper is the model we use in our theoretical derivation and simulations for
the seek and rotation times. There i1s an inherent tradeoff between accuracy and complexity of seek models; for
instance, if tracks and sector locations of data are taken into account and the actual rotation and movements of the
head are modeled precisely, then we would have an accurate, but complex model. On the other hand if the seek
and rotation time is assumed to be constant, then we have sacrificed accuracy for the sake of lower complexity used
in our simulations.

The approach we have taken in this paper is to propose three different models for the seek time and use different
models in different scenarios. For the first one, which we refer to as “typical seek time,” we use Vin’s assumptions
[25] of evenly-spaced requests on the disk for the seek time and one half a disk revolution for the average rotation
time. We begin by using techniques from Worthington et al. [28] to measure our HP C3325W disk to estimate a
seek time profile, Tieer(n), the seek time as a function of n tracks traversed. We further assume that r requests
are evenly spaced across the ngo4; disk tracks such that there is an equal number of tracks between each requested
block. This results in an equal seek time for each request and a total seek time of ¥Tseer([ntotai/7]). It has been
shown that evenly-spaced requests maximize the total seek time under the SCAN algorithm [22]. Thus the “typical”
seek time esimate combines a conservative seek time estimate with a liberal rotation time estimate.

The second seek time model is the “worst case” and uses evenly-spaced requests on the disk for the seek time
similar to the “typical seek time” described above but full disk revolutions for rotation time. Both seek time and
rotation time estimates are conservative. The third model uses the actual location of the data on the disk to compute
the exact amount of time needed for disk revolutions and head seeks. The first model is used in simulations of
Sect. 3 and has been found to be in excellent agreement with experimental data from a real disk. For the results in
Sect. 4, however, we have found this model to be inadequate, and as a result, we have resorted to the second and
third models.

LAn alternative architecture would be to distribute the network buffer across the clients receiving video; however, this becomes
uneconomical once the number of clients exceeds the simultaneous user capacity of the server. Since we assume that in general, there
will be many more clients than can be simultaneously supported on the server, we place the network buffer at the server.

2This is commonly known in queueing theory as Little’s result [26] and has been empirically confirmed in our tests.

Table 1 lists our system parameters; the first two parameters are characteristics of the physical disk, as measured
on our disk drive. The read rate is found by reading 50 MB blocks of data from the disk as a raw device. For our
disk we calculate the “typical” estimate of the seek time, T§, to be 14 ms.

R, denotes the average coded bit rate of our chosen VBR video sequence, Star Wars [10], at 370 kb/s. We
choose the service round time Tsr to be two seconds, resulting in an average stored block size of 92 kB. The average
time to read each block is then Treqq = 92 kB / 5.03 MB/s = 0.01786 s. Assuming each user performs one seck
and one read in each service round, an 1deal video server could theoretically service:

TSR _ 2s
Ts + Treaa 0.0145+0.01786 s

Uideal = = 62.77 users (1)
We choose an upper bound on the probability of service round failure to be Pfq; = 1072, Because video is fairly
tolerant of dropped frames, one might consider different users requesting different qualities of service, each with
different probabilities of failure [3]. However, past work has shown that allowing higher probabilities of overload
does not result in a large increase in number of users served [3, 23]. Finally, we test request lengths of L = 16 or
3620 service rounds to illustrate the differences between reading short and long video sequences.

|| Symbol | Description | Value ||
Ry disk read rate 5.03 MB/s
T typical disk seek and rotation time 14 ms
R, average bit rate of video 374369 b/s
Tsr service round time 2s
Ptai probability of service failure 10-3
L request length 16, 3620 SR

Table 1: Experiment System Parameters

3 Data Placement

We now compare the three methods of data placement mentioned in Sect. 1. We examine CTL in Sect 3.1, CDL
in Sect. 3.2, and a hybrid strategy in Sect. 3.3. In each case, we calculate the theoretical average number of users
served and the buffer requirement, and we verify the results through experiments on a real disk. Finally we compare
the total system costs in Sect. 3.4 and discuss interactivity in Sect. 3.5.

3.1 Constant Time Length

In Sect. 1, we defined CTL as a data placement strategy in which stored block sizes are proportional to their
corresponding playback bit rates. Because the total amount of data retrieved by all of the users in one service
round 1s variable, the primary concern in CTL data placement and retrieval is the possibility of disk overload. To
analyze this probability for the different admission control schemes, we assume that consecutive samples from the
same video bit trace are uncorrelated. Under this assumption, we can treat each service round independently to
more easily calculate theoretical quality metrics such as probability of disk overload and average number of users
admitted.

A straightforward statistical admission control strategy for CTL data is based on analyzing the probability that
the total data requested by all of the users in one service round exceeds the disk throughput capacity. We can
compute this probability for an arbitrary number of users U watching videos as follows. To have no overload, we
must satisfy the condition that the total time required to service all of the users does not exceed Tgr. Each user
u requires a seek of duration T, and a read of duration 7, (u). The read times 7, (u) are equal to the ratio of the
amounts of requested data D,(u) and the disk read rate Rq. Our condition is therefore:

U

UT, + Z D;%(;) < Tsr (2)
> Di(u) < Ry(Tsp—UT) (3)

We therefore define the disk read limit as the maximum amount of data that can be read by U users in one service
I'OUIld, Dlzm(U) = Rd(TSR — UTS)

Let pp(z) denote the probability distribution function (pdf) of D, (u), or equivalently of CTL block sizes; we
experimentally estimate pp(z) by compiling a histogram of all of the CTL block sizes on the system. Since there
are U independent users, the pdf of the sum of the instantaneous rates for all U users is obtained by convolving
pp(z) U times with itself.> Once the pdf of the instantaneous rate of the U users is computed, the probability of
overload, P,(U), can be found by integrating the resulting curve beyond the threshold limit corresponding to the
disk read limit Dy (U). We can thus find P,(U) for all U, and we define Uy, qp to be the maximum U such that
P,(U) < Ptaji. For the parameters in Table 1, Up,qe = 58. Since the probability of disk overload is not a function
of request length L, the average number of users served is independent of L. We verify the average number of users
served on our real disk video server for the same probability of overload within 0.7%.

We compute the buffer usage of this system as follows. For the CTL system, the disk buffer and network buffer
are the same size, since the network buffer serves only to delay the contents of the disk buffer for synchronization
purposes. The total buffer needed for this system is therefore equivalent to twice the maximum amount of data
that can be requested by all of the users in one service round. Assuming there are U,,4, users on the system, the
total buffer required is Brotas = 2 X Rg(Tsr — UmazTs) = 12238 kB. The average buffer required by 58 users is
therefore 211 kB/user for all L. We have verified this number to within 0.5% experimentally.

The latency of the CTL system is exactly one service round, the amount of time required to fill the disk buffer.
The data is then assumed to be transferred to the network buffer instantaneously, where it is available to the user.
Interactivity does not pose any problem for the CTL system, as the jump delay is also only one service round. In
CTL, users impose the same load on the video server whether they are playing videos forward, backward, scanning
by block-skipping, or playing in completely random order, as long as each user retrieves only one block from disk
in each service round.

3.2 Constant Data Length

The most commonly assumed method of storing data is to store and retrieve constant sized blocks. In this section,
we describe one method of storing CDL blocks for VBR data using a leaky bucket mechanism for buffer control.
The principle behind the leaky bucket and the CDL data blocks is to move the data variation from the disks to
the buffer. Specifically, the leaky bucket mechanism allows constant rate input from the disk to the buffer and a
variable rate output from the buffer to the network.? Because the total number of users can overload both the
disk throughput and the buffer available, we need to consider both constraints. Disk throughput issues for CDL
data placement of CBR video have already been considered in [2] and [22]. For CDL placement of VBR video, the
data retrieval from disk is the same: one CDL block per service round per user. We can thus operate the disks at
full capacity, and we define Ug;sp = |Uideai] to be the number of users that can all read data from the disk in one
service round without overloading the disk read bandwidth.

The disk buffer is the same for CDL placement of both CBR and VBR video; it is the total amount of data
that can be read from the disk by all users in one service round. The network buffer for VBR, video, however, must
absorb the variations in the video bit trace for each user. Hence, in the remainder of this section, we consider the
two problems of network buffer underflow and overflow.

3In previous work [3], we have estimated this distribution with the Central Limit Theorem and Cramer’s rule.

4Note that the leaky bucket model for our CDL data placement operates in the exact opposite way that a leaky bucket rate control
used at the output of a video coder does; in a video coder, there is a variable rate input from the coder to the buffer and a constant
rate output from the buffer, resulting in CBR video. Reibman and Haskell present a complete analysis of buffer usage in a leaky bucket
system with fixed rate and variable rate channels in [17].

To ensure that the buffer does not underflow and starve the user, the system calculates the amount of prefetch
data needed to be read into the buffer. Since the system knows the requested video bit trace a priori, a fixed-size
buffer is allocated to each user and the exact amount of data necessary to prevent buffer underflow is prefetched
into this buffer.

The buffer overflow problem is more difficult since each of the users will require a variable amount of buffer
depending on the part of the video sequence accessed. Similar to the CTL case, we propose a statistical admission
control strategy which uses the statistics of the actual data stored on disk. The strategy is based on analyzing the
probability that the total buffer state of all of the users exceeds the given system buffer. We can compute this
probability for an arbitrary number of users U as follows. We assume each user has the same playback request
length, and so the buffer states can be modeled as independent identically distributed random variables with pdf
p(x), where z is the instantaneous buffer state. The distribution p(x) is found numerically by compiling a histogram
of all buffer states of all possible times ¢ and all possible starting points ¢ in the video sequence or sequences on the
disk [4, 5].

As in the CTL case, we compute the probability of overload by convolving p(x) U times and integrating beyond
a limit, By, which denotes the available buffer size. In the CDL case, however, there are two important differences.
The first is that By, 1s not specified by the disk parameters; instead it is chosen arbitrarily as the amount of buffer
to be added to the disk system. As such, if it is chosen large enough, 1t can result in zero probability of overflow. The
second difference is that the buffer usage histograms and hence probability distributions p(z) are functions of the
request length L. Because of this, a real system must either compute or store the buffer histogram for each request
length and combine histograms with real-time convolutions, or it must limit a set of acceptable request lengths that
may be chosen. An alternative to the above convolution-based approach is to make a simplified estimation using
the Central Limit Theorem to approximate the final distribution with a Gaussian curve [3].

We test the system using the Star Wars sequence for the two request lengths L = {16,3620}. Using the
parameters in Table 1, we choose each read unit to be the average size of a 2-second block of the video, 92 kB.
To maximize the disk usage, we set the statistical admission control test to allow Uy, = 62 users on the disk
at all times. Experiments on our real disk video server show that we can support this number of users with a
probability of overload that is less than the threshold, Ps.i = 1073, The disk buffer size is simply the amount of
data that can be read from disk in one service round, Ugsi X Dyeqq = 62 x 92 kB = 5704 kB. To calculate the
theoretical network buffer required, we use the two methods of prediction described above: convolution of the buffer
histograms, and normal approximation with a Gaussian curve. We find that the buffer requirements increase greatly
with request length. At L = 16 rounds, the buffer requirement is 372 kB/user. At the full request length of 3620
rounds, the buffer requirement is 15 MB/user, 72 times the requirement of the CTL system. This disproportionate
number results from long-range dependencies in the video sequence [11]; we show in Appendix B that the buffer
required by one user is bounded below by the (o, p) curve of the video sequence requested, and our results agree
with those obtained by Grossglauser, Keshav, and Tse [13]. Because these buffer amounts exceed the capacity of
our video server for Star Wars, we use a discrete event simulator to track the buffer usage and verify the theoretical
results as shown in Fig. 1. As seen, the simulation results are in close agreement with both the convolution and
Gaussian estimation techniques. Although we can admit 4 more users than the CTL system, the increase in buffer
requirement overshadows that gain, as we will see in Sect. 3.4.

In addition, we measure the average start delay in the above simulations and find it to be directly proportional
to the average network buffer requirements. The average latency for L = 16 is 3 service rounds, or six seconds. The
average latency for L = 3620 1s 150 service rounds, or 5 minutes. This delay applies to each user upon beginning a
request, but even more objectionably to each user seeking readmission after a jump. Each jump renders the current
buffer useless, and a long delay is required to refill the buffer before playback can resume. In [5] we have considered
a “burst mode” scheme in which the disk system temporarily devotes all of its resources to loading the pre-fetch
data for the user’s jump to a new location to minimize the jump delay; however, this results in even higher buffer
usage and start delays for non-jumping users.

3.3 Hybrid Data Placement and Retrieval

In Sect. 3.1, we found that CTL data placement services a reasonable number of users with very low buffer usage.
However, the disk fragmentation becomes a problem for CTL systems that require on-line editing. The CDL systems
overcome the fragmentation problem but use an excessive amount of buffer. We now consider a hybrid system in

6

Buffer per user (MB)
\ \

14.00
12.00
10.00
8.00
6.00
4.00
2.00

0.00

0 1000 2000 3000 L

Figure 1: CDL network buffer requirements

which data is written in CDL blocks, but different numbers of blocks are read in each service round according to the
user playback rate, corresponding to a coarsely quantized CTL-style read. Vin et al. [25] have analyzed the effects
of block size on load balancing in a hybrid system. As in the CDL case, we choose our block size to be 92 kB.

There are two main differences between the hybrid system and the CTL system. First, the read units in the
hybrid system are much more coarsely quantized; whereas each user in a CTL system can read up to 300 1-kB disk
sectors per round, each user in the hybrid system reads zero to three 92-kB blocks of data. The remaining data that
is not consumed immediately is stored in the network buffer to prevent the same disk block from being re-read in
the next service round. The second difference is that there are no seeks between each sector of a CTL read, whereas
there is a seek before each large block of data read for a user of the hybrid system. Specifically, hybrid system users
reading multiple blocks in one round must perform multiple seeks to access those blocks. These additional seeks
reduce the disk efficiency.

The statistical admission control strategy for the hybrid system is similar to that of the CTL system. We
compute the probability that U users will cause a disk overload by using the same service time condition as done
in Sect. 3.1. In the hybrid case, however, each disk storage block is the same size and requires one seek; therefore
the only variable is the number of blocks read. Let N (u) be equal to the number of blocks read by user u in a given
service round, and let 7 pj,cr be the time required to read one block. As in Sect. 3.1, we assume a constant seek
and rotation time of Ts. Since each block requires its own seek and read time, the service time condition to avoid
overload is:

Z N(u)(Ts 4+ Ty prock) < Tsr (4)

u=1

Since we do not allow the retrieval of fractional blocks, we define the block limit, Ny, as the maximum integer
number of blocks that can be read by all users in one service round without exceeding the service time condition.

Tsr J
Niim = |=—m 5
: {Ts + Tr,block ()

Thus, as long as the total number of blocks requested by U users one service round, 25:1 N (u), does not exceed
Niim , there will be no overload in that service round. For the parameters in Table 1, Ny, = 62 blocks.

Let pn (x) denote the pdf of N(u); we numerically estimate px(z) by compiling a histogram of the number of
blocks to be retrieved for every service round of the entire video sequence. We show the probability distribution
derived from the histogram of our test sequence Star Wars in Table 2.

For U users, there may be a non-zero probability that the total number of blocks requested in one service
round exceeds the allowable limit, Ny,,,. We calculate this probability as follows. Analogous to the other two data
placement schemes, we obtain the pdf of the total number of blocks requested by U users by convolving py(z) U

7

Blocks 0 1 2 3 |
Probability || .137 | .735 [.125 | .003 ||

Table 2: Histogram of blocks per request in hybrid system

times with itself. Once we compute this pdf, we can find the probability of overload, P,(U), by integrating the pdf
beyond the block limit Nyy,. We can thus find P,(U) for all U, and we define Uy to be the maximum U such
that P,(U) < Pfqii. For the parameters in Table 1, Upyqp = 51.

In a hybrid system, disk block boundaries do not generally correspond to real-time playback data boundaries.
Therefore, users who enter the system and begin reading a video sequence must retrieve an additional block of
data during the first service round. This additional block guarantees that the total data retrieved from disk is
sufficient to begin playback. However, these additional first-round blocks increase the system load, lowering the
average number of users served for a given probability of overload as follows. Assuming U users request videos of
length 7 in a given service round, and that the block size is equal to average amount of data required for one service
round, the average number of requested blocks is U in the given round. If we further assume that the users are
randomly distributed in phase, an average of U/L users will be accessing the first service round of their requests.
These first-round requests require an additional block each, and so the average requested total number of blocks
is U+ U/L. Thus the first-round requests increase the number of blocks required by a factor of (L + 1)/L. If the
hybrid server can support an average of X users at L = oo, then the number of users that can be supported for
finite L is XL/(L + 1), a drop by a factor of 1/(L + 1). Taking this into account, we revise our earlier estimate of
Umaz = 51 10 Upae = 48 for L = 16 and P,(U) = 1073.

We plot the theoretical P,(U) for both the hybrid and CTL schemes in Figure 2. As seen, for our range of
probabilities of overload, the hybrid system serves fewer users due to the extra seek and extra first-round block
overheads. Simulations verify the average number of users served and the overload probabilities.

Ploverload]
1e01 |]
3 L) -
Hybrid -
le02 !]
3 // |
,/ CTL
1e03 J/ _
\ S \ \
45 50 55 60 Users

Figure 2: Disk overload probability

We now consider buffer usage and delay for the hybrid system. The blocks are written the same way as in
CDL systems, and therefore the disk buffer is the same size: 62 blocks at 92 kB/block = 5704 kB. To estimate the
network buffer, we consider its operation. Let Dyjoer be the amount of data in each block, 92 kB in our tests. Since
users read data from disk in multiples of Dpocr bytes but consume data for playback in any amount, there will
be [0, Dpjock) bytes remaining in the network buffer after each service round. For example, if the network buffer
is initially at a level of .2D;0c and the user needs to consume 1.3 Dy bytes of data next round, then 2 blocks
will be read from the disk. At the end of the service round, these 2 blocks are transferred to the network buffer,
bringing the network buffer level to 2.2 D5 bytes. The user then consumes 1.3 Dpjoc bytes in playback, leaving
9Dbiock bytes in the network buffer for the next round.

We therefore model the network buffer level as a random variable uniformly distributed on [0, Dpoer) and the
amount read from disk as a random variable with the distribution shown in Table 2. Assuming the current levels and

8

amounts read are independent for all of the users, we estimate the probability distribution of the sum of all of the
users’ disk buffers and network buffers through convolution [5]. For our chosen probability of failure, Psqy = 1073,
we estimate the required total buffer at 13658 kB. The simulation results differ by less than 2% from this value.

In a hybrid system, blocks are stored in equal-length blocks as in CDL. Therefore, block boundaries will not
generally coincide with playback time indices, and a user who begins service will need to prefetch some data to fill
the network buffer. In a CDL system, this prefetch greatly increases the latency. For the hybrid system, however,
the maximum amount of prefetch is one block. Users read the prefetch block with the other data blocks in the first
round to be guaranteed that they have enough data in the buffer to begin immediate playback. Thus the start and
Jjump delays are equivalent to the CTL case, exactly one service round.

3.4 Cost Analysis

We now present a cost analysis for our three data placement strategies. The cost per stream can be divided into
two parts: the disk and the buffer. The cost of the disk, Cy, is equal to the cost of the disk controller, Cy., plus
the product of the video data size, D,, and the price of disk storage, Prices. The cost of the buffer, (%, is given
by the product of the total system buffer, Bi,q;, and the price of memory, Pricemen . Dividing the two costs by
the average number of users yields the estimates for the costs per stream. We assume the following current prices:
Cye = 200 dollars, Pricey = 0.25 dollars/MB, and Priceem = 15 dollars/MB of DRAM. Table 3 summarizes the
results.

Padded VBR | CTL CDL Hybrid
Request Length any | any 16 3260 16 | 3260
Disk Cost 15.40 | 4.84 | 4.67 454 | 5.82 | 5.50
Buffer Cost 817 | 3.09 | 5.44 | 222.07 | 4.07 | 3.95
Total Cost 23.57 | 7.93 | 10.11 | 226.61 | 9.89 | 9.45

Table 3: Theoretical: cost per stream in dollars

As seen in Table 3, CDL systems are not cost-effective for storage and retrieval of long sequences. The buffer
requirements are too costly, and we find the delays to be too long for interactive use [5]. The only advantage of
CDL over CTL is that CDL has no fragmentation problems associated with rewriting videos on disk.

Hybrid schemes, however, eliminate the fragmentation problems while retaining a relatively low cost per stream.
The hybrid system costs about 19-24% more than the CTL system; thus we can recommend the CTL system as the
least expensive in read-only situations. However, the increase in cost in using a hybrid system may be acceptable
in situations in which videos may need to be edited or overwritten on the disk.

3.5 Interactivity

Another consideration in choosing a data placement strategy for video servers is interactivity. CTL data placement
is best suited for interactive playback, as there are no penalties for playing blocks in non-consecutive order. As long
as each user requests only one CTL block per service round, the maximum number of users served and the average
buffer per user does not change. CDL data placement, on the other hand, results in very poor system performance
for interactive use, as seen in the long start and jump delays in Sect. 3.2. We have examined a “burst-mode” CDL
system [5] which reduces the delay after users jump to different parts of the video, but the buffer requirements
increase substantially beyond the baseline CDL usage.

Hybrid systems show reasonable performance in interactive situations. However, they suffer a slight performance
penalty because the playback consumption data boundaries do not generally correspond to disk block boundaries.
During straightforward playback, these mismatches are absorbed by the network buffer as explained in Sect. 3.3.
For users that first enter the system, an extra block must be read to prefetch data for the network buffer; this
results in the 1/(L41) loss in average number of users as described in Sect. 3.3. However, a network buffer prefetch
also applies to users that interrupt normal playback to jump to a different part of the sequence. Let P; be the

probability of a jump per user per service round and U be the average number of users served. The average number
of users requesting jumps in one service round will then be U P;. These jump requests require an additional block
each, and so the average requested total number of blocks is U + U P;. Thus the jump requests increase the number
of blocks required by a factor of 1 + P;. If the hybrid server can support an average of X non-jumping users, then
the number of users that can be supported for non-zero P; is X/(1 4 P;), a drop by a factor of P;/(P; + 1).

4 Admission Control and Disk Models

In Sect. 3 we applied a simple statistical admission control that uses statistics of the stored data to compute a hard
limit on the number of users in the system. This user threshold guarantees that the probability of disk or buffer
overload does not exceed a prespecified threshold. However, the server has access to more information than just
the statistics of the stored bit traces. Specifically, the bit traces themselves are known, and the server can use these
traces to examine each incoming request on an individual basis. This form of deterministic admission control has
been previously proposed [4, 24, 16, 18, 19] but not theoretically analyzed.

To fully understand the implications and effects of deterministic admission control, we consider the following
two types. Data-limit admission control admits users based on precomputing the total amount of data requested by
all users in future service rounds. In contrast, ¢deal deterministic admission control not only precomputes the total
amount of data requested, but also assumes we have control of data placement at the disk sector level in order to
precompute the future seek and rotation times. To simulate these types of deterministic admission control, we use
a a full disk model [20] and verify the results using a video server constructed on an HP 9000 725/100 workstation
with an HP C3325W hard drive.

Thus we have a total of three admission control strategies: statistical, data-limit deterministic, and ideal deter-
ministic. In Sect. 3 we have examined statistical admission control for each of our data placement strategies. In
this section we examine deterministic admission control for the hybrid data placement since it achieves a compro-
mise between cost and fragmentation. In doing so, we fix the request length L at 16 service rounds. We consider
data-limit deterministic admission control in Sect. 4.1, and ideal deterministic in Sect. 4.2. We compare results and
costs in Sect. 4.3.

4.1 Data-Limit Deterministic Admission Control

We now present a data-limit deterministic admission control strategy that accepts users based on a priori knowledge
of the bit rate traces of the requested video sequences. We assume a constant seek and rotation time 7§ as in the
previous sections. This scheme is different from the statistical admission control of Sect. 3 in that instead of using
the statistics of all the videos stored on a server, it uses the actual bit trace of the particular video that is being
served. As can be expected, this scheme 1s more complex to implement than statistical admission control. However,
as we will see; it can potentially achieve zero probability of overload and in general results in a lower cost per
stream.

Let N(v(u),4) be the number of blocks consumed by user u requesting video v(u) at time index ¢. Let ¢ be the
current service round index and #p(u) be the service round in which user « was admitted to the disk. Then the
amount of data requested by user w in the current service round ¢ is N(v(u),t — to(w))Dpiock. Because the disk
system has full knowledge of the current videos requested by all of the users, the total number of blocks requested
for all future service rounds can be calculated a priori. Specifically, the total number of blocks required by the disk
to service all of the users at service round ¢ is >, N(v(u),t — to(u)). To prevent disk overload at all times, we
extend the condition from Eq. (4):

Tsr
;N(U(U),t—to(u)) S m Vit (6)

At any service round ¢, the limit on the maximum number of blocks read to avoid overload is given in the right side
of Eq. (6). Since we do not allow the retrieval of fractional blocks, we can instead use Ny, as defined in Eq. (5) to
be the upper bound on the number of read blocks. Because the disk system can exactly predict the occurrences of
disk overload for a given set of users, the admission control calculates the hypothetical future disk usage given the

10

addition of a new request. If the addition would result in disk overload for any service round ¢, the request is denied
access; otherwise it is admitted.® This operation is illustrated in Fig. 3. The first graph shows the total amount of
data requested as a function of time. We assume that the users are randomly distributed in time so that the total
amount of data falls as a function of time. For example, at { = L/2 service rounds, we expect half of the users to
have completed their requests and exited the system, leaving the current load at half of the ¢ = 0 load. The second
graph shows the bit rate trace of the next user request. The admission control adds the two graphs, arriving at the
third graph. We see that the addition causes one of the future service rounds to overflow, and so we deny admission
to the user. The user waits until the next service round before applying for admission again. This process repeats
until the admission control verifies that no future rounds will be overloaded and then admits the user.

Ndisk(t) .
<« DiskOverload

t

t t
Current Load New Reguest Possible Future Load

Figure 3: Data-limit deterministic admission control

In the statistical admission control policy in Sect. 3.3, we use 7T from Table 1 to estimate the average seek and
rotation time. Using this value of T in Eq. (5) results in Ny, = 62. If the seek and rotation times did not vary
from the average value, this data-limit admission control would guarantee zero disk overload at this value of Ny, .
However, when tested on the real disk video server, we measure a 10% probability of overload due to the seek and
rotation time variation. Clearly we must use a more conservative approach to approximating the seek and rotation
time.

We propose a worst case scenario by assuming a conservative worst case seek bound as explained in Sect. 2,
and a worst case rotation bound equal to the time required for a full disk revolution. This results in a reduction
in Ny in Eq. (5) from 62 to 53 blocks and guarantees a zero probability of overload. Experiments on a real disk
system show that Ny, = 53 blocks results in an average of 49.5 users. However, this admission control may be
unnecessarily restrictive — in the same real disk system experiments, we find that we can achieve zero overload in
105 trials with Ny, = 58, resulting in an average of 54.1 users served.

We see that by changing the seek and rotation time estimate 75, we change the block limit Ny,,. As the block
limit increases, so does the average number of users served. In Fig. 4 we plot the measured probability of overload
as a function of the number of users served and compare the results with those obtained using statistical admission
control. These experiments are conducted on our real disk system. As seen, for all tested proabilities of overload,
the data-limit deterministic admission control admits more users than the statistical for a given probability of
overload. The difference grows larger as we reduce the probability of overload. It would be interesting to test lower
probabilities of overload, but long tests are infeasible due to the real-time nature of the video server.

To perform longer tests, we simulate our video server on a full disk model based on work by Ruemmler and
Wilkes [20]. We use our measured disk parameters to calculate a layout pattern by translating the video bit trace
blocks into sectors and tracks on the disk simulator. Finally, we trace the execution of the simulator, adding the
appropriate seek, head switch, and rotation times. We assume the scheduling policy to be the SCAN algorithm. We
do not model secondary effects such as slipped defective sectors and thermal recalibration. The simulator operates
about 1000 times faster than real time, and our tests show that it predicts the number of users within 2% of the
measured real disk value as seen in Fig. 4. The difference in probability of overload between the real disk and
simulator at any given U can be attributed to the large slope of the overload curve. For our test parameters, a shift
in the disk seek time profile of one ms results in a change of one user served. Since our accuracy in measuring read
and seek times is limited to a one ms resolution, the error between our simulator and the actual disk can result
from an imperfect estimate of the seek time profile or other disk parameters.

As seen in Fig. 4, the simulator shows that the data-limit deterministic admission control admits 20% more
users than the statistical for a 10~° probability of overload. We can also theoretically predict the average number of

5 Alternatively, the system may elect to maximize disk usage by allowing some overloads to users with a lower quality of service.
Distribution of overloads among users is an interesting resource allocation problem and has been partially addressed in [3].

11

users for the data-limit admission control within 2% of the real disk value using the convolution techniques shown
in Appendix A.

P [overload]
le01 | | Real Disk
1e02 | Full Disk Model
1e-03 —
le-04 |
1le-05 ’ |

45‘.00 50‘.00 55‘.00 60‘.00 Users

Figure 4: Comparisons between statistical and data-limit deterministic admission control

We now consider delays for data-limit deterministic admission control. The start delay is the same as for
statistical admission control; users receive data exactly one service round after being admitted to the system. The
jump delay, however, increases because users are not guaranteed readmission after switching videos or video starting
points. The admission control grants access to a user based on the vector of future number of blocks requested in
each service round; a change in this vector may cause a delay while the admission control checks each upcoming
service round for a round in which readmission will satisfy Eq. 6. Both our real disk experiments and full disk model
simulations show that the jump delay increases from that of statistical admission control by only 5-7% using our
system parameters in Table 1 and varying the jump probability P; from 0.1% to 10% per user per service round. We
conclude that the use of data-limit deterministic admission control does not significantly degrade the interactivity
potential for our video server.

4.2 1Ideal Deterministic Admaission Control

In statistical admission control, we assume a constant read time and constant seek time, and we admit a given
number of users based on our theoretical estimates of the probability of disk overload. By using a data-limit
deterministic admission control, we can reduce the probability of overload for a given number of users. However,
to guarantee zero overload using that admission control, we must reduce the average number of users served by
assuming a conservative bound for the total seek and rotation time. We would like to eliminate this conservative
bound by extending the future load calculations to include seek and rotation times. We call this ideal deterministic
admission control.

Unfortunately, ideal deterministic admission control is not possible to implement on our real disk video server,
as our system uses a SCSI-2 interface, which does not allow track and sector-level data manipulation. We are
therefore left with the full disk simulator which suffers no such limitations. That simulator results in an average of
59.7 users served under ideal deterministic admission control. This user load is 21% higher than the conservative
data-limit deterministic admission control. As for jump delay, our simulator shows an increase of 7-10% above the
jump delay of a statistical admission control system using the same test conditions as in Sect. 4.1. We conclude
that neither data-limit nor ideal deterministic admission control significantly hinder interactive use.

4.3 Cost Analysis

We now present a cost analysis for our admission control strategies. All tests are done for L. = 16, as we have found
that costs do not vary significantly as a function of L for CTL and hybrid systems [5]. In Table 4, we present the
system costs based on experiments using our real disk video server. For comparison, we examine the same system

12

costs based on tests run on our full disk model simulator in Table 5. All of the systems may be classified into one
of two categories: overload-prone or zero-overload. The overload-prone systems result in a positive probability of
disk overload as a function of the number of users admitted. The zero-overload systems guarantee that the disk
will never be overloaded.

In Table 4a, we show the system costs of the overload-prone systems as tested on the real disk for Psqy = 1072,
As seen, the data-limit deterministic admission control significantly reduces the hybrid system cost compared
to statistical admission control. We have found similar gains by applying the same admission control to CTL
systems [5], making them the best solution for read-only systems. While CTL results in lower cost than hybrid, the
fragmentation problem makes the CTL strategy unsuitable for general read and write applications. The CTL and
hybrid systems cost less than the Padded VBR by a factor of 2.5 to 3.

In Table 4b, we examine the costs of the zero-overload systems. For the Padded VBR system, the cost does
not increase significantly from the overload-prone case because the buffer cost per stream is fixed. For the hybrid
system, however, both the disk and buffer costs increase, resulting in a 16% increase in cost from the corresponding
overload-prone system. The difference in cost between the two systems is still significant, a factor of 2.5.

Table b shows that for all of the systems tested in Table 4, the full disk model simulator yields very similar
results. In addition, the full disk model allows us to test ideal deterministic admission control which is not possible
on our real disk video server. As seen, for about the same cost, one could use the ideal deterministic admission
control to achieve zero overload, or one could use data-limit admission control and accept an overload probability
of 1073, The actual choice will depend on the cost and feasibility of using a disk system with track and sector level
manipulation of data.

Padded | CTL | Hybrid | Hybrid Padded | Hybrid

Admission Fixed | Stat Stat Data- Admission Fixed Data-
U Limit U Limit

Disk Cost 15.96 | 4.88 5.82 5.06 Disk Cost 16.62 5.68
Buffer Cost 8.17 | 3.09 3.93 3.57 Buffer Cost 8.17 4.31
Total Cost 24.13 | 7.95 9.75 8.63 Total Cost 24.79 9.97

Table 4: Real disk results: cost per stream for a) Prqy = 1073, b) zero-overload

Padded | CTL | Hybrid | Hybrid Padded | Hybrid | Hybrid

Admission Fixed | Stat Stat Data- Admission Fixed Data- Ideal
U Limit U Limit Deter

Disk Cost 1541 | 4.75 5.68 4.94 Disk Cost 16.62 5.71 4.71
Buffer Cost 8.17 | 3.09 4.23 3.72 Buffer Cost 8.17 4.35 4.17
Total Cost 23.58 | 7.84 9.91 8.66 Total Cost 24.79 10.06 8.88

Table 5: Full disk model results: cost per stream for a) Prai = 1073, b) zero-overload

5 Conclusions

The main contributions of our work have been as follows. First, we have shown that CDL is an infeasible data
placement strategy for long VBR video sequences because of extremely high buffer usage. Between CTL and hybrid
solutions, one must choose between lower cost in the CTL case or ease of editing videos in the hybrid case. Second,
we have performed an exhaustive comparison between statistical and two types of deterministic admission control,
using a video server implemented on an actual disk to verify our results. We find that all forms of deterministic
admission control can outperform statistical, but the greatest gain comes from using an ideal control to account

13

for disk seek and rotation times. We note, however, that ideal deterministic admission control may be difficult to
implement on standard disk controllers. Finally, we have implemented a full disk model simulator. Results using
the simulator are very close to those measured on the real disk, making the simulator useful for future experiments.

The cost of using deterministic admission control is very small compared to the disk and buffer storage costs.
Implementing deterministic admission control requires maintaining a current system load memory as shown in
Figure 3. The size of that memory is equal to the number of service rounds multiplied by the bytes per service
round. As for the computation power required, each new admission request requires as many integer additions as
there are service rounds in the new request. For a two-hour movie with two-second service rounds, the amount of
memory required is only 14 kB per disk, assuming 4-byte integers, and we only need 3600 integer additions for each
incoming user in a 2-second service round. Our full disk simulator with deterministic admission control runs 1000
times faster than the real disk video server, showing that computation time is not a bottleneck.

6 Acknowledgements

This work 1s sponsored by NSF grant MIP-9057466, ONR grant N00014-92-J-1732, AFOSR, grant F49620-93-1-0370,
University of California MICRO award 95-169, and gifts from HP, Rockwell, and Philips. We thank John Wilkes

and David Tse for useful discussions.

A Appendix A: Users served under data-limit deterministic admis-
sion control

In this section we calculate the theoretical average number of users for the hybrid system using data-limit deter-
ministic admission control. In Sect. 3.3, we defined N (u) to be the number of blocks of data requested by user « in
one service round, py(z) to be the pdf of N(u), and Ny, to be the maximum number of blocks that may be read
by all users in one service round. We found the probability of disk overload for the statistical admission control
system by convolving the py(z) U times with itself and integrating the resulting pdf beyond the block limit Ny, .

For the deterministic case, however, we must note that for each user index u, the distribution of total requested
data is guaranteed not to exceed Nj;p, at the previous user index u—1. Let S(u) be the sum of N(1)...N(u). Upon
admitting the first user, the pdf of the number of blocks requested in one service round is simply ps(1)(x) = pn ().

In order to admit a second user under data-limit deterministic admission control, the number of blocks requested
by the first user must not exceed Nyp,. If S'(1) denotes the number of blocks requested by the user given that
S(1) < Nijm, then its pdf is given by:

Ps (l‘) T < Nl
— m

pS/(l)(l‘) = pS(l)(l‘|S(1) < Nlim) = { 63[5(1)§th] (7)

otherwise

Thus the pdf of the total number of blocks requested by two users is equal to the convolution of the pdf given
in Eq. 7 and the pdf of an independent second user, py(z):

Ps(2)(®) = psi1y(x) * pn () (8)

This series of operations can be extended by induction to u users to yield:

Psgu—lg(x) r < N
e = PIS(u—1)<Niim] tim 9
Psi(1)(1‘) { 0 otherwise)
Psey(®) = psiw-1)(®) * pn(z) (10)

For the data-limit deterministic admission control system, we define P,(u) as the probability that user u is
rejected given that user v — 1 was accepted, in one service round:

14

Py(u) = P[S(u) > Niim] (11)

We can now estimate the average number of users served on the system as follows. Assuming independent service
rounds, the probability of admitting the entire request length of a user is equal to the product of the probabilities
of admitting a user at each service round separately.

L-1
Prob[admit entire reglen L] = H Prob[admit at round]
t=0
L-1
= H (1 — Problreject at round ¢]) (12)

t=0

The probability that a request is rejected at round ¢ is equal to P,(u) given u users on the system at round ¢.
Given our assumption that all users request video of the same length L, and since the trials are uniformly distributed
in time, the number of users on the disk will on average fall linearly with respect to time. This is illustrated in Fig. 3
where the load has a fairly linear drop. Because of this drop, it 1s much more likely that a user will be rejected
because of the current load at ¢ = 0 rather than for a large {. We account for this by using a linear interpolation of
the function P, (u):

Pojinterp(®) = Po(l]) + [Po([2]) = Po(l2])] (x — [2]) (13)

Then the probability of admitting a request of length L at user load u is:

Pr(u) = jljol (1 — Py interp (?u)) (14)

The probabilities pr (u) are the probabilities of admitting the entire request length L of user u given that user
u — 1 was admitted. We can then calculate the probability of admitting at least u users admitted as follows:

Pleast(l) = PL(l) (15)
Preast(2) = Pu(2) x Pr(1) (16)
Pleast(u) = H PL(Z) (17)

Finally, we calculate the probabilities of admitting exactly u users by taking differences:

Pepact(tt) = Pregst(u) x P(reject u—+ 1 | accept at least u)
Preast(u) x [1 = Pr(u+ 1)]
= Pleast(u) - Pleast(u + 1) (18)

Uavg = Zupexact(u) (19)

B Appendix B: (0,p) curve as a lower bound for maximum CDL
buffer usage

In this section we assume a VBR video of finite duration ¢, characterized by D(t), the amount of data consumed
by a user at service round index ¢. For the CDL system, let Ry be the disk transfer rate of one block of data to

15

one user, measured in bytes per service round. Then assuming zero prefetch data, the buffer state B(t), is found
by subtracting the VBR data sent to the network from the CDL data read from the disk:

t

B(t) = Y[Ry — D(r)] (20)

7=0

If B(t) becomes negative for any ¢, the buffer will underflow for that request. To prevent this, a buffer prefetch
B, 1s computed by finding the most negative value of B(t) over the request length and rounding up to an integral
number of disk read blocks:

. B() . B()
Bye = [— min R—b]Rb mtmR—b <0 (21)
0 otherwise
The resulting buffer state after adding the prefetch data is then guaranteed not to underflow:
t
B(t) = Byre + Y[Ry — D(7)] > 0 (22)
7=0
For the discrete-time case, the VBR data trace D(#) has a (o, p) function defined as follows [6, 7]:
t
o =max) [D(r) =] (23)
p 1s the constant rate at which the buffer is drained, equivalent to Ry in our CDL system.
t
o = max [D(7) — Rs] (24)
_t s
= max Z_%[D(T) — Ry] - Z_:O[D(T) — Ry (25)
t s
= mtaxZ[D(T) — Ry — msinZ[D(T) — Ry), s<t (26)
7=0 7=0

The maximum amount of buffer needed by one user in a CDL system 1s mtaxB'(t). We now show that the

elements in max B'(t) are bounded below by those in o. For the first element:

. B() —B(t)
mtaprre > [— min Tb]Rb = [mtax o 1Ry > mtax[—B(t)] = mtaXZ_:O[D(T) — Ry] (27)
For the second element:
t s s
mgxz_:o[Rb — D(r)] 2 max _O[Rb — D(r)] = —min _O[D(T) — Ry] (28)

Therefore max B'(t) > 0.

16

References

D. Anderson, Y. Osawa, and R. Govindan, “A File System for Continuous Media,” ACM Transactions on Computer Systems, vol.
10, no. 4, Nov. 1992, pp. 311-337

E. Chang and A. Zakhor, “Scalable Video Data Placement on Parallel Disk Arrays,” IS&T/SPIE International Symposium on
FElectronic Imaging: Science and Technology, Volume 2185: Image and Video Databases II, San Jose, February 1994, pp. 208-221

E. Chang and A. Zakhor, “Variable Bit Rate MPEG Video Storage on Parallel Disk Arrays,” First International Workshop on
Community Networking Integrated Multimedia Services to the Home, San Francisco, July 1994, pp. 127-137

E. Chang and A. Zakhor, “Admissions Control and Data Placement for VBR Video Servers,” First IEEE International Conference
on Image Processing, Austin, November 1994, pp. [:278-282

E. Chang, “Scalable and Variable Bit Rate Video Compression and Storage,” Ph.D. thesis, University of California at Berkeley,
1996

S. Chong, S. Q. Li, “(o, p)-Characterization Based Connection Control for Guaranteed Services in High Speed Networks,” IEEE
INFOCOM ’95, Boston, April 1995, pp. 835-844

R. Cruz, “A Calculus for Network Delay, Part I: Network Elements in Isolation,” IEEE Transactions on Information Theory, Jan.
1991, v. 37, no. 1, pp. 114-131

R. Cruz, “A Calculus for Network Delay, Part II: Network Analysis,” IEEE Transactions on Information Theory, Jan. 1991, v.
37, no. 1, pp. 132-141

T. Costlow, “Disk arrays spark video-on-demand,” Electronic Engineering Times, June 20, 1994, pp. 51-55

M. Garrett, “Contributions Toward Real-Time Services on Packet Switched Networks,” Ph.D. thesis, Columbia University, New
York, NY, 1993

M. Garrett, “Analysis, Modeling, and Generation of Self-Similar VBR Video Traffic,” ACM SigComm, London, Sept. 1994

D. J. Gemmell and J. Han, “Multimedia network file servers: multichannel delay-sensitive data retrieval,” Multimedia Systems
(1994), pp. 1:240-252

M. Grossglauser, S. Keshav, and D. Tse, “RCBR: A Simple and Efficient Service for Multiple Time-Scale Traffic,” ACM SIGCOMM
95

D. Kandlur, M. S. Chen, Z. Y. Shae, “Design of a multimedia storage server,” IS&T/SPIE International Symposium on Electronic
Imaging: Science and Technology, Volume 2188, San Jose, February 1994, pp. 164-178

R. Katz, G. Gibson, and D. Patterson, “Disk System Architectures for High Performance Computing,” Proceedings of the IEFE,
Dec. 1989, v. 77, no. 12, pp. 1842-1858

G. Neufeld, D. Makaroff, and N. Hutchinson, “The Design of a Variable Bit Rate Continuous Media Server,” Proc. 5th Intl
Workshop on Network and Operating System Support for Digital Audio and Video, Durham, NH, April 1995, pp. 375-378

A. Reibman and B. Haskell, “Constraints on Variable Bit-Rate Video for ATM Networks,” IEEE Transactions on Circuits and
Systems for Video Technology, Dec. 1992, v. 2, no. 4, pp. 361-372

J. M. del Rosario and G. Fox, “Constant Bit Rate Network Transmission of Variable Bit Rate Continuous Media in Video-On-
Demand Servers,” NPAC Technical Report SCCS-677, Syracuse University, Dec. 1994

J. M. del Rosario, M. Podgorny, and G. Fox, “m-Frame granular transport and buffer requirements for VBR encoded media in
VOD servers,” NPAC Technical Report SCCS-733, Syracuse University, March 1995

C. Ruemmler and J. Wilkes, “An Introduction to Disk Drive Modelling,” Computer, March 1994, v. 27, no. 3, pp. 17-28

S. Stoller and J. DeTreville, “Storage Replication and Layout in Video-on-Demand Servers,” Proc. 5th Intl. Workshop on Network
and Operating System Support for Digital Audio and Video, Durham, NH, April 1995, pp. 351-363

F. Tobagi, J. Pang, R. Baird, and M. Gang, “Streaming RAID — A Disk Array Management System for Video Files,” First ACM
International Conference on Multimedia, Anaheim, CA, Aug. 1993

H. Vin, P. Goyal, A. Goyal, and A. Goyal, “A Statistical Admission Control Algorithm for Multimedia Servers,” Proceedings of
the ACM Multimedia ’94, San Francisco, CA, Oct. 1994, pp. 33-40

H. Vin, A. Goyal, P. Goyal, “Algorithms for Designing Multimedia Servers,” Computer Communications, March 1995, v. 18, no.
3, pp. 192-203

H. Vin, S. Rao, P. Goyal, “Optimizing the Placement of Multimedia Objects on Disk Arrays,” Proceedings of the International
Conference on Multimedia Computing and Systems, Washington, DC, May 1995, pp. 158-165

J. Walrand, Queueing Networks, Prentice Hall, 1988

A. Wong, C. T. Chen, D. J. Le Gall, F. C. Jeng, K. M. Uz, “MCPIC: A Video Coding Algorithm for Transmission and Storage
Applications,” IEEE Communications Magazine, November 1990, pp. 24-32

B. L. Worthington, G. R. Ganger, Y. N. Patt, J. Wilkes, “On-Line Extraction of SCSI Disk Drive Parameters,” ACM SIGMETRICS
’95, Ottawa, Ontario, Canada, 1995, pp. 146-156

P. Yu, M. Chen, and D. Kandlur, “Design and Analysis of a Grouped Sweeping Scheme for Multimedia Storage Management,”
Proc. Third International Workshop on Network and Operating System Support for Digital Audio and Video, Nov. 1992, San
Diego

17

