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Hartmann Newtonian radiating
MHD flow for a rotating vertical

porous channel immersed in
a Darcian Porous Regime

An exact solution
Sahin Ahmed

Heat Transfer and Fluid Mechanics Research, Department of Mathematics,
Goalpara College, Goalpara, India, and

Ali J. Chamkha
Manufacturing Engineering Department,

The Public Authority for Applied Education and Training, Shuweikh, Kuwait

Abstract

Purpose – The purpose of this paper is to develop and correct the problem studied by Makinde and
Mhone (2005) to a rotating vertical porous channel immersed in a Darcian porous regime in presence of
a strong transverse magnetic filled and with the application of thermal radiation. In this investigation,
the fluid is considered to be of viscous, electrically conducting, Newtonian and radiating and is
optically thin with a relatively low density. Excellent agreement is obtained for exact solutions with
those of previously published works.
Design/methodology/approach – In this investigation, a closed form analytical method based
on the complex notations for the velocity, temperature and the pressure is developed to solve
the governing coupled, non-linear partial differential equations. The accuracy and effectiveness of the
method are demonstrated.
Findings – Interestingly observed that, the Lorentizian body force is not act as a drag force as in
conventional MHD flows, but as an aiding body force and this will serve to accelerate the flow and
boost the primary velocities. Due to the large rotation of the channel, the primary velocities are become
flattered and shift towards the walls of the channel. With a rise in Darcian drag force, flow velocity and
shear stress are found to reduce. Moreover, increasing thermal radiation and rotation of the channel
strongly depress the shear stress, and maximum flow reversal, i.e. back flow is observed due to large
Darcian resistance, thermal radiation and rotation.
Research limitations/implications – The analysis is valid for unsteady, two-dimensional laminar
flow of an optically thick no-gray gas, electrically conducting, and Newtonian fluid past an isothermal
vertical surface adjacent to the Darcian regime with variable surface temperature. An extension to
three-dimensional flow case is left for future work.
Practical implications – Practical interest of such study includes applications in magnetic control
of molten iron flow in the steel industry, liquid metal cooling in nuclear reactors, magnetic suppression
of molten semi-conducting materials and meteorology and in many branches of engineering and
science. It is well known that the effect of thermal radiation is important in space technology and
high-temperature processes. Thermal radiation also plays an important role in controlling heat
transfer process in polymer processing industry.
Originality/value – The paper presents useful conclusions with the help of graphical results
obtained from studying exact solutions based on complex notations for Darcian drag force, rotation of
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the channel and conduction-radiation heat transfer interaction by unsteady rotational flow in a vertical
porous channel embedded in a Darcian porous regime under the application hydromagnetic force.
The results of this study may be of interest to engineers for heat transfer augmentation and drag
reduction in heat exchangers as well as MHD boundary layer control of re-entry vehicles, etc.

Keywords Darcian resistance, Oscillatory flow, Heat radiation, Vertical porous channel,
Hydromagnetic flow, Rotating fluid, Astronautical flows

Paper type Research paper

1. Introduction
The theory of rotating fluids (Greenspan, 1969) is highly important due to its occurrence
in various natural phenomena and for its applications in various technological situations
which are directly governed by the action of Coriolis force. The broad subjects of
oceanography, meteorology, atmospheric science and limnology all contain some
important and essential features of rotating fluids. In astrophysics it is applied to study
the stellar and solar structure, inter planetary and inter stellar matter, solar storms and
flares, etc. In engineering, it finds its application in MHD generators, ion propulsion,
MHD bearings, MHD pumps, MHD boundary layer control of reentry vehicles, etc.
Hartmann (1937) first studied the flow of a viscous incompressible fluid under transverse
magnetic field in a MHD channel flow. Literature related to hydromagnetic channel
flows is reported by several scholars, namely, Crammer and Pai (1973), Ferraro and
Plumpton (1966), Shercliff (1965) on account of their varied importance.

Several investigations are carried out on the problem of hydrodynamic flow of
a viscous incompressible fluid in rotating medium considering various variations
in the problem. Mention may be made of the studies of Greenspan and Howard (1963),
Holton (1965), Walin (1969), Siegmann, 1971), Hayat and Hutter (2004), Singh et al.
(2005). The problem of magnetohydrodynamic flow of a viscous incompressible
electrically conducting fluid in a rotating medium is studied by many researchers,
namely, Ghosh (2001), Singh (2000), Hossain et al. (2001), Ghosh and Pop (2002), Hayat

Nomenclature
u, v, w Velocity components along X, Y, Z-

directions
x, y, z Variables along X, Y, Z-directions
w0 Injection/suction velocity
Kr Darcian resistance parameter
M Hartmann number
Gr Grashof number for heat transfer
Pr Prandtl number
qr Radiative heat flux
N Radiation parameter
P A constant
�p The modified pressure
T0 Mean temperature
B0 Applied magnetic field along

the �z-axis
g Acceleration due to gravity
CP Specific heat at constant pressure
t Time variable

T Dimensional fluid temperature
�o Dimensional frequency of oscillations
�t Dimensional time

Greek symbols
a Mean radiation absorption coefficient
b Coefficient of volume expansion
l Injection/suction parameter
Z Space coordinate
o Frequency of oscillations
n Kinematic viscosity
s Electric conductivity
r Fluid density
k Thermal conductivity
O Rotation parameter
tL Skin-friction at the left wall
y Fluid temperature
y0 Mean non-dimensional temperature
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et al. (2008), Hayat and Abelman (2007), Abelman et al. (2009), Wang and Hayat
(2004) under different conditions and configurations to analyse various aspects
of the problem and to find its application in Science and Engineering. Seth et al. (2011)
studied the unsteady hydromagnetic Couette flow of a viscous incompressible
electrically conducting fluid in a rotating system in the presence of a uniform
transverse magnetic field.

Convective flows in channels driven by temperature differences of bounding walls
have been studied and reported, extensively in literature. On account of their varied
importance, such flows have been studied by Rapits and Perdikis (1982). Hamadah
and Wirtz (1991) have investigated the free convective flow in vertical channel for
ordinary medium. Attia and Kotb (1996) studied the MHD flow between two parallel
porous plates. Singh and Sharma (2001) have analysed the three-dimensional Couette
flow through a porous medium with heat transfer. The study of vertical channel
flow bounded by a wavy wall and a vertical flat plate filled with porous medium was
presented by Ahmed (2008). Later on Ahmed (2009) also investigated the effects
of free convection heat transfer on the three-dimensional channel flow through
a porous medium with periodic injection velocity. Recently, Fasogbon (2010) studied
the simultaneous buoyancy force effects of thermal and species diffusion through
a vertical irregular channel by using parameter perturbation technique. Free
convection flows in vertical slots were discussed by Weidman (2006), Magyari (2007),
Weidman and Medina (2008). Very recently, Ahmed and Zueco (2011) investigate the
effects of Hall current, magnetic field, rotation of the channel and suction-injection on
the oscillatory free convective MHD flow in a rotating vertical porous channel when the
entire system rotates about an axis normal to the channel plates and a strong magnetic
field of uniform strength is applied along the axis of rotation. Makinde and Mhone
(2005) investigated the combined effects of transverse magnetic field and radiative heat
transfer in unsteady flow of a conducting optically thin fluid through a channel filled
with porous medium. Magnetohydrodynamic oscillatory convection flow of a viscous,
incompressible and electrically conducting fluid in a rotating vertical porous channel
is analytically presented by Singh (2012). Chamkha and Camille (2000) presented the
magnetohydrodynamic transient convective radiative heat transfer one-dimensional
flow in an isotropic, homogenous porous regime adjacent to a hot vertical plate.
Seddeek (2004) studied the transient-free convection magnetohydrodynamic boundary
layer flow in a fluid-saturated porous medium channel, and consider the influence of
temperature-dependent properties and inertial effects on the convection regime. Cogley
et al. (1968) studied the effects of melting and thermal radiation on mixed convection
from a vertical surface embedded in a non-Newtonian fluid saturated non-Darcy
porous medium.

In the present analysis, an oscillatory convection flow of an electrically conducting
viscous incompressible Newtonian fluid in a vertical porous channel filled with
Darcian porous regime is studied. Constant injection and suction is applied at the left
and the right infinite porous plates, respectively. The entire system rotates about an
axis perpendicular to the planes of the plates of the channel and a uniform magnetic
field is also applied along this axis of rotation. Such a study is found useful in magnetic
control of molten iron flow in the steel industry, liquid metal cooling in nuclear
reactors, magnetic suppression of molten semi-conducting materials and meteorology.
During mathematical analysis it is found that the study presented by Makinde
and Mhone (2005) is incorrect and the modified model is presented here. Excellent
agreement is obtained for exact solutions with those of Singh (2012).
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1.1 Makinde and Mhone (2005) model and accuracy
During mathematical analysis it is found that the mathematical formulation of the
problem by Makinde and Mhone (2005) is not in consistency with the geometry of
the physical problem shown in their Figure 1. Geometrically the channel is horizontal
whereas the mathematical formulation is for the vertical channel where the Boussinesq
incompressible fluid model is assumed to include buoyancy force in momentum
Equation (1). Boundary conditions (3) and (4) are not according to the choice of the
Cartesian coordinate system with Ox-axis lying along the centerline of the channel.
The temperatures of the walls are also not non-uniform as mentioned in the abstract.
For this purely oscillatory flow the boundary conditions (13) and (14) cannot be
obtained after the substitution of (11) into the boundary conditions (9) and (10).
The energy Equation (8) is incorrect and its solution (15) obtained under wrong
boundary conditions (13) and (14) is obviously incorrect. This solution is further used
in the Equation of motion (12) which consequently yields a wrong solution again. For
O¼ 0 in Equation (31) of the present analysis gives the correct form of the velocity
distribution and Equation (32) gives the correct form of temperature distribution of the
problem by Makinde and Mhone (2005) for the case of ordinary medium. Therefore, in
this paper we try to develop and correct the problem studied by Makinde and Mhone
(2005) to a rotating vertical porous channel immersed in a Darcian porous regime in
presence of transverse magnetic filled. Moreover, the accuracy of the present study is
excellent with those of Singh (2012).

2. Basic equations
Consider the flow of a viscous, incompressible and electrically conducting fluid in
a rotating vertical channel in a Darcian porous regime. In order to derive the basic
equations for the problem under consideration following assumptions are made:

. the two infinite vertical parallel plates of the channel are permeable and
electrically non-conducting;

. the flow considered is fully developed, laminar and oscillatory;

. the fluid is viscous, incompressible and finitely conducting;

w0
w0

w0w0

B

x�

Y�

Z�

d

�

o

Figure 1.
Coordinate system and
the flow configuration
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. all fluid properties are assumed to be constant except that of the influence of
density variation with temperature is considered only in the body force term;

. the pressure gradient in the channel oscillates periodically with time;

. a magnetic field of uniform strength B is applied perpendicular to the plates of
the channel;

. the magnetic Reynolds number is taken to be small enough so that the induced
magnetic field is neglected;

. hall effect, electrical and polarization effects are also neglected;

. the temperature of a plate is non-uniform and oscillates periodically with time;

. the temperature difference of the two plates is also assumed to be high enough to
induce heat transfer due to radiation;

. the fluid is assumed to be optically thin with relatively low density; and

. the entire system (consisting of channel plates and the fluid) rotates about an
axis perpendicular to the plates.

Under these assumptions we write hydromagnetic governing equations of motion and
continuity in a rotating frame of reference as:

r � V ¼ 0 ð1Þ

qV
q�t
þ V � rð ÞV þ 2�O�V ¼ � 1

r
r�pþ vr2V � v

K
V þ 1

r
J �Bð Þ þ F ð2Þ

rCP
qT

qt
þ V � rð Þ �T

� �
¼ kr2 �T �rqr ð3Þ

In Equation (2) the last term on the left hand side is the Coriolis force. On the right
hand side of (2) the last term F ¼ gbT

� �
accounts for the force due to buoyancy and the

second last term is the Lorentz force due to magnetic field B and is given by:

J �B ¼ s V �Bð Þ�B ð4Þ

and the modified pressure �p ¼ p0 � r
2 jO�Rj2, where R denotes the position vector

from the axis of rotation, p0 denotes the fluid pressure, J is the current density, K is the
permeability of the porous medium and all other quantities have their usual meaning.

2.1 Formulation of the problem
In the present analysis, we consider an unsteady flow of a viscous incompressible and
electrically conducting Newtonian fluid bounded by two infinite vertical porous plates
distance “d” apart as shown in Figure 1. A coordinate system is chosen such that
the X -axis is oriented upward along the centerline of the channel filled with saturated
Darcian porous regime and Z -axis taken perpendicular to the planes of the
plates lying in Z ¼ �d=2 planes. The fluid is injected through the porous plate at
Z ¼ �d=2 with constant velocity w0 and simultaneous sucked through the other
porous plate at Z ¼ þd=2 with the same velocity w0. The non-uniform temperature of
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the plate at Z ¼ þd=2 is assumed to be varying periodically with time. The
temperature difference between the plates is high enough to induce the heat due to
radiation. The Z -axis is considered to be the axis of rotation about which the fluid and
the plates are assumed to be rotating as a solid body with a constant angular
velocity O. A transverse magnetic field of uniform strength B (0, 0, B0) is also applied
along the axis of rotation. All physical quantities depend on z and t only for this
problem of fully developed laminar flow. The equation of continuity r. V¼ 0 gives on
integration w ¼ w0. Then the velocity may reasonably be assumed with its
components along X ;Y ; Z directions as V ( u; v;w0).

Using the velocity and the magnetic field distribution as stated above the
magnetohydrodynamic flow in the rotating channel is governed by the following
Cartesian equations:

qu

qt
þ w0

qu

qz
¼ � 1

r
qp

qx
þ v

q2u

qz2
þ 2Ou� v

K
u� sB2

0u

r
þ gbT; ð5Þ

qv

qt
þ w0

qv

qz
¼ � 1

r
qp

qy
þ v

q2v

qz2
þ 2Ou� v

K
v� sB2

0v

r
; ð6Þ

0 ¼ � 1

r
qp

qz
; ð7Þ

qT

qt
þ w0

qT

qz
¼ k

rCP

q2T

qz2
� 1

rCP

q2qr

qz2
ð8Þ

where “�” represents the dimensional physical quantities.
The last term in Equation (8) is the radiative heat flux.
Following Cogley et al. (1968) it is assumed that the fluid is optically thin with

a relatively low density and the heat flux due to radiation in Equation (8) is
given by:

qqr

qz
¼ 4a2T ð9Þ

where a is the mean radiation absorption coefficient. After the substitution of Equation (9),
Equation (8) becomes:

qT

qt
þ w0

qT

qz
¼ k

rCP

q2T

qz2
� 4a2

rCP
T ð10Þ

Equation (7) shows the constancy of the hydrodynamic pressure along the axis of
rotation. We shall assume now that the fluid flows under the influence of pressure
gradient varying periodically with time in the X -axis is of the form:

� 1

r
qp

qx
¼ Pcosot ð11Þ

1459

Hartmann
Newtonian

radiating
MHD flow

D
ow

nl
oa

de
d 

by
 P

ro
fe

ss
or

 A
li 

C
ha

m
kh

a 
A

t 1
0:

02
 0

8 
Se

pt
em

be
r 

20
14

 (
PT

)



The boundary conditions for the problem are:

Z ¼ d

2
: u ¼ v ¼ 0; T ¼ T0cosot; ð12Þ

Z ¼ � d

2
: u ¼ v ¼ 0; T ¼ 0: ð13Þ

Introducing the following non-dimensional quantities:

Z ¼ z

d
; x ¼ x

d
; y ¼ y

d
; u ¼ u

w0
; v ¼ v

w0
; y ¼ T

T0
; t ¼ ot;

p ¼ p

rw2
0

; Kr ¼
wK

d2
; l ¼ w0d

v
; O ¼ Od2

v
; M ¼ B0d

ffiffiffi
s
m

r
;

Gr ¼ gbd2T0

vw0
; Pr ¼ mcp

k
; N ¼ 2adffiffiffi

k
p ; o ¼ od2

v

ð14Þ

In view of (14), Equations (5), (6) and (10) with denoting L¼M2þ K�1
r , become:

qu

qt
þ l

qu

qZ
¼ �l qp

qx
þ q2u

qZ2
þ 2Ov� Luþ Gr T ð15Þ

qv

qt
þ l

qv

qZ
¼ �l qp

qy
þ q2v

qZ2
� 2Ou� Lv ð16Þ

oPr
qy
qt
þ lPr

qy
qZ
¼ q2y

qZ2
� N 2y ð17Þ

The boundary conditions in the dimensionless form become:

Z ¼ 1

2
: u ¼ v ¼ 0; y ¼ cos t; ð18Þ

Z ¼ � 1

2
: u ¼ v ¼ 0; y ¼ 0; ð19Þ

For the oscillatory internal flow we shall assume that the fluid flows under the
influence of a non-dimension pressure gradient varying periodically with time in the
direction of x-axis only which implies that:

� qp

qx
¼ Pcos t; and � qp

qx
¼ 0: ð20Þ
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2.2 Solution of the problem
Now combining Equations (15) and (16) into single equation by introducing a complex
function of the form F¼ uþ iv and with the help of Equation (20), we get:

o
qF

qt
þ l

qF

qZ
¼ lP cos t þ q2F

qZ2
� Lþ 2iOð ÞF þ Gr y ð21Þ

with corresponding boundary conditions as:

Z ¼ 1

2
: F ¼ 0; y ¼ cos t; ð22Þ

Z ¼ � 1

2
: F ¼ 0; y ¼ 0; ð23Þ

In order to solve Equations (21) and (17) under boundary conditions (22) and (23),
it is convenient to adopt complex notations for the velocity, temperature and the
pressure as under:

FðZ; tÞ ¼ F0ðZÞeit; y ¼ y0ðZÞeit � qy

qx
¼ Peit: ð24Þ

The solutions will be obtained in terms of complex notations, the real part of which will
have physical significance.

The boundary conditions (22) and (23) in complex notations can also be written as:

Z ¼ 1

2
: F ¼ 0; y ¼ ei t; ð25Þ

Z ¼ � 1

2
: F ¼ 0; y ¼ 0; ð26Þ

Substituting expressions (24) in Equations (21) and (17), we get:

d2F0

dZ2
� l

dF0

dZ
� Lþ 2iOþ ioð ÞF0 ¼ �lP � Gr y0; ð27Þ

d2y0

dZ2
� lPr

dy0

dZ
� N 2 þ ioPr
� �

y0 ¼ 0: ð28Þ

The transformed boundary conditions reduce to:

Z ¼ 1

2
: F0 ¼ 0; y0 ¼ 1; ð29Þ

Z ¼ � 1

2
: F0 ¼ 0; y0 ¼ 0; ð30Þ
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The solution of the ordinary differential Equation (27) under the boundary conditions
(29) and (30) gives the velocity field as:

F Z; tð Þ ¼
1

2sinh m�n
2ð Þ

Gr

2sinh r�s
2ð Þ

e
r�s

2

C1
� e

�r�s
2

C2

� �
emZ�n

2 � enZ�m
2

� �
þ C1�C2

C1C2

� �
emZþn

2 � enZþm
2

� �
e�

lPr
2

8<
:

9=
;

þ 2lP
Lþ2iOþioð Þ emZsinh n

2 � enZsinh m
2

� �

2
6664

3
7775

þ lP
Lþ2iOþioð Þ � Gr

2sinh r�s
2ð Þ

e
rZ�s

2

C1
� e

SZ�r
2

C2

� �

2
6666664

3
7777775

eit ð31Þ

where C1 ¼ r2 � lr � Lþ 2iOþ ioð Þ; C2 ¼ s2 � ls� Lþ 2iOþ ioð Þ;

m ¼
lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4 Lþ 2iOþ ioð Þ

q
2

; n ¼
l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4 Lþ 2iOþ ioð Þ

q
2

r ¼
lPr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2Pr2 þ 4 N 2 þ ioPrð Þ

q
2

; s ¼
lPr �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2Pr2 þ 4 N 2 þ ioPrð Þ

q
2

Similarly, the solution of Equation (28) for the temperature field can be obtained under
the boundary conditions (29) and (30) as:

y Z; tð Þ ¼ 1

2sinh r�s
2

� � erZ�s
2 � esZ�r

2

� �
eit: ð32Þ

Now, it is convenient to write the primary (u) and secondary (v) velocity fields,
in terms of the fluctuating parts, separating the real and imaginary part from
Equation (31) and taking only the real parts as they have physical significance, the
velocity distributions of the flow field can be expressed in fluctuating parts as
given below:

u Z; tð Þ ¼ u0 cos t � v0 sin t and v Z; tð Þ ¼ u0 sin t þ v0 cos t; F0 ¼ u0 þ i v0 ð33Þ

From the velocity field obtained in Equation (31) we can get the skin-friction tL at the
left plate (Z¼�0.5) as:

t ¼ qF

qZ

	 

Z¼�0:5

¼ 1

2sinh m�n
2

� �
Gr

2sinh r�s
2ð Þ

e
r�s

2

C1
� e

�r�s
2

C2

� �
m� nð Þe�l

2þ

C1�C2

C1C2

� �
me�

m�n
2 � ne

m�n
2

� �
e�

lPr
2

8><
>:

9>=
>;

þ 2lP
Lþ2iOþioð Þ me�

m
2 sinh n

2 � ne�
n
2sinh m

2

� �

2
66664

3
77775

� Gr

2sinh r�s
2

� � r

C1
� s

C2

	 

e�

lPr
2

ð34Þ

1462

HFF
24,7

D
ow

nl
oa

de
d 

by
 P

ro
fe

ss
or

 A
li 

C
ha

m
kh

a 
A

t 1
0:

02
 0

8 
Se

pt
em

be
r 

20
14

 (
PT

)



2.3 Validity and accuracy
We have obtained a comprehensive range of solutions to the transformed conservation
equations. To test the validity of the present computations, we have compared the flow
velocity in Table I with the Singh (2012). It is clearly seen from Table I that the results
are in excellent agreement. As the accuracy of the numerical solutions is very good, the
values of u corresponding to analytical solutions are very close to each other. Table I
show that the flow velocity is found to decelerate with heat radiation N from 1.0
through 5.0-10.0 for small rotation in a Darcian regime.

3. Results and discussions
To have better insight of the physical problem the variations of the velocity,
temperature, skin-friction are evaluated numerically for different sets of the values of
rotation parameter O, Hartmann number M, injection/suction parameter l, Darcian
resistance Kr, pressure gradient P, Grashof number Gr, radiation parameter N and the
frequency of oscillations o and these numerical values are then shown graphically to
assess the effect of each parameter.

From Equations (31) and (32), it is observed that the steady part of the velocity field
has two layer characters. These layers may be identified as the thermal layer arising
due to interaction of the thermal field and the velocity field and is controlled by the
Prandtl number; and the suction layer as modified by the rotation and the porosity of
the medium. On the other hand, the oscillatory part of the velocity field exhibits a two-
layer character. These layers may be identified as the modified suction layers, arising
as a result of the triangular interaction of the Coriolis force and the unsteady convective
forces with the porosity of medium. In all the Figures 2-5, we have investigated the

Present results Singh (2012)
y n¼ 1 n¼ 5 n¼ 10 n¼ 1 n¼ 5 n¼ 10

�0.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
�0.25 0.3483 0.3307 0.3201 0.3497 0.3351 0.3283

0.0 0.5258 0.5032 0.4836 0.5302 0.5131 0.4925
0.25 0.3571 0.3419 0.3280 0.3482 0.3454 0.3307
0.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table I.
Comparison of values of
the flow velocity (u) for
the present results with

Singh (2012) when Gr¼ 2,
P¼ 5, Kr¼ 0.2, o¼ 5,
l¼ 1, O¼ 5, M¼ 5.0,

t¼ 1 and Pr¼ 0.71
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Figure 2.
Primary velocity

distribution for M and O
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physical behaviour of the primary velocity (u) for two cases of rotation O¼ 5 (small)
and O¼ 15 (large). The effects of the magnetic field on the primary velocity field (u)
are depicted in Figure 2. With an increase in M from the non-conducting, i.e. purely
hydrodynamic case (M¼0) through 2.0 to 5.0 there is a clear increase in velocity, i.e.
flow is accelerated. In the momentum Equation (21), the hydromagnetic term, �M 2F
deviates from classical magnetohydrodynamic flat-plate boundary layer flow owing to
the presence of a negative sign in the magnetic term. The applied magnetic field, B0, is
therefore effectively moving with the motion of the flow caused by the rotation
of the system. The resulting Lorentizian body force will therefore not act as a drag
force as in conventional MHD flows, but as an aiding body force. This will serve to
accelerate the flow and boost the primary velocities. This result has also been found by
Chamkha and Camille (2000), Seddeek (2004) and Zueco et al. (2009). The maximum
effect is achieved at intermediate distances from the vertical porous plates into the
boundary layer transverse to the wall. Figure 3 indicates the behaviour of primary
velocity with the variations in Darcy resistance (Kr). The primary velocity shows
a decrement with the increases in Darcy resistance for Kr ¼ 0.1, 0.5, 1.0. It is because
that the presence of a porous medium increases the resistance to flow and thus reduces
the fluid velocity. The variation of the primary velocity profiles with the injection/
suction parameter k is presented in Figure 4. For small X(¼5) the velocity goes
on increasing with increasing k and remains parabolic with maximum at the centerline.
However, for large X(¼15) although velocity increases with increasing k but the
maximum of the velocity shift towards the walls of the channel. The effects of the
frequency of oscillations x on the velocity are exhibited in Figure 5. It is noticed that
velocity decreases with increasing frequency x for either case of channel rotation large
or small. Figure 6 illustrates the variation of the primary velocity (u). It is quite
obvious from this figure that velocity goes on decreasing with increasing rotation X of
the entire system. The velocity profiles initially remain parabolic with maximum
at the centre of the channel for small values of rotation parameter X and then as
rotation increases the velocity profiles flatten. For further increase in X(¼ 15) the
maximum of velocity profiles no longer occurs at the centre but shift towards the walls
of the channel. It means that for large rotation there arise boundary layers on the
walls of the channel.
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Primary velocity
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Figure 7 illustrates the transient shear stress variations (sL) at the left plate (Z¼�0.5)
with Hartmann number (M) and Darcian resistance (Kr). As explained earlier, since the
applied magnetic field is translating with the flow velocity, it induces an acceleration
effect in the flow and thereby primary velocities are increased and the shear stress at the
wall (Z¼�0.5) will therefore be enhanced with a rise in Hartmann number (M ) which is
proportional to the magnetic field (B0). For all the flow cases of M and Kr, a significant
flow reversal is sustained with the increasing effect of frequency of oscillation, i.e. shear
stresses become negative, i.e. back flow arises. Maximum back flow effect is observed for
Kr¼ 1 and M¼ 1 in the Darcian regime. No flow reversal, however, arises at the
plate for small frequency of oscillations except for Kr¼0.1 and M¼10. However,
for M¼5,10, at Kr¼0.1, positive shear stresses arise at the plate and back flow
effect is still present. Moreover, with the frequency of oscillations, shear stresses are
found to reduce, i.e. the flow is retarded. An increase in Kr also strongly reduces the shear
stress, in consistency with earlier discussion for the velocity response.

The distribution of shear stresses with rotation parameter (X) and thermal
radiation (N ) is shown in Figure 8 at t¼ 1. Inspection shows that increasing radiation
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Figure 8.
Skin-friction for X
and N at t¼ 1
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decelerates the flow, i.e. reduces shear stress, flow reversal is observed, i.e. shear stress
becomes negative. Clearly all profiles decay as x increases. Increasing N is found also
to decrease shear stress very sharply in Darcian regime. The dotted and solid curves
show that the shear stresses are attained at maximum negative values due to large
rotation (X¼15) and radiation (N¼3), i.e. back flow is observed to be large.

We note that in all cases l40 in our computations indicating uniform suction
at the wall.

Figure 9 illustrate the effect of suction parameter l, and radiation parameter
N on the temperature distribution (y) across the vertical channel in Darcian regime.
The temperature, y, is reduced in this Darcian regime with increasing thermal
radiation. A strong decrease in temperature accompanies an increase in thermal
radiation. For N¼ 1 thermal radiation and thermal conduction contributions are
equivalent. For N41 thermal radiation is dominant over conduction and vice versa.
Moreover, the temperature is escalated for the increasing effect of suction/injection
parameter and having positive values in the regime for all l. Due to rotation of the
system, negative temperatures have been observed in the region �0.5pZp0.25
of the channel corresponding to N¼ 5 and 3. Temperatures are observed to grow
strongly only from some distance in the left channel half space (Z¼�1/2) and follow
a non-linear path to the right channel plate (Z¼ 1/2). The temperature values are
clearly much less for N¼ 5 than for N¼ 2. Therefore, although an initial growth in
thermal radiation serves to reduce temperatures; further escalation in the thermal
radiation/suction parameter, in fact has a positive effect on the Darcian regime,
stabilizes the temperature field and leads to a steep growth in the temperature field to
the right channel plate (Z¼ 1/2). Therefore, the negative bulk temperature occurring in
Figure 9 is associated with flow reversal due to the rotation of the vertical channel.

4. Conclusions
The problem of oscillatory magnetohydrodynamic convective and radiative MHD flow
for a vertical porous channel in a Darcian porous regime is analysed. The fluid is
injected through one of the porous plates and simultaneously removed through the
other porous plate with the same velocity. The entire system (consisting of porous
channel plates and the fluid) rotates about an axis perpendicular to the plates.
The closed form solutions for the velocity and temperature fields are obtained
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analytically and then evaluated numerically for different values of parameters appeared
in the equations. The above analysis brings out the following results of physical interest
on the velocity, temperature and shear stress profiles of the flow field:

(1) It is immediately apparent that all the profiles for primary velocities are
symmetrical about the channel centre line (Z¼ 0) of the vertical porous channel.
Due to small rotation of the channel, the velocity profiles are looking Parabolic,
but for large rotation the profiles are seen to be flattered.

(2) Due to rotation of the system in a Darcian regime, temperature is observed to
attain at maximum value for l¼ 5, and it has a least value corresponding to
N¼ 5 at (Z¼ 1/2).

(3) It is found that with the increasing rotation of the channel the velocity
decreases and the maximum of the parabolic velocity profiles at the centre of
the channel shifts towards the walls of the channel.

(4) The Hartmann number due to magnetohydrodynamic flow has the effect of
accelerating the primary velocity profiles, and the shear stress.

(5) The velocity increases with the increase of the injection/suction parameter.

(6) The rotation parameter and the frequency parameter have the effect of decreasing
the primary velocity profiles as well as the magnitude of the skin-friction.

(7) The Darcian resistance has the influence of decreasing the primary velocity
and the primary skin-friction.

(8) Due to large rotation of the channel, the maximum flow reversal is observed in
the shear stress.
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