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Abstract

This paper investigates visual head tracking during person
following with a mobile robot. The position of the mobile robot is
determined during person following on the basis of laser
readings. The tracking of the head is done using a particle filter
built on cues such as color, depth, gradient and shape. The
appearance of the head is represented by an ellipse with color
histogram in its interior and an intensity gradient along the
ellipse boundary. The size of the ellipse is computed from a stereo
pair. The localization of the moving camera is achieved using a
particle filter framework. A particle filter responsible for
localization utilizes laser data obtained from sensor and data
obtained from a map representing the environment. Current laser
readings are compared with scans coming from a global map in
respect of histogram intersection. Experimental results, where a
person moves facing the cameras, the robot follows the person
and simultaneously determines its position, demonstrate the
feasibility of the tracking as well as the localization method.

1 Introduction

Service robots are designed for supporting jobsp&mple

in their life environment. They should operate ynamic
and unstructured environment and provide servickew
interaction with people who are not specially skllin
robot communication. A service robot should be -user
independent and ensure a collision free movement fo
surroundings and the user. Such an intelligent mach
should be equipped with a vision system that caurnan
adaptation to the changes in its environment. Aowis
system can be particularly useful in programming by
demonstration of new tasks by non-expert user. reor
expert users it is far easier to point to an objeah employ
other description of its coordinates.

Robust real-time tracking and segmentation of aingoface
in image sequences is a fundamental step in masignvi
systems. A visual interface may use face trackind a
detection techniques to direct the attention of tiabile

sensor data. Self-localization of a mobile robot@mplex
environment is a problem of significant importanaed
difficulty. A mobile agent which knows its positiom
environment can aid surveillance tasks and prouisieful
information about human activity. The problem afdlization
can be divided into two categories, hamely gloloa cal.
Local localization can be perceived as a part efdglobal
localization and it is often referred to as theegéscking
problem, where the robot knows the starting pasitmd
orientation within some certainty and then triekéep the
track of the position while maneuvering. In global
localization, which is often referred to as the riddped
robot problem, the robot should be able to estinthte
position without any a priori information about these.

A kind of human-machine interaction which is very
interesting and has some practical use is followairmerson
with a mobile robot. This behavior can be usefuséveral
applications including robot programming by demoatibn
and instruction which in particular can rely on kias
comprising a directing a robot to specific placeeventhe
user wants point to the object of interest.

The aim of this work was to prepare software thakes

possible realization of experiments consistingacking of

the head to follow a person with a mobile robowad as

simultaneous self-localization of the robot in offi
environment. A mobile robot Pioneer 2DX [9,14] theds

designed to move across a relatively flat surfaae wsed in
experiments and tests with the prepared softwéare.rdbot
was equipped with SRI's Megapixel Stereo Head dkase
scanner of SICK. The LMS 200 laser scanner delibeth

range and angle information. A typical laptop cotepu
equipped with 2.4 GHz Pentium Il is utilized tonrthe

developed software.

In order to escort or to accompany a person, thetmeeds
to know the relative position of the person. Hunfaoes
represent one of the most common patterns andfthere
they are perhaps the most useful data source isoper
detection.The shape of the head is one of the most easily

robot to a human being and maintain the face in therecognizable human parts and can be reasonably well

camera'’s field of view. Thanks to such a referepmiat a
robot can understand simple intentions of the aset in
consequence can carry out different useful taskpdople,
especially when robot knows its own paosition iniesvment.

The localization of a mobile robot consists in detaing
the position and orientation from an incoming stmeaf

approximated by an ellipse. The discussed latez/li@ad
tracking method is based on particle filter contmincolor,
image gradient, depth and shape information, whaiehused
to set the parameters of an ellipse modeling tlael v the
image plane. During self-localization the robotsusemap
previously learned from laser range data. The sépar



particle filter is applied to estimate the posehaf robot on-
line. A set of samples is used to represent théagmitity
density function encoding the robot knowledge abitsit
position. The particle filter responsible for ldzation
utilizes the histogram intersection to compare therent
laser scan with scan representation obtained fhenglobal
map of the environment. High similarity of histogra
indicates high probability that robot occupies tuerently
considered pose in the map.

This paper is organized as follows. After discugsielated
work we will present particle filtering in sectidi. Then

we describe the face tracking algorithm. After thee
demonstrate how histogram matching techniques @n b
used to effectively determine the robot pose iniceff
environment. In section V we present experimergalits.
Finally, some conclusions are drawn in the lasticec

2 Related Work

A lot of work has been performed in the area of aom
tracking. The Intel CamShift algorithm [2] was dg®d to
handle precise tracking of facial location on tlesib of a
non-moving camera. It is considered as a very g@miing
algorithm especially suited for perceptual inteefaBfinder
[13] uses a multi-class statistical model of cdod shape
to obtain a blob representation of the trackedsidtte in a
wide spectrum of viewing conditions. In Birchfiedd’eal-
time head tracking system [1], the projection diead in
the image plane was modeled by an ellipse. Thesitie
gradient near the edge of the ellipse and a caktodram
representing the interior were used to update flipse
parameters over time. Darrell, et al. [3] combiteren and
color via an intensity pattern classification metho track
people. The original application of the particléefi in
computer vision was for object tracking in an image
sequence [8]. Global color reference models and
Bhattacharyya coefficient as a similarity measuetwvieen
the color distribution of the model and target ddates
have been used in a Monte Carlo tracker [11]. Baxgard
et. al. [6,4] introduced a family of Monte Carlo Sea
algorithms, called Monte Carlo Localization. The
algorithms are widely used to solve many diffefenins of
localization, including global localization, positi tracking.

3 Overview of Particle Filtering

The particle filter is an algorithm for estimatindpe
posterior state of a dynamic system over time wtbes
state cannot be measured directly, but may be astdrat
the current time-step, given the initial state, all sensor

measurementg' = z,...,z and controlsu' = uy,...,u, up to

the current time. The particle filter computes frwesterior
recursively using the Bayes filter equation

PO 12) =17 Pz 1%) [ PO 1% -3,Ue1) POy [ 27X

where ;7 is a normalization constant. To implement this
recursive equation one needs to know initial cooulit

p(% |2°) , the next state probabilitiep(x, | _;,U_;) and
the observation likelihoog(z | %) . The current state; is
only dependent on previous statg; and a known control
input u,_, according to the probabilistic action model
pP(% | %-1.U_1) . The measurementz, is conditionally

independent of earlier measurements® given X . The
perceptual modelp(z |%) describes the probability for

taking certain measurements at certain locatidrdepends
on the type of sensor being used and takes intouatthe
noise that appears in the sensor readings. Amitial itime
step, without prior information we assume that ithigal

state is uniform over all allowable states. In aafsgacking
the initial position is typically specified throughaussian
centered around,. In visual tracking, for exampley, can

represent the position and orientation of the hufaaa. In
mobile robot localization a three-dimensional ste¢etor

[x,y,0]" representing the position and rotational heading
direction of the robot is used typically.

In a particle filter the current state of the tdrigemodeled
as the density of a set of particles. The partipiexvide a
mechanism for maintaining multiple hypotheses and
propagating the uncertainty over time. A large gfoset of
weighted particles can reflect the true posteramsity. The
idea of the particle filter is to represent thetpdsr by a
set § of N weighted particles distributed according to

posterior: p(xt |zt)={><t(i),V\/t(i)}i:le, where xt(i) is a
particle and wt(i) are non-negative weights called
importance factors, which sum up to one.

The probabilistic search for the best state isizedlon the
basis of motion as well as observation model ofptaeicle
filter. The particle filter operates thus in twadeshating
phases: prediction and update. First all partialesmoved
according to motion model. In the update phase csens
information is incorporated into probability ditution.

The update is done by multiplying the Weing(i) of each
sample xt(i) by the probability of observingz at the

position given byxt(i). Particle filters work well when the
conditional densitiep(z | %) are reasonably flat.

A crucial step in the patrticle filter is re-samplinhe aim of
the re-sampling which has been introduced by Goreton
al. [7] is to eliminate particles with low importzaweights
and multiply particles with high importance weighfhe

re-sampling selects with higher probability sampthat

have a high likelihood associated with them, whileserving
the asymptotic approximation of the sample basesiepior

representation. Without re-sampling the variance thoé

weight increases stochastically over time [5].

The sensor modeb(z |x) describes how likely it is to
obtain a particular sensor readirzy given statex, . This
probability is often computed by estimating the smen



reading Z in state x, and determining some distance the tracked object in the previous iteration. Thraker the

dist(z,Z) between the given sensor readiag and the

estimation Z resulting from the model. This distance is

then mapped to a probability.

During head tracking the head has been modelegkeir2D
image domain by an ellipse. The color distributigithin

interior of the ellipse is represented by a colmtdgram.
The color histogram is dynamically updated overtiffihe
lengths of the ellipse’s minor axis are determimedthe
basis of depth information. The particles reprasgnthe
candidate ellipses are weighted in each time stepspect
of intensity gradient near the edge of the ellipssd
matching score of the color histograms representirey
interior of the ellipse surrounding the tracked embjand
currently analyzed one during the update stage.

In mobile robot localization task each particle ¢d@nseen
as the hypothesis of the robot being located atiqodar
position. The sample weight represents the likelthof a
particular sample being the true target pose and
calculated by comparing the sensor data to datairedut
from the prepared in advance map of the environn@ut
localization approach focuses on histogram basguhigues
to compare the current laser scan with the scaeseptation

obtained from an existing map. A high similarity of

histograms indicates a good match between laselingsa
and scans representing considered map pose. Tthgrais
based map representation has powerful capability cam
be used to distinguish sensor scans in a veryrfasher.

Particle filters are attractive in robotics for seal reasons.
They utilize imperfect perception models and incoge

imperfect sensor data through Bayes rule. The tabidi

represent multimodal posterior densities allowsmthi®

globally localize as well as relocalize the robotcase of
failure. Algorithms that deal with the global loization are
relatively recent, although the idea of estimatisigite
recursively using particles is not new.

4 Head Tracking Using Particles

The shape of the head is one of the most easibgrezable
human parts and can be reasonably well approxinipteah
ellipse. In our approach, an ellipse based heaalitidod
model, consisting of gradient along the head boynda
well as a matching score between color histograms a
representation of the interior of (i) an ellipsersunding
the tracked object and (ii) a currently considesdiipse,
together with depth information is utilized to findhe
weights of particles during tracking. Particle lboas
where the weights have large values are then cereido
be the most likely locations of the object of ietstr

In order to obtain information about possible |tmabof the
tracked target we use color histogram matchingriecies.

The main idea of such an approach is to computer col

distribution at the hypothesized region in formtleé color
histogram from the ellipse's interior and to conepirwith

the computed in the same manner histogram repiegent

discrepancy between the candidate histogram repiege
the ellipse's interior at specific particle positiand the
reference histogram from previous iteration, thghhi the
probability that the tracked target is located desithe
candidate region. The outcome of the histogram Inadgc
that is combined with gradient information is ustd
provide information about expected target locatzom is
utilized during weighting particles.

In the context of head tracking on the basis ofgesa
coming from a mobile camera the features which are
invariant under head orientations are particuladgful. In
general, histograms are invariant to translatioth @xtation

of the object and they vary slowly with the chamdgengle

of view and with the change in scale. A histograsn i
obtained by quantizing the ellipse's interior celdmto K
bins and counting the number of times each disarelar
occurs. Due to the statistical nature, a colorogistm can
only reflect the content of images in a limited vemd thus

isthe contents of the interior of the ellipses takdrmsmall

distances apart are strongly correlated. If thebamof bins
K is to high, the histogram is noisy.HKfis too low, density
structure of the image representing the ellipsgrior is
smoothed. Histogram based techniques are effectig
whenK can be kept relatively low and where sufficientada
amounts are available. The reduction of bins makes
comparison between the histogram representingrauoied
head and the histogram of candidate head faster.
Additionally, such a compact representation is raoié to
noise that can result from imperfect ellipse-appration
of a highly deformable structure and curved surfate
face causing significant variations of the observeldrs.

Color information is particularly useful to suppod

detection of faces in image sequences becausdos$treess

towards changes in orientation and scaling of agpea of

object being in movement. The efficiency of color
segmentation techniques is especially worth to ersigh
when a considered object is occluded during trackinis
in shadow. Skin colors acquired from a static pertend to
form tight clusters in several color spaces whitdors
acquired from a moving person form widen clustars tb
seeming changes in reflecting surfaces. To make
histogram representation of the tracked head lessitt/e
to lighting conditions the HSV color space has beleosen
and the V component has been represented by 4nbiites
the HS components obtained the 8-bins representatio

In order to compare histograms we have implemettied
histogram intersection technique [12]. For a giyair of
histograms | and M, each containingj values, the

intersection of the histograms is defined as folliow
H=3 min®, M©).  The 1@, M ©
represent the number of pixels inside thth bucket of the
candidate histogram and the histogram represerttieg
tracked head, respectively, wheredsthe total number of

buckets. The result of the intersection of twodgsams is
the number of pixels that have the same color ith bo

the

terms



histograms. To obtain a match value between zedooae
the intersection is normalized and the match vakie

determined as followsH , =H /Y 1),

The length of the minor axis of a considered edlips
determined on the basis of depth information. Tgkirto
account the length of the minor axis resulting freome
depth information we also considered smaller andela
projection scale of the ellipse and therefore gdaas well
as smaller minor axis about one pixel have beeentahto
account as well. The length of the minor axis hasnb
maintained by performing the local search to mazéinthe
goodness of the following match:

q :argma>{G(qi)+ H. (g )}, where G and H, are
q0Q

normalized scores based on intensity gradients cahak
histogram intersection. Particularly, if the lengthminor
axis of the considered ellipse was different frdma length
of minor axis of the reference ellipse representthg
tracked head, in order to proviflealues in the histograin
a histogram normalization with respect to ellipsetsa has
been realized. The search spagecomprises the ellipse’s

length obtained on the basis of depth informatienvall as
smaller/larger minor axes about one pixel.

The discussed method of target representation has
construction phase and a run phase. In the cotisinuc
phase which is realized of-line the elliptical gt outlines
as well as masks containing interior pixels havesnbe
prepared and stored for the future use. We havemess
that a reference ellipse is located in a centrahtpim a

The weight vvt(i)of each hypothetical head region is

dependent on normalized intensity gradients andrcol
histogram intersection which were obtained in theal
search in the spad® for the length of the minor axis. We
currently use a first order motion model describénigegion
which moves with constant velocity. The samples are
propagated on the basis of a dynamic model
§ =As_;+v,, where A denotes a deterministic
component describing a constant velocity movemedtwa

is a multivariate Gaussian random variable. Théusiibn
component represents uncertainty in prediction and
therefore provides a way of performing a local seabout
the state for the best-fit ellipse.

5 Robot Localization Using Particlesand
Histogram Matching

In our localization approach the sensor model dessrthe
probability of obtaining a particular scan shapeegi the
laser's pose and a geometrical map of the envirotriiis
probability is computed by estimating the sensadieg Z

at pose x, and determining distancelist(z,z) between
4he given sensor reading and the estimatiorz, resulting
from the geometrical model of environment. Theatisk is
determined through histogram matching and then expp
a probability.

A single scan of the laser range finder which wseaduin
experiments returns a hemicircle of 180 readingth Wi

candidate region. Such a candidate area considérs adegree incrementation. The range error of the lasércm.

expected head locations which can occur in the timd
step. We have then fixed a search strategy allowsdo
compute histogram iteratively, i.e. considering ofatng
ellipses when processing from top to bottom andhfteft
to right and then from right to left, etc. For edabation in

A sample laser scan is depicted in the Fig. laefArence
scan which has been obtained on the basis of thefara
corresponding robot pose is indicated in the Fig.Hig. 3.
illustrates the geometrical map of environment ihiolh
localization experiments have been conducted. dffise-

the assumed candidate area we constructed a list Ofike environment is 560 by 460 cm and it has been

positions which should be substituted (added ambved)

in the current histogram to determine the histogedrnthe
next location in the utilized search strategy. Agsult, for
each possible length of the minor axis we obtaiaefdst
strategy to match histograms representing hypathietiead
locations in the candidate area. In an on-line @hidws
strategy allows us to compute the likelihood of heac
candidate head location and store this informaitioa two
dimensional table, which can be easily accessedhglur
weighting of samples.

discretized into 280x230x90 cells.

In order to predict the probability distributionpresenting
the pose of the mobile robot we need an action mdchey

arbitrary mobile robot motiorﬁAx,Ay]T can be achieved as

a rotation that sets the robot heading towardstanget
location, followed by a translation that moves thbot to
the target position. The noise is applied separdtekach
of the two types of motion because they are indépen
When the robot rotates abofié the odometry noise can be

The histogram representing the tracked head has beemodeled as a Gaussian with experimentally estadish

adapted over time. This makes possible to trackonbt a
face profile which has been shot during initialiaatof the
tracker but in addition different profiles of theceé as well

as the head can be tracked. The actualization ef th

histogram has been realized on the basis of thatiequ
MW =1-a)MM +al ), where 1, represents the
histogram of the best-fit ellipse interior, wheraas 1..K .

meanm and standard deviatioor,,, proportional to A6 .

The orientation of each particle is updated by agidho
and random number drawn from normal distribution

N(m £20,,) as follows: 6, =6_, +A8+N(m £20,,).

Modeling the forward translation of the mobile rols

more complicated. The first error is related taatise that
has been traveled and the second is associatedhétiges
of the orientation attending forward translatiomeTsimple



Fig. 1. Laser data from environment. Data from map

way to obtain translation model is to discretize thistance
into J equal steps and to cumulate the simulated effect o
noise from each step. Taking into account the katers of
our robot this can be achieved in the following mem

Xy Xt + (BP0 +Ep,)COSO;_1 + Epg)
Vi [ =] Vi (8o +Ex,)SINO; 1 +Epp)
0; 01t €pg

where &,,=N (Ol)alr\/jA,o , & =N (Ol)adr\/jAp,
N(0,1) is a random number drawn from a Gaussia
distribution, o, and gy are experimentally obtained

values per 1 m distance traveled. Fig. 2. demaiestrtne
probability distribution of robot location afteatrslation of
100 cm and 200 cm, respectively, far, =1cm/m and

oy =5°Im.
In order to obtain an estimate of the robot pose th
weighted mean Evv,xi ), in a small sub-cube around the

best particle has been utilized. The orientatiothef robot
has been determined on the basis of sum of directio
vectors of particles from sub-cube as follows:

6= atarﬂ(iZsine, , izcos@, J

+ e a————

0 20 80 100 o 50 200

0 60 100 150
distance travelled [cm] distancetravelled [cm]

Fig. 2. Motion model representing the uncertainty

6 Experiments

All experiments were carried out in an office eowiment
with our experimental Pioneer 2DX based platfornicivhis
equipped with a laser range finder, color sterdo gawell

as on board 2.4 GHz laptop computer. Two 4-bins
histograms representing x and y-components of déiser|
scans have been used in the patrticle filter resplenor
localization. In order to evaluate the precision of
determining the position in certain points, we aated
experiments in an office environment and utilized map
shown in the Fig. 3. The average error betweengthe
position and the position reported by robot wasi0 Fig.

3. demonstrates the localization stage after 8l&nitkeration.
We can observe that in the 8 iteration the robaweits
position. The mentioned above results have beeairaut
on the basis of 1000 particles. The effect of pbilsic
search for the best position has been amplifiedaviacal
change in the position of particles according teirth
probability. The more probable the particle wag, ldss it
was moved. Such an operation acknowledged hiscpéati
usefulness in the global re-localization of theatob

Fig. 3. Global localization of the mobile robot

The tracking algorithm has been tested by contwlthe
robot equipped with the stereo pair. At the begignof
tests we realized experiments consisting in a ioytabf
mobile robot. In such experiments a user moved ahou
room, walked back and forth as well as around tbéila
robot. The aim of such a scenario was to evaluage t
quality of ellipse scaling in response of varyinigtance
between the camera and the user. The aim of thet rob
orientation controller is to keep the position bé tracked
face at specific position in the image. Our experital
results show that thanks to stereovision the d@lips
properly scaled and sudden changes of the mincs axi
length as well as ellipse's jumps are considerably
eliminated, having on regard a version of the allgor with

no depth information. The tracking algorithm was
implemented on the robot on board computer, see 4ig
and runs at frame rates about 10 Hz depending agdem
complexity. Selected frames from a tracking seqeeme
presented in the Fig. 5, where the wooden doofoisecin
color space to the face being tracked.

Following a person with mobile robot is a much more
challenging task than ones with a fixed camera tmzaf
both motion of the camera and of the user [10]. Otie
face of the user is located, the controller usihg tlata
which are provided by the tracker keeps the heddimihe
camera field of view through steering the robote Bim of
the robot orientation controller is to keep theipos of the



tracked face at specific position in the image elahhe
distance of 1.6 m between the camera and the usdrd®emn
assumed as the reference value that the linearcitelo
controller should maintain during person followingo
eliminate needless robot rotations as well as faivwand
backward movements we have applied a simple logic REferences
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7 Conclusions

We have presented a system that robustly trackfatee of
the user and simultaneously determines the positfche
mobile robot. To show the feasibility of the systeme have
conducted several experiments with a real robdtisfogram
based representation of the environment is verjulige
particle filter based mobile robot localization.@&ximental
results, where a person moves facing the camechsofot
follows the person and determines its position destrate
the feasibility of the tracking as well as locatina method.



