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Introduction.

With the impetus of quantized derivations, renewed interest in the
general Ore extension T = R[t;S,D] has arisen during the last few years.
The prime radical of T is currently being analyzed (e.g. [G]) and in the
special cases when either S = id or D = 0 it has been completely described
([FKM], [PS]). In the former case this description is very much like that
for the ordinary polynomial ring, i.e. rad(T ) = I[t; D] where I is a D-
ideal of R. In the latter case such a description is not possible (cf. [PS]).
This difference in behavior is mainly due to the fact that the contraction
of an ideal of R[t; D] to R is D-stable but the analogue for R[t; S] and a
fortiori for R[t;S, D] is false. One of our aims in Section 5 is to provide
some conditions under which rad(T ) is of the form I[t;S,D] where I is
an (S, D)-ideal of R. In trying to obtain connections between the prime
radical of T and that of the base ring R, different notions appear naturally.
These notions (which are of interest on their own) are carefully defined,
studied and compared in Sections 1 and 2.

The third section is devoted to the study of the S-nil radical, a notion
already introduced in [PSW] in the context of Jacobson radical of T . This
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nice radical is also related to the prime radical of T and will be used in a
later section (e.g. Propositions 4.15 and 4.19).

In Section 4 we are concerned with the characterization of primeness
and semi-primeness of T = R[t; S,D] in terms of R, S and D. The case of
primeness (Theorem 4.4) is relatively straightforward, but (to the best of
our knowledge) has not been mentioned in the literature before. This char-
acterization shows that while investigating primeness of T = R[t; S,D] it
suffices to consider only elements from R. To be more precise : T is prime
if and only if for any a, b ∈ R r {0}, aTb 6= 0. The expected analogue
for semiprimeness, however, turns out to be false. After paving the way
by recalling the special cases when either S = idR or D = 0, we give in
Theorem 4.9 a necessary and sufficient condition for the semiprimeness of
T . In the rest of Section 4, we analyze other more tractable conditions
that are either necessary or sufficient for T to be semiprime. Particularly,
we study the case when either R satisfies some ascending chain conditions
or D is quantized.

In the last section we study the prime radical of R[t;S, D], the aim
being to relate this radical to the radicals of R introduced in the first three
sections. Once more the best results are obtained under the assumption
that either R is noetherian or D is quantized.

1. Relative Prime Ideals and Prime Radicals

In this section, we shall introduce generalizations of some classical con-
cepts and state a few results in a wide framework, leaving for the second
section special settings that are of more direct interest to us.

While studying ideals I of a ring extension T ⊃ R, it is natural to
consider the relationship between I and I ∩R. The contracted ideal I ∩R

has generally some extra properties related to the way T is built upon R.
Let us mention the following examples:

(a) T = R ∗G, where G denotes a finite group. The elements of T are
of the form

∑
rgg where G → U(T ) (g 7→ g) is a map from G into U(T ),

the unit group of T , such that gR = Rg for any g ∈ G. Here, each g

induces an automorphism of R and the ideals of R stable under all such
automorphisms are strongly related to the ideals of T (cf. [M], [P] or [MR:
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(2.10)]).

(b) T = R#U(G) where R is a K-algebra, G is a Lie algebra over
the field K, and U(G) denotes the enveloping algebra of G. Here, G acts
on R as K-derivations. Once more, ideals of R which are stable under
the action of G play a special role and are worth studying by themselves
([BMP]).

(c) T = R[t;S,D] where S ∈ Aut(R) and D is an S-derivation (i.e. D ∈
End(R, +) such that for a, b ∈ R, D(ab) = S(a)D(b) + D(a)b). Elements
of T are polynomials

∑
ait

i, ai ∈ R, and multiplication is based on the
rule ta = S(a)t + D(a). Such ring extensions, called Ore extensions, were
mainly studied when either S = idR ([FKM], [FM]...) or D = 0 ([CFG],
[PS]...). In the former case the notion of D-invariant ideals of R was
crucial and in the latter the S-invariant ideals naturally come into play.
Recently, some authors also considered the general case T = R[t;S, D]
when S 6= idR and D 6= 0 ([GL], [LM], [V]).

In view of the different terminology and notations used in the literature
we will use the following ones which have the merit of being explicit.

Let R be a ring, End(R, +) the ring of additive endomorphisms of R

and Φ a subset of End(R, +). An ideal I of R is called a Φ-ideal if ϕ(I) ⊆ I

for any ϕ ∈ Φ. A Φ-ideal P 6= R is a Φ -prime ideal if for any Φ-ideals I

and J such that IJ ⊆ P , we have either I ⊆ P or J ⊆ P . We shall use
the notation I /Φ R (resp. P /′Φ R) to express the fact that I is a Φ-ideal
(resp. P is a Φ-prime ideal) of R. We write PΦ = Spec(R; Φ) for the
set of all Φ-prime ideals of R and rad(R; Φ) = ∩P∈PΦP for the Φ-prime
radical. By definition, R is Φ-prime (resp. Φ semiprime) if (0) is Φ-prime
(resp. if rad(R; Φ) = 0).

Observe that if Φ ⊆ Ω ⊆ End(R, +) and if R is Φ-prime then R is
Ω-prime; more generally any Ω-ideal which is Φ-prime is also Ω-prime.
In fact we can state the following (keeping the notations Φ ⊆ Ω ⊆
End(R, +)).

Proposition 1.1. Let P be a Φ-prime ideal of R and Q the largest
Ω-ideal of R contained in P . Then Q is an Ω-prime ideal. In particular,
any Φ-prime ideal contains an Ω-prime ideal and rad(R; Ω) ⊆ rad(R; Φ).
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Proof. Since for any I1 /Ω R and I2 /Ω R, I1 + I2 /Ω R, we have
Q =

∑{I | I /Ω R and I ⊆ P}. Now assume I1 /Ω R and I2 /Ω R are such
that I1I2 ⊆ Q ⊆ P . Since P is Φ-prime, we conclude that either I1 ⊆ P

or I2 ⊆ P and the definition of Q yields that either I1 ⊆ Q or I2 ⊆ Q.

QED

Obviously I /Φ R if and only if I is a Φ -ideal where Φ denotes the
(multiplicative) semi-group (with 1) generated in End(R, +) by Φ. In the
sequel we will additionally assume that:

(H1) Φ is closed under composition and idR ∈ Φ, i.e. Φ = Φ.

(H2) For any a ∈ R,
∑

ϕ∈Φ Rϕ(a)R /Φ R.

Let us give examples of subsets Φ ⊆ End(R, +) satisfying (H1) and
(H2).

Example 1.2. Any subset of End(R, +) closed under composition and
consisting of ring endomorphisms, i.e. any subsemigroup of End(R).

Example 1.3. Let σ, τ be ring endomorphisms of R. (i.e. σ, τ ∈
End(R)) and δ ∈ End(R, +) be such that

δ(ab) = σ(a)δ(b) + δ(a)τ(b) for a, b ∈ R

Such a map δ is called a (σ, τ)-derivation. If δi’s are (σi, τi)-derivations
and Φ is the subsemigroup of End(R, +) generated by σi, τi and δi’s then
it is easy to check that Φ satisfies (H1) and (H2). If σi, τi ∈ Aut(R), the
same can be said about the semigroup generated by σi, σ

−1
i , τi, τ

−1
i and

the δi’s.

Example 1.4. Let S ∈ End(R) and D ∈ End(R, +) be such that D

is a (S, idR)-derivation. We say that D is an S-derivation for short. For
0 ≤ l ≤ n let us denote by fn

l ∈ End(R, +) the sum of all words composed
with l letters ”S” and n − l letters ”D” (e.g. fn

n = Sn, fn
0 = Dn). It is

easy to prove by induction, that for a, b ∈ R, fn
l (ab) =

∑n
i=l f

n
i (a)f i

l (b).
Fix l0 ∈ N = {0, 1, 2, . . . } and let Φl0 be the subsemigroup of End(R, +)
generated by {fn

i | l0 ≤ i ≤ n, n ∈ N}. Then Φl0 satisfies (H1) and (H2).
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Example 1.5. More generally, let R and C be an algebra and a coal-
gebra over a field K respectively. Denote by ∆ and ε the comultiplication
and counit of C and put ∆(c) =

∑
(c) c1 ⊗ c2. Then HomK(C,R) has

a K-algebra structure defined by (f ∗ g)(c) =
∑

(c) f(c1)g(c2) for f, g ∈
Hom(C, R) and c ∈ C. Suppose that there exists ψ ∈ HomK(C⊗K R, R)
such that (ψ,C) measures R to R in the sense of [S, Chap. VII], i.e.

ψ(c⊗ ab) =
∑

(c)

ψ(c1 ⊗ a)ψ(c2 ⊗ b) for a, b ∈ R, c ∈ C;

ψ(c⊗ 1) = ε(c)1R

(This means that the map corresponding to ψ under the standard iso-
morphism Hom(C ⊗K R,R) ∼= Hom(R, Hom(C, R)) is a morphism of
K-algebras). For c ∈ C, ψ(c ⊗ −) defines an element in End(R, +) de-
noted by ψc : R → R : r 7→ ψ(c ⊗ r). Let Φ be the subsemigroup of
End(R, +) generated by {ψc | c ∈ C}. Since ψc(ab) =

∑
(c) ψc1(a) ψc2(b),

it is easy to prove that Φ satisfies (H1) and (H2).

Example 1.6. As a particular (but important) case of Example 1.5
we have the following. Let H be a Hopf algebra and R be an H-module
algebra (over a field K). Then the map H ⊗K R → R defined by h⊗ a 7→
h·a measures R to R and the K-subalgebra of HomK(R, R) corresponding
to the action of H satisfies (H1) and (H2).

In the rest of this section, Φ will denote a subset of End(R, +) satisfying
(H1) and (H2).

By using the condition (H2) we have immediately the following:

Lemma 1.7. R is Φ-prime if and only if for any a, b ∈ R\{0}, there
exist ϕ1, ϕ2 ∈ Φ such that ϕ1(a)Rϕ2(b) 6= 0.

Definitions 1.8.

(1) A subset M ⊆ R is called a Φ-m-system if for any a, b ∈ M there
exist ϕ1, ϕ2 ∈ Φ and r ∈ R such that ϕ1(a)rϕ2(b) ∈ M .

(2) A sequence (a0, a1, . . . , an, . . . ) of elements of R is called a Φ-m-
sequence if for any i ∈ N = {0, 1, 2, . . . } there exist ϕi, ϕ

′
i ∈ Φ and

ri ∈ R such that ai+1 = ϕi(ai)riϕ
′
i(ai).
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(3) An element a ∈ R is strongly Φ-nilpotent if every Φ-m-sequence
starting with a eventually vanishes.

Remark 1.9. (1) If Φ = {idR} we recover the corresponding classical
notions.

(2) Our definitions of Φ-prime ideals and Φ-m-systems are symmetrical,
but it is possible, and sometimes useful, to give unsymmetrical definitions
(cf. 5.15 hereafter and [PS]).

Proposition 1.10. For an ideal P of R, we have:

(a) A Φ-ideal P is Φ-prime if and only if R\P is a Φ-m-system.
(b) Let M be a Φ-m-system not containing 0 and P a Φ-ideal of R

maximal among Φ-ideals disjoint from M . Then P is a Φ-prime
ideal.

(c) Let (a0, a1, . . . , an, . . . ) be a Φ-m-sequence not containing 0 and
let P be a Φ-ideal of R maximal among Φ-ideals not intersecting
{a0, a1, . . . , an, . . . } then P is a Φ-prime ideal.

Proof. (a) Suppose P/′ΦR and a, b ∈ R\P . Since I :=
∑

ϕ∈Φ Rϕ(a)R/Φ

R and J :=
∑

ϕ∈Φ Rϕ(b)R /Φ R, we have IJ 6⊆ P , and so there exist
ϕ1 , ϕ2 ∈ Φ such that ϕ1(a)Rϕ2(b) 6⊆ P .

Conversely suppose P /ΦR and R\P is a Φ-m-system. Let I/ΦR, J/ΦR

be such that P ⊂ I and P ⊂ J . Pick a ∈ I\P and b ∈ J\P . Then there
exist ϕ1, ϕ2 ∈ Φ and r ∈ R with ϕ1(a)rϕ2(b) ∈ R\P . Since ϕ1(a) ∈ I and
ϕ2(b) ∈ J , IJ 6⊆ P follows.

(b) Let P be a Φ-ideal as in the statement (b). Let I1 /Φ R and I2 /Φ R be
such that P ⊂ I1 and P ⊂ I2. There exist a1 ∈ I1 ∩M and a2 ∈ I2 ∩M .
Since M is a Φ-m-system, we can also pick ϕ1, ϕ2 ∈ Φ and r ∈ R such
that ϕ1(a1) r ϕ2(a2) ∈ M ∩ I1I2. Hence I1I2 6⊆ P .

(c) Let P be as in the statement (c) and put
∑

= {a0, a1, . . . , an, . . . }.
As above let I1 /Φ R and I2 /Φ R be such that P ⊂ I1 and P ⊂ I2.
Then I1 ∩

∑ 6= ∅ and I2 ∩
∑ 6= ∅, so there exist i, j ∈ N such that

ai ∈ I1 and aj ∈ I2. Since
∑

is a Φ-m-sequence, we see easily that if
s ≥ max{i, j} then as ∈ I1 ∩ I2. In particular, letting k := max{i, j},
we have ak ∈ I1 ∩ I2, and so ak+1 = ϕk(ak)rkϕ′k(ak) ∈ I1I2 for some
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ϕk, ϕ′k ∈ Φ and rk ∈ R. We conclude that I1I2 6⊆ P . This proves that P

is a Φ-prime ideal. QED

Part (c) of the above proposition cannot be deduced directly from part
(b) since, in general, a Φ-m-sequence is not a Φ-m-system.

We can define a lower nil radical by transfinite induction:

L0 = L0(R; Φ) = (0)

L1 = L1(R; Φ) =
∑

I∈NΦ

I where NΦ = {I /Φ R | I is nilpotent}

(L1 /Φ R and any ϕ ∈ Φ induces an additive endomorphism of R/L1)

Lα = Lα(R; Φ) = {r ∈ R | r + Lβ(R; Φ) ∈ L1(R/Lβ(R; Φ); Φ)} if α = β + 1

Lα = Lα(R; Φ) = ∪β<αLβ(R; Φ) if α is a limit ordinal.

There exists an ordinal β such that Lβ(R; Φ) = Lβ+1(R; Φ) and we put
L(R; Φ) = Lβ(R; Φ).

Proposition 1.11. Keeping the above notations, we have:

L(R; Φ) = rad(R; Φ) = {a ∈ R | a is strongly Φ-nilpotent}.

Proof. Let us prove the first equality. Since rad(R; Φ) = ∩{P | P /′Φ
R}, it is easy to show that L1 ⊆ rad(R; Φ) and a transfinite induction
gives immediately that L(R; Φ) ⊆ rad(R; Φ).

In order to prove the reverse inclusion we may factor out L(R; Φ)
and suppose L(R; Φ) = 0. We must then prove that rad(R; Φ) = 0.
Assume, on the contrary, that 0 6= a0 ∈ rad(R; Φ) and consider I :=∑

ϕ∈Φ R ϕ(a0) R /Φ R. Since L(R; Φ) = 0, we know that I2 6= 0 and so
there exist ϕ1, ϕ2 ∈ Φ such that 0 6= ϕ1(a0)rϕ2(a0) =: a1 ∈ rad(R; Φ),
for some r ∈ R. Repeating this process with a1, we can construct a Φ-m-
sequence M not containing 0, such that a0 ∈ M and Proposition 1.10(c)
implies the existence of a Φ-prime ideal P of R such that P ∩M = ∅. In
particular a0 /∈ P and this contradicts the fact that a0 ∈ rad(R; Φ).

To prove the second equality : let a ∈ R\rad(R; Φ) and fix a Φ-prime
ideal P such that a /∈ P . Since, by Proposition 1.10(a), R\P is a Φ-m-
system, it is easy to construct a Φ-m-sequence (a = a0, a1, . . . ) in R\P .
Hence a is not strongly Φ-nilpotent.
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Conversely assume (a = a0, a1, . . . ) is a Φ-m-sequence not containing
0. Then Proposition 1.10(c) implies that there exists a Φ-prime ideal P

of R such that a /∈ P and so a /∈ rad(R; Φ). QED

The next corollary is an immediate consequence of the above proposi-
tion.

Corollary 1.12. Let Φ be a subset of End(R, +) satisfying (H1) and
(H2). Then the following statements are equivalent:

(1) R is Φ-semiprime.

(2) R has no nonzero nilpotent Φ-ideals.

(3) L(R; Φ) = 0.

(4) R does not have nonzero strongly Φ-nilpotent elements.

Corollary 1.13. Suppose R satisfies the ACC on Φ-ideals. Then
rad(R; Φ) is nilpotent.

Proof. By the given ACC, L1(R; Φ) is nilpotent. Now if N/L1 is a
nilpotent Φ-ideal of R/L1 then N /Φ R is nilpotent and so N ⊆ L1. We
conclude that rad(R; Φ) = L1(R; Φ) is nilpotent. QED

Proposition 1.1 shows that if Φ ⊆ Ω ⊆ End(R, +) then rad(R; Ω) ⊆
rad(R; Φ). In certain circumstances the equality holds. This is the content
of part (c) of the proposition below.

Proposition 1.14. Suppose Γ ⊆ Φ∩Aut(R) is a commutative semi-
group of automorphisms of R with idR ∈ Γ. Let Ω be the subsemigroup of
End(R, +) generated by Φ and {γ−1 | γ ∈ Γ}. If for any Φ-ideal I, we
have I :=

∑
γ∈Γ γ−1(I) /Ω R, then:

(a) Ω satisfies H1 and H2.
(b) An Ω-ideal P is Ω-prime if and only if it is Φ-prime. In particular

R is Ω-prime if and only if R is Φ-prime.
(c) rad(R; Ω) = rad(R; Φ).

In particular, if γ ∈ Φ ∩ Aut(R) is such that for any Φ-ideal I of R,∑
i≥0 γ−i(I) /Ω R, then the above conclusions hold for Γ = {γi | i ≥ 0}

and Ω the subsemigroup of End(R, +) generated by Φ and γ−1.
8



Proof. (a) For a ∈ R, let I(a) stands for the Φ-ideal
∑

ϕ∈Φ Rϕ(a)R
and put I(a) =

∑
γ∈Γ γ−1(I(a)). Thus, by our assumption, I(a) /Ω R,

and so
∑

ω∈Ω Rω(a)R ⊆ I(a). On the other hand, since every γ ∈ Γ
is a ring automorphism, we have also the reverse inclusion. Therefore
equality holds, which shows that

∑
ω∈Ω Rω(a)R /Ω R, so Ω satisfies H2.

(The commutativity of Γ is not needed for this part.)

(b) We have already noticed that if P /Ω R and P /′Φ R then P /′Ω R.
Let us now prove that if P /′Ω R then P /′Φ R. Let I1, I2 be two Φ-ideals
of R not contained in P and define Ij :=

∑
γ∈Γ γ−1(Ij) /Ω R for j = 1, 2.

Since P is Ω-prime, we have I1I2 6⊆ P . Then there exist a ∈ I1, b ∈ I2

and γ1, γ2 ∈ Γ such that γ−1
1 (a)γ−1

2 (b) /∈ P . Applying γ1γ2 = γ2γ1, we
get γ2(a)γ1(b) /∈ γ1γ2(P ) ⊆ P . Hence γ2(a)γ1(b) ∈ I1I2\P . This means
I1I2 6⊆ P as we wanted to prove. The last statement of (b) follows easily.

(c) Part (b) above and Proposition 1.1 show that rad(R; Φ) = rad(R; Ω).
QED

The following corollary is in fact a special case of the above proposition.

Corollary 1.15. Let Φ be a commutative semigroup of automorphisms
of R. Then:

(a) A (Φ, Φ−1)-ideal P of R is Φ-prime iff P is (Φ, Φ−1)-prime iff P

is Φ−1-prime. In particular R is Φ-prime iff R is (Φ,Φ−1)-prime
iff R is Φ−1-prime.

(b) rad(R; Φ) = rad(R; Φ, Φ−1) = rad(R; Φ−1). In particular, R is
Φ-semiprime iff R is (Φ, Φ−1)-semiprime iff R is Φ−1-semiprime.

Keeping the notations as in Proposition 1.14, let us now mention a few
instances in which the crucial hypothesis I /Φ R =⇒ I /Ω R is satisfied.

Example 1.16. Assume that R satisfies the ACC on Γ-ideals. For any
I/ΦR and γ ∈ Γ, consider the ascending chain I ⊆ γ−1(I) ⊆ γ−2(I) ⊆ . . . .
Since Γ is commutative, γ−k(I) is a Γ-ideal for any k ∈ N, so γ−n(I) =
γ−(n+1)(I) for some n ∈ N. Therefore I = γ−1(I) = γ(I) and hence
I = I. Thus, the hypothesis of Proposition 1.14 is trivially satisfied.
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Example 1.17. Assume that for each γ ∈ Γ, there exists n ≥ 1 such
that γn is an inner automorphism. Then, for any I /Φ R, we see easily
that γ(I) = I. Thus again I = I and the hypothesis of Proposition 1.14
is satisfied.

Example 1.18. Suppose Γ is generated by a (commuting) family
{γi}i∈E and assume that, for any ϕ ∈ Φ and i ∈ E, there exists qi(ϕ) ∈ R

such that γiϕ = qi(ϕ)ϕγi. Then, by induction, for any γ ∈ Γ and ϕ ∈ Φ,
there exists q ∈ R such that γϕ = qϕγ. Now, making use of this identity,
it is easy to check that for any Φ-ideal I of R, we have

ϕγ−1(I) = γ−1(qϕ(I)) ⊆ R · γ−1(I) ⊆ γ−1(I).

¿From this, we conclude that I /Ω R, so the hypothesis of Proposition 1.14
is again satisfied.

2. Relations between (S,D), (S, S−1, D)... primeness and semiprime-
ness

In this section we will study Φ-primeness and Φ-semiprimeness in the
case when Φ is generated either by an automorphism S and an S-derivation
D of a ring R or by S, S−1 and D.

Recall that D is an S-derivation if D ∈ End(R, +) and D(ab) =
S(a) D(b) + D(a)b for all a, b ∈ R. Such a D is called a q-quantized
S-derivation if , SD = qDS for some q ∈ R. To make life easier, we shall
always assume in the sequel that S(q) = q and D(q) = 0.

Let us also introduce the following useful notations: if D is an S-
derivation and n ≥ i ≥ 0, then fn

i ∈ End(R, +) is the sum of all words
composed with i maps S and n− i maps D (e.g. fn

n = Sn, fn
0 = Dn).

Let X be an inderminate. For any n ∈ N define

(n!)X := (Xn−1 + Xn−2 + · · ·+ 1)(Xn−2 + Xn−3 + · · ·+ 1) . . . (X + 1) · 1.

It can be shown that for 0 ≤ i ≤ n, the rational function
(

n

i

)

X

:=
(n!)X

(i!)X((n− i)!)X
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is in fact a polynomial [A: pp. 35]. For q ∈ R we can thus put
(

n

i

)

q

to

be the evaluation of
(

n

i

)

X

at X = q.

Let us recall some properties of the symbols fn
i and

(
n

i

)

q

. The proofs

of these properties (by induction) will be left to the reader.

Lemma 2.1. Let D be an S-derivation of the ring R. Using the above
notations, we have:

(a) fn
i = fn−1

i−1 · S + fn−1
i ·D for 1 ≤ i ≤ n− 1.

(b) fn
i (ab) =

∑n
j=i fn

j (a)f j
i (b) for a, b ∈ R, 0 ≤ i ≤ n.

(c) Dn(ab) =
∑n

i=0 fn
i (a)Di(b) for a, b ∈ R, n ∈ N.

(d) For q ∈ R, 1 ≤ i ≤ n− 1,
(

n

i

)

q

=
(

n− 1
i− 1

)

q

+
(

n− 1
i

)

q

qi.

(e) Suppose D is a q-quantized S-derivation: SD = qDS, S(q) = q,

D(q) = 0. Then fn
i =

(
n

i

)

q

Dn−iSi for 0 ≤ i ≤ n.

In particular, for n ∈ N and a, b ∈ R we have

Dn(ab) =
n∑

i=0

(
n

i

)

q

Dn−iSi(a)Di(b).

We will now give a specific criterion for (S, S−1, D)-primeness and ex-
amine in particular the case when D is a q-quantized S-derivation. For
convenience we will denote by Ω the set of all words in S, S−1 and D.

Lemma 2.2. Let P be an (S, S−1, D)-ideal. Then:

(a) P is (S, S−1, D)-prime iff for any a, b ∈ R\P there exists ω ∈ Ω
such that aRω(b) 6⊆ P .

(b) P is (S, S−1, D)-semiprime iff for any a ∈ R\P there exists ω ∈ Ω
such that aRω(a) 6⊆ P .

(c) Suppose D is a q-quantized S-derivation with SD = qDS, where
q is a unit in R. Then the following conditions are equivalent:

(i) P is (S, D)-prime (resp.(S,D)-semiprime).
11



(ii) P is (S, S−1, D)-prime (resp.(S, S−1, D)-semiprime).

(iii) For any a, b ∈ R\P (resp. a ∈ R\P ) there exist (k, l) ∈ N×Z
such that aRDkSl(b) 6⊆ P (resp. aRDkSl(a) 6⊆ P ).

If, in addition, R satisfies the ACC on S-ideals, conditions
(i),(ii) and (iii) are also equivalent to :

(iv) For any a, b ∈ R\P (resp. a ∈ R\P ) there exists (k, l) ∈
N× N such that aRDkSl(b) 6⊆ P (resp. aRDkSl(a) 6⊆ P ).

In particular, for P = 0, these statements give criterions for (S, S−1, D)-
primeness and semiprimeness of R.

Proof. (a) The sufficiency of the condition is given by Proposition
1.10(a). Conversely, suppose P is (S, S−1, D)-prime and let a, b ∈ R\P .
By Proposition 1.10(a) again, we know that there exist ω′1, ω

′
2 ∈ Ω such

that ω′1(a)Rω′2(b) 6⊆ P . Let ω1 ∈ Ω be of minimal length such that there
exists ω2 ∈ Ω with ω1(a)Rω2(b) 6⊆ P . We finish by proving that l(ω1) = 0
(i.e. ω1 = idR). Assume, on the contrary, that l(ω1) > 0. Then ω1

is either of the form ω1 = Sεψ1 or ω1 = Dψ1 where ε ∈ {+1,−1} and
ψ1 ∈ Ω is such that l(ψ1) < l(ω1).

If ω1 = Sεψ1, then ψ1(a)RS−εω2(b) 6⊆ P and this contradicts the
minimality of l(ω1).

Assume ω1 = Dψ1. Then, since l(ψ1) < l(ω1), we have ψ1(a)Rω2(b) ⊆
P . Hence, for any r ∈ R, D(ψ1(a)rω2(b)) ∈ P . Computing D(ψ1(a)rω2(b))
we easily obtain

S(ψ1(a)rS−1Dω2(b)) + S(ψ1(a)S−1D(r)S−1ω2(b)) + ω1(a)rω2(b) ∈ P.

The minimality of l(ω1) implies that ψ1(a)RS−1Dω2(b) ⊆ P and also
ψ1(a)RS−1ω2(b) ⊆ P . Therefore, since S(P ) ⊆ P , we get ω1(a)rω2(b) ∈
P for all r ∈ R, a contradiction.

(b) Suppose that P is (S, S−1, D)-semiprime, i.e. R/P is an (S−1, S, D)-
semiprime ring. By Example 1.3, for a ∈ R\P , I :=

∑
ω∈Ω Rω(a)R 6⊆ P

is an (S, S−1, D)-ideal. Hence I2 6⊆ P and there exist ω1, ω2 ∈ Ω such
that ω1(a)Rω2(a) 6⊆ P . Now, a similar argument as the one used in (a)
yields the existence of ω ∈ Ω such that aRω(a) 6⊆ P .

12



Conversely, assume that for any a ∈ R\P there exists ω ∈ Ω such that
aRω(a) 6⊆ P . Then, for I /(S,S−1,D) R and I 6⊆ P , we have I2 6⊆ P .

(c) The equivalence (i) ↔ (ii) is a consequence of Proposition 1.14 and
Example 1.18. The equivalence (ii) ↔ (iii) is immediate from parts (a)
and (b) above if we remark that, under the assumptions of (c), any word
in (S, S−1, D) can be written in the form αDkSl where k ∈ N, l ∈ Z and
α ∈ R is invertible.

Assume now that R satisfies ACC on S-ideals. Suppose that (iii) holds.
Let a, b ∈ R\P and I :=

∑
(k,l)∈N2 RDkSl(b)R. Then S(I) ⊆ I and, as we

have remarked in Example 1.16, we get S−1(I) = I = S(I). Therefore I =∑
(k,l)∈N×ZRDkSl(I)R. By assumption, there exists (k, l) ∈ N × Z such

that aRDkSl(b) 6⊆ P . Hence aI 6⊆ P and there exists (m,n) ∈ N2 such
that aRDmSn(b) 6⊆ P . This gives (iii) → (iv). The reverse implication
is a tautology. QED

The next lemma stresses some particularities of the (S, S−1)-setting
(with D = 0).

Lemma 2.3. Let S be an automorphism of the ring R. Then:

(a) An S-ideal P of R is S-prime iff there exists an S-m-system M

such that P is maximal among S-ideals disjoint from M .
(b) An (S, S−1)-ideal P of R is (S, S−1)-prime iff there exists an S-m-

system M such that P is maximal among (S, S−1)-ideals disjoint
from M .

(c) rad(R; S) = rad(R; S, S−1) = {a ∈ R | if (a0 = a, a1, a2, . . . ) is
such that ai+1 ∈ aiRSli(ai) for all i ≥ 0 and some li ∈ Z, then
there exists n ∈ N for which an = 0.

(d) For any n ≥ 1, rad(R;S) = rad(R;Sn).

Proof. We say that a sequence (a0, a1, . . . ) of elements from R is a
(1, S)-sequence if for any i ≥ 0 there exists li ∈ Z such that ai+1 ∈
aiRSli(ai).

(a) This is a particular case of Proposition 1.10 (a) and (b).

(b) This is left as an easy exercise for the reader (note that the charac-
terization of (S, S−1)-primeness here is via S-m-system, not (S, S−1)-m-
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system).

(c) The first equality is a particular case of Corollary 1.15. Put E :=
{a ∈ R | such that every (1, S)-sequence starting with a eventually
vanishes}

Let a ∈ rad(R; S) and (a0 = a, a1, a2, . . . ) be a (1, S)-sequence. Then
the sequence is also an (S, S−1)-m-sequence. Hence, since a ∈ rad(R; S) =
rad(R; S, S−1), we have that an = 0 for some n ∈ N and so a ∈ E. This
shows that rad(R; S) ⊆ E.

Assume now that a ∈ E and let (a0 = a, a1, a2, . . . ) be an (S, S−1)-
m-sequence, i.e. for any i ∈ N, there exist ki, li ∈ Z such that ai+1 ∈
Ski(ai)RSli(ai). Let us define a′0 := a and a′i := S−(ki−1+···+k0)(ai) for
all i ≥ 1. It is standard to check that a′i+1 ∈ a′iRSli−ki(a′i) for any
i ∈ N. This means that the sequence (a′0 = a, a′1, . . . ) is a (1, S)-sequence.
Therefore, as a ∈ E, there exists n ∈ N such that a′n = 0. Then obviously
an = 0, i.e. any a ∈ E is strongly (S, S−1)-nilpotent and, by Proposition
1.11, E ⊆ rad(R; S, S−1) follows.

(d) The inclusion rad(R; S) ⊆ rad(R; Sn) is obvious (cf. e.g. Proposi-
tion 1.1). Part (c) above shows that rad(R; S) = {a ∈ R | every (1, S)-
sequence starting with a eventually vanishes}. Notice that if (a0, a1, . . . )
is a (1, S)-sequence then (an0 , an1 , . . . ) is also a (1, S)-sequence if n0 <

n1 < . . . .

We claim that any (1, S)-sequence contains a (1, Sn)-subsequence. In-
deed, let (a0, a1, . . . ) be (1, S)-sequence. Then for any i ≥ 0 there is li ∈ Z
such that ai+1 ∈ aiRSli(ai). Now, there exist r ∈ {0, 1, . . . , n−1} and an
infinite increasing sequence of natural numbers (n0, n1, . . . ) such that, for
any i ∈ N,

∑ni−1
j=0 lj = qin+r for some suitable qi ∈ Z. It is easy to see that

for any 0 ≤ k < m, am ∈ akRSlk+...+lm−1(ak). Therefore, the choice of
the sequence (n0, n1, . . . ) yields that ani+1 ∈ aniRSn(qi+1−qi)(ani) for any
i ≥ 0. This shows that the sequence (an0 , an1 , . . . ) is an (1, Sn)-sequence
as claimed.

Now let a ∈ rad(R; Sn) and (a = a0, a1, . . . ) be a (1, S)-sequence.
As above we can construct a (1, Sn)-subsequence (an0 , an1 , . . . ). Since
a = a0 ∈ rad(R; Sn), an0 also belongs to rad(R, Sn) and thus the (1, Sn)-
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sequence (an0 , an1 , . . . ) must eventually vanish. But this means that the
original sequence (a0, a1, . . . ) also eventually vanishes. Therefore, using
the characterization of rad(R; S) obtained in (c), we get that a belongs to
rad(R; S) as required. QED

Corollary 2.4. Suppose that one of the following conditions is satis-
fied:

(a) Some nonzero power of S is inner.
(b) R satisfies the ACC on ideals.

Then rad(R) = rad(R; S) = rad(R; S, S−1).

Proof. If S is an inner automorphism of R then rad(R;S) = rad(R) as
every ideal is S-invariant. Now the assertion follows from Lemma 2.3(d)
and (c).

Suppose (b) holds. Then rad(R) is nilpotent, so rad(R; S) = rad(R).
QED

Before going on with our comparison of different notions of primeness
we need the following technical lemma.

Lemma 2.5.

(a) Let I be an S-ideal and D an S-derivation then I + D(I) is an
ideal of R.

(b) Let D be a q-quantized S-derivation satisfying SD = qDS with
q ∈ Z(R)S,D = {a ∈ R | a belongs to the center Z(R) of R and
S(a) = a, D(a) = 0}. Assume moreover, that for any n ∈ N, 1 +
q + · · ·+ qn is regular in R. Then, for any nilpotent (S, S−1)-ideal
I of R, J = I+D(I) is a nilpotent S-ideal such that qS−1(J) ⊆ J .

(c) Suppose q ∈ Z(R) is regular and S(q) = q. If J is a nilpotent
S-ideal of R satisfying qS−1(J) ⊆ J , then J = {a ∈ R | there is
k ∈ N such that qka ∈ J} is a nilpotent (S, S−1)-ideal containing
J .

(d) Suppose R is S-semiprime (or equivalently R is (S, S−1)-semiprime).
Then the right annihilator of an (S, S−1)-ideal is a (S, S−1, D)-
ideal for any S-derivation D.
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Proof. (a) This is standard and easy.

(b) We claim that for any a1, . . . , an ∈ I we have

Dn(S−n+1(a1)S−n+2(a2) . . . S−1(an−1)an)− (n!)qD(a1) . . . D(an) ∈ I.

We prove this by induction on n ≥ 1. If n = 1 the result is clear. For
n ≥ 1 we have

Dn+1(S−n(a1) . . . S−1(an)an+1) =
n+1∑

k=0

(
n + 1

k

)

q

Dn+1−kSk(S−n(a1) . . . S−1(an))Dk(an+1).

Since Dk(In) ⊂ I if n > k and an+1 ∈ I the above equality implies that

Dn+1(S−n(a1)S−n+1(a2) . . . S−1(an)an+1)−(
n + 1

1

)

q

Dn(S1−n(a1) . . . S−1(an−1)an)D(an+1) ∈ I

Now, the inductive hypothesis applied to the second term yields:

Dn+1(S−n(a1)S−n+1(a2) . . . an+1)−((n+1)!)qD(a1) . . . D(an)D(an+1) ∈ I

This proves the claim.

Suppose now that In = 0. Then, by the above, for any a1, . . . an ∈ I we
have
(n!)qD(a1) . . . D(an) ∈ I, i.e. (n!)qD(I)n ⊆ I. Since (n!)q ∈ Z(R) is
regular we get D(I)n2

= 0 and this leads easily to the desired conclusion
that J = I + D(I) is nilpotent. Since SD = qDS, it easy to see that
S(J) ⊆ J and qS−1(J) ⊆ J .

(c) Since S(q) = q, S can be extended to the localization RA−1 where
A = {1, q, q2, . . . }. Then JA−1 is a nilpotent (S, S−1)-ideal of RA−1 and
J = R ∩ JA−1. This gives (c).

(d) Let I be an (S, S−1)-ideal then D(I2) ⊆ I and if we put J :=
rannR(I) we get D(I2)J = 0 and 0 = D(I2J) = I2D(J). So I2SkD(J) =
0 for all k ∈ Z. The S-ideal J =

∑+∞
k=−∞ ISkD(J)R is such that J

2
= 0.
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Hence, since R is S-semiprime, J = 0 and, in particular, ID(J) = 0, i.e.
D(J) ⊆ J . This proves the claim since we clearly also have S(J) = J , .
QED

The next theorem will provide some relations between the different no-
tions of primeness of R which appear in the context of S-derivations. Such
relations have been studied by various authors. In particular, D.A. Jor-
dan remarked (cf. [J], remarks after Lemma 2.1) that if R is a semiprime
D-prime ring (D being a derivation) then R is in fact prime. Goodearl
[G] gave a nice description of the relationships between (S, D)-primeness,
D-primeness and S-primeness when R is noetherian.

Theorem 2.6. Let R be a ring, S an automorphism and D an S-
derivation of R. Suppose that (R,S, D) satisfies one of the hypothesis:

(I1) : R is S-semiprime
(I2) : R satisfies ACC on S-ideals and D is q-quantized : SD = qDS

where q ∈ Z(R)S,D is such that for any n ≥ 1, 1+q+ · · ·+qn 6= 0.

Then the following statements are equivalent:

(a) R is S-prime
(b) R is (S, S−1)-prime
(c) R is (S,D)-prime
(d) R is (S, S−1, D)-prime

Proof. Let us first remark that in case D is q-quantized, any of the
conditions (a), (b), (c) or (d) and the fact that 1 + · · · + qn 6= 0 imply
that 1 + q + · · ·+ qn is regular in R. We know that (a) ↔ (b), and (a) →
(c) → (d). Thus, it remains to prove that (d) → (b).

Suppose that (I1) is satisfied and let I, J be nonzero (S, S−1)-ideals
of R such that IJ = 0. Then lannR(rannR(I)) · rannR(I) = 0 is a
product of (S, S−1, D)-ideals thanks to Lemma 2.5(d) above (since R is S-
semiprime). If R is (S, S−1, D)-prime, then either lannR(rannR(I)) = 0
or rannR(I) = 0. On the other hand, 0 6= J ⊆ rannR(I) and 0 6= I ⊆
lannR(rannR(I)). This contradiction completes the proof of (b) → (d),
in the case when (I1) is satisfied.

Suppose now that (I2) is satisfied. Let N be the unique largest nilpotent
17



S-ideal of R. Then S(N) = N and, by Lemma 2.5(b), N + D(N) is a
nilpotent S-ideal. Thus N + D(N) ⊆ N and D(N) ⊆ N follows. If R is
(S, S−1, D)-prime, we conclude N = 0. Thus R is S-semiprime and we
are back in the case when (I1) is satisfied.

QED

The implication (c) → (a) above was given by Goodearl ([G], Proposi-
tion 6.5), in the case when I2 is satisfied. The proof in the Goodearl
’s paper was different from the above and made use of the fact that
rad(R; S, S−1) is D-stable. We can also obtain this fact using Lemma
2.5(b) and the equality rad(R; S, S−1) = L(R; S, S−1).

Corollary 2.7. Let D be a q-quantized S-derivation satisfying SD =
qDS where q ∈ Z(R)S,D is such that both q and qn +qn−1 + · · ·+q+1 are
regular in R for all n ∈ N. Then rad(R;S, S−1) is an (S, S−1, D)-ideal.

Proof. In view of Proposition 1.11 and the construction of L(R;S, S−1)
preceding it, we need only to show that D(L1(R;S, S−1)) ⊆ L1(R; S, S−1)
where L1(R;S, S−1) is the sum of all nilpotent (S, S−1)-ideals. Let a ∈
L1(R; S, S−1). Then a belongs to some nilpotent (S, S−1)-ideal I. Now
Lemma 2.5(b) and (c) imply that I + D(I) is contained in a nilpotent
(S, S−1)-ideal. This shows that I + D(I) ⊆ L1(R;S, S−1). Therefore
D(a) ∈ L1(R; S, S−1). QED

Proposition 2.8. Let R be a ring, S ∈ Aut(R) and D an S-derivation
of R. Suppose that R satisfies ACC on ideals and that D is a q-quantized
S-derivation where q ∈ Z(R)S,D is such that 1 + q + · · ·+ qn is regular in
R for any n ≥ 1. Then

rad(R; S, S−1, D) = rad(R;S, D) = rad(R; S) = rad(R; S, S−1)

= rad(R; D) = rad(R).

Proof. Using Proposition 1.1 and Corollary 2.4, we get
rad(R; S, S−1, D) ⊆ rad(R; S,D) ⊆ rad(R;S) = rad(R;S, S−1) = rad(R).
Since R satisfies ACC on ideals, rad(R) is nilpotent and Lemma 2.5(b)
implies that rad(R)+D(rad(R)) ⊆ rad(R). This means that rad(R) is an
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(S, S−1, D)-ideal and we conclude that rad(R) ⊆ rad(R; S, S−1, D). Now,
inclusions rad(R;S,D) ⊆ rad(R; D) ⊆ rad(R) complete the proof. QED

Let us pause in order to give a few examples.

Example 2.9. Let K be a field of characteristic 2 and D be a deriva-

tion of R :=
K[x]
(x2)

induced by the standard derivation ∂
∂x of K[x]. Then

R is D-prime (in fact D-simple), but R is not semiprime.

Example 2.10. Let K be a field and S a K-automorphism of R :=
K[X, Y ]
(XY )

defined by S(X) = Y and S(Y ) = X. It is easy to show that R

is semiprime and S-prime but not prime.

Example 2.11. This example comes from [G] (cf. also [GL] Example
3.1) and will also be used later (cf. 4.16) in this paper. Hence we shall
present it in detail for the convenience of the reader. We shall construct
a ring R an automorphism S and an S-derivation D of R such that R is
(S, D)-simple but R is neither S-prime nor D-prime.

Let K be a field and τ be the left shifting automorphism of K3 :

τ(a, b, c) = (b, c, a) for (a, b, c) ∈ K3. Let R =
K3[X; τ ]

(X3)
. The canonical

image of X in R will be denoted by x. τ2 can be extended to K3[X; τ ] by
putting τ2(X) = X, and this induces an automorphism S of R. We then
define an S-derivation D of R by

D((a, b, c, )xn) =





0 n = 0

(0,−a, b) n = 1

(−c, 0, b)x n = 2

(In fact D is induced by the restriction to K3[X; τ ] of the inner τ2-
derivation determined on K3[X, X−1, τ ] by (0, 0, 1)X−1).

Here, R is a 9-dimensional K-algebra which is not semiprime. Since
D((1, 0, 0)x2) = 0, the set K(1, 0, 0)x2 is a nilpotent D-ideal and so R

is not D-prime. To prove that R is (S,D)-simple assume there exists
0 6= u ∈ I /(S,D) R. Then either u, ux or ux2 is of the form (a, b, c)x2 ∈
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I\{0}. Replacing u by S(u) or S2(u) if necessary, we may assume that
c 6= 0 and ω = (0, 0, c−1)u = (0, 0, 1)x2 ∈ I\{0}. But then D(ω) =
(−1, 0, 0)x,D2(ω) = (0, 1, 0) ∈ I\{0}. Since S(0, 1, 0), S2(0, 1, 0) ∈ I. We
conclude that I = R.

3. Upper S-nil radical

In Section 5 we shall study the relationship between the prime radical
of an Ore extension R[t; S, D] and that of the base ring R. In this study
a certain radical generalizing the classical upper nil radical will emerge
and prove to be particularly helpful. This radical was first introduced in
[PSW]. We adopt a somewhat different approach here and show that our
definition agrees with the one given in [PSW]. We then study this radical,
paving the way to future sections.

Definitions 3.1. Let R be a ring and S ∈ Aut(R)

(a) For a ∈ R, n ∈ N \ {0} NS
n (a) := aS(a) . . . Sn−1(a).

(b) An element r ∈ R is S-nilpotent if and only if for any l ∈ N \ {0}
there exists nl ∈ N \ {0} such that NSl

nl
(r) = 0.

(c) An S-nil (left, right or two-sided) ideal is a (left, right, two-sided)
ideal such that all its elements are S-nilpotent.

Remarks 3.2. (1) The notion of an S-nilpotent element was intro-
duced in [JJ] and appears naturally in connection with the nilpotency of
rtl ∈ R[t; S]. This notion was also used in [R].

(2) Another reason for adopting this definition of S-nilpotency is that
in R[t, S−l] we have tn = (t − r)q(t) + NSl

n (r), for some q(t) ∈ R[t; S−l].
This shows that NSl

n (r) is the analogue of rn when considering evaluation
of polynomials in R[t; S−l].

Lemma 3.3. Let R be a ring and S ∈Aut(R). Then:

(a) NS
n+m(a) = NS

n (a)Sn(NS
m(a)) for any a ∈ R and n, m ∈ N \ {0}.

(b) NSl

n+1(xay) = xNSl

n (aySl(x))Snl(ay) for any a, x, y ∈ R and l, n ∈
N \ {0}.

(c) NSli

j (NSl

i (a)) = NSl

ij (a) for any a ∈ R, i, j, l ∈ N \ {0}.
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Proof. These identities can be proved by straightforward calculations.
As a sample, we give the proof for (c).

NSli

j (NSl

i (a)) = NSl

i (a)Sli(NSl

i (a))S2li(NSl

i (a)) . . . Sli(j−1)(NSl

i (a))

= aSl(a) . . . Sl(i−1)(a)Sli(a) . . . Sli(j−1)+l(i−1)(a)

= aSl(a) . . . Sl(i−1)(a) . . . Sl(ij−1)(a)

= NSl

ij (a)

QED

Proposition 3.4. Let I1, I2 be two S-nil ideals of the ring R with
S(I2) ⊆ I2. Then I1 + I2 is an S-nil ideal.

Proof. Let a1 ∈ I1, a2 ∈ I2 and a = a1 + a2. We want to prove that
for any j ∈ N\{0} there exists lj ∈ N\{0} such that NSj

lj
(a) = 0. Assume

NSj

n (a1) = 0. From

NSj

n (a) = (a1 + a2)Sj(a1 + a2) . . . Sj(n−1)(a1 + a2)

= NSj

n (a1) + α, where α ∈ I2,

we have NSj

n (a) = α ∈ I2. Since I2 is S-nil, there exists r ∈ N \ {0} such
that NSjn

r (α) = 0 and so 0 = NSjn

r (NSj

n (a)) = NSj

rn (a) (by using formula
(c) of Lemma 3.3). QED

Theorem 3.5. Let R be a ring and S ∈Aut(R). Then R contains a
unique maximal S-nil S-ideal N . The automorphism S induces an auto-
morphism on R/N and R/N has no nonzero S-nil S-ideals.

Proof. This is an immediate consequence of Lemma 3.3(c), and Propo-
sition 3.4. (We just take N to be the sum of all S-nil S-ideals.) QED

The above theorem leads to the first of the following.

Definitions 3.6.

(a) The unique maximal S-nil S-ideal of Theorem 3.5 is called the
S-upper nil radical of R and is denoted by Nil(R; S).
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(b) [PSW] A one-sided (or two-sided) ideal is S-n-nil (n ∈ N \ {0}) if
all its elements are Sm-nilpotent for any m ≥ n.

In [PSW] NS(R) :=
∑{I /SS−1 R | I is S-n-nil for some n ∈ N} was

introduced. In fact this radical coincides with our radical, as the following
proposition shows.

Proposition 3.7. Let R be a ring, S ∈Aut(R) and I be a right ideal
of R. Using the above notations and definitions, we have:

(a) I is S-nil if and only if I is S-n-nil for some n ≥ 1.

(b) Nil(R; S) = NS(R).

Proof. (a) Obviously if I is S-nil then it is S-1-nil. Assume now that
I is S-n-nil. Let i ∈ N \ {0} and x ∈ I. Then NSi

n (x) ∈ I and so there
exists an s ∈ N \ {0} such thatNSni

s (NSi

n (x)) = 0. By using formula (c)
of Lemma 3.3 we get NSi

sn (x) = 0.

(b) This is a direct consequence of Theorem 3.5 and part (a) above, in
view of the fact that Nil(R,S) is an (S, S−1)-ideal . QED

Lemma 3.8. Let R be a ring and S ∈Aut(R). For any l ∈ Z and
a ∈ R the set Ml(a) := {NSl

n (a) | n ∈ N\{0}} is an S-m-system.

Proof. This is obvious from Lemma 3.3(a). QED

Proposition 3.9. Let R be a ring and S ∈Aut(R). Denote by P the
set of all (S, S−1)-prime ideals P ⊂ R such that Nil(R/P ;S) = 0. Then

Nil(R;S) = ∩{P | P ∈ P}.

Proof. Clearly Nil(R;S) ⊂ P for any P ∈ P. Hence, it remains to
prove that Nil(R; S) ⊇ ∩{P | P ∈ P}. For this, it is enough to show that
if a ∈ R is not S-nilpotent, then there exists P ∈ P such that a /∈ P .
Indeed from this we can conclude that ∩{P | P ∈ P} is an S-nil ideal and
hence is contained in Nil(R; S). Thus assume a ∈ R is not S-nilpotent.
Then there exists l ∈ N \ {0} such that NSl

n (a) 6= 0 for any n ∈ N \ {0}.
Put, as above, Ml(a) := {NSl

n (a) | n ∈ N \ {0}}. Lemma 3.8 shows
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that Ml(a) is an S-m-system. By Zorn’s Lemma there exists a maximal
(S, S−1)-ideal P disjoint from Ml(a) and Lemma 2.3(b) implies that P is
in fact (S, S−1)-prime. We claim that P ∈ P. For this, we need only show
that Nil(R/P ;S) = 0. Assume on the contrary that Nil(R/P ; S) 6= 0.
Then there exists an (S, S−1)-ideal Q strictly containing P such that Q

is S-nil modulo P . By definition of P we have NSl

n (a) ∈ Q ∩Ml(a) for
some n ∈ N\{0}. Since Q is S-nil modulo P we conclude that there exists
m ∈ N\{0} such that NSln

m (NSl

n (a)) ∈ P , i.e. using formula (c) of Lemma
3.3, NSl

mn(a) ∈ P and so P ∩Ml(a) 6= ∅, a contradiction. This shows that
Nil(R/P ; S) = 0, i.e. P ∈ P as claimed. Since a = NSl

1 (a) ∈ Ml(a), we
get a /∈ P . This finishes the proof. QED

Corollary 3.10. Using the above notations we have

rad(R;S) ⊆ Nil(R; S)

.

Proof. Using Proposition 3.9 and the definition of rad(R;S, S−1) we
obtain that Nil(R; S) ⊇ rad(R; S, S−1). Corollary 1.15(b) implies that
rad(R; S, S−1) = rad(R;S), so we obtain Nil(R; S) ⊇ rad(R;S). QED

We will soon find other connections between Nil(R;S), rad(R;S) and
rad(R) but let us first give a definition and state a related result.

Definition 3.11. An automorphism S of R is locally of finite inner
order if, for any a ∈ R there exist n = n(a) ∈ N\{0} and an invertible
element u = u(a) ∈ R such that for every x ∈ RaR, Sn(x) = uxu−1.

Proposition 3.12. Keeping the notations as above we have:

(a) For any r ∈ N \ {0}, Nil(R; S) =Nil(R; Sr).
(b) If S is locally of finite inner order, then Nil(R; S) = Nil(R).

Proof. (a) Let r ∈ N \ {0}. Then any S-nil S-ideal is also an Sr-nil
Sr-ideal for any 0 6= r ∈ N. This gives Nil(R;S) ⊆ Nil(R; Sr). Let us now
show that Nil(R;Sr) is an S-nil S-ideal. Clearly Nil(R; Sr) /S R. Now, if
a ∈ Nil(R;Sr) then for any l ∈ N\{0}, NSl

r (a) ∈ Nil(R; Sr) and so there
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exists n = n(l, NSl

r (a)) such that NSrl

n (NSl

r (a)) = 0. By using Lemma
3.3(c), NSl

nr(a) = 0 follows. This shows that Nil(R;Sr) is in fact an S-nil
ideal and so Nil(R; Sr) ⊆ Nil(R;S).

(b) Let a ∈ Nil(R;S). Since S is locally of finite inner order, there
exist n = n(a) ∈ N and an invertible element u = u(a) ∈ R such that
Sn(x) = uxu−1 for all x ∈ RaR. Because au−1 ∈ Nil(R; S), there exists
l ∈ N\{0} such that NSn

l (au−1) = 0. Notice that au−1 ∈ RaR. Therefore
0 = NSn

l (au−1) = alu−l and we conclude that Nil(R; S) is a nil ideal. This
shows that Nil(R;S) ⊆ Nil(R).

In order to prove the opposite inclusion, let us first show that if a ∈
Nil(R) then RaR is Sn-nil, where n and u are such that Sn(x) = uxu−1

for any x ∈ RaR. Let x ∈ RaR ⊆ Nil(R) and r ∈ N. There exists
l ∈ N \ {0} such that (xur)l = 0. Hence NSnr

l (x) = (xur)lu−lr = 0. This
shows that x is Sn-nil and so RaR is an Sn-nil ideal. Since RaR is clearly
an Sn-ideal, this yields RaR ⊆ Nil(R;Sn) = Nil(R; S), where the last
equality is given by (a) above. QED

Lemma 3.13. Let R be a ring, S ∈Aut(R) and a ∈ R. Then Ra is
S-nil if and only if aR is S-nil.

Proof. Suppose that Ra is S-nil. Then RSl(a) is S-nil for any l ≥ 1.
Hence for any y ∈ R there exists n ∈ N\{0} such that NSl

n (ySl(a)) = 0.
Then NSl

n+1(ay) = aNSl

n (ySl(a))Sln(y) = 0. This means that aR is S-nil.
The proof of the reverse implication is left to the reader. QED

Proposition 3.14. Suppose R satisfies ACC either on right or left
annihilators. Then:

(a) If R contains a nonzero S-nil one-sided ideal, then R contains a
nonzero nilpotent S−1-ideal.

(b) If R is S-semiprime, then R has no nonzero one-sided S-nil ideals.

Proof. (a) We consider only the case when R contains a nonzero right
S-nil ideal and satisfies ACC on right annihilators. The three other cases
can be obtained similarly, by making use of Lemma 3.13 above. Suppose
that aR is S-nil for some 0 6= a ∈ R. Put B := ∪k≥0S

k(a)R and choose
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b ∈ B such that rannR(b) is maximal among right annihilators of ele-
ments from B\{0}. Since aR is S-nil so is B. Thus, for any x ∈ R for
which bx 6= 0 and any k ≥ 1, there exists n ∈ N such that NSk

n (bx) =
0 6= NSk

n−1(bx). Hence, by putting A := Sk(x)S2k(bx) . . . S(n−1)k(bx),
we get bxSk(b)A = 0. Notice also that Sk(b)A = Sk(NSk

n−1(bx)) 6=
0. This shows that A ∈ rannR(bxSk(b))\rannR(Sk(b)). Now, since
bxSk(b) ∈ B and rannR(Sk(b)) ⊆ rannR(bxSk(b)), the choice of b yields
that bxSk(b) = 0 for any k ≥ 1 and x ∈ R. Thus S−k(b)Rb = 0 for
any k ≥ 1. Let J :=

∑
k≥1 RS−k(b)R /S−1 R. Then Jb = 0 and

rannR(J) ⊆ rannR(S−1(J)) ⊆ . . . ⊆ rannR(S−n(J)) ⊆ . . . . Because
R satisfies ACC on right annihilators, there exists l ∈ N such that for any
k ≥ 1, rannR(S−l(J)) = rannR(S−(l+k)(J)). On the other hand, for any
k ≥ 1, we have S−(l+k)(J)S−(l+k)(b) = 0, so S−l(J)S−(l+k)(b) = 0 for
any k ≥ 1. This gives

S−l(J)2 = S−l(J)(
∑

k≥1

RS−(l+k)(b)R) = 0.

This means that S−l(J) is a nilpotent S−1-ideal and completes the proof
of (a).

(b) By Corollary 1.15(b), rad(R;S) = rad(R; S−1). Now (b) is a direct
consequence of (a). QED

Corollary 3.15. Suppose R is either left or right noetherian. Then
Nil(R; S) = rad(R; S) = rad(R).

Proof. Corollary 3.10 shows that rad(R; S) ⊆ Nil(R; S). Therefore,
factoring out rad(R;S), we may assume that R is S-semiprime. Now, since
Nil(R; S) is S-nil, Proposition 3.14(b) implies that Nil(R; S) = 0. This
shows that rad(R;S) = Nil(R; S). The last equality in the proposition
follows from Corollary 2.4(b). QED

Let us remark that when S = idR, then the above corollary is just the
classical theorem of Levitzki.

Example 3.16. Let K be a field and consider R = ⊕i∈ZKi, where
Ki = K for every i ∈ Z. Define an automorphism S of R by ”left shifting”.
Then Nil(R;S) = R but Nil(R) = 0
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Example 3.17. Let K be a field. Consider T = K〈Xi | i ∈ Z〉 and let
S ∈ AutK(T ) be defined by S(Xi) = Xi+1. Let J denote the ideal of T

generated by {XiωXi | i ∈ Z, ω ∈ T}. Then S(J) = J and S induces an
automorphism on R = T/J . It is easy to check that Nil(R) =

∑
RxiR

(where xi = Xi + J ∈ R), but Nil(R;S) = 0.

4. Primeness and semi-primeness of R[t;S, D]

In this section we shall give necessary and sufficient conditions for the
Ore extension T = R[t; S, D] to be prime and semiprime. These criterions
are not always easy to use, so we will also give sufficient conditions which
are less computational. In doing so, we will use the notions introduced
in the first three sections. Let us recall from Example 1.4 that fn

l ∈
End(R, +) denotes the sum of all words composed with l letters ”S” and
n − l letters ”D” (e.g. fn

n = Sn, fn
0 = Dn). It is easy to check that in

R[t;S, D] the following identity holds :

Lemma 4.1. For any n ∈ N and r ∈ R we have:

tnr = fn
n (r)tn + fn

n−1(r)t
n−1 + · · ·+ fn

1 (r)t + fn
0 (r)

.

Lemma 4.2. Let u = umtm + · · ·+ u0 ∈ T = R[t;S,D]. Then:

(a) If lannR(um) ⊆ lannR(u), then lannT (u) ⊆ lannT (um).
(b) Suppose that rannR(S−m(um)) ⊆ rannR(u), then rannT (u) ⊆

rannT (S−m(um))

Proof. (a) Assume, on the contrary, that lannT (u) 6⊆ lannT (um) and
let g(t) = grt

r + · · · g1t+g0 be of minimal degree in lannT (u)\lannT (um).
Since gu = 0 we obtain grS

r(um) = 0, that is, S−r(gr)um = 0. Using
the hypothesis in (a), we get S−r(gr)u = 0 and so (g − trS−r(gr))u = 0.
Since deg(g − trS−r(gr)) < deg g, the choice of g yields that 0 = (g −
trS−r(gr))um = gum. This contradiction shows that (a) holds.

(b) This is proved similarly. QED
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Corollary 4.3. Let I ⊆ T = R[t;S, D] be a left (resp. right) R-
module and let u = umtm + · · ·+u1t+u0 be of miminal degree in I. Then
lannT (u)um = 0 (resp. S−m(um)rannT (u) = 0).

Proof. Since u is of minimal degree in I we conclude lannR(um) ⊆
lannR(u) (resp. rannR(S−m(um)) ⊆ rannR(u)) and the conclusion fol-
lows immediately from Lemma 4.2. QED

Lemma 4.2 and Corollary 4.3 are implicit in [G, (3.2)]. They will be
very useful in proving Theorem 4.9 and the following.

Theorem 4.4. For the ring T = R[t; S, D] the following conditions
are equivalent:

(1) R[t;S, D] is prime.
(2) For every nonzero a, b ∈ R, aR[t;S, D]b 6= 0.
(3) For every nonzero a, b ∈ R there exist n ≥ k ≥ 0 such that

aRfn
k (b) 6= 0.

Proof. By making use of Lemma 4.1 it is easy to show that (2) and
(3) are equivalent.

The implication (1) → (2) is obvious.

Let us now show that (2) → (1). Assume R[t;S,D] is not prime and
let A,B be nonzero ideals of T = R[t; S, D] such that AB = 0. Without
loss of generality we may assume A = lannT (B) and B = rannT (A).
Let u = umtm + · · · + u1t + u0 be of minimal degree in A. Corollary
4.3 shows that S−m(um)rannT (u) = 0 and since B ⊆ rannT (u) we have
S−m(um)B = 0, i.e. S−m(um) ∈ lannT (B) = A. This yields that A∩R 6=
0. Similarly we get B ∩R 6= 0. This gives a contradiction to (2). QED

The obvious analogue for semiprimeness of R[t; S,D] is however false
as the following example shows.

Example 4.5. (see [BR]) For i ∈ Z, let Ki = K be a field and
put R = ⊕i∈ZKi. Let S be the ”right shifting” automorphism, i.e.
S(

∑
ai) =

∑
ai+1. Suppose that 0 6= a =

∑
ai ∈ R is such that ai = 0

for all i 6∈ [m,n], where m ≤ n denote fixed integers. It is easy to check
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that (atR[t;S])n−m+2 = 0. Hence R[t; S] is not semiprime but satisfies
bR[t; S]b 6= 0 for every 0 6= b ∈ R.

In [PS] a criterion was given for semiprimeness of R[t; S] and the prime
radical of R[t;S] was computed. For the convenience of the reader we offer
here a necessary and sufficient condition for semiprimeness of R[t; S]. In
the next section we will deal with the problem of computing the prime
radical.

Proposition 4.6. Let T = R[t; S], S ∈ Aut(R). The following state-
ments are equivalent:

(1) T is semiprime.
(2) For any a ∈ R\{0} and n ∈ N, aTSn(a) 6= 0
(3) For any a ∈ R\{0} and N ∈ N, there exists n ≥ N such that

aRSn(a) 6= 0

Proof. (1)→ (2) Let a ∈ R\{0} and n ∈ N. By (1) we have tnaT tna 6=
0 and this gives aTSn(a) 6= 0.

(2)→ (1) Suppose (atn+· · ·+a0)T (atn+· · ·+a0) = 0 where a ∈ R\{0}.
Then (atn + · · · + a0)Rtk(atn + · · · + a0) = 0 for any k ∈ N. By looking
at the leading coefficients we get 0 = aRtn+katn = aRtkSn(a)t2n. This
gives aRtkSn(a) = 0 for every k ∈ N, i.e. aTSn(a) = 0.

The equivalence (2) ↔ (3) is clear if we notice that aTSn(a) 6= 0 if and
only if there exists k ∈ N such that aRtkSn(a) 6= 0. QED

Next we examine the case when S = idR but before we introduce a
definition.

Definition 4.7. For any ideal I of R[t; S,D], M(I) denotes the ideal
of leading coefficients of I, i.e.

M(I) = {leading coefficients of all polynomials from I}

.

It is standard to check that M(I) is an ideal of R indeed.
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Proposition 4.8. Let T = R[t;D], D a derivation of R. The following
conditions are equivalent:

(1) T is semiprime.
(2) R is D-semiprime.
(3) For any b ∈ R \ {0}, there exists r ∈ N such that bRDr(b) 6= 0.

Proof. (1) ↔ (2) Let I / R[t; D]. It is standard to check that M(I) is
a D-ideal of R. Moreover if I2 = 0 then M(I)2 = 0. From this we get the
required equivalence (1) ↔ (2).

(2) ↔ (3) This equivalence is a special case of Lemma 2.2(b). QED

We will now give general criterions for semiprimeness of R[t; S, D] and
show that these criterions generalize the ones obtained in Propositions 4.6
and 4.8.

Theorem 4.9. For the polynomial ring T = R[t;S, D], the following
assertions are equivalent:

(a) T is semiprime.
(b) For any 0 6= h(t) =

∑n
i=0 ait

i =
∑n

i=0 tibi ∈ T there exist 0 ≤
i, k ≤ n such that biTak 6= 0.

(c) For any (b0, . . . , bn) ∈ Rn+1\(0, . . . , 0) there exist p, l, i, k ∈ N
with 0 ≤ p ≤ l, 0 ≤ i, k ≤ n such that biR

∑n
j=k f l

p(f
j
k(bj)) 6= 0.

Proof. If biTak = 0 for all 0 ≤ i, k ≤ n, then h(t)Th(t) = 0. This
gives (a)→ (b).

(b) ↔ (c) follows easily if we remark that:
(i)

∑n
j=0 tjbj =

∑n
j=0(

∑j
k=0 f j

k(bj)tk) =
∑n

k=0(
∑n

j=k f j
k(bj))tk, so ak =∑n

j=k f j
k(bj)

and
(ii) biTak = 0 iff biRtlak = 0 for any l ≥ 0 iff biRf l

p(ak) = 0 for any
(l, p) ∈ N2 such that p ≤ l.

It remains to prove that (b) → (a). Assume T is not semiprime and
among 0 6= p ∈ T such that pTp = 0, choose one with minimal nonzero
number of monomials, i.e. choose p =

∑n
i=0 ait

i such that pTp = 0 and
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|{i|ai 6= 0}| is minimal. Obviously we then have lannR(ai) = lannR(aj)
for any (i, j) ∈ N2 such that ai 6= 0 6= aj . Using Lemma 4.2(a), we easily
get pTai = 0 for any i ∈ {0, . . . , n}. Let us now consider the set

E :=



q =

l∑

j=0

αjt
j ∈ T | qTαi = 0 for every i ∈ {0, . . . , l}





Since p ∈ E, E 6= {0}. Choose a nonzero element h ∈ E which has
minimal number of right monomials, i.e. h =

∑
tjbj and |{j | bj 6= 0}|

is minimal and nonzero among elements of E. Observe that E is closed
by right multiplication by elements of R. More explicitly, if q ∈ E then
qβ ∈ E for any β ∈ R. Indeed, let q(t) =

∑l
i=0 αit

i be such that qTαi = 0.
Then qβ =

∑l
i=0 αit

iβ =
∑l

i=0

∑i
j=0 αif

i
j(β)tj =

∑l
j=0(

∑l
i=j αif

i
j(β))tj

and qβT (
∑l

i=j αif
i
j(β)) ⊆ ∑l

i=j qTαif
i
j(β) = 0. Thus we do have qβ ∈ E.

Hence, if h =
∑n

i=0 ait
i =

∑n
j=0 tjbj is chosen with a minimal number of

right monomials, hβ ∈ E for any β ∈ R and hβ can not have less number
of right monomials than h. We conclude that rannR(bi) = rannR(bj)
for any i, j ∈ {0, . . . , n}. In particular, since bn = S−n(an), we have
rannR(S−n(an)) = rannR(h). On the other hand, h ∈ E so hTai = 0
and Tai ⊆ rannT (h) for any i ∈ {0, . . . , n}. By making use of Lemma
4.2(b), we get S−n(an)Tai = 0 for all i ∈ {0, . . . , n}, i.e. bnTai = 0 for
all i ∈ {0, . . . , n}. Considering h1 = h − tnbn, we have h1 = tn−1bn−1 +
· · ·+ tb1 + b0, rannR(bi) = rannR(bj) and h1Tai = 0. Thus we conclude
as above that bn−1Tai = 0 for all i ∈ {0, . . . , n}. Continuing this process
we finally obtain biTaj = 0 for all i, j ∈ {0, . . . , n} but h(t) 6= 0. QED

The following are special cases of the condition (c) from the above
theorem:

Remarks 4.10. (1) T = R[t; S] is semiprime if and only if for any
n ≥ 0 and for any (b0, . . . , bn) ∈ Rn+1\(0, . . . , 0) there exist 0 ≤ i, k ≤ n

and l ≥ k such that biRSl(bk) 6= 0.

(2) T = R[t;D] is semiprime if and only if for any n ≥ 0 and for
any (b0, . . . , bn) ∈ Rn+1\(0, . . . , 0) there exist p, l, i, k ∈ N with 0 ≤ p ≤
l , 0 ≤ i, k ≤ n such that biR

∑n
j=k

(
l

p

)(
j

k

)
Dl−p+j−k(bj) 6= 0.
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The proofs are left to the reader (compare those conditions with Propo-
sitions 4.6 and 4.8).

Corollary 4.11. Suppose that either S = idR or D = 0, then T =
R[t;S, D] is semiprime if and only if for any nonzero monomial p ∈
T, pTp 6= 0.

Proof. The condition is clearly necessary for semiprimeness of T .

Assume that for any monomial 0 6= p ∈ T , pTp 6= 0. Let h =∑n
i=0 ait

i =
∑n

i=0 tibi be an element of T such that an 6= 0. By the
hypothesis, we have antnTantn 6= 0.

If S = idR, then bn = an. Thus 0 6= antnTantn ⊆ anTantn = bnTantn

and bnTan 6= 0 follows.

If D = 0, then bn = S−n(an). Thus 0 6= antnTantn = tnS−n(an)Tantn =
tnbnTantn.

In any case we conclude that bnTan 6= 0 and Theorem 4.9(b) shows that
T is semiprime. QED

Of course it would be nice to have simpler conditions for semiprimeness
of T than the one expressed by the condition (c) in Theorem 4.9. Let us
now present three conditions: the first is sufficient for the semiprimeness
of R[t; S, D] and the two others are necessary.

Proposition 4.12. Let R be a ring S ∈Aut(R), D an S-derivation of
R and T = R[t;S, D]. Then:

(a) The following condition is sufficient for T to be semiprime: If
b ∈ R\{0} then for any s ∈ N there exist p, l ∈ N, 0 ≤ p ≤ l such
that bRf l

p(S
s(b)) 6= 0.

(b) The following condition is necessary for T to be semiprime: for
any b ∈ R\{0} and for any n ∈ N there exists k, p, l ∈ N such that
0 ≤ k ≤ n, 0 ≤ p ≤ l and bRf l

p(f
n
k (b)) 6= 0.

(c) The following condition is necessary for T to be semiprime: for
any b ∈ R\{0} there exists p, l ∈ N, 0 ≤ p ≤ l such that bRf l

p(b) 6=
0.

Proof. (a) Let us show that the above condition implies the condition
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(c) of Theorem 4.9. Suppose (b0, . . . , bn) ∈ Rn+1\(0, . . . , 0) and let s ≤ n

be the largest index such that bs 6= 0. Hence bj = 0 for j > s and our
condition (a) above implies that there exist p, l ∈ N, 0 ≤ p ≤ l such that
bsRf l

p(Ss(bs)) 6= 0. But this means that condition (c) of Theorem 4.9 is
satisfied with i = k = s.

(b) Assume T = R[t;S, D] is semiprime, and let b ∈ R\{0}. Then
condition (c) of Theorem 4.9 applied to (0, . . . , 0, b) ∈ Rn+1\(0, . . . , 0)
shows that there exist p, l, k ∈ N such that bRf l

p(fn
k (b)) 6= 0.

(c) This is a particular case of (b) obtained by taking n = k = 0. This
can also be deduced directly by considering the fact that T semiprime
implies bTb 6= 0 for any b ∈ R\{0}. QED

As we have seen in Example 4.5, condition (c) above is not sufficient
for T to be semiprime. We don’t know if one of the conditions (a) or (b)
is equivalent to T being semiprime. Let us express condition (a) above in
a more compact way as follows:

for any b ∈ R\{0} and s ∈ N, bTSs(b) 6= 0. (4.13)

In the next proposition we give a few special cases in which this condition
is also necessary for T to be semiprime.

Proposition 4.14. Suppose that one of the following conditions is
satisfied:

(a) S = idR;
(b) D = 0;
(c) R is semiprime;
(d) For every b ∈ R\{0} there exists m ∈ {−1, 0, 1, 2, . . . } such that

bRSm(b) 6= 0;
(e) R satisfies the ACC on two-sided S-ideals and SD = qDS with

q ∈ Z(R)S,D such that for any n ∈ N,
∑n

i=0 qi is regular.

Then T = R[t; S,D] is semiprime if and only if (4.13) holds.

Proof. In virtue of Proposition 4.12(a), we need only to show that if
T is semiprime, then (4.13) holds.

(a) If T is semiprime and b 6= 0 then obviously bTb 6= 0 and (4.13) is
satisfied.
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(b) This is immediate from Proposition 4.6.

(c) is a particular case of (d).

(d) Suppose that T is semiprime but let us assume that (4.13) does
not hold. Let b ∈ R\{0} and s ≥ 1 be such that bTSs(b) = 0. Since T

is semiprime we also have Ss(b)Tb = 0. Let m = m(b) ≥ −1 such that
bRSm(b) 6= 0, then m + s ≥ 0 and Ss(b)Rtm+sb = 0. The leading coeffi-
cients of this last equation give us Ss(b)RSm+s(b) = 0, i.e. bRSm(b) = 0,
a contradiction.

(e) Suppose that T is semiprime but let us assume that there exists
b ∈ R\{0} and s ∈ N such that bTSs(b) = 0. In particular, bRtlSs(b) = 0
for any l ≥ 0. Hence, for any n ≥ s, bRSn(b) = 0 and Proposition
4.6 implies that the skew polynomial ring R[t′;S] is not semiprime. Let
I 6= 0 be an ideal of R[t′; S] such that I2 = 0. The ideal M(I) of leading
coefficients I is clearly an S-ideal. Since R satisfies the ACC on two-sided
S-ideals, Example 1.16 shows that M(I) is in fact an (S, S−1)-ideal and
M(I)2 = 0 follows. This shows that rad(R; S, S−1) = rad(R;S) 6= 0 and
Proposition 2.8 yields that rad(R; S, S−1) is an (S, S−1, D)-ideal which is
nilpotent. Hence the nonzero ideal rad(R; S, S−1)[t;S, D] of T is nilpotent
but this contradicts the fact that T is semiprime. QED

Proposition 4.15. Suppose R is S-semiprime and satisfies one of the
following conditions:

(a) The ACC on two-sided S-ideals.
(b) The ACC on left annihilators.
(c) The ACC on right annihilators.

Then the property (4.13) is satisfied and T = R[t; S,D] is semiprime.

Proof. (a) Assume that there exist b ∈ R\{0} and s ∈ N such that
bTSs(b) = 0. In particular, bRSn(b) = 0 for all n ≥ s. Put I :=∑∞

n=s RSn(b)R. Then S(I) ⊆ I and the ACC on S-ideals gives us S(I) =
I. Thus for any l ∈ Z, Sl(b)I = Sl(bI) = 0, thus I2 = 0. Since 0 6= b ∈ I

this contradicts the fact that R is S-semiprime.

(b) Assume (4.13) does not hold and let b ∈ R\{0} be such that
bTSs(b) = 0. In particular, this means that bR is Ss-nil. Using Proposi-
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tion 3.14 and Lemma 2.3(d), we obtain 0 6= rad(R; Ss) = rad(R; S). This
contradicts the fact that R is S-semiprime.

(c) Is obtained similarly as (b). QED

Before going on giving sufficient conditions on R, S, D for T to be
semiprime, let us give an example showing that even if R is very well
behaved with respect to S and D, T = R[t; S, D] can nevertheless fail to
be semiprime.

Example 4.16. Let R, S, and D be as in Example 2.11. We claim
that although R is (S, D)-simple, T = R[t;S, D] is not even semiprime.
We have shown in Example 2.11 that R is (S, D)-simple. Let us prove that
for any 0 ≤ p ≤ l (0, 1, 0)x2Rf l

p((0, 1, 0)x2) = 0. Thus, by Proposition
4.12(c), T is not semiprime.

Let us put b := (0, 1, 0)x2 and a := (0, 0, 1)x. We have b = xa and
for any 0 ≤ p ≤ l, f l

p(b) = f l
p(xa) =

∑l
i=p f l

i (x)f i
p(a). Hence bRf l

p(b) ⊆∑
p≤i≤l bRf i

p(a). We will now show that for any 0 ≤ p ≤ i ≤ l, bRf i
p(a) =

0 and this will lead to bRf l
p(b) = 0 for any 0 ≤ p ≤ l, as desired.

If p = i then f i
p = Si and bRf i

p(a) = 0 since x3 = 0.

If p ≤ i− 2 then D appears at least twice in every word of f i
p and the

definition of D implies that f i
p(a) = 0 and so bRf i

p(a) = 0.

Suppose p = i−1. Using the identity f i+1
i = Sf i

i−1 +DSi we will show
that

f i
i−1(a) =

{
0 if i ≡ 0 (mod 3) or i ≡ 1 (mod 3)

(0,−1, 0) if i ≡ 2 (mod 3)
(4.17)

Notice that f1
0 (a) = D(a) = 0, so (4.17) holds for i = 1.

Suppose (4.17) holds for some i of the form i = 3l + 1. Then:

f i+1
i ((0, 0, 1)x) = Sf i

i−1((0, 0, 1)x) + DSi((0, 0, 1)x)

= DS((0, 0, 1)x) (since S3 = idR)

= (0,−1, 0)
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f i+2
i+1 ((0, 0, 1)x) = S((0,−1, 0)) + DS2((0, 0, 1)x)

= (0, 0,−1) + D((0, 1, 0)x)

= 0

f i+3
i+2 ((0, 0, 1)x = DSi+2((0, 0, 1)x) = D((0, 0, 1)x) = 0

This shows that (4.17) holds. Hence, for proving bRf i
p(a) = 0 for all 0 ≤

p ≤ i, it remains to show that bR(0,−1, 0) = 0. However bR(0,−1, 0) =
(0, 1, 0)x2K3(0,−1, 0) = (0, 1, 0)(0, 0,−1)x2K3 = 0. QED

Let us now analyze further the relationships between S or (S, D)-
primeness (resp. S or (S, D)-semiprimeness) of R and primeness (resp.
semiprimeness) of T = R[t; S, D]. Let us first make the following easy
observation: if T is prime (resp. semiprime) then R is (S, D)-prime (resp.
(S, D)-semiprime). Up to the end of this section we will be interested in
the converse implication. We will often make some assumptions on R.
For easy further references, let us give names to the ones most often used
:

(C1) : R satisfies the ACC on two-sided S-ideals.
(C2) : R satisfies the ACC on left annihilators.
(C3) : A nonzero power of S is inner.

In the following lemma we collect a few properties of ideals M(I) of
leading coefficients.

Lemma 4.18. Let I and J be ideals of T = R[t; S, D]. Then:

(a) M(I) is an S-ideal of R.
(b) If M(J) is an (S, S−1)-ideal then IJ = 0 implies M(I)M(J) = 0.
(c) If one of the conditions (C1), (C2), (C3) is satisfied then IJ = 0

implies M(I)M(J) = 0.
(d) If I2 = 0, then M(I) ⊆ Nil(R; S).

Proof. (a), (b) are left as exercises.

(c) If either (C1) or (C3) is satisfied, then any S-ideal is in fact an
(S, S−1)-ideal and (b) above gives the desired conclusion.
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Assume now that (C2) is satisfied and consider the descending chain of
ideals

M(J) ⊇ S(M(J)) ⊇ S2(M(J)) ⊇ · · ·
which gives rise to the ascending chain of left annihilators.

lannR(M(J)) ⊆ lannR(S(M(J))) ⊆ lannR(S2(M(J))) ⊆ · · ·

The hypothesis we are assuming on R implies that there exists n ∈ N
such that lannR(Sn(M(J))) = lannR(Sn+1(M(J))). Applying S−n one
gets lannR(M(J)) = lannR(S(M(J))). Therefore lannR((M(J))) =
lannR(Sk(M(J))), for any k ≥ 0. Now, if a ∈ M(I) and p ∈ I is of degree
k having a as its leading coefficient, then by assumption, pJ = 0. In par-
ticular, aSk(M(J)) = 0. Thus a ∈ lannR(Sk(M(J))) = lannR(M(J)).
This yields aM(J) = 0 as desired.

(d) We must show that for every a ∈ M(I) and for every u ∈ N\{0}
there exists r ∈ N such that NSu

r (a) = 0. Since a ∈ M(I), there exist
n > 0 and a polynomial p ∈ I of degree n having a as a leading coefficient.
Then ptl−np = 0 for any l ≥ n, as I2 = 0. Therefore aSl(a) = 0 for all l ≥
n. Let u ∈ N\{0}. Note that either bu = aSu(a) . . . Su(n−1)(a) = NSu

n (a)
is also the leading coefficient of a polynomial of degree n from I or bu = 0.
In any case buSl(bu) = 0 if l ≥ n. In particular, 0 = buSnu(bu) = NSu

2n (a)
as we wanted to show. QED

Proposition 4.19. Suppose Nil(R;S) = 0. Then R[t; S, D] is semiprime.

Proof. This is a direct consequence of Lemma 4.18(d). QED

Lemma 4.20. If R[t; S] is prime (resp. semiprime) then R[t; S,D] is
prime (resp. semiprime).

Proof. This is a consequence of Theorem 4.4(3) for primeness and of
Propositions 4.12(a) and 4.6 for semiprimeness.

Note that the lemma can also be seen as a consequence of the fact that
R[t;S, D] is filtered with graded associated ring isomorphic to R[t;S].
QED
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Theorem 4.21. The following assertions are equivalent:

(i) R is S-prime (resp. S-semiprime)
(ii) R is S−1-prime (resp. S−1-semiprime)
(iii) R is (S, S−1)-prime (resp. (S, S−1)-semiprime)
(iv) For any a, b ∈ R\{0} there exists n ∈ Z such that aRSn(b) 6= 0

(resp. a = b)
(v) R[t, t−1; S] is prime (resp. semiprime)

Suppose moreover that one of the conditions (C1), (C2), (C3) is satisfied.
Then the above assertions are also equivalent to:

(vi) R[t;S] is prime (resp. semiprime)
(vii) R[t;S−1] is prime (resp. semiprime)
(viii) For any a, b ∈ R\{0} there exists n ∈ N such that aRSn(b) 6= 0

(resp. a = b).

Moreover, any of the above equivalent conditions implies that R[t;S, D] is
prime (resp. semiprime).

Proof. The equivalences (i) ↔ (ii) ↔ (iii) are give by Corollary 1.15.

(iii) ↔ (iv) is a special case of Lemma 2.2(a) and (b) with D = 0.

(i) ↔ (v) is an easy consequence of the following observation. If I is an
ideal of R[t, t−1; S], then M(I) is an (S, S−1)-ideal of R, because tI ⊆ I

and t−1I ⊆ I,.

Suppose now that one of the conditions (C1), (C2), (C3) is satisfied.
Then the equivalence (i) ↔(vi) is a consequence of Lemma 4.18(c)

((ii) ↔ (vii) is symmetric to (i) ↔ (vi).

When R is prime, then (vi) ↔ (viii) is a special case of (1) ↔ (3)
in Theorem 4.4 (since D = 0 implies fn

k = Sn−k). For R semiprime,
Proposition 4.6 gives (iv) → (viii) and clearly (viii) → (iv)↔(ii).

The last statement of the theorem is a direct consequence of Lemma
4.20 above.

QED

Example 4.22. Let Ki = K be a field for i ∈ Z and put R = ⊕i∈ZKi.
Let S be the ”left shifting” automorphism. We have seen in Example 4.5,
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that R[t; S] is not semiprime and similarly R[t; S−1] is not semiprime but
it is easy to check that the condition (iv) of Theorem 4.21 is satisfied and
so R[t, t−1; S] is a prime ring.

This example shows that some additional assumptions are required
in order to obtain the equivalence of the eight assertions of the above
theorem.

Let us finish this section with a look at the case when R satisfies the
ACC on ideals and D is a q-quantized S-derivation.

Proposition 4.23. Suppose R satisfies the ACC on two-sided ideals
and let D be a q-quantized S-derivation such that q ∈ Z(R)S,D and 1 +
q + · · · + qn is regular in R for all n ∈ N. Then R is (S, D)-prime
(resp. (S, D)-semiprime) if and only if T = R[t;S, D] is prime (resp.
semiprime).

Proof. This is a simple application of Theorem 2.6 (resp. Proposition
2.8) and Theorem 4.21. QED

5. The prime radical of R[t; S, D]

In this last section we will study relations between different prime rad-
icals of R introduced in the previous sections and the prime radical of
T = R[t; S, D].

Lemma 5.1. rad(R;S,D)[t;S,D] ⊆ rad(R[t;S, D])

Proof. The inclusion can be proved by transfinite induction, using the
description of rad(R; S,D) given before Proposition 1.11, as follows:

If p(t) ∈ L1[t;S,D], then p(t) ∈ I[t; S,D] for some nilpotent (S, D)-
ideal. It is easy to see that I[t; S, D] is itself a nilpotent ideal of R[t;S, D]
and so I[t; S,D] ⊆ rad(T ). In particular p(t) ∈ rad(T ) and L1[t;S, D] ⊆
rad(T ). Assume we have proved that Lα[t;S, D] ⊆ rad(R[t; S, D]) for all
α < β.

Suppose β = α + 1 for some α. Then we have the following chain of
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isomorphisms and inclusions

Lβ [t; S,D]
Lα[t;S,D]

∼= Lβ

Lα
[t; S, D] = L1

(
R

Lα

)
[t;S, D]

⊆ rad
(

R

Lα
[t; S,D]

)
∼= rad(T )

Lα[t;S, D]
.

Now, by making use of the induction hypothesis, it is easy to see that
Lβ [t; S, D] ⊆ rad(T ).

If β is a limit ordinal, Lβ = ∪α<βLα and the induction hypothesis gives
at once Lβ [t; S, D] ⊆ rad(T ). QED

Proposition 5.2. Suppose that R satisfies the ACC on S-ideals and
rad(R; S) /D R. Then rad(R[t; S, D]) = rad(R; S, D)[t; S,D].

Proof. In virtue of Lemma 5.1, we need only prove that rad(R[t; S, D]) ⊆
rad(R,S, D)[t; S, D]. After factoring out rad(R;S,D)[t;S,D], we may sup-
pose
rad(R; S, D) = 0. Assume that I is an ideal of R[t; S, D] such that
I2 = 0. Then Lemma 4.18(c) implies that M(I)2 = 0 and hence M(I) ⊆
rad(R; S). Thanks to Corollary 1.13 and our hypothesis that rad(R; S)/D

R and rad(R; S, D) = 0 we get rad(R; S) = 0 and so M(I) = 0. This
shows that I = 0 and proves that rad(T ) = 0, as required. QED

Proposition 5.3. Suppose R satisfies the ACC on ideals and D is
a q-quantized S-derivation such that q ∈ Z(R)S,D and for any n ∈ N,∑n

i=0 qi is regular in R. Then rad(R[t; S, D]) = rad(R;S,D)[t;S, D] =
rad(R)[t; S, D].

Proof. By Proposition 2.8, rad(R; S) = rad(R;D) is a D-ideal and
this proposition together with Proposition 5.2 give the thesis. QED

In case SD = DS, the above corollary can be improved so that no as-
sumption on Z-torsion is required. While proving this small improvement
we will need the following fact.

Lemma 5.4. Suppose R satisfies the ACC on ideals. Then R[t;S, D]
also satisfies this chain condition.
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Proof. This follows the standard proof. Let I be a nonzero ideal
of R[t; S, D]. Then, by assumption, the ideal M(I) of leading coeffi-
cients is finitely generated as a two-sided ideal of R. Let f1, . . . , fr be
polynomials from I whose leading coefficients generate M(I). If p ∈ I

then we can reduce the degree of p by substracting “two-sided” mul-
tiples of the fi’s, unless deg p is less than deg fi for some i. Thus if
N = max{deg f1, . . . , fr} then, by repeated substractions, we get a poly-
nomial p′ such that deg p′ < N and

p ≡ p′ (mod
r∑

i=1

TfiT ) where T = R[t;S, D]

and since fi ∈ I, p′ ∈ I. Now let g1, . . . , gs ∈ I be polynomials such that
their leading coefficients generate IN , where IN denotes the ideal of R

consisting of all leading coefficients of polynomials from I of degree smaller
than N . Then p′ can be written as a ”two-sided” linear combination of
the g′is. Hence I = 〈f1, . . . , fr, g1, . . . , gs〉.

QED

Proposition 5.5. Suppose R satisfies the ACC on ideals. If SD = DS

then rad(R[t; S, D]) = rad(R; S, D)[t; S, D].

Proof. Due to Lemma 5.1, we can factor out rad(R; S, D)[t; S, D] and
assume that R is (S, D)-semiprime. Since S and D commute, we can
extend S and D to T = R[t; S,D] by setting S(t) = t, D(t) = 0. Let
I = rad(T ). Then I is an S-ideal and, since D is an inner S-derivation
of T adjoint to t, I is in fact an (S, D)-ideal. Moreover Lemma 5.4 and
the assumption imposed on R yield that I is a nilpotent (S, D)-ideal, so
M(I) = 0 and rad(T ) = I = 0 follows. QED

We know that rad(R;S, D)[t;S, D] ⊆ rad(R[t; S, D]). In particular this
shows that rad(R;S,D)[t;S,D] is nil. Let us give other examples of nil
ideals of T = R[t;S, D].

In order to analyze powers of the set I[t; S,D] ⊆ T , we need a few
definitions and notations.

Let I0 = I and Ik :=
∑

l(ω)≤k ω(I) for any k > 0, where ω ∈ Ω = {
monomials in S and D} and l(ω) denotes the length of ω.
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For x = (x1, . . . , xn) ∈ Nn we set l(x) = n and |x| := x1 + · · ·+xn (0 ∈
N),

I(x) := Ix1 . . . Ixn

For k ∈ N and 0 6= n ∈ N, J(n,k) =
∑

x∈Nn |x|=k I(x).

These definitions are inspired by [BMP: (2.1), (2.5)].

Lemma 5.6. With the above notations we have:

(i) S(Ik) ⊆ Ik+1 and D(Ik) ⊆ Ik+1.
(ii) Ik is an ideal of R.
(iii)

D(I(x)) ⊆
∑

l(y)=l(x), |y|=|x|+l(x)

I(y) and S(I(x)) ⊆
∑

l(y)=l(x), |y|=|x|+l(x)

I(y).

(iv) D(J(n,k)) ⊆ J(n,k+n) and S(J(n,k)) ⊆ J(n,k+n).
(v) tlJ(n,k) ⊆ J(n,k+nl)R[t; S, D].
(vi) IJ(n,k) ⊆ J(n+1,k).
(vii) If k ≤ l then J(n,k) ⊆ J(n,l).
(viii) If Is

2k = 0 for some k ≥ 0 and s ≥ 1, then J(2s,(2s−1)k) = 0
(ix) If I is a finitely generated ideal then so is Ik for any k ≥ 0.
(x) (Itl + · · ·+ I)n ⊆ J(n,(n−1)nl)R[t; S,D] for any l ≥ 0 and n ≥ 1.

If D is a q-quantized S-derivation and S(I) ⊆ I, then

(i’) S(Ik) ⊆ Ik.
(iii’)

D(I(x)) ⊆
∑

l(y)=l(x), |y|=|x|+1

I(y) and S(I(x)) ⊆ I(x)

(iv’) D(J(n,k)) ⊆ J(n,k+1) and S(J(n,k)) ⊆ J(n,k).
(x’) (Itl + · · ·+ I)n ⊆ J(n,(n−1)l)R[t; S, D] for any l ≥ 0 and n ≥ 1.

Proof. (i) This is obvious.

(ii) The proof, by induction on k, is easy and left to the reader.

The statements (iii) ÷ (vii) are immediate.
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(viii) Assume Is
2k = 0. Let x = (x1, . . . , x2s) ∈ N2s with |x| = (2s−1)k.

If #{xi|xi > 2k} ≥ s we would have |x| > 2ks > (2s − 1)k. Since this
is impossible we conclude that #{xi|xi > 2k} < s. This implies that
#{xi | xi ≤ 2k} ≥ s and shows I(x) = 0. Therefore J(2s,(2s−1)k) = 0.

(ix) Let I = Ra1R + · · · + RanR. Then I1 = I + S(I) + D(I) =∑n
i=1(RaiR)+

∑n
i=1 RS(ai)R+

∑n
i=1 RD(ai)R is finitely generated. Since

Ik+1 = Ik + S(Ik) + D(Ik), the desired conclusion follows by induction.

Both (x) and (i’) ÷ (x’) are easy exercises. QED

Proposition 5.7. Suppose that for any finitely generated ideal J of R,
the S-ideal generated by J is also finitely generated and D is a q-quantized
S-derivation. Let N be an (S,D)-ideal of R such that any finitely gener-
ated ideal contained in N is nilpotent. Then N [t; S, D] is nil.

Proof. Take p(t) = antn + an−1t
n−1 + · · ·+ a1t + a0 ∈ N [t;S,D] and

put J :=
∑n

i=0 RaiR. By the assumption imposed on S, the S-ideal I

of R generated by J is also finitely generated. Lemma 5.6 (ix) implies
that for any k ≥ 0, Ik is finitely generated. Thus, by the assumption
imposed on N , each ideal Ik is nilpotent. In particular Is

2n = 0 for some
s ≥ 1. Now applying (viii) and (x’) of Lemma 5.6 we get p(t)2s = 0. This
completes the proof of the proposition. QED

The following example shows that the above proposition does not hold
without the additional assumption on S.

Example 5.8. Let K be a field and S a K-automorphism of R =
K〈xi | xixj = xjxi, x

2
i = 0 for all i, j ∈ Z〉 defined by S(xi) = xi+1 for

any i ∈ Z. Then clearly N = (xi, i ∈ Z) is an S-ideal such that every
finitely generated ideal contained in N is nilpotent. However (x0t)n =
x0 · · ·xn−1t

n 6= 0 for any n ∈ N.

We will now analyze further the case when D is a q-quantized S-
derivation. Recall that P /′D R means that P is a D-prime ideal of R.

Lemma 5.9. Suppose R satisfies the ACC on ideals (resp. S-ideals)
and rad(R) (resp. rad(R; S)) is a D-ideal, then:
rad(R[t;S,D]) = rad(R)[t; S, D] (resp. rad(R[t; S, D]) = rad(R; S)[t;S, D]).
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Proof. Under our assumptions rad(R) (resp. rad(R; S)) is a nilpo-
tent (S, D)-ideal. Hence rad(R)[t; S,D] (resp. rad(R; S)[t; S,D]) is nilpo-
tent and so rad(R)[t; S, D] ⊆ rad(R[t; S,D]) (resp. rad(R;S)[t; S, D] ⊆
rad(R[t;S,D])).

In order to prove the reverse inclusion we first factor out rad(R)[t;S, D]
(resp. rad(R; S)[t;S, D]). Thus we may assume that R is semiprime (resp.
S-semiprime) and hence also S-semiprime. Then Theorem 4.21 shows that
R[t;S, D] is semiprime, as desired. QED

Theorem 5.10. Suppose that D is a q-quantized S-derivation of R,
where q ∈ Z(R)S,D is such that both q and

∑n
i=0 qi are regular in R for

any n ∈ N. If R satisfies the ACC on S-ideals then rad(R[t;S,D]) =
rad(R; S)[t;S, D]

Proof. By Corollary 2.7 rad(R; S) is an (S, D)-ideal. Now, Lemma
5.9 gives the thesis. QED

In case when R is commutative noetherian Goodearl [G] gave a com-
plete classification of prime ideals of R[t; S, D]. Using one of his results,
it is easy to get the following.

Theorem 5.11. Suppose R is commutative and noetherian then

rad(R[t; S, D]) = rad(R; S,D)[t; S,D].

Proof. It is enough to prove that rad(R[t;S, D]) ⊆ rad(R;S, D)[t;S, D].
Let I ∈ Spec(R;S,D). Then Theorem 3.3 of [G] shows that IT = I[t; S,D] ∈
Spec(R[t;S, D]). Hence

rad(R; S, D)[t; S, D] =
⋂

I∈Spec(R;S,D)

I[t; S, D] ⊇ rad(R[t; S, D]).

QED

In general we have rad(R; S, D)[t; S, D] ⊆ rad(R[t; S, D]) and we have
seen that in some cases the reverse inclusion was true. In particular
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ascending chain conditions were useful specially when dealing with q-
quantized derivations. One feature of q-quantized derivation is the fact
that both S and D can be extended to the Ore extension T = R[t;S, D]
itself, by setting S(t) = qt and D(t) = (1 − q)t2. Then D becomes
an inner S-derivation adjoint to t. After extending S and D to T we can
consider rad(T ; S) and rad(T ; S, D). It turns out that rad(R;S, D)[t;S, D]
is characterized by these radicals, more precisely :

Theorem 5.12. Suppose that SD = DS and let T = R[t;S,D]. Then:

(a) T is (S, D)-semiprime if and only if R is (S, D)-semiprime.
(b) rad(R; S, D)[t; S, D] = rad(T ; S, D) = rad(T ; S).
(c) If a nonzero power of S is inner then rad(T ) = rad(R; S, D)[t; S, D].

Proof. (a) Assume R is (S, D)-semiprime but T is not. Then there
exists f = antn + · · · + a0 ∈ T , with an 6= 0, such that fTSkDl(f) = 0
for all (k, l) ∈ Z × N (see e.g. Lemma 2.2(c)). Then anRSkDl(an) = 0
and the fact that R is (S, D)-semiprime gives an = 0, a contradiction.

Conversely assume T is (S, D)-semiprime and let I/(S,D)R be such that
I2 = 0 then I[t;S, D] /(S,D) T and (I[t; S, D])2 = 0. Thus I[t;S,D] = 0
and finally I = 0. This shows that R is (S, D)-semiprime.

(b) Since D is an inner S-derivation of T , we have rad(T ;S,D) =
rad(T ;S).

We shall now show that rad(R;S, D)[t;S, D] = rad(T ; S,D). LetI
stands for rad(R; S, D). Then R/I is (S, D)-semiprime and, by using
(a) above, R/I[t; S, D] is (S, D)-semiprime. Hence R[t; S,D]/I[t;S, D] is
(S, D)-semiprime and I[t;S, D] ⊇ rad(T ; S, D).

Conversely if P is a (S, D)-prime ideal of T = R[t; S, D], then P ∩ R

is an (S, D)-prime ideal of R and so rad(R; S, D) ⊆ P ∩ R. Therefore
rad(R; S, D) ⊆ rad(T ; S, D).

(c) If suffices to apply Lemma 2.3(d) and (b) above. QED

Remark 5.13. (1) If we assume that R satisfies the ACC on ideals
and SD = DS, then Corollary 2.4(b) and Theorem 5.12(b) give back
Proposition 5.5: rad(R;S, D)[t;S, D] = rad(T ).

44



(2) If D is a q-quantized S-derivation, then one can show that T is
(S, D)-semiprime implies R is (S, D)-semiprime and rad(R;S, D)[t;S, D] ⊆
rad(T ;S) = rad(T ; S, D).

The ideal rad(R, S, D)[t; S, D] of T = R[t; S, D] can be seen, according
to Lemma 5.1, as a lower bound for rad(T ). Let us now end the paper with
an attempt to get an ”upper bound”. For this we introduce a definition
of (S, D)-primeness which is unsymmetric and imitates the one given in
[PS].

Definitions 5.14. (1) Let P be an (S, S−1, D)-ideal. P is right (S, D)-
prime if for any a, b ∈ R\P , there exists n ≥ k ≥ 0 such that aRfn

k (b) 6⊆ P ,
where fn

k ∈ End(R, +) are defined as in Example 1.4.

(2) The set of right (S,D)-prime ideals will be denoted Spec(S,D)(R)
and P(S,D)(R) will stand for the intersection of all these right (S,D)-prime
ideals.

In the following lemma we will compare these new notions with the
analogue ones introduced in earlier sections.

Lemma 5.15. Keeping the notations as above, we have:

(a) P ∈Spec(S,D) if and only if P /(S,S−1,D) R and

∀A/R ∀B/(S,D)R , if AB ⊆ P then either A ⊆ P or B ⊆ P (5.16)

(b) Spec(S,D)(R) ⊆ Spec(R; S, D) and rad(R; S, D) ⊆ P(S,D)(R)
(c) If S = idR, then SpecD(R) = Spec(R;D) and rad(R; D) = PD(R)
(d) Let q ∈ R be such that both q and

∑n
i=0 qi are invertible in R for

any n ∈ N. If D is q-quantized and R satisfies ACC on S-ideals
then Spec(S,D)(R) = Spec(R;S, D) and P(S,D)(R) = rad(R;S, D).

Proof. (a) Let P ∈ Spec(S,D)(R) be a right (S, D)-prime ideal and
assume AB ⊆ P for some A / R and B /(S,D) R. If A 6⊆ P , let a ∈ A\P
then aB ⊆ P so aRB ⊆ P and since B is an (S, D)-ideal aRfn

k (B) ⊆ P

for any 0 ≤ k ≤ n. Now, since a ∈ A\P , Definition 5.14(1) shows that
B ⊆ P .

Conversely, let P /(S,S−1,D)R such that (5.16) is satisfied. If a, b ∈ R are
such that aRfn

k (b) ⊆ P for any 0 ≤ k ≤ n, then RaR
∑

n≥k≥0 Rfn
k (b)R ⊆
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P . However
∑

n≥k≥0 Rfn
k (b)R /(S,D) R and (5.16) implies that either

RaR ⊆ P or
∑

Rfn
k (b)R ⊆ P . In particular, a ∈ P or b ∈ P.

(b) The first inclusion is clear thanks to (a) and the second then follows
immediately.

(c) In view of (b) above, we only need to show Spec(R, D) ⊆ SpecD(R).
Let P ∈ Spec(R, D) be a D-prime ideal in R. If a, b ∈ R are such
that aRDn(b) ⊆ P , for any n ≥ 0, then (RaR)(

∑
n≥0 RDn(b)R) ⊆ P .

Put I :=
∑

n≥0 RDn(b)R /P R, then we have aI ⊆ P . By applying
powers of D, we obtain D(a)I ⊆ P, . . . , Di(a)I ⊆ P . This means that
(
∑

RDi(a)R)(
∑

RDi(b)R) ⊆ P . Since P ∈ Spec(R, D), we see that
either

∑
i≥0 RDi(a)R ⊆ P or

∑
i≥0 RDi(b)R ⊆ P . In particular either

a ∈ P or b ∈ P and this shows P ∈ SpecD(R) as desired.

(d) Since R satisfies ACC on S-ideals, every S-ideal is in fact an
(S, S−1)-ideal. Therefore any ideal P ∈ Spec(R, S,D) is also an (S, S−1, D)-
ideal. Due to the assumption imposed on q,

(
n
i

)
q

is invertible in R for any
n ∈ N and 0 ≤ i ≤ n. Now the statement (d) can be obtained easily using
Lemma 2.2(c)(iv). QED

Theorem 5.17. For T = R[t;S, D], the following inclusions hold:

rad(R;S, D)[t; S, D] ⊆ rad(T ) ⊆ P(S,D)(R)[t; S,D].

In particular, if rad(R; S, D) = P(S,D)(R), then rad(T ) = rad(R;S, D)[t;S, D].

Proof. The first inclusion was proved in Lemma 5.1. To prove the
second one it is enough to show that for any P ∈ Spec(S,D)(R), P [t;S, D]
is a prime ideal of T . Equivalently we must show that

T

P [t;S,D]
∼= R

P
[t; S, D]

is a prime ring. But this is an obvious consequence of Theorem 4.4(3).
QED

The above proposition together with Lemma 5.15(c) and (d) give the
following.
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Corollary 5.18.

(1) If S = idR then rad(T ) = rad(R;D)[t; D]
(2) Let q ∈ R be such that both q and

∑n
i=0 qi are invertible in R for

any n ∈ N. If D is a q-quantized S-derivation and R satisfies the
ACC on S-ideals then rad(T ) = rad(R, S, D)[t; S, D].

Let us mention that (1) above was obtained in [FKM] and (2) is in the
same vein as those in Theorem 5.10.
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