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Abstract

This paper presents the M/Pareto model as a potentially use-
ful tool in the modeling of broadband traffic streams. We
show that this model can be used to accurately estimate the
queueing performance of a variety of realistic multimedia
traffic streams. We also show a practical way to fit the pa-
rameters of the model with those of the real traffic stream.
We also point out that it it is not practical to seek a per-
fect model and that a consensus around a model such as the
M/Pareto is important.

1 Introduction

Over the past two decades there were many proposals for
broadband and/or multimedia traffic models (see, for ex-
ample [2, 5, 6, 7, 8, 9, 11, 14, 15] and references therein).
Despite the extensive effort to find a perfect model, there
is still no consensus on a traffic model which is used by
all practitioners for analysis and performance evaluation of
new products and protocols, and for network dimensioning.
There is no model which fills the role that the Erlang for-
mula has in traditional telephony. Lack of such consensus
makes it difficult to compare and choose between compet-
ing products, as different benchmark measures make it im-
possible to compare “apples with apples.” In recent work
[3, 4, 12, 13] the M/Pareto process has been examined as
a model for broadband traffic. Because of its simple and
realistic features, we propose the M/Pareto as the standard
model for broadband traffic, even though it is not “perfect,”

In this paper we summarise the results of the previous
work, and present a critical evaluation of the capabilities of
the M/Pareto process. We show that the M/Pareto process
can accurately predict the queueing performance of a wide
range of broadband traffic sources. We also take the oppor-
tunity to correct formulae relating to the M/Pareto process
which were quoted incorrectly previously, and show deriva-
tions for the corrected expressions.

We use a form of the M/Pareto model given in [11] as
a model for broadband traffic streams. Using a discrete

time modeling framework, we show that when the M/Pareto
process is correctly matched to a realistic broadband traf-
fic stream, it produces queueing performance results which
match those of the original traffic.

In Section 2 we explain our requirements for a useful traf-
fic model, and define the queueing framework used in eval-
uating our models. In Section 3 we describe the M/Pareto
model and explain how the properties of the M/Pareto ¡ pro-
cess make it possible for us to fit multiple M/Pareto pro-
cesses ¡ with differing levels of aggregation to a given traf-
fic stream. Section 4 presents a summary of results show-
ing that the M/Pareto model can accurately model realistic
broadband traffic sources. In Section 5 we discuss some of
the difficulties in using the M/Pareto model which have yet
to be overcome.

2 Modeling a Traffic Stream

We model a single link in a packet switched network as a
FIFO single server queue (SSQ) with an infinite buffer. We
divide our time scale into fixed length sampling intervals,
and letAn be a continuous random variable representing the
amount of work entering the system during thenth sampling
interval. Let the server have a constant service rate of� per
interval. The processfAng is assumed to be stationary and
ergodic. We defineE(An) and�2 to be the mean offAng
and variance offAng respectively. We further assume thatfAng is a long range dependent (LRD) process with Hurst
parameterH:

We base our decisions on the suitability of a model upon
its ability to characterise the buffer overflow probability of
measured traffic in the SSQ system just described. For most
practical purposes, an accurate prediction of queueing per-
formance in a given scenario is sufficient. Of course, an
ideal model will also correctly model the marginal distri-
butions and correlations of the modeled traffic, but these
niceties tend to come with a price of increased model com-
plexity.

1



3 The M/Pareto Model

We have described the M/Pareto model in [3, 4, 12].
The M/Pareto process is a particular type of the generalM=G=1 process considered in [9] and can also be con-
sidered a type of Poisson burst process, as described in [14]

As for any Poisson burst process, the Poisson rate,�, of
the M/Pareto process controls the frequency with which new
bursts commence. The superposition of two independent
Poisson burst processes with identical burst length distribu-
tions will itself be an Poisson burst process with Poisson ar-
rival rate equal to the sum of the arrival rates of the two con-
stituent processes. Thus, increasing� can be considered to
represent an increase in the number of sources which make
up an M/Pareto stream.

The cell arrival process for each burst is constant for the
duration of that burst, and has rater. All bursts generate
cells at the same rater. The burst duration is taken from a
Pareto distribution. The complementary distribution func-
tion for a Pareto-distributed random variable is given byPr (X > x) = ��x� �� ; x � �,1; otherwise,

(1)1 <  < 2, � > 0. The mean ofX is �(�1) and the variance
of X is infinite.

Thus the mean number of cells within one burst is:r��1 .
The mean amount of work arriving within an interval of
lengtht in the M/Pareto traffic model is�tr�(�1) :

Although the Pareto process has infinite variance, the
variance of the M/Pareto process is finite. The variance
function of the M/Pareto process is

�2(t) = 8>>>>>>>>>>>><>>>>>>>>>>>>:
2r2�t2 � �2 �1� 11��� t6� ; 0 � t � �2r2�n�3 � 13 � 12�2+ 1(1�)(2�)(3�)�+�2 �12 � 11�+ 1(1�)(2�)� (t� �)� t3���(1�)(2�)(3�)o ; t > � (2)

This is a more general expression of the variance function
given for processes of this type in [2] and represents a cor-
rection to the variance function quoted in [3, 4, 12]. A full
derivation of the variance function for an M/Pareto process
is given in Appendix A.

Throughout our modeling we make use of the fact that, as
a type of Poisson burst process, the M/Pareto model has the
useful property that the superposition of multiple indepen-
dent M/Pareto processes is itself an M/Pareto process, with
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Figure 1: Modeling an Ethernet trace

increased Poisson arrival rate,�. We use of this property
to increase the level of aggregation in the M/Pareto process.
We follow the fitting method described in [12] to produce
a family of M/Pareto processes with given mean net arrival
rate, variance and Hurst parameter, but with varying levels
of aggregation. When we do so, we observe that increasing
the level of aggregation in the M/Pareto process, i.e. in-
creasing�, alters the behaviour of the M/Pareto process. In
fact, as� increases the M/Pareto process behaves more and
more like a Gaussian process.

4 Modeling Results

In [4] we showed some success in using the technique de-
scribed above to fit an arbitrary Ethernet trace. As Figure 1
shows, for a correct choice of the value of�, the M/Pareto
model accurately fit with the queueing performance of a real
Ethernet trace.

Figure 1 illustrates this result. In the figure, the� = 0:01
curve represents an M/Pareto process fitted to the three pa-
rameters (m, variance and Hurst parameter) of the real traf-
fic, with an arbitrary choice of�. The� = 1 curve repre-
sents a fitting of the same values ofm, �2 andH; but with a
more careful choice of�. TheGaussiancurve in the figure
shows that the Ethernet traffic stream cannot be modeled by
a Gaussian process.

As was suggested in [1], where a sufficiently large num-
ber of independent sources contribute to an aggregate traf-
fic stream, i.e. when� becomes sufficiently large in our
M/Pareto model, we expect that stream to assume the prop-
erties of an Gaussian process. It seems that in the Ether-
net traffic, the number of contributing sources is insuffi-
cient for the Gaussian behaviour to manifest itself. Using
the M/Pareto model with a correct choice of�, it is possi-
ble to accurately estimate the queueing performance for this



non-Gaussian stream.
In [13] we showed similar results for an IP packet trace.

As with the Ethernet trace, a Gaussian process was not able
to accurately predict the queueing performance of the IP
stream. The M/Pareto process did provide accurate pre-
diction of the queueing performance, when the value of�
was chosen correctly. It is worth noting that the value of�
required to characterise the IP stream was larger than that
required for the Ethernet trace. Our interpretation of� sug-
gests that this would imply a greater number of sources con-
tributed to the IP trace than to the Ethernet trace.

Given the interpretation of� as the level of aggregation
in the stream, it is perhaps not surprising that it needs to
be correctly fitted in order to create a model which can be
used to match an aggregated traffic stream such as Ether-
net or IP traffic. However aggregated data streams are not
the only source of broadband traffic streams. In [12] we
examined another major source of broadband traffic: VBR
video traces. As for the data traffic, our ability to predict the
queueing performance of the VBR video traffic was found
to depend upon the choice of�. Thus it seems that some
representation of the level of aggregation is important in
predicting the queueing performance even of traffic streams
in which the level of aggregation has no physical meaning.

5 Limitations of Our Approach

As we stated in Section 2, we have evaluated the accuracy
of the M/Pareto model only in terms of its ability to predict
queueing performance. It is not necessarily useful in any
other characterisation of traffic or of network performance.

As Arvidsson and Karlsson have observed [6], the im-
pact of retransmissions in the real data traffic streams will
affect the accuracy of our model. We assume that the mea-
sured traces contain only user data, but in reality a propor-
tion of the packets will be the result of retransmissions of
lost packets. If we dimension based on the assumption that
all packets are user packets we will over-dimension the net-
work. Nevertheless, if we then measure traffic from the
over-dimensioned network, it should be free of retransmis-
sions, allowing us to make a better revised decision.

Finding the correct parameters for our M/Pareto process
is not a simple task. EvaluatingH from a real (and therefore
finite) traffic stream is never easy. As discussed in [8], it is
not always possible to distinguish between an LRD process
and a non-stationary one. Our assumption throughout has
been that the traffic under examination is both stationary
and LRD, but testing these assumptions is no easy task.

We have seen that choosing the right value for� is vi-
tal in creating an M/Pareto process capable of matching the
queueing curves of real traffic streams. However the choice
of � is complicated by the fact that the correct value of�
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Figure 2: Fitting an Ethernet trace for different service rates

differs depending on the service rate� (or equivalently the
value ofm).

In Figure 2, we show the queueing curves produced when
a pair of traffic streams are fed into SSQs with a variety of
services rates. The figure shows four pairs of curves. In
each pair the heavier line represents the queueing perfor-
mance of the Ethernet trace when fed into an SSQ with ser-
vice rate� . The lighter line represents the performance of an
M/Pareto process matched to the properties of the Ethernet
trace in an identical SSQ. The M/Pareto process used has�
chosen so as to provide a good fit with the Ethernet traffic
when� = 500. As Figure 2 shows, while a given value of�
may give an acceptable fitting for a range of service rates, in
general a different value of� must be determined for each
service rate considered.

As yet we have no systematic method for determining
the value of� to be used in modeling a given traffic stream.
Trial and error must be used for each different traffic source,
and for each different service rate. In every case we have
considered so far it has been possible to find a value of�
which is appropriate, but a systematic method would greatly
enhance this process. Until a heuristic for determining�
is developed, this will limit the practical usefulness of the
M/Pareto process.

6 Conclusions

In this paper we have presented the M/Pareto process as
a suitable practical model for broadband traffic. We have
shown that the M/Pareto process is capable of accurately
matching the queueing performance of a range of different
broadband traffic types. The simplicity and accuracy of the
M/Pareto model make it a good candidate for the role of the
standard model for broadband traffic.

We have also discussed some of the limitations of our use



of the M/Pareto process. Some of these limitations, such as
the difficulty in estimating the Hurst parameter from a finite
data set, are common to all models, but others are specific
to the M/Pareto model. One of the key limitations of the
M/Pareto process is the lack of a simple formula or heuristic
to determine the correct value for�. If such a formula can
be developed, the M/Pareto process will present a useful
practical approach for the modeling of multimedia and data
traffic.

Appendix A: Derivation of M/Pareto Variance

In [14] the variance function for a Poisson burst process
with bursts arriving with Poisson rate�, and burst rater
is given by�2(t) = 2�r2 Z t0 du Z u0 dv Z 1v Pr(X > x)dx (3)

wherePr(X > x) is the complementary distribution func-
tion describing the burst durations.

We use an M/Pareto process with complementary distri-
bution function given byPr (X > x) = ��x� �� ; x � �,1; otherwise,

(4)

where1 <  < 2, � > 0.
Definef(v) as the first stage of the integration given in

Equation (3). Whenv � �f(v) = Z 1v Pr(X > x)dx= Z 1v �x� ��dx= �v�+1�� (� + 1)
Whenv < �f(v) = Z 1v Pr(X > x)dx= Z �v 1dx+ Z 1� �x� ��dx= � � �(� + 1) � v
Now defineg(u) as the integral off(v) over the bounds

required by Equation (3). Whenu � �g(u) = Z u0 f(v)dv

= Z �0 �� � �(� + 1) � v� dv+ Z u� �v�+1�� (� + 1)dv= ��� � �(� + 1)� v � v22 ��0+ � �v�+2�� (� + 1) (� + 2)�u�= �2�12 � 1(� + 1)�� u�+2�� (� + 1) (� + 2) + �2(� + 1) (� + 2)
Whenu < �g(u) = Z u0 f(v)dv= Z u0 �� � �(� + 1) � v� dv= �� � �(� + 1)�u� u22
The final integral is�2(t) = 2�r2 Z t0 g(u)du: (5)

For t � �,�2(t) = 2�r2 Z t0 g(u)du= 2�r2(Z �0 ��� � �(� + 1)�u� u22 � du+ Z t� ��2�12 � 1(� + 1) + 1(� + 1) (� + 2)�� u�+2�� (� + 1) (� + 2)� du�= 2�r2(��� � �(� + 1)� u22 � u36 ��0+ ��2�12 � 1(� + 1) + 1(� + 1) (� + 2)�u� u�+3�� (� + 1) (� + 2) (� + 3)�t�)= 2�r2 ��32 �1� 1(� + 1)�� �36



+�2�12 � 1(� + 1) + 1(� + 1) (� + 2)� (t� �)� t�+3 � ��+3�� (� + 1) (� + 2) (� + 3)�
So whent � ��2(t) = 2r2�n�3 � 13 � 12�2 + 1(1�)(2�)(3�)�+�2 �12 � 11� + 1(1�)(2�)� (t� �)� t3���(1�)(2�)(3�)o

(6)
Whent < ��2(t) = 2�r2 Z t0 g(u)du= 2�r2 Z t0 ��� � �(� + 1)�u� u22 � du= 2�r2 ��� � �(� + 1)� t22 � t36 ��2(t) = 2�r2t2��2 �1� 1(� + 1)�� t6� (7)

If we choose the case where� = 1 and set� = � in
Equations (6) and (7) we see that these are equivalent to the
expressions given in [2].
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