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Abstract. We present the design, prototype implementation, and eval-
uation of CenceMe, a personal sensing system that enables members
of social networks to share their sensing presence with their buddies
in a secure manner. Sensing presence captures a user’s status in terms
of his activity (e.g., sitting, walking, meeting friends), disposition (e.g.,
happy, sad, doing OK), habits (e.g., at the gym, coffee shop today, at
work) and surroundings (e.g., noisy, hot, bright, high ozone). CenceMe
injects sensing presence into popular social networking applications such
as Facebook, MySpace, and IM (Skype, Pidgin) allowing for new levels
of “connection” and implicit communication (albeit non-verbal) between
friends in social networks. The CenceMe system is implemented, in part,
as a thin-client on a number of standard and sensor-enabled cell phones
and offers a number of services, which can be activated on a per-buddy
basis to expose different degrees of a user’s sensing presence; these ser-
vices include, life patterns, my presence, friend feeds, social interaction,
significant places, buddy search, buddy beacon, and “above average?”

1 Introduction

The growing ubiquity of the Internet provides the opportunity for an unprece-
dented exchange of information on a global scale. Those with access to this
communication substrate, and among these especially the youth, increasingly
incorporate information exchange via technologies such as email, blog, instant
message, SMS, social network software, and VOIP into their daily routines. For
some, the electronic exchange of personal information (e.g., availability, mood)
has become a primary means for social interaction [2]. Yet, the question of how
to incorporate personal sensing information such as human activity inferencing
into these applications has remained largely unexplored. While existing commu-
nication forums allow the exchange of text, photos, and video clips, we believe a
user experience with a richer texture can be provided in a more natural way by
integrating automatic sensing into the various software clients used on mobile
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communication devices (e.g., cellular phone, PDA, laptop) and popular Internet
applications.

It seems we are well situated to realize this vision now. The technology push
driving the integration of sensors into everyday consumer devices such as sensor-
enabled cell phones is one important enabler, setting the scene for the deployment
of large-scale people-centric sensing applications [41] over the next decade. We
can observe change in the marketplace: the commonly carried cell phone of today
with its microphone and camera sensors is being superseded by smart-phones
and PDA devices augmented with accelerometers capable of human activity
inferencing, potentially enabling a myriad of new applications in the healthcare,
recreational sports, and gaming markets. We imagine people carrying sensor-
enabled cell phones or even standard cell phones for that matter will also freely
interact over short range radio with other sensors not integrated on the phone
but attached to different parts of the body (e.g., running shoes, BlueCel dongle,
as discussed in Section 5), carried by someone else (e.g., another user), attached
to personal property (e.g., bike, car, ski boot), or embedded in the ecosystem of
a town or city (e.g., specialized CO2, pollen sensors).

In this paper, we present the design, prototype implementation, and evalu-
ation of CenceMe, a personal sensing system that enables members of social
networks to share their sensing presence with their buddies in a secure manner.
CenceMe allows for the collection of physical and virtual sensor samples, and the
storage, presentation and controlled sharing of inferred human sensing presence.
When CenceMe users engage in direct communication (e.g., instant messaging),
we aim to allow the conveyance of non-verbal communication that is often lost
(or must be actively typed - an unnatural solution) when human interaction is
not face to face. When indirect communication is used (e.g., Facebook profile),
we aim to make people’s personal status and surroundings information - i.e., their
sensing presence - available. Similarly, through mining of longer term traces of
a user’s sensed data CenceMe can extract patterns and features of importance
in one’s life routine.

The concept of “sensing presence” is fundamental to the CenceMe system,
capturing a user’s status in terms of his activity (e.g., sitting, walking, meeting
friends), disposition (e.g., happy, sad, doing OK), habits (e.g., at the gym, cof-
fee shop today, at work) and surroundings (e.g., noisy, hot, bright, high ozone).
CenceMe injects sensing presence into popular social networking applications
allowing for new levels of “connection” between friends in social networks. We
believe that providing a framework allowing the collection, organization, presen-
tation, and sharing of personal sensing presence and life pattern information will
serve a broad spectrum of people, and represents the core challenge of making
people-centric sensing [41] a reality. One can imagine many situations where the
availability of sensing presence would provide great utility. We have, for exam-
ple, on the one end a mum who wants to simply know where her kid is, to the
youth interested in knowing and catching up with what is hot, where his friends
are and what they are doing, what are the trendy hang outs, where a party is
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taking place, and comparing himself to his peer group and the broader CenceMe
community.

The CenceMe architecture includes the following components:

– thin sensing clients focus on gathering information from mobile user com-
munication computing devices including a number of standard and sensor-
enabled cell phones. We leverage physical sensors (e.g., accelerometer, cam-
era, microphone) embedded in off-the-shelf mobile user devices (e.g., Nike+
[5], Nokia 5500 Sport [7], Nokia N95 [7]), and virtual software sensors that
aim to capture the online life of the user. The thin-client also supports inter-
action between the phone and external sensors over short-range radio such
as the BlueCel dongle (discussed in Section 5), which integrates a 3-axis ac-
celerometer with a Bluetooth radio that can be attached to the body (e.g.,
as a badge) or other entities (e.g., bike).

– a sensor data analysis engine that infers sensing presence from data.
– a sensor data storage repository supporting any-time access via a per-user

web portal (a la Nike+ [5]).
– a services layer that facilitates sharing of sensed data between buddies and

and more globally, subject to user-configured privacy policy. CenceMe ser-
vices can be activated on a per-buddy basis to expose different degrees of
a user’s sensing presence to different buddies, as needed. These services in-
clude (i) life patterns, which maintains current and historical data of interest
to the user - consider this a sensor version of MyLifeBits [46]; (ii) my pres-
ence, which reports the current sensing presence of a user including activity,
disposition, habits, and surroundings, if available; (iii) friend feeds, which
provides an event driven feed about selected buddies; (iv) social interaction,
which uses sensing presence data from all buddies in a group to answer ques-
tions such as “who in the buddy list is meeting whom and who is not?”; (v)
significant places, which represents important places to users that are au-
tomatically logged and classified, allowing users to attach labels if needed -
in addition, users can “tag” a place as they move around in a user-driven
manner; (vi) health monitoring, which uses gathered sensing presence data
to derive meaningful health information of interest to the user; (vii) buddy
search, which provides a search service to match users with similar sensing
presence profiles, as a means to identify new buddies; (viii) buddy beacon;
which adapts the buddy search for real-time locally scoped interactions (e.g.,
in the coffee shop); and finally (ix) “above average?”, which compares how
a user is doing against statistical data from a user’s buddy group or against
broader groups of interest (e.g., people that go to the gym, live in Hanover)
- in the latter case the presentation of data is always strictly anonymous.

– Consumers of sensing presence run as plugins to popular social networks
software (e.g., Skype [9], Gaim/Pidgin [12], Facebook [36], MySpace [37]),
rendering a customizable interpretation of the user information.

The rest of the paper is organized as follows. In Section 2, we discuss the
CenceMe architecture in more detail, including the types of physical and virtual
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Sense Learn Share

Fig. 1. Information and process flow in the CenceMe system

sensors we design for, the inference and analysis techniques we use, and the ap-
plication plugin infrastructure and the per-user web portal that exist to present
the distilled sensing presence of the user. We describe the set of services CenceMe
provides to applications in Section 3. The CenceMe privacy strategy is discussed
in Section 4. Section 5 describes our current prototype implementation; results
from the implementation are shown in Section 6. Related work is discussed in
Section 7 before we conclude.

2 CenceMe Architecture

With the CenceMe system, we aim to leverage the growing integration of sensors
into off-the-shelf consumer devices (e.g., cell phones, laptops) to unobtrusively
collect information about device users. The goal of the information collection
is to allow the system to learn (via data fusion and analysis) characteristics
and life patterns of individuals and groups, and to feed this learned information
back to users in the form of application services. Noting the increasing popularity
of social network applications such as Facebook and MySpace, along with the
increasing usage of instant messaging as a replacement to email in both the
business world and otherwise, it is clear there is a strong market for the sharing
of information learned from sensed data as well. We apply this sense/learn/share
model in the design of the CenceMe architecture described in the following.

Conceptually, the core of the CenceMe architecture resides on a set of servers
that hold a database of users and their sensing presence data, implement a
web portal that provides access to processed user data via per-user accounts,
and contain algorithms to draw inferences about many objective and subjective
aspects of users. APIs to the CenceMe core are used by thin clients running
on consumer computing and communication devices such as cell phones, PDAs
and laptop computers to push to the core information about the user and his
life patterns based on sensed data. While this processed user information is
available (both for individual review and group sharing) via the CenceMe web
portal, APIs for the retrieval and presentation of (a subset of) this information
are used by plugins to popular social network applications (e.g., Skype, Pidgin,
Facebook, MySpace) to pull from the core. The CenceMe core in concert with
the implemented APIs provide the services discussed in Section 3. A diagram of
the relative positioning of the CenceMe core is shown in Figure 2.

In terms of the physical separation of functionality, the CenceMe architecture
can be separated into two device classes: back end servers implementing the



CenceMe – Injecting Sensing Presence into Social Networking Applications 5

Cellphones Laptops PDAs
Embedded
   Sensors

Consumer devices

Multimedia Blogosphere
Networks

SocialInstant
Messaging

CenceMe APIs

CenseMe

CenceMe APIs

Storage Inference Presentation

Applications

Fig. 2. The relative positioning of the CenceMe core between sensors on devices pro-
ducing data applications consuming information gleaned from sensed data

CenceMe core, and off-the-shelf consumer computing and communications de-
vices that are integrated into the system via APIs to the core. Figure 3 shows the
high-level software components that reside on each of these two device classes.
Communication between consumer devices takes place according to the avail-
ability of the 802.11 and cellular data channels, which is impacted both by the
device feature set and by radio coverage. For devices that support multiple com-
munication modes, communication is attempted first using a TCP/IP connection
over open 802.11 channels, second using GPRS-enabled bulk or stream transfer,
and finally SMS/MMS is used as a fallback. In the following, we describe the
sensing, analysis and presentation components in more detail.

2.1 Sensing

Conceptually, the thin sensing client installed on the user device periodically
polls on-board sensors (both hardware and software) and pushes the collected
data samples via an available network connection (wired or wireless) to the
CenceMe servers for analysis and storage. For sensing modalities that are par-
ticularly resource taxing (especially for mobile devices), sensor sampling may be
done on demand via an explicit query. Sampling rates and durations for each
of the sensors discussed in this section are set in accordance with the needs of
our inferencing engine. Typically, the sensing clients use low rate sampling to
save energy and switch to a higher rate sensing upon detection of an interesting
event (i.e., set of circumstances) to improve sampling resolution. Given the pric-
ing schemes of MMS/SMS and the battery drain implied by 802.11 or cellular
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Fig. 3. High level Software architecture of the CenceMe core and clients

radio usage, we take further energy-saving and cost-saving measures. Data is
compressed before sending to the core, both using standard generic compres-
sion techniques on raw data, and domain-specific run-length encoding (e.g., for
a stand/walk/run classifier, only send updates to the back end when the state
changes). When using SMS, we use the maximum message size to minimize the
price per bit. Also, we migrate preliminary data analysis (e.g., filtering, infer-
ence) when it makes sense to do so. Given the computational power of most new
cellular phones, significant processing can be done on the mobile device to save
on communication costs. However, all aggregate (trans-users) analysis is done
on the back end. A discussion of the CenceMe hardware and software sensors
follows.

Hardware Sensors. In the CenceMe architecture, we focus on the following
classes of computer communication devices: cell phones like the Nokia N80 and
N95 [7]; PDAs like the Nokia N800 [7]; phone/PDA hybrids like Apple iPhone
[38]; embedded sensor platforms like Nike+ [5]; recreational sensor platforms like
Garmin Edge [40], SkiScape [51] and BikeNet [43]; and laptop/desktop comput-
ers. Through a survey of the commonly available commercial hardware, includ-
ing the examples just mentioned, the following hardware sensors are currently
available on one or more COTS devices: embedded cameras, laptop/desktop web
cameras, microphone, accelerometer, GPS, radio (e.g., BlueTooth device contact
logs, 802.15.4 ranging, 802.11 localization [45] [48]), temperature, light, humid-
ity, magnetometer, button clicks, and device state (e.g., ringer off). CenceMe
exploits the availability of these sensors.

Virtual Software Sensors. Software sensors are those that measure artifacts
of other software that runs on the computing platform in an effort to understand
the context of the human’s behaviour, mood, etc. They are “virtual” in that they
do not sense physical phenomena but rather sense electronic breadcrumbs left
as the human goes about his daily routine. Examples of virtual software sensors
include, a trace of recent/current URLs loaded by the web browser, a trace of
recent songs played on the music player to infer mood or activity, and mobile
phone call log mining for structure beyond what your cell phone bill provides.
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As an example of how hardware and software sensor samples can be combined
to infer activity or status, based on recent web searches (e.g., moviefone.com),
and a call to a particular friend, and the time of day, and the day of week, and
the phone ringer turned off, we can be nearly sure the human is at the theatre.

2.2 Analysis

Sensed data pushed from CenceMe device clients are processed by the analysis
component resident on the back end CenceMe servers. Generally, this analy-
sis component combines historical per-user information, with inferences derived
from combinations of the current data from multiple sensors to try to recon-
struct the status of the individual, i.e., their personal sensing presence. Here we
use sensing presence as a broad term meant to cover objective items such as
location and activity, and subjective items like mood and preference. While a
number of data fusion, aggregation, and data processing methods are possible,
the following are examples of analysis/inference outputs we use to generate the
sensing presence used by the CenceMe services discussed in Section 3.

Location is a key primitive in any sensing system, to be able to provide geo-
graphical context to raw sensor readings. When explicit localization services like
GPS are not available either due to hardware limitation or issues with satellite
coverage, we infer location of the client devices based on observed WiFi (e.g.,
access point identifiers), Skyhook service [48], BlueTooth (e.g., static devices)
and cellular base station neighborhoods, and other unique sets of sensed data in
a manner similar to ambient beacon localization [53].

We incorporate human activity inferring algorithms to log and predict users’
behaviour. A simple classifier to determine whether a user is stationary or mobile
can be built from several different data inputs, alone or in combination (e.g.,
changes in location by any possible means, accelerometer data). We evaluate
accelerometer data to identify a number of physical activities, including sitting,
standing, using mobile phone, walking, running, stair climbing, and others.

Human behaviour is often a product of the environment. To better understand
people’s behaviour then, it is useful to quantify the environmental context. We
gather and process image and sound data to derive the noisiness/brightness of
the environment. Further, we run conversation detection and voice detection
algorithms to identify the people in a given user’s vicinity that may impact
behaviour and mood.

Part of a person’s daily experience is the environment where the person lives
and spends most of the time. For example, health related issues of interest may
include the level of an individual’s exposure to particulates (e.g., pollen) and
pollution. We incorporate mechanisms that enable air quality monitoring around
the individual through opportunistic interaction with mobile sensors [43] or static
pre-deployed infrastructure [41] [44].

2.3 Presentation

Since communication devices, and in particular mobile communication devices,
provide varying amounts of application support (e.g., web browser, Skype, and



8 E. Miluzzo et al.

Rhythmbox on a laptop; web browser and Skype on the N800, SMS only on the
Motorola L2 [52]), we provide a variety of means for pulling the human sensing
presence distilled from the sensed data from the CenceMe servers and displaying
this status on the end user device.

Text only: Email/SMS. More limited platforms, such as older/low-end cell
phones and PDAs, likely do not have the capability to browse the Internet and
have a limited application suite. These platforms can still participate as infor-
mation consumers in the CenceMe architecture via simple text-based updates
via SMS or email, rather than graphical indicators of status embedded in other
applications.

CenceMe Web Portal. Platforms that support at least general Internet brows-
ing allow users to access their personal CenceMe web portal whose content is
served from the CenceMe data repositories. The particular visualizations are
customizable to a degree in a manner similar to Google Gadget [59] develop-
ment/configuration on personalized iGoogle [56] pages. This web portal allows
for the most flexible and complete presentation of one’s own collected data log,
and data shared by others (e.g., via buddy list). Through this portal the user can
configure all aspects of his account, including fine grained sharing preferences
for his buddies.

Application-specific Plugins. Depending on the application support on the
device, any of the following plugins are possible. In each case, in addition to
status information rendered by the plugin in the applications’ GUI, the plugin
provides click-through access to the CenceMe portal - both to the user’s pages
and the shared section of any friends’ pages.

– Instant messaging client buddy list shows an icon with a particular status
item for the buddy.

– Facebook and MySpace pages have plugins to show your status and that of
your friends.

– iGoogle gadgets show various status items from a device user and his buddies.
The iGoogle page periodically refreshes itself, so it follows the data pull
model from the CenceMe servers.

– Photography applications have plugins to allow pictures to be stamped with
metadata like location (minimally) and other environmental (light, temper-
ature) and human status elements.

3 CenceMe Services

The goal of the CenceMe system is twofold: (i) to provide information to individ-
uals about their life patterns; and (ii) to provide more texture to interpersonal
communication (both direct and indirect) using information derived from hard-
ware and software sensors on user devices. In the following, we describe a number
of services built on the CenceMe architecture that aim to meet these goals.
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3.1 Life Patterns

Enriching the concept put forward in MyLifeBits project [46], we automatically
sense and store location traces, inferred activity history [3], history of sensed
environment (e.g., sound and light levels), rendezvous with friends and enemies,
web search history, phone call history, and VOIP and text messaging history.
In this way, we can provide context in the form of sensed data to the myriad
other digital observations being collected. Such information may be of archival
interest to the individual as a curiosity, and may also be used to help understand
behaviour, mood, and health. Sections 5.2, 5.3, and 6 describe our current pro-
totype implementation of the sensing, inferring and display of human activity
and environment.

3.2 My Presence

As indicated by the increasing popularity of social networking sites like Face-
book and MySpace, people (especially the youth) are interested both in actively
updating aspects of their own status (i.e., personal sensing presence), and surfing
the online profiles of their friends and acquaintances for status updates. How-
ever, it is troublesome to have each user manually update more than one or two
aspects of his or her sensing presence on a regular basis. We add texture and
ease of use to these electronic avatars, by automatically updating each user’s so-
cial networking profile with information (e.g., “on the phone”, “drinking coffee”,
“jogging at the gym”, “at the movies”) gleaned from hardware and software
sensors.

3.3 Friends Feeds

In the same way people subscribe to news feeds or blog updates, and given the
regularity with which users of social networking sites browse their friends’ pro-
files, there is clearly a need for a profile subscription service a la RSS (Facebook
has a similar service for the data and web interface it maintains). Under this
model, friend status updates might be event driven; a user asks to be informed
of a particular friends state (e.g., walking, biking, lonely, with people at the
coffee shop) at, for example, his cell phone.

3.4 Social Interactions

Using voice detection, known device detection (e.g., cell phone Bluetooth MAC
address), and life patterns, group meetings and other events that involve group-
ings of people can be detected. In social group internetworking, friends are often
interested in who is spending time with whom. This CenceMe service allows
individuals to detect when groups of their friends are meeting, or when illicit
rendezvous are happening. A further level of analysis can determine whether a
conversation is ongoing (we report results on this in Section 6) and further group
dynamics [60] (e.g., who is the dominant speaker).
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3.5 Significant Places

Have you ever found yourself standing in front of a new restaurant, or wandering
in an unfamiliar neighborhood, wanting to know more? A call to 411 is one
option, but what you really want are the opinions of your friends. Phone calls
to survey each of them are too much of a hassle. Or alternatively, maybe you
just want to analyze your own routine to find out where you spend the most
time. To satisfy both aims, CenceMe supports the identification and sharing of
significant places in people’s life patterns.

Significant places are derived through a continuously evolving clustering, clas-
sification, and labelling approach. In the first step, we collect location traces from
available sources (e.g., wifi association, GPS, etc.) for the given user. Since loca-
tion traces always have some level of inaccuracy, we cluster the sensed locations
according to their geographical proximity. The importance of a cluster is iden-
tified by considering time-based inputs such as visitation frequency, dwell time,
and regularity. Once significant clusters are identified, a similarity measure is
applied to determine how “close” the new cluster is to other significant clus-
ters already identified (across a user’s buddies) in the system. If the similarity
is greater than a threshold then the system automatically labels (e.g., “Home”,
“Coffee shop”, etc.) the new cluster with the best match. The user has the option
to apply a label of his own choosing, if the automatic label is deemed insufficient.
Finally, the user has the option of forcing the system to label places considered
“insignificant” by the system (e.g., due to not enough visitations yet).

As implied above, the CenceMe system keeps the labels and the cluster infor-
mation of important clusters for all users, applying them to subsequent cluster
learning stages and offering to users a list of possible labels for given clusters. In
addition to this “behind the scenes” type of place label sharing, users may also
explicitly expose their significant places with their buddies or globally, using the
normal methods (e.g., portal, plugins) previously described. In particular, this
means that for a user that is visiting a location that is currently not a (significant)
cluster to him based on his own location/time traces, the point can be matched
against buddies’ clusters as well to share. We report on the implementation and
performance of this service in Sections 5.2 and 6, respectively.

Once the significant places of users have been automatically identified and
either automatically or manually tagged, users may annotate their significant
places. The annotation may include identifying the cafe that has good coffee or
classifying a neighborhood as either dangerous, safe, hip or dull.

3.6 Health Monitoring

As many people are becoming more health-conscious in terms of diet and lifestyle,
the CenceMe system also provides individuals with health aspects [1] [34] [21] [33]
of their daily routines. CenceMe is able to estimate exposure to ultraviolet light,
sunlight (for SAD afflictees) and noise; along with number of steps taken (distance
traveled) and number of calories burned. These estimates are derived by combin-
ing inference of location and activity [3] of the users with weather information
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(e.g., UV index, pollen and particulate levels) captured by the CenceMe backend
from the web. Inference techniques and results for activity classification and ex-
posure to the weather environment are discussed in Sections 5.2 and 6.

3.7 Buddy Search

The past ten years have seen the growth in popularity of online social networks,
including chat groups, weblogs, friend networks, and dating websites. However,
one hurdle to using such sites is the requirement that users manually input their
preferences, characteristics, and the like into the site databases. With CenceMe
we provide the means for the automatic collection and sharing of this type of
profile information. CenceMe automatically learns and allows users to export
information about their favorite haunts, what recreational activities they enjoy,
and what kind of lifestyle they are familiar with, along with near real-time per-
sonal presence updates sharable via application (e.g., Skype, MySpace) plugins
and the CenceMe portal. Further, as many popular IM clients allow to search
people by name, location, age, etc., CenceMe enables the search of users through
a data mining process that involves also interests (like preferred listened music,
significant places, preferred sport, etc).

3.8 Buddy Beacon

The buddy search service is adapted to facilitate local interaction as well. In this
mode, a user configures the service to provide instant notification to his mobile
device if a fellow CenceMe user has a profile with a certain degree of matching
attributes (e.g., significant place for both is “Dirt Cowboy coffee shop”, both
have primarily nocturnal life patterns, similar music or sports interests). All this
information is automatically mined via CenceMe sensing clients running on user
devices; the user does not have to manually configure his profile information.
Devices with this CenceMe service installed periodically broadcast the profile
aspects the user is willing to advertise - a Buddy Beacon - via an available
short range radio interface (e.g., Bluetooth, 802.15.4, 802.11). When a profile
advertisement is received that matches, the user is notified via his mobile device.

3.9 “Above Average?”

Everybody is interested in statistics these days. What is popular? How do I
measure up? Do I have a comparatively outgoing personality? By analyzing ag-
gregate sensor data collected by its members, CenceMe provides such statistical
information on items such as the top ten most common places to visit in a neigh-
borhood, the average time spent at work, and many others. CenceMe makes this
aggregate information available to users; each user can configure their portal
page to display this system information as desired. Comparisons are available
both against global averages and group averages (e.g., a user’s friends). Tying
in with the Life Patterns service, users can also see how their comparative be-
haviour attributes change over time (i.e., with the season, semester). The normal
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CenceMe privacy model (see Section 4) relies on buddy lists. Therefore, the user
must manually opt in to this global sharing of information, even though the
data is anonymized through aggregation and averaging before being made avail-
able. On the other hand, access to the global average information is only made
available to users on a quid pro quo basis (i.e., no free loaders).

4 Privacy Protection

Users’ raw sensor feeds and inferred information (collectively considered as the
user’s sensing presence) are securely stored in the CenceMe back end database,
but can be shared by CenceMe users according to group membership policies.
For example, the data becomes available only to users that are already part of a
CenceMe buddy list. CenceMe buddies are defined by the combination of buddy
lists imported by registered services (Pidgin, Facebook, etc.), and CenceMe-only
buddies can be added based on profile matching, as discussed in Sections 3.7
and 3.8. Thus, we inherit and leverage the work already undertaken by a user
when creating his buddy lists and sublists (e.g., in Pidgin, Skype, Facebook)
in defining access policies to a user’s CenceMe data. Investigation of stronger
techniques for the protection of people-centric data is currently underway [11].

Users can decide whether to be visible to other users via the buddy search
service (Section 3.7) or via the buddy beacon service (Section 3.8). CenceMe
users are given the ability to further apply per-buddy policies to determine the
level of data disclosure on per-user, per-group, or global level. We follow the
Virtual Walls model [57] which provides different levels of disclosure based on
context, enabling access to the complete sensed/inferred data set, a subset of it,
or no access at all. For example, a CenceMe user A might allow her buddy B
to take pictures from her cell phone while denying camera access to buddy C;
user A might make her location trace available to both buddies B and C. The
disclosure policies are set from the user’s account control page.

In addition to user-specific data sharing policies, the system computes and
shares aggregate statistics across the global CenceMe population. For this service
(Section 3.9), shared information is anonymized and averaged, and access to the
information is further controlled by a quid pro quo requirement.

5 Prototype Implementation

As a proof on concept, we implement a prototype of the CenceMe architecture.
Sensing software modules, written both as applications plugins and standalone
clients, are installed on commodity hardware, and integrate user devices with
the CenceMe core. A sample of the analysis and inference algorithms discussed
in the previous sections are implemented as part of sensing clients (preliminary
processing) and as back end processes. These automatically process incoming
data pushed by the sensing clients. A number of presentation modules are imple-
mented to display information both for individual viewing and sharing between
CenceMe users. In the following, we describe the hardware and software details
of our prototype implementation.
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5.1 Sensing

To demonstrate the types of information we can collect from commodity de-
vices and popular applications, we implement a number of sensing clients on a
selection of COTS hardware. We use the Nokia 5500 Sport (Symbian OS [42],
3D accelerometer, BlueTooth), the Nokia N80 (Symbian OS, 802.11b/g, Blue-
Tooth), the Nokia N95 (Symbian OS, 802.11b/g, BlueTooth, GPS), the Nokia
N800 (Linux OS, 802.11b/g, BlueTooth) and Linux laptop computers. Each sens-
ing client is configured to periodically push its sensed data to the CenceMe
core. We provide a short description of each implemented sensing client in the
following list.

– Rhythmbox is an open source audio player patterned after Apple iTunes. We
write a Perl plugin to Rhythmbox to push the current song to the core. The
plugin works on the Linux laptop and the Nokia N800.

– We write a Python script to sample the 3D accelerometer on the Nokia 5500
Sport at a rate that supports accurate activity inference.

– The BlueTooth and 802.11 neighborhoods (MAC addresses) are periodically
collected using a Python script. CenceMe users have the option to register
the BlueTooth and 802.11 MAC address of their devices with the system.
In this way the CenceMe backend can convert MAC addresses into human-
friendly neighbor lists.

– We write a Python script to capture camera and microphone samples on the
Nokia N80 and Nokia N95 platforms. In addition to the binary image and
audio data, we capture and analyze the EXIF image metadata.

– Pidgin is an instant messaging client that supports many commonly used in-
stant messaging protocols (e.g., .NET, Oscar, IRC, XMPP), allowing users
to access accounts from many popular IM services (e.g., Jabber, MSN Mes-
senger, AOL IM) via a single interface. We write a Perl plugin to Pidgin to
push IM buddy lists and status to the CenceMe core.

– Facebook is a popular web-based social networking application. We write a
Perl plugin to Facebook to push Facebook friend lists to the core.

– We write a Python script to periodically sample the GPS location from the
Nokia N95.

– Skyhook [48] is a localization system based on 802.11 radio associations.
We use Linux libraries compiled for x86 devices and the Nokia N800 to
periodically sample the WiFi-derived location and push to the CenceMe
core.

In addition to the sensing just described based strictly on commodity hard-
ware, we extend the capability of any BlueTooth enabled device (this includes all
the commodity devices we mention above) by allowing for the connection of an ex-
ternal 3D accelerometer. We envision that such a gadget (i.e., a small form-factor
BlueTooth/accelerometer accessory) may become popular due to its application
flexibility. We implement a prototype BlueCel accessory by integrating a Spark-
fun WiTilt module, a Sparkfun LiPo battery charger, and a LiPo battery. The size
is 1.5in x 2.0in x 0.5in (see Figure 4). We write a python script to read accelerom-
eter readings from the device over the BlueTooth interface. The placement of the
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Fig. 4. Mobile devices currently integrated into the CenceMe system: the Nokia N800
Internet Tablet, Nokia N95, Nokia 5500 Sport, Moteiv Tmote Mini (above the N95),
and prototype BlueCel accessory (above the 5500)

accessory (e.g., on weight stack, on bike pedal) defines the application. A sensing
client menu allows the user to tell the system what the application is, allowing
the client to set the appropriate sampling rate of the accelerometer. The data is
tagged with the application so that the CenceMe back end can properly interpret
the data. Further, we leverage the use of existing embedded sensing systems acces-
sible via IEEE 802.15.4 radio [41] [43] by integrating the SDIO-compatible Moteiv
Tmote Mini [10] into the Nokia N800 device.

5.2 Analysis

In the CenceMe architecture, unprocessed or semi-processed data is pushed by
sensing clients running on user device to the CenceMe core. We implement a
MySQL database to store and organize the incoming data, accessible via an API
instantiated as a collection of PHP, Perl, and Bash scripts. To extract useful
information about CenceMe users from the sensed data, we apply a number of
data processing and inferring techniques. We use the WEKA workbench [39]
for our clustering and classification needs. In the following, we provide a short
description of the data analysis tools we implement in support of the CenceMe
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services discussed in Section 3. Results on the output of these tools are presented
in Section 6.

Based on data from either the Nokia 5500 Sport or the BlueCel accelerometer,
we implement an activity classifier (stand/walk/run). The classifier is based on
learned features in the raw data trace such as peak and rms frequency, and peak
and rms magnitude. This approach applies similar ideas to those found in other
accelerometer-based activity inferencing papers (e.g., [62] [3] [14]). This classifier
is an example of processing that occurs on the mobile device to avoid the cost
(energy and monetary) of sending complete raw accelerometer data via SMS to
the back end. Performance results of this classifier are shown in Section 6.1.

We construct a classifier for determining whether a user is indoors or outdoors.
We combine a number of elements into the feature vector to be robust to different
types of indoor and outdoor environments. The features we consider are: the
ability of the mobile device to acquire a GPS estimate, number of satellites
seen by GPS, number of WiFi access points and BlueTooth devices seen and
their signal strengths, the frequency of the light (looking for the AC-induced
flicker), and differential between the temperature measured by the device and
the temperature read via a weather information feed (to detect air conditioning).
Performance results of this classifier are shown in Section 6.1.

We construct a mobility classifier (stationary/walking/driving) based on
changes to the radio neighbor set and the relative signal strengths (both for
individual neighbors and the aggregate across all neighbors), for BlueTooth,
WiFi, and GSM radios, respectively, of the mobile devices. The idea is to map
changes in the radio environment (i.e., neighbors, received signal strength) to
speed of movement. The classifier uses techniques similar to those used in exist-
ing work [54] [55] [50]. The result of the aforementioned indoor/outdoor classifier
is also included in the feature vector. Locations traces are omitted due to their
relatively high error with respect to the speed of human motion. Performance
results of this classifier are shown in Section 6.1.

Using Matlab processing on the back end, we generate a noise index (expressed
in decibels) from audio samples captured from N80 and N95 microphones. Sim-
ilarly, using Matlab we generate a brightness index (ranging from 0 to 1) from
images captures from N80 and N95 cameras. The sounds and brightness indices
help us to infer information about a person’s surroundings. In particular, we
combine the noise index to estimate the cumulative effect of the sound environ-
ment on a user’s hearing, and the positive effect of sunlight (when combined with
an indoor/outdoor classifier) on those afflicted with seasonal affective disorder.
Finally, we implement a classifier based on a voice detection algorithm [19] to
determine if a user is engaged in a conversation or not. Performance results of
this classifier are shown in Section 6.1.

By analyzing location traces, time statistics of mobility, and other data inputs,
as described in Section 3.5 we derive a user’s significant places. Raw location data
is first clustered using the EM algorithm, then clusters are mapped against time
statistics (viz., visitation frequency, dwell time, regularity, time of day, week-
day/weekend, AM/PM) and other information (viz., indoor/outdoor, current
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and previous mobility class, number and composition of people groups visible in
a location) to determine importance. Also, WiFi and Bluetooth MAC address
of neighbors are used to differentiate between overlapping clusters. Finally, a
similarity measure is computed between the new cluster and existing clusters
known by the system. The system maintains generic labels for these significant
clusters, but users may alias them as well to give more personally meaningful
or group-oriented names. The clustering is adaptive since the model changes
over time depending on how the mobility trace of the user (and other system
users) evolves (the significance of a place may evolve over time). The algorithm
to recognize significant locations by combining location trace data with other
indicators shares concepts with prior work [49] [47] [66] [65] [63]. The CenceMe
approach is distinguished by the way it clusters according to per-user models
(rather than globally), and then shares models based on social connections (e.g.,
presence in a buddy list). This provides a more personal/group-oriented set of
labeled significant places, at the expense of general applicability of the training
data. While it is often advantageous to relate recognized significant clusters to
physical locations (i.e., coordinates), we also enable the recognition of significant
places for devices that do not have access to absolute localization capabilities
with the use of local region recognition based on what is available to the device
(e.g., WiFi, Bluetooth, GSM) [61]. In this way, a location cluster does not solely
have to be an aggregated set of true coordinate estimates, but can comprise a
set of location recognition estimates, a la ABL [53].

In terms of health and fitness, we estimate the number of calories burned by
combining the inference of walking from the standing/walking/running classifier,
time spent walking, and an average factor for calories burned per unit time when
walking at a moderate pace [20]. Further, we estimate exposure to ultraviolet
light by combining the inference of walking or running or standing, the inference
of being outdoors, the time spent, and a feed to a web-based weather service to
learn the current UV dose rate [24]. A similar technique is applied to estimate
pollen exposure (tree, grass, weed) and particulate exposure.

As discussed in Section 5.1, the BlueCel facilitates a number of application-
specific data collection possibilities. We implement commensurate application-
specific data analysis tools for bicycle rides (BlueCel placed on the pedal), golf
swing analysis (BlueCel affixed to the club head), and analysis of weight lifting
activity for exercise motion correctness (injury avoidance) and workout logging
(BlueCel affixed to the wrist).

5.3 Presentation

All of a user’s processed sensor data can be viewed via a web browser by log-
ging into the user’s account on the CenceMe portal. Additionally, a subset of
the user’s status information is made available (via both data push and data
pull mechanisms) to the user’s buddies (subject to his configured sharing poli-
cies) through their CenceMe portal pages, and through plugins to popular social
networking applications.
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Fig. 5. Portal snaphot

Typically, the data a user shares with his buddies is rendered via a number of
simple icons that distill the current sensing presence of the user. Figure 5 shows
a snapshot of the data page of user on the CenceMe portal we implement. Buddy
lists loaded on the right pane from registered Pidgin and Facebook accounts are
annotated with icons representing the shared data. The icons offer click-through
access to a fuller representation of the shared user data. In the Figure, buddies
Patty and Selma are inferred to be standing and in a conversation, while buddy
Lenny is inferred to be at the coffee shop, as indicated by the yellow activity icons
next the each buddy’s name. On login, the left pane shows the data of the logged
in user, but shows a buddy’s data if any one of the icons next to that buddy’s
name is clicked. In this case, the logged in user Homer Simpson has clicked on
the icon for his buddy Patty. Patty has a sharing policy that allows the display
of the data shown in the left pane: Patty’s buddies in her vicinity (via BlueTooth
and WiFi MAC address recognition), Patty’s trace of her last significant places
visited, etc. In sum, this is the detailed data behind the iconic representation
of “standing” and “talking”. Note that the link at the bottom of the page to
take a picture (“peek”) from Patty’s cell phone is disabled; Patty has disabled
access for Homer Simpson to image data in her privacy profile. Instead, Homer
has clicked the link to view the sound level history plot for Patty, ostensibly to
see how noisy Selma is. The black icons denote that a buddy imported from the
user’s Facebook account (using the Facebook developer API) or Pidgin account
(using the Pidgin developer API) is also a registered CenceMe user.
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We also implement application plugins for Pidgin and Facebook that offer
click-through access to the buddies data page via a web browser launched on
the mobile device. As part of ongoing work, we are extending the presentation
capabilities of CenceMe to include application plugins for Skype and MySpace.
Additionally, we envision sensing and presentation plugins will be written by
interested third parties, using the provided CenceMe APIs.

6 Results

While our system implementation of the CenceMe architecture is still under
development, in the following we present selected results on aspects of the current
system performance, and give a flavor for some of the applications that the
CenceMe system supports.

6.1 Classifier Performance

The CenceMe services outlined in Section 3 strongly rely on the ability of the
analysis components (running both on the mobile devices and the back end
servers) to glean meaningful insights about a user’s life from a possible myriad
of sensed data feeds. To provide a measure of the initial quality of the CenceMe
services we provide, we present the performance of a number of classifiers we
implement. Implementation descriptions of the presented classifiers are given in
Section 5.2.

Activity: Standing/Walking/Running. Our activity classifier is currently
based exclusively on accelerometer data. Since this sensor may not always be
available on all mobile devices, beyond this initial evaluation the classifier will
incorporate a broader array of sensors to improve the robustness of the technique.
Additionally, we are in the process of enhancing the activity classifier to detect
a broader range of activities.

We run experiments to evaluate the accuracy of the mobility classifier de-
scribed in Section 5.2. The accelerometer thresholds of the classifier (i.e., between
stationary/walking and walking/running) are learned based on mobility traces
from three different people. The results shown in Figure 6(a), give the average
test results for two others. The accelerometer is tested in two mounting positions
(viz., belt, pocket) and the values represent the average of 4 one hour experi-
ments. The scenarios include a normal office setting behaviour and sports (walk-
ing/running to the campus Green and back). From the matrix in Figure 6(a)
we see that activities are classified correctly approximately 90% of the time for
each of the three activities.

Mobility: Stationary/Walking/Driving. Our evaluation of the mobility
classifier (described in Section 5.2) results from a week long controlled experi-
ment with four members in our lab. All members carry Nokia N95 cell phones
that execute the classifier. Participants manually label any state changes, which
provide both training data for the classifier and a data set from which classifier
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Standing Walking Running
Standing 0.9844 0.0141 0.0014
Walking 0.0558 0.8603 0.0837
Running 0.0363 0.0545 0.9090

(a) Activity classifier.

Stationary Walking Driving
Stationary 0.8563 0.3274 0.1083
Walking 0.1201 0.6112 0.2167
Driving 0.0236 0.0614 0.6750

(b) Mobility classifier.

Indoors Outdoors
Indoors 0.9029 0.2165
Outdoors 0.0971 0.7835
(c) Indoor/outdoor classifier.

Background noise Conversation
Background noise 0.7813 0.1562
Conversation 0.2187 0.8438

(d) Conversation classifier.

Fig. 6. Confusion matrices for the implemented classifiers

performance is derived. Figure 6(b) shows the confusion matrix that results with
one third of the data used for training and the remainder used for evaluation.
From this figure we observe that walking and driving are less accurately labeled.
This is because the difference between these two states is less distinct. We in-
tend to refine the classifier to incorporate additional modalities (such as audio)
to address this weakness. We perform ten fold cross validation on our experiment
data and find that 81% of instances still have correct labels. This allays some
concerns about potential over-fitting.

Indoor/Outdoor. The evaluation of the indoor/outdoor classifier (described
in Section 5.2) follows a similar methodology to that of the mobility classifier,
with participants manually labeling their state changes. Since the results of the
classification trials that we present here are performed only on the N95 hard-
ware, many of the vector features that are part of the process have no effect
(e.g., detection of the light flicker is not possible with this hardware). We per-
form independent tests with alternative sensing hardware, the Tmote Sky [10],
using only temperature, light and humidity sensors available and find approxi-
mately 83% classification accuracy is achievable. As the sensing capabilities of
cell phones mature, we will evolve our classification techniques to take advantage
of the commercial technology. The results shown in Figure 6(c) are very promis-
ing given the initial stages of the development of this classifier. We observe that
an accuracy of 86% results when we perform 10 fold cross validation.

We must qualify these results by saying these were performed in a college
campus environment with a rather dense WiFi AP deployment. Further there
are no significant high rise buildings that may induce urban canyoning effects
with the GPS signal. On the other hand, due to the low population density of the
area there is also a lower density of cell phone towers. As a result, some feature
vector elements that are important within our test region will not be important
for all regions. We plan to perform tests as part of a broader system study to
evaluate the classifier performance in substantively different environments from
that used for these initial tests.

Conversation detection. We conduct experiments to evaluate the accuracy
of the conversation detection algorithm [19]. The experiment consists of taking



20 E. Miluzzo et al.

samples from the cell phone’s microphone from inside a pocket (to reproduce
the common scenario of cell phones carried by a person) during conversations
between a group of people in an office setting, sidewalk, and a restaurant. We
annotate the time of the conversation for ground truth purposes. The microphone
samples are also time stamped for comparison with the ground truth data. The
result of the conversation detection algorithm is reported in Figure 6(d). The
background noise and an ongoing conversation are correctly detected with an
accuracy of almost 80% and 84% respectively. On average, 15% and 21% of the
samples are mistaken, respectively, for conversation when they are noise and for
noise when they are conversation. We conjecture that we can decrease the error
by further processing the sound samples by applying low pass filters. In this way,
sounds characterized by frequencies higher than 4KH (e.g, background noise)
could be filtered out allowing a more accurate voice detection. As part of future
work, we will augment our system with stronger voice processing capabilities.
With these new capabilities, CenceMe users will have the ability to know who
is involved in a conversation (subject to user privacy policy), rather than just a
binary classification.

6.2 Significant Places

For the purpose of evaluating the CenceMe significant places service, four mem-
bers of our lab execute data collection client code on Nokia N95 cell phones that
sample and construct the types of data features discussed in Section 3.5. In the
following, we demonstrate the sharing of significant place models (as described
in Section 5.2) between buddies in the context of the general operational flow of
the service.

For the purposes of this scenario we examine the interaction between two of
the four system users. In Figure 7(a), we observe the location trace for a single
user, Homer, with his location trace collected over the course of a week around
Hanover, NH. Figure 7(b) provides the result of basic EM clustering of these
raw location estimates. Figure 7(c) provides the results of the significant places
process based only on Homer’s data. These are visitations to cluster instances
which are classified by the system as being significant. The process begins with
a default classifier based on training data sourced from the user population. The
classifier is then refined by input from Homer. This figure shows these cluster
visits having semantic labels. In this case these labels are solely provided by
Homer himself. In Figure 7(d), a new significant location appears. This location
represents the home of another user, Patty. Homer visited Patty’s home and
a raw cluster is created by this visitation (as seen in Figure 7(b)). However,
since Homer had never visited this location before, although it is recognized as
being significant a label can not be determined. Instead, to label this cluster
the system executes Homer’s buddy Patty’s models on the data collected by
Homer. Given a sufficiently good match, the labeling is performed and appears
in visualizations such as Homer’s log of his sensing presence accessible via the
CenceMe portal. Importantly, the ability to recognize and label such visitations
is then incorporated into Homer’s significant place model.
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(c) Significant clusters based on single
user’s data
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(d) Additional labeled cluster added by
cross-referencing against buddy’s labeled
significant clusters.

Fig. 7.

6.3 Health

By combining the output of the indoor/outdoor classifier and the mobility clas-
sifier with an external weather feed that provides a trace of the UV dose rate
(i.e., erythemal irradiance) [24], we estimate a person’s exposure to harmful UV
radiation. This combination of classifiers tells us when a person is outside a
building but not inside a motor vehicle. Figure 8(a) shows the estimated UV ex-
posure of the person if indoor/outdoor classification is perfect, while 8(b) shows
the estimated UV exposure given the actual classifier performance. The figures
are in excellent agreement, underscoring the good performance of the classifier
combination. Further, in presenting this result we show how simple classifiers
can contribute to monitoring important human health features. As future work
we will compare the estimated results against real measured exposure to further
improve the classifier combination we use.

Similarly, we use the output of the mobility classifier to estimate how many
calories a person is burning. In Figure 9, we show a comparison between the
estimated cumulative calories burned using the classifier output and the actual
activity, respectively. The plots reflect a real seven hour human activity trace.
In both cases, the time spent walking, either inferred from the classifier or taken
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(a) Estimated UV exposure based on per-
fect classification.
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(b) Estimated UV exposure based on ac-
tual classification.
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Fig. 9. A comparison of the estimated calories burned based on the ideal and actual
performance, respectively, the mobility classifier

from the ground truth log, is multiplied by a standard average factor for calories
burned while walking [20] to calculate the estimate.

6.4 BlueCel Applications

The flexibility of the BlueCel accessory sensor allows people to run many dif-
ferent applications that are of interest to them, with a single multi-purpose
device. This external, Bluetooth-connected accelerometer offers advantages even
over accelerometers that are integrated into mobile phones (e.g., Nokia 5500
Sport) since for many applications it is required or at least convenient that the
accelerometer be in a different place than mobile phones are normally carried
(e.g., pocket, hand bag). Further, the form factor of a mobile phone is too large
to facilitate useful data collection for some applications.

To demonstrate the flexibility of the BlueCel approach, we implement and col-
lect data from three simple and diverse applications. For each of these
applications, the accelerometer signature in terms of combined three channel
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Fig. 10. Use of the BlueCel sensor to add a 3d accelerometer to any BlueTooth-
equipped mobile device supports a number of applications. The plots in (a), (b) and
(c) show BlueCel signatures, the combined magnitude of the three channel output of
the accelerometer. A moving average with a window size of 25 samples is applied to
the raw accelerometer samples for all three plots.

magnitude (i.e.,
√

x2 + y2 + z2) is plotted; sampling is at 37 Hz. Figure 10(a)
shows a 30 second excerpt from a bicycle pedaling analysis experiment. The Blue-
Cel is slipped inside a rider’s sock. A user can easily do the same to determine
his pedaling cadence, for training purposes or just for fun. Figure 10(b) shows
the accelerometer signature for several repetitions of a weight lifting exercise.
Though also periodic, the signature is quite distinct from that of the pedaling.
We can easily log workout statistics by analyzing this signature [6]. As future
work, with further processing of the signature we hope to provide an indication
of whether the exercise is being performed properly in terms of range of motion.
Figure 10(c) shows the golf swing signatures of two different users, one a novice
and the other more experienced. The signatures are quite distinct, that of the ex-
perienced golfer (User 1) being more smooth and compact. A novice user might
use such comparisons as a guide to iteratively analyze and modify his swing for
improvement. These three are just a sample of possible applications, and users
themselves have the freedom (due to the flexibility of the BlueCel model) to
come up with their own applications.

7 Related Work

Much attention has been paid in the research community to the intersection of
social networking and communication technology. In particular, cell phones have
long been recognized as an ideal platform for pervasive applications (e.g., [58]).
They are increasingly seen as a platform of choice for urban and people-centric
sensing systems [32] [29] [31] [15] [35] [30] [4]. They are well suited for this domain
due to their ubiquity, expanding suite of sensors and ability to interact with
additional external sensors via short range radio. Further, given the increasing
market penetration of cellular phones and the parallel trend of sole reliance on
cell phones for telephonic service, they are likely to be carried at all times. Data
collection and sharing via cell phones and similar mobile devices are key enablers
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of the CenceMe architecture. In the following, we summarize exisiting research
incorporating cell phones and other commodity devices into the data collection
and sharing architecture.

Mobile devices like cell phones have been used to learn about social connec-
tions, an important point of the CenseMe service architecture. Contributions in
this domain include the MIT Reality Mining project. In [26], the authors col-
lect BlueTooth neighbor data from one hundred mobile phones over a period
of nine months in order to identify social connections between people and pat-
terns in their daily life. Follow on work explores the notion of sampling social
connections with data such as proximity and sounds [18], and applies principal
component analysis to location/time series data and BlueTooth neighborhoods
to learn social groups [25].

One use of data collected by cell phones is to facilitate context-aware com-
munications, wherein availability data is collected from personal devices and
shared with friends. In [8] the authors describe iCAM, a web-based address
book for cellular phones. System users opt-in to share communication contexts
via a web interface to expose the preferred method of communication at a given
time (e.g., in person, email, home/work phone). Contexts are generated by cel-
lular tower-based localization and manually configured schedule information.
Registered rules govern the type of information exposed. The authors of [13]
propose and build a system similarly aimed at choosing the best communication
modality to interact with close friends and family. The system uses GPS location,
accelerometer data to determine between walking and driving, and a microphone
to determine between talking and silent. CenceMe goes beyond both [8] and [13]
by taking as inputs a broader set of sensor feeds, learning patterns in each user’s
life automatically rather than relying on manually input schedule information,
and outputting status information much richer than just current location and
communication preference. Additionally, CenceMe is not limited to running on
customized hardware (e.g., the PHS in [8], the WatchMe watch in [13]), but
is integrated into popular social applications (using supported APIs) already
running on commodity hardware (cellular phone, laptop computer, PDA, etc.).

The CenceMe notion of sensing presence sharing and logging differs from the
idea of presence sharing and exchange presented in [22] and [23]. The latter
idea refers to the beaconing of personal information using short range radio.
The CenceMe notion incorporates in situ exchanges (e.g., via the buddy beacon
service), but extends beyond this simple interaction. CenceMe is focused on the
process of distilling the sensed presence of the individual from COTS devices and
sharing the sensed presence irrespective of the actual proximity between users,
largely based on social groups (e.g., buddies) via existing applications. Twitter
[28] is more closely aligned with CenceMe in terms of sharing personal status
information, but is typically limited to manually generated text-based status
sharing. The primary benefit of [28] is the ability to aggregate and distribute
these status messages from and to multiple points (i.e., cell phones, IM and
the Web). CenceMe extends beyond sharing text messages and focuses on the
automated distillation of users’ personal sensed presence. The work presented
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in [17] provides a limited exploration of the sharing sensing presence between
socially connected parties. This work shares simple moving/not moving status
while investigating the utility and privacy concerns of sharing such status. As an
indication of the demand for a more capable system, participants of the study
requested that richer forms of presence sharing be offered [17].

Alternative proposed architectures that enable people-centric sensing often
rely on specialize hardware, rather than commodity consumer devices like cell
phones. The architecture proposed in [27] relies on users to attach numerous
cheap radio tags to everyday objects with which they come in contact. Through
proximity detection between user devices and object tags, activity recognition is
possible. The Mithril project [64] is representative of those assuming more capa-
ble devices and is built around a linux PDA with multiple body-attached sensors.
Similarly, the SATIRE project [16] builds a system with greater levels of sensing
capability using “smart clothing”. With SATIRE, networked mote-class devices
are embedded in clothing such as a jacket. CenceMe uses heterogeneous COTS
devices (e.g., cell phones) already in widespread use. CenceMe collects data from
the sensors available on these devices (e.g., BlueTooth, GPS, accelerometer, cam-
era, microphone), and in support of services and applications not possible with
proximity data alone. The CenceMe architecture leverages the idea of integrat-
ing simple external sensors devices (e.g., the BlueCel device, c.f. Section 5.1)
as application-specific add-ons to the cell phone. This model is similar to [30]
and [14], both of which assume additional expansion boards are attached to a
standard cell phone.

8 Conclusion

We have presented a detailed description of the CenceMe architecture. Through
our prototype implementation we have demonstrated successful integration with
a number of popular off-the-shelf consumer computer communication devices
and social networking applications.
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