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Abstract

With increasing environmental awareness and ecological risk, green composites have
gained more and more research attention, as they have the potential to be attractive
than the traditional petroleum-based composites which are toxic and nonbiodegradable.
Because of their lightweight, friendly processing and acoustic insulation, green compo-
sites have been used widely ranging from aerospace sector to household applications.
The end-of-life concern with many polymeric composites has also limited their applica-
tion spectrum. The green composites not only replace the traditional materials such as
steel and wood but also challenge certain nonbiodegradable polymer composites. The
present research initiative aims at highlighting the issues and challenges in the develop-
ment and characterization of poly lactic acid—based green composites. A few of these
important composites and their mechanical properties (tensile, compressive, flexural,
and impact strength) have been reported in this study. The focus is the identification
of the possible areas for their novel applications. A study has been conducted to cate-
gorize the various types of green composites on the basis of their physical, chemical, and
mechanical characteristics.
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Introduction

Although fiber-reinforced polymers (FRPs) have been used in many engineering
applications, especially where high strength and stiffness are required, unfortunately,
traditional FRP composites often pose considerable problems with respect to their reuse
or recycling at the end of their usable lifetime, mainly because of the nonbiodegradable
fibers and matrixes. This led to the development of green composites of natural fibers
and biodegradable resin. A new public awareness toward green composites has taken
place because of a variety of reasons including major oil crises due to the finite nature
of fossil resources, increase in the release of toxic gases into the atmosphere as a result
of burning fossil resources and a huge increase in the volume of composite waste. Devel-
opment of partially biodegradable composites made of cellulosic fibers with thermoset
resin started in 1980s. In 1990s, fabrication of wood flour (WF)-reinforced composite
using thermoplastic resin was reported.'”’

At present, a variety of partially biodegradable and green composites® '' have been
developed with fairly good mechanical properties using different natural fibers (e.g. flax,
ramie, hemp, etc.) and biodegradable polymers (e.g. starch, cellulose or vegetable oil
derivatives). The performance of green composites depends on the properties of the
natural fibers used as reinforcement. Instead of having some drawbacks like low mod-
ulus of elasticity, high moisture absorption and decomposition in biological attack, the
most important feature of green composites is their total biodegradability without any
adverse effect on the environment as they are converted into water and carbon dioxide.

The present study reviews recent studies and developments related to poly lactic acid
(PLA)-based green composites and their mechanical properties in terms of tensile
strength, compressive strength, flexural properties and impact strength and addresses
some of the basic issues in the development of such composites.

Constituents and types of green composites

The main constituents of green composites are matrix, reinforcement and interphase
between matrix and reinforcement. The matrix is the continuous phase and plays an
important role in determining the overall properties of the green composite. The matrix
isolates the fibers from one another in order to prevent abrasion and formation of new
surface flaws and acts as a bridge to hold the fibers in place. A good matrix should
possess ability to deform easily under applied load, transfer the load onto the fibers and
evenly distribute stress concentration. Matrix materials may be petroleum-derived non-
biodegradable polymers like polypropylene (PP), polyethylene and epoxies or biopoly-
mers like PLA, polyhydroxybutyrate and so on. The reinforcements are the second main
component added to the matrix, which normally enhance the mechanical properties of
the neat resin system. Due to presence of different constituents in intermixed or com-
bined state, there always exist a contiguous region which is the interface between matrix
and green fibers, but sometimes in the contiguous region there exists a distinctly added
phase (coating) or reacted phase which improves wetting, that is interphase. Interface has
characteristics that are not depicted by any of the component in isolation. It is the region
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Figure 1. Constituents of green composites.

that lies between matrix and the reinforcement. It plays critical role in determining the
properties of composite. There should be good wettability between matrix material and
green fibers. Various surface treatments of green fibers (silane, acetone and alkali treat-
ment, etc.) and coupling agents are frequently used to improve the wettability. To obtain
desirable properties in a composite, the applied load should be effectively transferred
from the matrix to the fibers via the interface. Figure 1 shows the categories of natural
fibers and biodegradable polymers which are used to develop green composites.

When natural fibers (biofibers/green fibers) are reinforced with traditional
petroleum-based nonbiodegradable polymer matrix, the resulting composite is partially
biodegradable. If the matrix is biodegradable (biopolymer/green polymer) resin, the natu-
ral fiber—reinforced biopolymer composite is green/fully biodegradable composite. Two or
more different natural fibers in combination with polymer matrix (biopolymer-/petroleum-
based polymer) results in ‘hybrid’ green composites. The purpose of hybrid composites is
the customization of properties of the resulting green composites. Another subclassifica-
tion of green composites can be on the basis of nature of reinforcements and functional
behavior of green composites. Depending upon the nature of reinforcements used, green
composites can be classified as unidirectional and bi-directional continuous fiber green
composites or discontinuous reinforcement composites (aligned or randomly oriented in
the form of particulates, short fibers and whiskers). Based on the functional behavior, they
can be classified as functionally graded and smart green composites. At the end of their
life, green composites can be easily disposed without deteriorating the environment. A lot
of work is available on green and partially biodegradable composites. Table 1 reviews
some of the reported work on these composites.
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Table 2. Chemical compositions (wt.%) of selected natural fibers.”*”>

Moisture Ash Microfibrillar
Fiber Cellulose  Lignin  Pectin  content  content Waxes angle (°)
Flax 65-85 -4 5-12 8-12 1-2 1.7 5-10
Kenaf 45-57 8-13 3-5 - - - -
Sisal 50-64 10-14 10 10-22 7 2 10-22
Jute 45-63 12-25 4-10 12-13 8 0.5 8
Hardwood 40-50 20-30 0-1I - - - -
Softwood 40-45 34-36 0-1 - - - -
Hemp 70-74 3.7-5.7 0.9 6-12 8 0.8 2-6
Ramie 68-76 0.6-0.7 1.9 7.5-17 5 0.3 7.5
Abaca 56-63 12-13 | 5-10 | - -
Cotton 85-90 - 0-1I 7.8-85 | 0.6 -
Wheat straw 3845 12-20 8 - 7 - -

Chemical composition of green fibers

Cellulose is a natural polymer with high strength and stiffness per weight, and it is the
building material of long fibrous cells. These cells can be found in the stem, the leaves or
the seeds of plants. Natural fibers are divided into three broad categories which are plant,
animal and mineral fibers. These three categories have many subcategories; the complete
classification is given in Figure 1. Among these natural fibers, most abundant are wood
fibers from trees.” The chemical composition of natural fibers differs from fiber to fiber
depending on its type. These renewable materials show large physical and chemical
variation according to the botanical origin. Wood is a natural three-dimensional poly-
meric composite and consists primarily of cellulose, hemicelluloses and lignin. Plant
fibers have complex structure and chemical composition.”> Table 2 shows chemical
composition of popular plant fibers. Most plant fibers are composed of hemicelluloses,
cellulose, lignin, waxes and water-soluble compounds, where cellulose forms the main
skeleton component of the fiber.

Mechanical properties of green fibers

As, these fibers are hollow and lignocellulosic in nature, they have very good thermal
and acoustic insulation properties. Generally, mechanical properties of green fibers are
lower when compared to those of synthetic fibers, but these can be made comparable or
even better than that of synthetic fibers by proper surface treatment of fibers. Due to
their low densities, low cost and high-specific modulus, they are attracting a great
attention from the industries. The important mechanical properties of green fibers and
synthetic fibers are listed in Table 3. From the table, it can be seen that Young’s mod-
ulus of glass fiber is of same order as that for some of the green fibers. The tensile
strength of glass fibers is higher than that of plant fibers, but the specific modulus
of green fibers (modulus/specific gravity) is comparable (even better) to that of glass
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Table 3. Mechanical properties of popular green fibers and synthetic fibers.”*8

Density Specific Tensile E-Modulus Elongation
Fiber (g/em®) modulus strength (MPa) (GPa) at break (%)
Flax 1.5 50 344 27 1.5-1.8
Pineapple 1.56 40 170 62 -
Sunhemp 1.07 32 389 35 1.6
Jute 1.3 38 393 55 1.5-1.8
Ramie 1.55 - 400-938 61.4-128 1.2-3.8
Sisal 1.5 22 510 28 2-25
Abaca - - 430-760 - -
Cotton 1.5-1.6 - 287-800 5.5-12.6 7-8
Coir I.15-1.46 - 131-220 4-6 15-40
E-glass 2.55 28 3400 73 25
Kevlar 1.44 - 3000 60 2.5-37
Carbon 1.78 - 3400-4800 240425 |.4-1.8

fibers. This property makes natural fibers a potential candidate for the application in
green composites.””

PLA: A sustainable polymer

Conventional plastics are resistant to biodegradation, as the surfaces in contact with the
soil in which they are disposed are characteristically smooth.”® Currently, biodegradable
polymers are attracting a great attention from researchers and industries as these poly-
mers are designed to degrade upon disposal by the action of living organisms. Biopo-
lymers derived from renewable resources such as corn, cellulosic, soy protein and starch
are attracting the attention of scientists to replace traditional petro-based plastics in
designing green composites.®® Figure 1 shows the biodegradable polymers obtained
from various resources.

PLA is a thermoplastic biopolymer which can be semicrystalline or totally amorphous
in nature. PLA is produced from lactic acid through fermentation of agricultural products
like corn. PLA can be prepared by both direct condensation of lactic acid and ring-
opening polymerization of the cyclic lactide, as shown in Figure 2.

Cargill Dow LLC has developed a low-cost continuous process for the production of
lactic acid-based polymers.81 In PLA synthesis, first of all, corn (or rice, potatoes, sugar
beet, agricultural wastes, etc.) is converted into dextrose. Lactic acid is obtained through
fermentation of dextrose which is converted into lactide in the presence of catalyst. After
purification by vacuum distillation, lactide is converted into PLA polymer through
polymerization in the presence of suitable catalyst. PLA is a fully sustainable polymer
as it is derived from annually renewable raw materials and it is fully biodegradable. After
composting, PLA-based materials are converted into water and carbon dioxide which are
consumed in growing more agricultural products for further conversion to PLA. Steps of
PLA synthesis and life cycle of its materials is shown in Figure 3.
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Figure 2. Poly lactic acid (PLA) polymerization.

PLA has good mechanical properties that are comparable to polyethylene
terephthalate and PP which are the most common materials used in automobiles. The
temperature at which PLA can be melt processed with available standard processing
equipment is safe for natural fibers because natural fibers do not degrade at the
processing temperature.®' Also, PLA is a hydrophobic polymer because of the incor-
poration of the CH; side chain.®? Because of all these favorable properties, PLA has
strong candidacy among the biopolymers for the matrix material to be used in green
composites. Cargill Dow LLC, a joint venture between Cargill Corporation and Dow, the
largest current producer presently manufactures an estimated 95% of the world’s
production of PLA. There are many other manufactures of PLA and lactide worldwide
like Biomer, Birmingham Polymers, Inc., Boehringer Ingelheim, Galactic, Hycail,
Mitsubishi Plastics, Inc., Purac and Shimadzu Corporation.®?

Processing of PLA green composites

Most of the green composites are fabricated using the same processes as used for
traditional synthetic FRP matrix composites which are broadly classified as open mold
process and closed mold process. Hand layup, spray up, tape layup, filament winding and
autoclave method come under open mold processes. The compression molding, injection
molding and transfer molding are closed mold processes. Alexandre Gomes et al.*®
developed fully green composites by reinforcing a cornstarch-based biodegradable resin
with curaua fibers through three fabrication methods which are as follows: (a) direct
method (DM); (b) preforming methods (PF) and (c) prepreg sheet method (PS). In
DM, a sliver of curaua fibers was inserted into a metallic mold with the resin, poured
directly into them and the material was pressed slightly at 150°C for 1 h and then the
heating process was stopped. During the cooling process, a pressure of 3.27 MPa was
applied until the temperature nearly reached room temperature. In PF, the composite was
produced by hot pressing preforms of resin-pasted fiber slivers. Preforms of curaua fiber
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Figure 3. Poly lactic acid (PLA) synthesis and its life cycle.

embedded in resin were prepared by wounding and stretching fiber slivers around a
metallic plate and applying resin through a small brush and finally drying at 30°C for
24 h. A pair of the dried preforms was inserted into the metallic mold and pressed at
6.54 MPa at 150°C for 1 h. The heating process was then stopped and a pressure of
13.1 MPa was applied to it until the temperature nearly achieved room temperature.
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In PS, slivers were placed on a metallic plate, stretched and resin was applied into them
and thin prepreg sheets were obtained by pressing these resin-pasted slivers one by one at
120°C. A set of 5 sheets, each with identical fiber orientation, was inserted in the mold
and pressed at 3.27 MPa at 150°C for 1 h. Then, the heating process was stopped and a
pressure of 16.9 MPa was applied to the set until the temperature reached the room
temperature. Lee et al.** fabricated kenaf fiber-reinforced polylactide biocomposites
by carding followed by treatment with a 3-glycidoxypropyl trimethoxy silane and hot
pressing. Carding provided a uniform blend of the two fibers which was followed by nee-
dle punching, then pre-pressing and finally hot pressing to form the composite material.
The PLA/kenaf nonwoven web produced after the carding process was pressed to reduce
the thickness of the mat. This prepressed nonwoven web was treated with the silane cou-
pling agent in amounts of 1, 3 and 5 parts per hundred (pph) of the prepressed composite
material. The silane was allowed to penetrate and prereact with the prepressed mat for
2 h. Finally, the silane-treated prepressed mat was hot pressed for 5 min at 200°C under
a pressure of 0.7 MPa. David Plackett et al.*> developed PLA/jute biodegradable com-
posite containing about 40% jute fiber by weight, using a film-stacking procedure. In this
study, first PLA was converted into a film of 0.2 mm thickness using a single-screw
extruder. Layups were prepared in which sections of jute fiber mats were stacked up with
several PLA film layers on either side within a metal frame. Teflon sheets were used at
the top and bottom of the frame. The layups were subjected to rapid press consolidation
involving the following steps: (a) precompression; (b) contact heating under vacuum;
(c) rapid transfer to a press for consolidating and cooling and (d) removal of the finished
part from the press. Table 4 reviews the fabrication methods and processing parameters
for PLA-based green composites.

Mechanical characterization of PLA-based green composites

The effect of different reinforcements in terms of natural fibers and fillers is studied
through various characterization techniques that may open up new areas for further
development to assess the effectiveness of its processing, the effect of different envir-
onments on its properties and to find suitable areas of application. Mechanical char-
acterization is one of the most important techniques to predict the mechanical behavior
of the materials. The mechanical properties of biocomposites depend on a number of
parameters such as percentage of fiber content, interfacial characteristics between fiber
and matrix, fiber aspect ratio, surface modification of fibers and addition of various
additives (coupling agents) to enhance the compatibility between fiber and matrix.
Mechanical characterization includes determination of tensile strength (the maximum
stress in tension, a sample can sustain without fracture), Young’s modulus (the stiffness
of the material obtained from the slope of the line tangent to the stress—strain curve),
compressive strength, flexural strength (stress at fracture from a bend (three or four point
bend) test), flexural modulus (the stiffness of the material which is the ratio of the
applied stress on a test specimen in bending to the corresponding strain in the outermost
fibers of the specimen within elastic limit), impact strength (resistance of any material to
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impact loading with or without notch in it: Chary/izod impact test) and inter-laminar
shear strength (shear strength of the matrix layer between the plies).

Tensile and compressive strength

Maximum work has been reported on tensile strength, tensile modulus and elongation at
break of green composites than any other mechanical property. The tensile strength of
green composites can be enhanced by improving the matrix properties and reducing the
stress concentration and choosing proper fiber orientation. The fiber properties like
wettability of fibers into matrix and fiber loading and so on are responsible for improving
tensile stiffness of biocomposites. Literature shows that less attention has been paid to
shear and compressive properties of green composites, therefore the findings presented
here are limited. Table 5 summarizes the important findings on tensile properties of
PLA-based green composites. Oksman et al.' reported that while making composite
using flax fiber (30—40%) with PLA resin, strength was about 50% better compared to
similar PP/flax fiber composite. Stiffness of PLA was increased from 3.4 to 8.4 GPa
in the composite. PLA was not degraded by the compounding process. Shih et al.”®
fabricated green composites with fiber recycling from disposable chopsticks and PLA
matrix by melt-mixing method. Mechanical tests showed that the tensile strength of the
composites markedly increased with the fiber content, reaching 115 MPa in the case of
being reinforced with 40 phr fibers, which was about 3 times higher than the pristine
PLA. Kim and Netravali’® developed mercerized sisal fibers reinforced soy protein
resin—based composites and concluded that mercerization improved the fracture stress
and Young’s modulus of the sisal fibers while their fracture strain and toughness
decreased. Developed composites showed improvement in both fracture stress and stiff-
ness by 12.2% and 36.2%, respectively, compared to the unmercerized fiber-reinforced
composites. Rashed et al.'” reported that tensile strength of jute fiber-reinforced PP
matrix composites increased with increase in the fiber size and fiber percentage; but after
a certain size and percentage, the tensile strength decreased again. Lee et al.*° concluded
that the tensile strength of the PLA/denim fabric composites was improved by piling
layer of denim fabrics. The three layer denim-reinforced composite showed best results
among all specimens having its tensile strength and tensile modulus 75.76 MPa and
4.65 GPa, respectively. Hu and Lim'"" showed that PLA/hemp composite with 40%
volume fraction of alkali-treated fiber had the best mechanical properties. The tensile
strength and elastic modulus were 54.6 MPa and 8.5 GPa, respectively, which were much
higher than those of PLA alone. Ochi'® showed extremely high tensile strength
(365 MPa) of manila hemp (70 vol.%)/starch-based resin composite due to the novel
fabrication technique proposed in this study in which the composites were fabricated
with an emulsion-type biodegradable resin. Plackett et al.** reported that the tensile
strength and stiffness of PLA could be approximately doubled when jute fiber reinforce-
ment (40 wt.%) was used. Results of electron microscopy showed brittle failure of jute
fibers under tension and void spaces between fiber and polymer matrix, indicating that
the strength of the PLA/jute interface could be improved. Srebrenkoska et al.'* devel-
oped the biodegradable composites with maleic anhydride-grafted PLA reinforced with
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rice hulls and kenaf fibers and concluded that compressive strength and compressive
modulus of PLA/kenaf (345 + 3.11 MPa and 174 + 0.11 GPa, respectively) was higher
than that of PLA/rice hull (216 + 2.67 MPa and 146 + 0.07 GPa, respectively). Tao et
al.”® found that neat PLA had a lower tensile strength than PLA-based ramie and jute
short fibers composites. The tensile strength increased with the addition of ramie fiber
or jute fiber to PLA matrix, showing that the stress was expected to transfer from the
matrix to the strong fiber. But when the addition of fibers was more than 30%, the tensile
strength of composites decreased and was even lower than that of neat PLA. Liu et al.'*
fabricated PLA/sugar beet pulp composites by compression-heating and reported that the
resultant composite had a lower density and tensile strength similar to that of pure PLA
specimens as well as the same geometric properties. Tensile properties were dependent
on the initial water content of sugar beet pulp and the process by which composites were
manufactured. Gregorova et al.'®® developed PLA/spruce wood flour (SWF) composites
with different surface treatments of WF. Incorporation of 40 wt.% SWF resulted in an
increase in the Young’s modulus (3.73 + 0.247 GPa) and a decrease in the tensile
strength (37.2 + 2.0 MPa) as well as of the percentage elongation at break
(1.1 + 0.2). The composites containing hydrothermally and silane-treated WF induced
a tensile strength increase, along with higher elongation at break and a higher Young’s
modulus, respectively, which reflected the stiffening effect of the employed silane treat-
ment, which clearly improved interfacial adhesion between the PLA matrix and WF. Qin
et al.'%® developed composites consisting of PLA and rice straw fiber (RSF), modified by
poly butyl acrylate (PBA). A morphological study of PLA/RSF (7.98 wt.%) via scanning
electron microscope (SEM) showed good interfacial adhesion between PLA and RSF
and good dispersion of RSF in the polymer. But, the poor interfacial adhesion between
PLA and RSF was observed when PBA content was high. These were well confirmed in
the tensile test, which showed the tensile strength of PLA/RSF composites increased sig-
nificantly to 6 MPa. But the tensile strength of PLA/RSF rapidly decreased, while the
content of PBA was more than 7.98 wt.%. The addition of PBA to PLA led to the
decrease the tensile strength while the elongation at break was slightly increased. Islam
etal.'"” found a tensile strength of 82.9 MPa, Young’s modulus of 10.9 GPa with 30 wt.%
long aligned alkali-treated industrial hemp fiber—reinforced PLA composites produced
by film stacking technique. Petinakis et al.'®® showed that addition of up to 40 wt.%
of wood flour particles into PLA has little influence on the tensile strength (due to poor
interfacial adhesion), a significant reduction in its elongation at break and an increase of
up to 95% in the tensile modulus of the microcomposites. The introduction of methylene
diphenyl-diisocyanate (MDI) resulted in a 10% increase in tensile strength and 135%
increase in tensile modulus, showing that the addition of MDI resulted in an increase
in the strength of interfacial adhesion between the PLA matrix and the surface of the
wood flour particles. The incorporation of poly ethylene-acrylic acid (PEAA) in PLA
caused a substantial decrease in tensile strength of the matrix of up to 35%, an increase
in the break elongation and peak load values due to blending of the rubbery PEAA chains
into the PLA matrix. Yu et al.” evaluated tensile properties of surface-treated (alkali and
silane treatments) ramie fiber—based PLA composites. Results revealed that neat PLA
had a lower tensile strength than PLA-based composites due to better ramie fiber and
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polymer surface compatibility and good stress transfer between the fiber and the matrix.
Fiber treatment by alkali and silane further improved the tensile strength and strain of the
composites, and the maximum strength was 64.24 MPa (composite treated by NaOH)
due to bonding at the interface between the ramie fiber and PLA matrix. Lee and
Wang'? showed the effect of isocyanate group (NCO) content on the tensile properties
of the PLA/bamboo fibers (BF; 30 wt%) composites. As NCO content increased to
0.33%, tensile strength and Young’s modulus increased rapidly from 29 to 42 MPa and
from 2666 to 2964 MPa, respectively, and then leveled off. There was no significant
effect of lysine-based diisocyanate (LDI) addition on the elongation at break, showing
the value of less than 5%.

Flexural and impact strength

The flexural strength of green composites is slightly lower than that of the synthetic fiber
composites but comparable or better if specific properties are considered. An important
mechanical property of green composites is impact strength which is generally lower
when compared with glass fiber composites. But, in recent years, rapid advancement in
the science of fibers, matrix materials, processing, interface structures and bonding has
taken place due to which the situation has improved to a great extent. For good impact
strength, a most favorable bonding level is necessary. The level of adhesion, favorable
bonding, fiber pullout and energy absorption are some of the parameters that govern the
impact strength of biocomposites. Plackett et al.®® reported that impact resistance as
measured by an unnotched izod test does not increase in PLA/jute (40 wt.%) composite.
Lee et al. showed that denim fabric—reinforced PLA composites exhibited outstanding
impact strength due to the retarded crack propagation as well as large energy dissipation.
Hu and Lim'®! concluded that flexural strength of alkali-treated hemp fiber (40 vol.%)—
reinforced PLA composite was higher (112.7 MPa) than that of PLA alone due to the
improved interfacial adhesion between fiber and matrix. Ochi'%? proposed a new fabri-
cation technique in which the composites were fabricated with an emulsion-type biode-
gradable resin with manila hemp fibers (70 vol.%) and found very high flexural strength
of 223 MPa. The flexural strength and flexural modulus increased linearly with increas-
ing fiber content up to 70%. Tao et al.”” reported that the impact strength of PLA/ramie
composites was higher than that of PLA/jute composites due to the higher strength of
ramie fiber. The flexural strength of the composites increased compared with the neat
PLA matrix. But when the content of fibers was over 30%, the flexural strength of com-
posites decreased and was even lower than that of neat PLA due to the poor dispersion of
fibers in the matrix. The flexural strength of PLA/ramie composites was also higher than
that of PLA/jute composites. Huda et al.>® evaluated the flexural and impact properties of
PLA/recycled newspaper cellulose fiber (RNCF; 30 wt.%)/talc (10 wt.%; with and with-
out silane treated) hybrid composites. The flexural and impact strength of these hybrid
composites were reported to be significantly higher than that made from either PLA or
RNCEF. The hybrid composites showed improved flexural strength of 132 MPa and flex-
ural modulus of 15.3 GPa, while the unhybridized PLA-/RNCF-based composites exhib-
ited flexural strength and modulus values of 77 MPa and 6.7 GPa, respectively. SEM
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micrographs of the fracture surface of notched izod impact specimen of 10 wt.%
talc-filled PLA/RNCF composites showed good filler particle dispersion in the matrix.
Islam et al.'®” produced short (random and aligned) and long (aligned) industrial hemp
fiber—reinforced PLA composites by compression molding. The best overall properties
were achieved with 30 wt.% long aligned alkali-treated fiber—reinforced—PLA compo-
sites produced by film-stacking technique, leading to flexural strength of 142.5 MPa,
flexural modulus of 6.5 GPa, impact strength of 9 kJ/m?. Petinakis et al.'®® found an
improvement in impact strength (up to 30%) of the PLA/WF (20 wt.%) microcomposites
due to crack propagation from the wood flour particles. The incorporation of PEAA
caused a slight improvement in impact strength (up to 15%) due to the blending of the
rubbery PEAA chains into the PLA matrix. Yu et al.”> evaluated the effect of surface
treatments (by alkali and silane treatments) of ramie fibers on flexural and impact
strength of PLA/ramie fiber composites. When ramie fibers were treated with alkali, the
flexural strength of the composites was higher than that of untreated fiber or treated with
silane. The impact properties of the composites with surface-treated ramie fibers were
higher than that of the composites with untreated ramie fibers. Composites with alkali
treatment had got the highest impact strength, which proved that the alkali treatment pro-
vided effective resistance to crack propagation. Huda et al.** reported the flexural and
impact properties of PLA/kenaf fiber biocomposites with alkalization and silane treat-
ment of fibers. All surface-treated kenaf fibers showed the tendency to significantly
increase the flexural modulus compared to neat PLA. The flexural strength of the PLA
composites decreased with the addition of kenaf fibers probably due to poor adhesion
between the kenaf fibers and PLA. With 40 wt.% kenaf fiber content, the flexural mod-
ulus was increased from 5.6 GPa for untreated fiber (FIB) to 8.3 GPa for alkali-treated
fiber (FIBNA; a 48% increase). The composite with silane-treated fibers showed a higher
increase in modulus than that of alkali-treated fibers. The flexural modulus is increased
from 5.6 GPa for FIB to 9.5 GPa for silane-treated fiber (FIBSI; a 69% increase). The
composite with alkali followed by silane-treated fiber (FIBNASI) contents exhibited the
best flexural modulus (80% improvement). The surface treatments enhanced the impact
strength of the composites. The impact strength of the PLA improved nearly 45% for
FIB, 50% increment for the FIBNA composites with 40 wt.%. In contrast, FIBSI com-
posites showed a decrease in impact strength; but for FIBNASI composites, the impact
strength improved by 38% over neat PLA. Tables 6 and 7 review some of the research
findings of flexural and impact properties of PLA-based green composites.

Applications of green composites

Natural fiber composites are being extensively used throughout the world in the wide
range of applications like automobiles, infrastructure, furniture and so on. A rich
application of plant fibers are in Mercedes-Benz E-class. Many parts in this car like cen-
ter console and trim, various damping and insulation parts, C-pillar trim, rear parcel
shelf, seat cushion parts and door trim panels are made from plant fiber composites.'**
Table 8 shows the interior and exterior automotive parts produced from natural fibers
and their composites.
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Table 8. Automotive parts produced from natural materials.'*'

Vehicle part Material used

Glove box Wood/cotton fibers molded, flax/sisal
Door panels Flax/sisal with thermoset resin

Seat coverings Leather/wool backing

Seat surface/backrest Coconut fiber/natural rubber

Trunk panel Cotton fiber

Floor panels Flax mat with PP

Trunk floor Cotton with PP/PET fibers

PP: polypropylene.

Jute-reinforced polymer composites are used in many applications like automobiles
(door panels, seat backs, headliners, dash boards, trunk liners and parts in railway coach),
building components (ceiling, floor, window, wall partition and ceiling) and furniture
(table, chair and kitchen cabinet).'*> Hong and Wool'*® developed a new low dielectric
constant material suited to electronic material applications using hollow keratin fibers
and chemically modified soybean oil. Plastic/wood fiber composites are being used in
a large number of applications in decks, docks, window frames and molded panel com-
ponents.'*” Ghavami'*® proposed the use of bamboo fiber as reinforcement in structural
concrete elements. Green composites have found increasing applications in industrial
housing construction compared to other industrial applications. They are being used in
a large variety of building materials such as fencing, decking, siding, door, window,
bridge, fiber cement and so on. Fiber-reinforced cement composites have found increas-
ing applications in residential housing construction. Sisal cement composites can be used
in place of asbestos—cement composites which are hazardous for human and animal
health."*® Kenaf fiber—reinforced PLA matrix composites have been used for spare tire
covers, circuit boards and so on.'*® Bax and Mussig’® proposed possible fields of appli-
cation of PLA/cordenka composite in automotive and electronic industry. Graupner
et al.”! developed a variety of natural and man-made cellulose fiber—reinforced PLA
composites and suggested different fields of application like furniture, suitcases, car
parts, grinding discs, safety helmets and so on.

A dais-deck assembly shown in Figure 4 completely made of polyester/jute composite
was displayed in the International Conference and Exhibition on Reinforced Plastics
(ICERP 2011) at the Bombay Exhibition Centre, NSE complex, Goregaon, Mumbai, India.
This assembly was aesthetically excellent, reflecting the texture same as that of the costly
wooden products. The demand for agricultural products will increase due to the use of such
materials as a cost-effective alternative to wood and petro-based plastic products.

Conclusion

Green composites have gained great interest because of ecological issues and declining
petroleum-based resources. Different types of natural fibers and their properties have
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Figure 4. Dais-deck assembly.

been studied as a potential replacement of synthetic fibers like glass. The research and
development work carried out by researchers and technologist has shown that green fiber
composites are comparable or even superior to synthetic fiber composites. Green fibers
like flax, nettle, jute, sisal, kenaf and so on are the present and will be the future raw
materials not only for the textile industry but also for modern eco-friendly composites
used in different areas of application, ranging from rural to hi-tech application. Still more
research and development is required for the extraction, characterization and property
modification using various surface modification techniques of natural fibers. Also, a
serious research for improving the adhesion characteristics of matrix and natural
fibers through chemical treatment of fibers, use of fillers and additives and processing
techniques is ongoing. A major problem to the commercialization of green composites
is the high cost associated with biopolymers used as matrices. Future attempts in devel-
oping cheaper production techniques of these biodegradable matrixes through faster and
more efficient processing, by modification of bioresources and advanced biotechnology
concepts, would certainly be helpful. Another area of research interest is nanogreen com-
posites, which is an emerging field and requires immediate attention.
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