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Abstract: Automated classification of texts by their likeness
or affinity has greatly eased the management and processing
of the massive volumes of information we face everyday. Al-
though Support Vector Machines (SVM) provide a state-of-the-
art technique to tackle this problem, Relevance Vector Ma-
chines (RVM), which rely on Bayesian inference learning, offer
advantages such as their capacity to find sparser and probabilis-
tic solutions. A known problem with the Bayesian approaches,
however, is their relative inability to scale to larger problems
where millions of documents are involved as well as real-time
user’s requests.
We propose an ensemble strategy to circumvent RVMs scal-
ability problem by applying a divide-and-conquer technique
to handle the overload of available data, where the training
documents are divided amongst small RVM classifiers, then
the ensemble combines their individual contributions. The
solution achieved keeps a sparse decision function and is com-
putationally efficient. Results with respect to Reuters-21578
clearly demonstrate the proposed strategy can surpass other
techniques, in both in terms classification performance and
response time.

Keywords: Text classification, Relevance Vector Machines,
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I. Introduction

Text classification (TC) aims to automatically assign seman-
tic categories to natural language text. In recent years, au-
tomated classification of texts into predefined categories has
attracted considerable interest, due to the increasing volume
of documents in digital form and the following need to orga-
nize them.
A recurrent problem in TC problems is the scale of the prob-
lems that usually causes problems for many standard learn-
ing algorithms. Documents are represented by vectors of
numeric values, with one value for each word that appears
in any training document, making it a large scale problem.

High dimensionality both increases processing time and the
risk of overfitting, i.e., that the learning algorithm will in-
duce a classifier that reflects accidental properties of the par-
ticular training examples rather than the systematic relation-
ships between the words and the categories [1]. To deal
with this dimensionality problem, feature selection and di-
mension reduction methods are applied, such as, stopword
removal, stemming and removing less frequent words. Yang
[2] presents a noteworthy scalability analysis of classifiers in
TC, including KNN and SVM. In [1] an empirical analysis
of sparse Bayesian classifiers for TC is conducted, conclud-
ing that RVM constitutes a competitive approach with mi-
nor changes to Tipping’s initial proposal. Bayesian learning
algorithms, like RVMs allow the user to specify a probabil-
ity distribution over possible parameter values of the learned
classifier. This not only provides one solution to the overfit-
ting problem (since the algorithm can use prior distribution to
regularize the classifier), but the prior also provides a math-
ematically well-justified way to allow domain knowledge to
influence the parameter values that result from learning.
Despite RVM potential advantages when compared with
SVM, a known problem with Bayesian approaches is their
relative inability to scale with large problems like TC. In
fact for a training set ofN examples, RVM training time
is O(N3) and memory scalingO(N2), making RVM diffi-
cult to scale when there are many training examples. We use
a divide and conquer strategy, where the training documents
are divided amongst small RVM classifiers and an ensemble
strategy combines their individual contribution to substanc-
tially improve classification performance.
The rest of the paper is organized as follows. Section II has
a brief review of RVMs with their mathematical formulation.
In section III preliminary results achieved with RVM are in-
troduced, comparing them with state-of-the-art results to at-
tain a baseline comparison platform. Section IV proposes
the RVM ensemble and includes the results achieved. Con-
clusions and future lines of research are drawn in section V.
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II. Relevance Vector Machines

RVM, pioneered by Tipping [3] is a sparse learning algo-
rithm, similar to the SVM in many respects but capable of
delivering a fully probabilistic output. It is reported to have
nearly identical performance to, if not better than, that of
SVM [3]. SVM has several desirable properties [4]:

• It fits functions in high-dimensional feature spaces,
through the use of kernels;

• Despite a possibly large space of functions available in
feature space, good generalization performance is nev-
ertheless achieved by margin maximization [5];

• It is sparse: Only a subset of training examples is re-
tained at runtime, improving computational efficiency.

However, there are also some disadvantages [3]:

• Although relatively sparse, SVM make unnecessary lit-
eral use of basis functions since the number of support
vectors (SV) required typically grows linearly with the
size of the training set. Some form of post-processing is
often required to reduce computational complexity;

• Predictions are not probabilistic. In regression the SVM
outputs a point estimate and in classification a ’hard’ bi-
nary decision. Ideally we desire to estimate the condi-
tional distribution in order to capture the uncertainty in
out prediction.

• It is necessary to estimate the error/margin trade-off pa-
rameter C (and in regression the insensitivity parameter
ε too). This generally entails a cross-validation proce-
dure, which is wasteful both of data and computation.

• The kernel function must satisfy Mercer condition. That
is, it must be the continuous symmetric kernel of a pos-
itive integer operator.

RVM’s advantages rise due to its ability to yield a decision
function that is much sparser than SVM, while maintaining
its classification accuracy. This can lead to significant reduc-
tion in the computational complexity of the decision func-
tion, thereby making it more suitable for real-time applica-
tions [6].
The RVM was proposed by Tipping [3], as a Bayesian treat-
ment of the sparse learning problem. The RVM preserves
the generalization and sparsity of the SVM, yet it also yields
a probabilistic output, as well as circumventing other limita-
tions of SVM, such as the need for Mercer kernels and the
definition of the error/margin trade-off parameter C.

A. Formulation

For an input vectorx, an RVM models the probability distri-
bution of its labeld ∈ {−1,+1} using logistic regression:

p(d = 1|x) =
1

1 + exp(−fRV M (x))
, (1)

wherefRV M (x), the classifier function, is given by

fRV M (x) =
N∑

i=1

αiK(x,xi), (2)

whereK(., .) is a kernel function, andxi, i = 1, 2, ..., N ,
are training samples. The parametersαi, i = 1, 2, ..., N ,
in fRV M (x) are determined using Bayesian estimation, in-
troducing a sparse prior onαi. The parametersαi are as-
sumed to be statistically independent obeying a zero-mean
Gaussian distribution with varianceλ−1

i , used to force them
to be highly concentrated around zero, leading to very few
nonzero terms. Theαi are then obtained by maximizing the
posterior distribution of the class labels given the input vec-
tors. This is equivalent to maximizing the objective function:

J(α1, α2, ..., αN ) =
N∑

i=1

log p(di|xi) +
N∑

i=1

log p(αi|λ∗i )
(3)

where the first summation term corresponds to the likelihood
of the class labels, and the second term corresponds to the
prior on parametersαi, in which λ∗i denotes the maximum
a posteriori estimate of the hyper-parameterλi. In the re-
sulting solution, only those samples associated with nonzero
coefficientsαi, called relevant vectors (RV), will contribute
to the decision functionfRV M (x). In (2) the kernel function
K(., .) forms expansion basis functions forfRV M (x), and
is not limited by the Mercer’s condition, unlike SVM. The
Mercer’s condition states thatK(., .) must be a positive in-
tegral operator, that is, for every square-integrable function
g(.) defined on IRn the kernelK(., .) satisfies (4). As usual
for text classification purposes, the linear kernel will be used.

∫ ∫
K(x,y)g(x)g(y)dxdy ≥ 0 (4)

III. Preliminary Results

These results are presented as baseline comparison. Besides
baseline RVM results, SVM results are also presented since
SVM constitute the state-of-the-art machine learning tech-
nique in text classification. RVM models are as described in
section II, while for SVM,SV M light package by Joachims
(http://svmlight.joachims.org/) was used. Before the results
are presented, brief information about the data set and the
performance criteria is given.

A. Data set

For the experiments, Reuters-21578 dataset (http://kdd.
ics.uci.edu/databases/reuters21578/reuters21578.html) was
used. It is a financial corpus with news articles averaging
200 words each. Reuters-21578 corpus has about 12000 clas-
sified stories into 118 possible categories. We use only 10
categories (earn, acq, money-fx, grain, crude, trade, inter-
est, ship, wheat and corn), detailed in table 1 with the corre-
sponding number of positive training and testing examples,
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since they cover 75% of the items and constitute an accepted
benchmark. The ModApte split was used, using 75% of the
articles (9603 items) for train and 25% (3299 items) for test.

Table 1: Train and test documents for Reuters-21578.
Category Train Test Category Train Test

earn 2715 1044 trade 346 113
acq 1547 680 interest 313 121

money-fx 496 161 ship 186 89
grain 395 138 wheat 194 66
crude 358 176 corn 164 52

B. Performance Criteria

When the number of positive examples is reduced, common
error or accuracy measures are not appropriate, since they
value equally both false positives (negative testing examples
classified as positive) and false negatives (positive testing ex-
amples classified as negatives). It is possible to define differ-
ent weights to these errors and obtain useful measures, but
the usual performance criteria in TC used are Recall and Pre-
cision. Recall is the percentage of total documents for the
given topic that are correctly classified (5).

Recall =
relevant retrieved

relevant in the collection
(5)

Precision is the percentage of predicted documents for the
given topic that are correctly classified (6).

Precision =
relevant retrieved

total number of retrieved
(6)

An alternative representation is the use of true positives (TP),
false positives (FP) and false negatives (FN) as in (7).

Recall =
TP

TP + FN
; Precision =

TP

TP + FP
(7)

The use of two different measures can make it difficult to
compare classifiers. Thus, usually a combinedFβ (8) mea-
sure is calculated. In the experiments presented aheadFβ

was used withβ = 1 in the testing set for each category.

Fβ =
(β2 + 1)× TP

(β2 + 1)× TP + FP + β2 × FN
(8)

F1 can be represented alternatively, and possibly clearly (9):

F1 =
2× precision× recall

precision + recall
(9)

As the TC multi-class problem has been sub-divided in sev-
eral two-class problems, averaging has to be used to find total
criteria values. There are two types of averaging: micro-
averaging and macro-averaging. In micro-averaging, per-
formance tables for each of the categories are added, and
the criteria are computed. In macro-averaging, performance
measures are computed separately for each category and the
mean of the resulting performance is taken. The results
throughout the paper use macro-averaging.

ROC curves will also be drawn to offer a visual evaluation
of classifiers, plotting TP rate versus FP rate (10), depicting
relative trade-offs between benefits (TP) and costs (FP).

TPrate =
TP

TP + FN
; FPrate =

FP

TN + FP
(10)

C. Baseline Results

Baseline results were achieved using words that appear in
more than 2, 190 or 500 documents, i.e., which have a Docu-
ment Frequency (DF) over 2 (DF>2), 190 (DF>190) or 500
(DF>500), resulting in respectively 7573, 497 or 176 words
used in each setting. This initial feature selection was carried
out to reduce the dimension of the problem. For each DF
threshold, training was carried out with 1000, 2000 and all
training examples. For RVM it was not possible to gather re-
sults for the largest set, i.e., with 7573 words, neither for all
training examples. The number of examples is proportional
to computational load, and that much processing power on
one machine was not attainable and is not reasonable to be
considered available in a real-time situation. With this con-
straint, the use of all words also constitutes a problem, that
arises when there is one or more words that do not appear
in any of the documents chosen for training. The results are
represented in terms of F1 where classification performance
is concerned and in terms of Support Vectors (SV)/Relevant
Vectors (RV) and CPU training time (in seconds) where solu-
tion complexity is concerned. Table 2 presents RVM baseline
results. Tables 3 and 4 resume the macro-averaged results
for baseline settings concerning F1 and vectors respectively.
From these results a few conclusions can already be drawn:
(i) Classification performance is very similar for both learn-
ing machines for the same settings; (ii) RVMs present a much
smaller computational complexity of the decision function,
using between 13% and 14% of the vectors SVM needs; (iii)
RVMs are more robust to smaller training sets and smaller
number of features; (iv) RVMs do not scale well with number
of documents, doubling the number of examples, increases
time between 6 and 12 times, depending on the features used.

IV. Ensemble Approach

An ensemble is started by creating base classifiers with nec-
essary accuracy and diversity. Unlike the traditional ap-
proach of choosing the best performing learning machine,
an ensemble strategy compares the performance of the com-
bined output with the selection and use of the best one, in
terms of classification performance. When using the same
learning algorithm, different classifiers are generated by ma-
nipulating the training set, manipulating the input features,
manipulating the output targets or injecting randomness in
the learning algorithm.
To make use of all training examples usually available in
TC, our approach consists in the construction of several
smaller training sets (chunks) of 1000 and 2000 documents.
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Table 2: F1, Relevant Vectors and CPU training time (in seconds) for Baseline RVM using 1000 or 2000 documents and
words with document frequency over 500 and 190.

RVM 1000 documents 2000 documents RVM 1000 documents 2000 documents
DF>500 F1 RV CPU F1 RV CPU DF>190 F1 RV CPU F1 RV CPU

earn 94.65% 23 111 95.95% 36 828 earn 95.70% 23 95 97.52% 35 1218
acq 87.72% 25 93 89.80% 41 616 acq 86.69% 26 100 91.57% 49 1257

money-fx 46.43% 16 81 57.25% 34 626 money-fx 45.32% 19 96 57.14% 35 1193
grain 77.58% 19 126 80.61% 25 849 grain 72.86% 22 96 76.52% 28 1110
crude 68.17% 19 78 72.90% 27 606 crude 64.11% 16 90 69.51% 28 1125
trade 48.28% 20 104 43.96% 25 558 trade 42.46% 19 103 50.27% 37 1076

interest 59.65% 13 78 54.44% 22 584 interest 45.40% 16 84 58.29% 35 1133
ship 37.84% 15 98 62.28% 22 583 ship 37.84% 15 78 66.21% 26 1130

wheat 81.43% 12 83 79.14% 14 503 wheat 71.01% 19 90 75.18% 19 1133
corn 57.45% 14 112 62.14% 23 542 corn 62.63% 15 82 67.37% 27 952

average 65.92% 17.6 96.4 69.85% 26.9 629.5 average 62.40% 19.0 91.4 70.96% 31.9 1132.7

Table 3: Summary of F1 macro-averaged results for baseline settings.
DF > 500 DF > 190 DF > 2

1000 2000 all 1000 2000 all 1000 2000 all
SVM RVM SVM RVM SVM SVM RVM SVM RVM SVM SVM SVM SVM

59.39% 65.92% 66.39% 69.85% 73.16% 57.79% 62.40% 66.89% 70.96% 76.14% 57.65% 68.76% 79.88%

1 1.11 1 1.05 1 1 1.09 1 1.06 1 1 1 1

Thus, two ensembles were tested one with 7 RVM classifiers
trained with one chunk of 1000 documents each (from now
on referred to as 7x1000) and another with 3 RVM classifiers
trained with one chunk of 2000 documents each (from now
on referred to as 3x2000). After the 7 or 3 RVM classifiers
that make up the ensembles are trained, a majority voting
scheme is implemented to determine the ensemble output de-
cision, taking as output value the average value of the classi-
fiers that corroborated the majority decision. As the number
of chunk classifiers is odd, a draw is never reached.

A. Experimental results

Table 5 presents the F1 results for each RVM classifier for
the 7x1000 ensemble and the final ensemble output perfor-
mance. Table 6 displays F1 results, but for the 3x2000 clas-
sifier. On average both settings show a definite performance
improvement of 9% for ensemble 7x1000 and of 5% for en-
semble 3x2000. Peak improvements can go up to 42%, as for
trade category on ensemble 7x1000. These gains are possi-
ble by the use of all training examples to determine the final
classification. Baseline results decide based only on part of
the available training documents. The ensemble approach
makes it possible to use all documents, retaining all relevant
information for classification. Figures 1 and 2 display ROC
curves that compare for crude category the ensemble result
with the best RVM classifier that constitutes the ensemble.
Fig. 1 refers to the comparison between the best chunk of
1000 documents for crude category, i.e, chunk 3 with F1 of
67.10%, and the 7x1000 ensemble result for crude, i.e., with
F1 of 70.99%. AUC values are in the southeast corner of
each figure, confirming F1 results.

Table 5: F1 values for ensemble of 7 chunks of 1000 docu-
ments approach with Majority Voting (MV).

Category Maximum Average Ensemble Voting
earn 96.77% 96.12% 97.69%
acq 90.36% 88.84% 94.97%

money-fx 68.29% 60.54% 71.81%
grain 84.83% 79.16% 81.62%
crude 75.08% 70.13% 78.34%
trade 66.67% 62.46% 70.25%

interest 67.02% 62.10% 70.47%
ship 66.67% 60.43% 77.99%

wheat 85.71% 80.83% 81.48%
corn 70.83% 64.06% 66.67%

average 77.22% 72.46% 79.13%

Table 6: F1 values for ensemble of 3 chunks of 2000 docu-
ments approach with Majority Voting (MV).

Category Chunk 1 Chunk 2 Chunk 3 MV
earn 97.52% 96.58% 96.84% 97.36%
acq 91.57% 89.15% 89.01% 92.84%

money-fx 57.14% 61.76% 68.18% 71.86%
grain 76.52% 73.31% 74.70% 80.45%
crude 69.51% 58.70% 69.40% 75.45%
trade 50.27% 58.93% 63.67% 66.67%

interest 58.29% 57.30% 52.63% 67.37%
ship 66.21% 67.55% 76.54% 80.25%

wheat 75.18% 78.69% 70.87% 79.71%
corn 67.37% 62.37% 62.00% 63.64%

average 70.96% 70.43% 72.38% 77.46%
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Table 4: Summary of number of vectors macro-averaged results for baseline settings.
DF > 500 DF > 190 DF > 2

1000 2000 all 1000 2000 all 1000 2000 all
SVM RVM SVM RVM SVM SVM RVM SVM RVM SVM SVM SVM SVM
128.3 17.6 210.2 26.9 519.2 142.7 19.0 229.5 31.9 542.9 177.6 281.1 618.2

1 0.14 1 0.13 1 1 0.13 1 0.14 1 1 1 1
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Crude Ensemble 7x1000; AUC: 0.9775
Crude Base 1000; AUC: 0.9488

Figure. 1: ROC curves for crude category: comparison with
ensemble of 7 chunks of 1000 documents.
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Crude Ensemble 3x2000; AUC: 0.9718
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Figure. 2: ROC curves for crude category: comparison with
ensemble of 3 chunks of 2000 documents.

V. Conclusions and Future Work

We have presented an RVM ensemble able to manage large
datasets for Text Classification (TC). Two ensemble settings
were defined using a divide-and-conquer technique, where
training documents were first divided amongst small RVM
classifiers, then an ensemble voting combined their individ-
ual contributions. Both settings show performance improve-
ments compared with the best individual classifier, asserted
not only by F1 performance measures, but also by ROC
curves and the area under the curve (AUC). The approach
produces useful sparse and probabilistic decision functions,
coupled with a surplus in performance quality on Reuters-
21578, gained by the use of all available training documents.
Moreover the fast response time attained may lead to the dis-
tributed deployment of successful real-time applications.
Future research is expected in the refinement of the base clas-
sifiers. Instead of general-purpose classifiers, specific tasks
will be assigned, such as, rare-class classification. This strat-
egy will make the ensemble more heterogeneous where data
is concerned, and also were functionality is concerned.
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