
Workshop on

Data Mining for Computer Security

www.cs.fit.edu/~pkc/dmsec03/

in conjunction with
IEEE International Conference on Data Mining

November 19-22, 2003

Melbourne, Florida

Workshop Organizers:
Philip Chan, Florida Tech

Vipin Kumar, University of Minnesota
Wenke Lee, Georgia Tech

Srinivasan Parthasarathy, Ohio State University

Program Committee:
• Wenke Lee, Georgia Tech (Co-Chair)
• Srinivasan Parthasarathy, Ohio State U (Co-Chair)
• Daniel Barbara, GMU
• Philip Chan, Florida Tech
• Eleazar Eskin, Hebrew U
• Wei Fan, IBM Watson
• Anup Ghosh, DARPA
• Sushil Jajodia, GMU
• Vipin Kumar, U. Minnesota
• Terran Lane, U. New Mexico
• Aleksandar Lazarevic, U. Minnesota
• Richard Lippmann, MIT Lincoln Lab
• Matthew Mahoney, Florida Tech
• Roy Maxion, CMU
• Chris Michael, Cigital
• R. Sekar, Stony Brook U
• Jaideep Srivastava, U. Minnesota
• Salvatore Stolfo, Columbia U
• Kymie Tan, CMU
• Alfonso Valdes, SRI

External Reviewers:

• Zoran Duric, George Mason University
• Eric Eilertson, University of Minnesota
• Levent Ertoz, University of Minnesota
• Amol Ghoting, Ohio State University
• Matthew Otey, Ohio State University
• Aysel Ozgur, University of Minnesota
• Joseph Pamula, George Mason University
• Xinzhou Qin, Georgia Institute of Technology
• Sankardas Roy, George Mason University

TABLE OF CONTENTS

INVITED TALKS

Authenticating Users by Profiling Behavior 1
Tom Goldring, NSA

Behavior-based Security 1
Salvatore J. Stolfo, Columbia University

ANOMALY DETECTION

One Class Support Vector Machines for Detecting Anomalous Windows 2
Registry Accesses
Katherine Heller, Krysta Svore, Angelos Keromytis, and Salvatore Stolfo
[Columbia University]

One Class Training for Masquerade Detection 10
Ke Wang and Salvatore J. Stolfo [Columbia University]

Learning Rules from System Call Arguments and Sequences for Anomaly 20
Detection
Gaurav Tandon and Philip Chan [Florida Institute of Technology]

Detection of Novel Network Attacks Using Data Mining 30
Levent Ertoz, Eric Eilertson , Aleksandar Lazarevic, Pang-Ning Tan,
Paul Dokas, Vipin Kumar, and Jaideep Srivastava [University of Minnesota]

FEATURE EXTRACTION

Passive Operating System Identification from TCP/IP Packet Headers 40
Richard Lippmann, David Fried, Keith Piwowarski, and William Streilein
 [MIT Lincoln Laboratory]

Boundary Detection in Tokenizing Network Application Payload for 50
Anomaly Detection
Rachna Vargiya and Philip Chan [Florida Institute of Technology]

MISUSE DETECTION

Detecting Privilege-Escalating Executable Exploits 60
Jesse C. Rabek, Robert K. Cunningham, and Roger I. Khazan
 [MIT Lincoln Laboratory]

VISUALIZATION

A Prototype Tool for Visual Data Mining of Network Traffic for Intrusion Detection 67
William Yurcik, Kiran Lakkaraju, James Barlow and Jeff Rosendale
[NCSA/University of Illinois at Urbana-Champaign]

Introduction

Computer security is a broad field that encompasses issues both theoretical and practical aspects. It
is of incredible importance to a wide variety of practical domains ranging from the banking
industry to multi-national corporations, from space exploration to the intelligence community and
so on. Computer security is frequently associated with three core areas: confidentiality, integrity
and authentication. Although security policies and mechanisms address all three of these areas,
they are not perfect and more and more organizations are becoming vulnerable to a wide variety of
security breaches due to decreasing cost of the information processing and Internet accessibility.
The most common security breaches include different cyber attacks to single computers, computer
networks, wireless networks, databases or authentication compromises (e.g. masquerading).

The main aim of this workshop is to bring together leading figures from academia, government and
industry to explore the applications of data mining in computer security.

Presentations in this workshop focus on several aspects of computer security, mainly in the area of
intrusion detection. They are organized in the following four sessions:

• Anomaly Detection
• Feature Extraction
• Misuse Detection
• Visualization

The first session presents different data mining based anomaly detection techniques for recognizing
novel and emerging computer attacks. Papers in the feature extraction session investigate various
attributes that may be beneficial in data mining based techniques for intrusion detection. The paper
in the misuse detection session presents a statistical based detector of malicious codes, while in the
visualization session new data mining based prototype is presented to help security analysts to
interactively assess security situational awareness of an entire network traffic.

The workshop program contains 8 papers selected from 17 submissions after a peer review process.
Since two of the organizers (Chan and Kumar) submitted papers to the workshop, the other two
organizers (Lee and Parthasarathy) organized the reviewing process and made the decisions on
paper acceptance to avoid conflicts of interests. Three reviews were sought for each paper -- in
select cases a fourth review was solicited either in the event of a missing review or in the event of
low-confidence reviews. We like to thank the program committee members and external reviewers
for their help in reviewing the submissions and providing comments for the authors. Special thanks
are due to Xinzhou Qin (Georgia Tech) for setting up the workshop management system that
facilitated paper submission and reviewing, and to Aleksandar Lazarevic (University of Minnesota)
for workshop publicity as well as putting together the workshop proceedings. Lastly, we would like
to express our appreciation to Tom Goldring for his invited talk on “Authenticating Users by
Profiling Behavior” and Sal Stolfo on “Behavior-based Security”.

INVITED TALKS

Authenticating Users by Profiling Behavior
Tom Goldring, NSA

Building profiles of computer user activity entails collecting user session data, then learning models from this
data, which can be used to classify new sessions. From the Computer Security viewpoint, the purpose would
be to authenticate logins and detect insider misuse. A good data source will reflect user behavior and allow us
to filter out system noise, both with a high degree of accuracy. Numerous published studies have used
command line data, but this is probably no longer a viable source in today's environment.

The next step is feature selection, which allows us to choose among various existing classification algorithms
to solve the authentication problem. But even the best algorithms will perform badly if the features are poor.
Depending on what the data looks like, finding the right features and coaxing them into a usable form can be
nontrivial. For nearly two years we have been monitoring "real" users on an operational Windows NT
network that was part of a closed, internal network laboratory. In this talk we will describe our data, discuss
the features we are currently using, and present results obtained to date.

Behavior-based Security
Salvatore J. Stolfo, Columbia University

Abstract. Behavior-based security systems are a new generation of computer security technologies that
defend and protect critical IT assets by detecting deviations from a system's normal behavior. Behavior-
based security systems provide the means of detecting attacks from remote sources, and from within, i.e. the
insider problem.

The Email Mining Toolkit (EMT) is a data mining system that computes behavior profiles or models of user
email accounts. These models may be used for a variety of forensic analyses and detection tasks. In this talk
we describe the application of these models to detect the early onset of a viral propagation without "content-
based" (or signature-based) analysis in common use in virus scanners. We present several experiments using
real email from 15 users with injected simulated viral emails and describe how the combination of different
behavior models improves overall detection rates. The performance results vary depending upon parameter
settings, approaching 99% true positive (TP) (percentage of viral emails caught) in general cases and with
0.38% false positive (FP) (percentage of emails with attachments that are mislabeled as viral).

The principle behind behavior-based security is to model communication flows between systems and users,
(possibly including content) using well grounded statistical techniques. The statistics gathered may be used to
determine "social clique and communication communities" that typically exchange information, and the
frequency of messages and the typical times and days those messages are exchanged. All this information can
be used to model accounts, hosts or systems to determine typical behaviors that may be used to detect
deviations of interest that may indicate misbehavior or security breaches.

We believe EMT thus serves as a model anomaly detection system for any audit stream and detection
problem of interest. This work suggests a general framework that is the subject matter of our ongoing work.
This framework posits that anomaly detection is best cast as a problem to optimally correlate multiple
detectors, where each detector models normal behavior using different features of the audit stream. These
detectors generate alerts when there are violations of volume and velocity statistics, anomalous values
exhibited in an audit stream, and abnormal or inconsistent formation of vertices when viewing data in the
audit stream in graph theoretic formulations. All of these concepts and modeling techniques are embodied in
EMT.

fritz
1

One Class Support Vector Machines for Detecting Anomalous Windows Registry
Accesses

Katherine A. Heller Krysta M. Svore Angelos D. Keromytis Salvatore J. Stolfo
Dept. of Computer Science

Columbia University
1214 Amsterdam Avenue

New York, NY 10025�
heller,kmsvore,angelos,sal � @cs.columbia.edu

Abstract

We present a new Host-based Intrusion Detection Sys-
tem (IDS) that monitors accesses to the Microsoft Windows
Registry using Registry Anomaly Detection (RAD). Our sys-
tem uses a one class Support Vector Machine (OCSVM) to
detect anomalous registry behavior by training on a dataset
of normal registry accesses. It then uses this model to de-
tect outliers in new (unclassified) data generated from the
same system. Given the success of OCSVMs in other ap-
plications, we apply them to the Windows Registry anomaly
detection problem. We compare our system to the RAD sys-
tem using the Probabilistic Anomaly Detection (PAD) algo-
rithm on the same dataset. Surprisingly, we find that PAD
outperforms our OCSVM system due to properties of the hi-
erarchical prior incorporated in the PAD algorithm. In the
future, these properties may be used to develop an improved
kernel and increase the performance of the OCSVM system.

1. Introduction

One of the most popular and most often attacked oper-
ating systems is Microsoft Windows. Malicious software
is often run on the host machine to inflict attacks on the
system. Several methods can be used to combat malicious
attacks, such as virus scanners and security patches. How-
ever, these methods are not able to combat unknown at-
tacks, so frequent updates of the virus signatures and se-
curity patches must be made.

An alternative to these methods is a Host-based Intru-
sion Detection System (IDS). Host-based IDS systems de-
tect intrusions on a host system by monitoring system ac-
cesses. Most IDS systems utilize signature based algo-
rithms that rely on knowing the attacks and their signatures,

which limits their ability to detect unknown attack meth-
ods. Alternatively, “behavior-blocking” technology aims to
detect and stop malicious activities using a set of signature-
based descriptions of good behavior, i.e. what is expected
of program or system execution. To improve performance,
data mining techniques have recently been applied to IDS
systems [20, 22] to automatically learn models of “good
behavior” and “bad behavior” by observing a system un-
der normal operation. In this paper, we describe a new
approach based on anomaly detection, utilizing a method
that trains on normal data and looks for anomalous behav-
ior that deviates from the normal model [11, 12, 13]. This
method can better identify unknown attacks. Previous work
using IDS systems has been done using system call anal-
ysis [14, 15, 17, 19, 24] and network intrusion detection
[13, 18, 21].

We use the Registry Anomaly Detection (RAD) system
to monitor Windows registry queries [9]. During normal
computer activity, a certain set of registry keys are typi-
cally accessed by Windows programs. Users tend to use
certain programs regularly, so registry activity is fairly reg-
ular and thus provides a good platform to detect anomalous
behavior. We apply an OCSVM algorithm to the RAD sys-
tem to detect anomalous activity in the windows registry.
Although OCSVMs have previously been applied success-
fully to other anomaly detection problems, they have never
before been used to detect anomalous accesses to the Win-
dows registry. The OCSVM builds a model from training
on normal data and then classifies test data as either normal
or attack based on its geometrical deviation from the nor-
mal training data [23]. We present our results of the RAD
system using the OCSVM algorithm and demonstrate its
abilities to detect anomalous behavior with several different
kernels. We also compare our system with work done on
the RAD system using the Probabilistic Anomaly Detection
(PAD) algorithm [14, 9]. PAD outperforms the OCSVM

fritz
2

system due to the use of the estimator developed by Fried-
man and Singer [16]. This estimator uses a Dirichlet-based
hierarchical prior to smooth the distribution and account for
the likelihoods of unobserved elements in sparse data sets
by adjusting their probability mass based on the number of
values seen during training. An understanding of the dif-
ferences between these two models and the reasons for dif-
ferences in detection performance may help to construct a
more discriminative kernel, and is critical to the develop-
ment of effective anomaly detection systems in the future.

2. The Windows Registry and the RAD system

The Windows registry is a database that stores config-
uration settings for programs, security information, user
profiles, and many other system parameters. The registry
consists of entries, which are called registry keys, and their
associated values. Programs query the registry for infor-
mation by accessing a specific registry key. Each registry
query has five components: the name of the process, the
type of query, an associated key, the result, and the success
status of the query. The process may be an attack or normal
process. Each record in both our test dataset and training
dataset contains all five of these entries. A sample record
entry appears as:

Process: EXPLORER.EXE
Query: OpenKey
Key: HKCR\CLSID\B41DB860-8EE4-11D2-9906
-E49FADC173CA\shellex\MayChange
DefaultMenu
Response: SUCCESS
ResultValue: NOTFOUND

The Registry Anomaly Detection (RAD) system has
three parts: an audit sensor, a model generator, and an
anomaly detector. Each registry access is either stored as
a record in the training set or sent to the detector for anal-
ysis by the audit sensor. The model generator develops a
model of normal behavior from the training dataset, and the
anomaly detector uses this model to classify new registry
accesses as normal or anomalous.

The Registry Anomaly Detection (RAD) system utilizes
the five raw features given above, such that the algorithm
used for anomaly detection classifies each entry as either
normal or attack according to these feature values. The pro-
cess is the name of the process querying the registry. The
query is the type of access being sent to the registry. The
key is the key currently being accessed. The response is the
outcome of the query. The value of the accessed key is the
result value. For more detailed information on RAD and the
Windows registry, refer to [9].

3. The PAD Algorithm

The Probabilistic Anomaly Detection (PAD) algorithm,
developed by Eskin [14, 9], trains a model over normal data
features. It is essentially density estimation, where the esti-
mation of a density function ������� over normal data allows
the definition of anomalies as data elements that occur with
low probability. The detection of low probability data (or
events) are represented as consistency checks over the nor-
mal data, where a record is labeled anomalous if it fails any
one of these tests.

First and second order consistency checks are applied.
First order consistency checks verify that a value is consis-
tent with observed values of that feature in the normal data
set. It computes the likelihood of an observation of a given
feature, ����	�
�� , where 	�
 are the feature variables. Second
order consistency checks determine the conditional proba-
bility of a feature value given another feature value, denoted
by ����	�
� 	���� , where 	�
 and 	�� are the feature variables.

One way to compute these probabilities would be to esti-
mate a multinomial that computes the ratio of the counts of
a given element to the total counts. However, this results in
a biased estimator when there is a sparse data set. Instead,
the estimator given by Friedman and Singer is used to de-
termine these probability distributions [16]. Let � be the
total number of observations, �
 be the number of obser-
vations of symbol � , � be the “pseudo count” that is added
to the count of each observed symbol, ��� be the number of
observed symbols, and � be the total number of possible
symbols. Then the probability for an observed element � is
given by:

����	�������� �
�� �
� � � � �

(1)

and the probability for an unobserved element � is:

����	!�"���#�
$

�&%'� � �
$ % � (2)

where

, the scaling factor, accounts for the likelihood of
observing a previously observed element versus an unob-
served element. In [16], they compute

as:

 �(��)+*,.-/,.0 �1��� � ��2� � �43 , �5�6) ,87�,.0 3 , �:9<; (3)

where 3 , �=���?>@�A�B� ,DC,.-E,.0GFBH ,5IKJFBH ,5IKLNMOJ
and ���6>P���B� is

a prior probability associated with the size of the subset of
elements in the alphabet that have non-zero probability.

In PAD, however, the above computation of

is too
costly, so a heuristic method is used, where

is given by:

 � �
� � �&%'� � (4)

fritz
3

fritz
2

They normalize the consistency check to account for the
number of possible outcomes of � by considering if � is
the probability estimated from the consistency check, then
they report �������?���2� $ � �+� �����������?� � � �������?� � .

Since there are five feature values for each record in the
RAD system, there are 5 first order consistency checks and
20 second order consistency checks. A record is labeled
anomalous if any of the 25 consistency checks is below
a given threshold. This method labels every record in the
dataset as normal or anomalous. To improve the detection
rate, pairs of features are examined since a record may have
a set of feature values that are inconsistent even though all
single feature values are consistent for that record. Most
attacks effect a large number of records.

The PAD algorithm takes time � �
	������� , where 	 is the
number of unique record values for each record component
and is the number of record components. The space re-
quired to run the algorithm is � ��	����� .

4. One Class Support Vector Machine
(OCSVM)

Instead of using PAD for model generation and anomaly
detection, we apply an algorithm based on the one class
SVM algorithm given in [23]. Previously, OCSVMs have
not been used in Host-based anomaly detection systems.
The OCSVM code was developed by [10] and has been
modified to compute kernel entries dynamically due to
memory limitations. The OCSVM algorithm maps input
data into a high dimensional feature space (via a kernel) and
iteratively finds the maximal margin hyperplane which best
separates the training data from the origin. The OCSVM
may be viewed as a regular two-class SVM where all the
training data lies in the first class, and the origin is taken as
the only member of the second class. Thus, the hyperplane
(or linear decision boundary) corresponds to the classifica-
tion rule:

� ���/�#����������� ��� (5)

where � is the normal vector and � is a bias term. The
OCSVM solves an optimization problem to find the rule

�
with maximal geometric margin. We can use this classifica-
tion rule to assign a label to a test example � . If

� �
�/���!
we label � as an anomaly, otherwise it is labeled normal.
In practice there is a trade-off between maximizing the dis-
tance of the hyperplane from the origin and the number of
training data points contained in the region separated from
the origin by the hyperplane.

4.1. Kernels

Solving the OCSVM optimization problem is equivalent
to solving the dual quadratic programming problem:

"$#&%I
$
'�(

 �
�E
?�<��) ����
*���2�8� (6)

subject to the constraints

 $+ �
 +
$
, � (7)

and

(

�
 � $

(8)

where �
 is a lagrange multiplier (or “weight” on exam-
ple � such that vectors associated with non-zero weights are
called “support vectors” and solely determine the optimal
hyperplane), , is a parameter that controls the trade-off be-
tween maximizing the distance of the hyperplane from the
origin and the number of data points contained by the hyper-
plane, � is the number of points in the training dataset, and) ���
-� �2��� is the kernel function. By using the kernel func-
tion to project input vectors into a feature space, we allow
for nonlinear decision boundaries. Given a feature map:

.0/ 	2143 M (9)

where
.

maps training vectors from input space 	 to a high-
dimensional feature space, we can define the kernel function
as:

) �����-52�#�6� . �����7� . �
5B��� (10)

Feature vectors need not be computed explicitly, and in
fact it greatly improves computational efficiency to directly
compute kernel values) ������5B� . We used three common
kernels in our experiments:

Linear kernel:) ������5B�#� ���98:52�
Polynomial kernel:) �����-52�O�P���;8�5 � $ �-< , where = is the
degree of the polynomial
Gaussian kernel:) �����-5B���?> 9A@CB 9EDF@CG-H H �JI G J , where KL� is
the variance

Our OCSVM algorithm uses sequential minimal opti-
mization to solve the quadratic programming problem, and
therefore takes time � ��= �NM8� , where = is the number of di-
mensions and � is the number of records in the training
dataset. Typically, since we are mapping into a high dimen-
sional feature space d exceeds O� from the PAD complex-
ity. Also for large training sets �NM will significantly exceed	�� , thereby causing the OCSVM algorithm to be a much

fritz
4

more computationally expensive algorithm than PAD. An
open question remains as to how we can make the OCSVM
system in high bandwidth real time environments work well
and efficiently. All feature values for every example must
be read into memory, so the required space is � ��= �?� ��� ��� ,
where � is the number of records in the test dataset. Al-
though this is more space efficient than PAD, we compute
our kernel values dynamically in order to conserve mem-
ory, resulting in the added d term to our time complexity.
If we did not do this the memory needed to run this algo-
rithm would would be � ��= �?� ��� ���D� which is far too large
to fit in memory on a standard computer for large training
sets (which are inherent to the windows anomaly detection
problem).

5. Experiments and Results

The one class SVM system we develop detects abnormal
accesses to the Windows registry. The training and testing
datasets were developed from real usage of the Windows
system, and each experiment took one to two weeks to run
on a 1.5GHZ Pentium IV dual processor. The training data
we used was collected on Windows NT 4.0 and consists of
approximately 500,000 attack-free records. These attack-
free records are labeled normal and consist of operating sys-
tem programs and typical Windows programs. The test data
consists of approximately 300,000 records of which approx-
imately 2,000 are labeled attacks. Possible attacks include
aimrecover, browslist, setuptrojan, and other publicly avail-
able attacks [1, 2, 3, 4, 5, 6, 7, 8].

We obtained kernels from binary feature vectors by map-
ping each record into a feature space such that there is one
dimension for every unique entry for each of the five given
record values. This means that a particular record has the
value 1 in the dimensions which correspond to each of its
five specific record entries, and the value 0 for every other
dimension in feature space. We then computed linear ker-
nels, second order polynomial kernels, and gaussian kernels
using these feature vectors for each record.

We also computed kernels from frequency-based feature
vectors such that for any given record, each feature cor-
responds to the number of occurences of the correspond-
ing record component in the training set. For example, if
the second component of a record occurs three times in the
training set, the second feature value for that record is three.
We then used these frequency-based feature vectors to com-
pute linear and polynomial kernels.

To evaluate the system’s accuracy, two statistics have
been computed: detection rate and false positive rate. The
detection rate is the percentage of attack records that have
been correctly identified. The false positive rate is the per-
centage of normal records that have been mislabeled as
anomalous. The threshold is the value that determines if

Threshold False Positive Rate (%) Detection Rate (%)

-1.08307 0.790142 0.373533
-1.08233 0.828005 0.480256
-1.07139 1.54441 0.533618
-0.968913 1.65734 1.17396
-0.798767 3.58736 3.89541
-0.79858 3.63784 5.60299
-0.798347 3.68999 6.77695
-0.767411 3.72054 6.83031
-0.746663 4.35691 7.47065
-0.746616 4.63025 8.00427
-0.71255 8.34283 20.9712
-0.712503 8.75201 22.0918

Table 1. The effects of varying the threshold
on the false positive rate and the detection
rate.

a record is normal or attack. Table 1 includes a sample of
the varying thresholds and their effects on the detection rate
and false positive rate.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Percentage of Normal Data Labeled Anomalies

P
er

ce
nt

ag
e

of
 T

ru
e

A
no

m
al

ie
s

C
or

re
ct

ly
 Id

en
tif

ie
d

PAD
Binary Gaussian
Binary Polynomial (degree 2)
Binary Linear

Figure 1. ROC curve for the kernels using bi-
nary feature vectors (false positives versus
true positives).

We can measure the performance of the one class SVM
on our test data by plotting its Receiver Operator Charac-
teristic (ROC) curve. The ROC curve plots the percentage
of false positives (normal records labeled as attacks) versus
the percentage of true positives. As the discriminant thresh-
old increases, more records are labeled as attacks. Ran-
dom classification results in 50% of the area lying under
the curve, while perfect classification results in 100% of the
area lying under the curve. Results from our one class SVM
system are shown with the results of the PAD system on the
same dataset in Figures 1 and 2. Figure 1 is the ROC curve
for the linear and polynomial kernels using binary feature

fritz
5

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Percentage of Normal Data Labeled Anomalies

P
er

ce
nt

ag
e

of
 T

ru
e

A
no

m
al

ie
s

C
or

re
ct

ly
 Id

en
tif

ie
d

PAD
Frequency Linear
Frequency Polynomial (degree 2)

Figure 2. ROC curve for the kernels using
frequency-based feature vectors (false pos-
itives versus true positives).

vectors. We have used a sigma value of 0.84 for our gaus-
sian function. The binary linear kernel most accurately clas-
sifies the records. Figure 2 is the ROC curve for the linear
and polynomial kernels using frequency-based feature vec-
tors. The frequency-based linear and frequency-based poly-
nomial kernels demonstrate similar classification abilities.
Overall, in our experiments, the linear kernel using binary
feature vectors results in the most accurate classification.

In Tables 2 and 3, information on the records and their
discriminants are listed for the linear and polynomial ker-
nels using binary feature vectors. From Table 2, it is
seen that if the threshold is set at % $�� � '�� '��F' , then the
bo2kcfg.exe would be labeled as attack, as would msinit.exe
and ononce.exe. False labels would be given to WINLO-
GON.exe, systray.exe and other normal records.

The results of the OCSVM system produce less accu-
rate results than the PAD system demonstrated in [9, 14].
The PAD system is able to more accurately discriminate
between normal and anomalous records. The OCSVM sys-
tem labels records with fair accuracy, but could be improved
with a stronger kernel, where more significant information
is captured in the data representation.

The ability of the OCSVM to detect anomalies is highly
dependent on the information captured in the kernel (the
data representation). Our results show that kernels com-
puted from binary feature vectors or frequency-based fea-
ture vectors alone do not capture enough information to de-
tect anomalies as well as the PAD algorithm. With other
choices of kernels, similar results will occur unless a novel
technique which incorporates more discriminative informa-
tion is used to compute the kernel. A simple example of

this is if we have a dataset in which good discrimination
depends upon pairs of features, then we will not be able to
discriminate well with a linear decision boundary regardless
of how we tweak its parameters. However, if we use a poly-
nomial kernel we can account for pairs of features and will
discriminate well. In this manner, having a well defined ker-
nel which accounts for highly discriminative information is
extremely important. For the purpose of this research, we
believe our kernel choices are sufficient to reliably compare
the OCSVM system with PAD.

The advantage of the PAD algorithm over the OCSVM
system lies in the use of a hierarchical prior to estimate
probabilities. A scaling factor (see equation (4)) is com-
puted and applied to a Dirichlet prediction which assumes
that all possible elements have been seen, giving varying
probability mass to outcomes unseen in the training set. In
general, knowing the likelihood of encountering a previ-
ously unencountered feature value is extremely important
for anomaly detection, and it would be valuable to be able
to incorporate this information into a kernel for use with
our OCSVM system, perhaps by adding weighted “pseudo-
counts” to the features in our frequency-based feature vec-
tors.

6. Conclusions

By monitoring the Windows registry activity on a host
system, we were able to use our OCSVM algorithm to la-
bel all records in the given experiments as either normal
or attack with moderate accuracy and a low false positive
rate. We have shown that since registry activity is regular, it
can be used as a reliable anomaly detection platform. Note
that it would also be informative to study detection rates for
specific attack processes as a function of the discriminant
threshold.

In the comparitive evaluation of our OCSVM system and
the PAD system, we have shown that PAD is more reliable.
However, understanding the reasons for this will lead to an
improvement of the OCSVM system and will expedite the
future development of anomaly detectors. Since there is
currently no effective way to learn a “most optimal” kernel
for a given dataset, we must rely on our domain knowledge
in order to develop a kernel that leads to a highly accurate
anomaly detection system. By analyzing algorithms (such
as PAD) which currently discriminate well, we can iden-
tify information which is important to capture in our data
representation and is crucial for the development of a more
optimal kernel.

In the future, we plan on testing the system on file system
accesses and on the Unix platform. We also plan to create a
system to update the model as new data is labeled. This will
help counter the effects of concept drift over time. Finding
an efficient means of remodeling the data over time within

fritz
6

the OCSVM framework could improve the accuracy of the
system.

Finally, since most users accept the default installation
location when installing a program, the location of pro-
grams tends to be the same on all computers. Thus an attack
does not need to query the registry for program location in-
formation. By forcing a location declaration other than the
default location, a given program will not have the same
location on all Windows machines. Attacks will have to
query the registry to discover program locations, thus forc-
ing all attacks to be monitored by the anomaly detector. A
system such as this would improve the anomaly detection
capabilities of the RAD system since no malicious attacks
can bypass querying the registry. This would enhance the
protection of the system against malicious users.

7. Acknowledgements

We would like to thank Eleazar Eskin, Shlomo Her-
shkop, Andrew Howard, and Ke Wang for their helpful
comments. Katherine Heller was supported by an NSF
graduate research fellowship. Krysta Svore was supported
by an NPSC graduate fellowship.

References

[1] Aim recovery. URL: http://www.dark-e.com/
des/software/aim/index.shtml.

[2] Back orifice. URL: http://www.cultdeadcow.
com/tools/bo.html.

[3] Backdoor.xtcp. URL: http://www.ntsecurity.
new/Panda/Index.cfm?FuseAction=Virus\
&VirusID=659.

[4] Browselist. URL: http://e4gle.org/files/
nttools/,http://binaries.faq.net.pl/
security_tools.

[5] Happy99. URL: http://www.symantex.com/
qvcenter/venc/data/happy99.worm.html.

[6] Ipcrack. URL: http://www.geocities.com/
SiliconValley/Garage/3755/toolicq.
htmlhttp://home.swipenet.se/˜w-65048/
hacks.htm.

[7] L0pht crack. URL: http://www.astack.com/
research/lc.

[8] Setup trojan. URL: http://www.nwinternet.com/
˜pchelp/bo/setuptrojan.txt.

[9] F. Apap, A. Honig, S. Hershkop, E. Eskin, and S. Stolfo. De-
tecting malicious software by monitoring anomalous win-
dows registry accesses. Proceedings of the Fifth Interna-
tional Symposium on Recent Advances in Intrusion Detec-
tion (RAID 2002), 2002.

[10] A. Arnold. Svm anomaly detection c code. IDS Lab,
Columbia University, 2002.

[11] V. Bartnett and T. Lewis. Outliers in Statistical Data. John
Wiley and Sons, 1994.

[12] M. DeGroot. Optimal Statistical Decisions. McGraw-Hill,
New York, NY, 1970.

[13] D. Denning. An intrusion detection model. IEEE Trans-
actions on Software Engineering, SE-13:222–232, February
1987.

[14] E. Eskin. Anomaly detection over noisy data using learned
probability distributions. Proceedings of the Seventeenth In-
ternational Conference on Machine Learning (ICML-2000),
2000.

[15] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A
sense of self for unix processes. Proceedings of the IEEE
Symposium on Research in Security and Privacy, pages
120–128, 1996.

[16] N. Friedman and Y. Singer. Efficient bayesian parameter
estimation in large discrete domains. Advances in Neural
Information Processing Systems, 11, 1999.

[17] S. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detec-
tion using sequences of system calls. Journal of Computer
Security, 6:151–180, 1998.

[18] H. Javitz and A. Valdes. The nides statistical component:
Description and justification. Technical Report, SRI Inter-
national, Computer Science Laboratory, 1993.

[19] W. Lee, S. Stolfo, and P. Chan. Learning patterns from unix
processes execution traces for intrusion detection. AAAI
Workshop on AI Approaches to Fraud Detection and Risk
Management, pages 50–56, 1997.

[20] W. Lee, S. Stolfo, and K. Mok. A data mining framework
for building intrusion detection models. IEEE Symposium
on Security and Privacy, pages 120–132, 1999.

[21] W. Lee, S. Stolfo, and K. Mok. Data mining in work flow
environments: Experiences in intrusion detection. Proceed-
ings of the 1999 Conference on Knowledge Discovery and
Data Mining (KDD-99), 1999.

[22] M. Mahoney and P. Chan. Detecting novel attacks by identi-
fying anomalous network packet headers. Technical Report
CS-2001-2, 2001.

[23] B. Scholkopf, J. Platt, J. Shawe-Taylor, A. Smola, and
R. Williamson. Estimating the support of a high-
dimensional distribution. Neural Computation, 13(7):1443–
1472, 2001.

[24] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting in-
trusions using system calls: Alternative data models. IEEE
Symposium on Security and Privacy, pages 133–145, 1999.

fritz
7

Program Name Label Number of Records Min. Record Value Max. Record Value
REGMON.EXE NORMAL 259 -0.794953 -0.280406
SPOOLSS.EXE NORMAL 72 -1.152717 -0.021361
CloseKey NORMAL 429 -1.082720 -0.374784
OpenKey NORMAL 502 -0.959895 -0.365539
QueryValue NORMAL 594 -1.082909 -0.374972
EnumerateValue NORMAL 28 -0.570206 -0.284935
DeleteValueKey NORMAL 3 -1.078758 -0.370822
AimRecover.exe NORMAL 61 -1.082720 -0.374784
aim.exe NORMAL 1702 -1.064796 -0.356860
ttssh.exe NORMAL 12 -0.969706 -0.375161
ttermpro.exe NORMAL 1639 -1.083098 -0.285123
NTVDM.EXE NORMAL 271 -0.798204 -0.410065
notepad.exe NORMAL 2673 -1.083098 -0.285123
CMD.EXE NORMAL 116 -1.139322 -0.375161
TASKMGR.EXE NORMAL 99 -0.570017 -0.284935
INS0432. MP NORMAL 443 -1.423272 -1.423272

WINLOGON.EXE NORMAL 399 -1.423272 -1.423272
systray.exe NORMAL 17 -1.423272 -1.423272
em exec.exe NORMAL 29 -1.423272 -1.423272
OSA9.EXE NORMAL 705 -1.083098 -0.375161
findfast.exe NORMAL 176 -1.083098 -0.375161
WINWORD.EXE NORMAL 1541 -1.083098 -0.375161
winmine.exe NORMAL 21 -0.429351 -0.429351
POWERPNT.EXE NORMAL 617 -1.083098 -0.285123
PING.EXE NORMAL 50 -1.083098 -0.375161
QueryKey NORMAL 11 -0.712317 -0.375161
wscript.exe NORMAL 527 -1.083098 -0.375161
AcroRd32.exe NORMAL 1598 -1.083098 -0.375161
0” NORMAL 404 -1.083098 -0.375161
WINZIP32.EXE NORMAL 3043 -1.083098 -0.375161
explore.exe NORMAL 108 -1.083098 -0.375161
EXCEL.EXE NORMAL 1782 -1.083098 -0.375161
bo2kss.exe[2] ATTACK 12 -0.712317 -0.375161
bo2k 1 0 intl.e[2] ATTACK 78 -1.083098 -0.375161
browselist.exe[4] ATTACK 32 -0.798770 -0.411763
bo2kcfg.exe[2] ATTACK 289 -1.423272 -1.423272
bo2k.exe[2] ATTACK 883 -1.423272 -1.091776
mstinit.exe[2] ATTACK 11 -1.423272 -1.423272
runonce.exe[2] ATTACK 8 -1.423272 -1.423272
Patch.exe[2] ATTACK 174 -1.083098 -0.375161
install.exe[3] ATTACK 18 -1.083098 -0.375161
xtcp.exe[3] ATTACK 240 -1.083098 -0.285123
l0phtcrack.exe[7] ATTACK 100 -0.798581 -0.285123
LOADWC.EXE[2] ATTACK 1 -1.423272 -1.423272
happy99.exe[5] ATTACK 29 -0.570017 -0.411575

Table 2. Information about test records for the linear kernel in the binary setting. The maximum and
minimum discriminants are given for each process, as well as the assigned classification label. Listed
next to the attack processes is the attack source. [1] AIMCrack. [2] BackOrifice. [3] Backdoor.xtcp.
[4] Browse List. [5] Happy 99. [6] IPCrack. [7] L0pht Crack. [8] Setup Trojan.

fritz
8

Program Name Label Number of Records Min. Record Value Max. Record Value
REGMON.EXE NORMAL 259 -4.062785 -1.524777
SPOOLSS.EXE NORMAL 72 -5.422540 -0.272565
CloseKey NORMAL 429 -5.210662 -1.788163
OpenKey NORMAL 502 -4.828603 -1.758730
QueryValue NORMAL 594 -5.211228 -1.789106
EnumerateValue NORMAL 28 -3.311164 -1.542890
DeleteValueKey NORMAL 3 -5.1955757 -1.766465
AimRecover.exe NORMAL 61 -5.210285 -1.792879
aim.exe NORMAL 1702 -5.148589 -1.703827
ttssh.exe NORMAL 12 -4.860299 -1.794766
ttermpro.exe NORMAL 1639 -5.211794 -1.543456
NTVDM.EXE NORMAL 271 -4.234352 -1.794766
notepad.exe NORMAL 2673 -5.211794 -1.543456
CMD.EXE NORMAL 116 -5.388013 -1.794766
TASKMGR.EXE NORMAL 99 -3.309843 -1.543456
INS0432. MP NORMAL 443 -6.239865 -6.239865

WINLOGON.EXE NORMAL 399 -6.239865 -6.239865
systray.exe NORMAL 17 -6.239865 -6.239865
em exec.exe NORMAL 29 -6.239865 -6.239865
OSA9.EXE NORMAL 705 -5.211794 -1.789672
findfast.exe NORMAL 176 -5.211794 -1.794766
WINWORD.EXE NORMAL 1541 -5.211794 -1.789672
winmine.exe NORMAL 21 -1.794766 -1.794766
POWERPNT.EXE NORMAL 617 -5.211794 -1.543456
PING.EXE NORMAL 50 -5.211794 -1.789672
QueryKey NORMAL 11 -4.022096 -1.789672
wscript.exe NORMAL 527 -5.211794 -1.789672
AcroRd32.exe NORMAL 1598 -5.211794 -1.794766
0” NORMAL 404 -5.211794 -1.789672
WINZIP32.EXE NORMAL 3043 -5.211794 -1.789672
explore.exe NORMAL 108 -5.211794 -1.789672
EXCEL.EXE NORMAL 1782 -5.211794 -1.789672
bo2kss.exe[2] ATTACK 12 -4.022096 -1.789672
bo2k 1 0 intl.e[2] ATTACK 78 -5.211794 -1.789672
browselist.exe[4] ATTACK 32 -4.087124 -1.789672
bo2kcfg.exe[2] ATTACK 289 -6.239865 -6.239865
bo2k.exe[2] ATTACK 883 -6.239865 -5.245378
mstinit.exe[2] ATTACK 11 -6.239865 -6.239865
runonce.exe[2] ATTACK 8 -6.239865 -6.239865
Patch.exe[2] ATTACK 174 -5.211794 -1.789672
install.exe[3] ATTACK 18 -5.211794 -1.794766
xtcp.exe[3] ATTACK 240 -5.211794 -1.543456
l0phtcrack.exe[7] ATTACK 100 -4.194165 -1.543456
LOADWC.EXE[2] ATTACK 1 -6.239865 -6.239865
happy99.exe[5] ATTACK 29 -3.309843 -1.794766

Table 3. Information about test records for the second order polynomial kernel in the binary set-
ting. The maximum and minimum discriminants are given, as well as the assigned classification
label. Listed next to the attack processes is the attack source. [1] AIMCrack. [2] BackOrifice. [3]
Backdoor.xtcp. [4] Browse List. [5] Happy 99. [6] IPCrack. [7] L0pht Crack. [8] Setup Trojan.

fritz
9

One-Class Training for Masquerade Detection
Ke Wang Salvatore J. Stolfo

Computer Science Department, Columbia University
500 West 120th Street, New York, NY, 10027

{kewang, sal}@cs.columbia.edu

Abstract

We extend prior research on masquerade detection
using UNIX commands issued by users as the audit
source. Previous studies using multi-class training
requires gathering data from multiple users to train
specific profiles of self and non-self for each user. One-
class training uses data representative of only one user.
We apply one-class Naïve Bayes using both the multi-
variate Bernoulli model and the Multinomial model, and
the one-class SVM algorithm. The result shows that one-
class training for this task works as well as multi-class
training, with the great practical advantages of collecting
much less data and more efficient training. One-class
SVM using binary features performs best among the one-
class training algorithms.

1. Introduction

The Masquerade attack may be one of the most serious
security problems. It commonly appears as spoofing,
where an intruder impersonates another person and uses
that person’s identity, for example, by stealing their
passwords or forging their email address. Masqueraders
can be insiders or outsiders. As an outsider, the
masquerader may try to gain superuser access from a
remote location and can cause considerable damage or
theft. A simpler insider attack can be executed against an
unattended machine within a trusted domain. From the
system’s point of view, all of the operations executed by
an insider masquerader may be technically legal and
hence not detected by existing access control or
authentication schemes. To catch such a masquerader, the
only useful evidence is the operations he executes, i.e., his
behavior. Thus, we can compare one user’s recent
behavior against their profile of typical behavior and
recognize a security breach if the user’s recent behavior
departs sufficiently from his profiled behavior, indicating
a possible masquerader.

The insider problem in computer security is shifting the
attention of the research and commercial community from
intrusion detection at the perimeter of network systems.
Research and development is going on in the area of
modeling user behaviors in order to detect anomalous
misbehaviors of importance to security; for example, the
behavior of user-issued OS commands as represented in

this paper, and in email communications [17].
Considerable work is ongoing in certain communities to
detect not only impersonation, but also author
identification. For example, Sedelow [16] and Vel [18]
are two examples bracketing the length of time this topic
has existed in the literature.

The masquerade problem is a challenging problem. If
the masquerader can mimic the user’s behavior
successfully, he won’t be detected. In addition, if the user
himself is behaving much differently than his trained
profile, the detector will misclassify him as masquerader,
which may cause annoying false alarms. There have been
several attempts to solve this problem using command line
sequences, [14] and [9]. The best results so far reported
are 60-70% accuracy with a false positive rate as low as 1-
2%. The profiles were computed using supervised
machine learning algorithms that classify training data
acquired from multiple user. These approaches considered
training user profiles as a multi-class supervised learning
task where data gathered on a user is treated as an
example of one-class, i.e. a distinct user.

In this paper, we consider a different approach with
substantial practical advantage. We examine the task of
profiling a user by modeling his data exclusively, without
using examples from other users, and achieving good
detection performance and minimal false positive rates.
We also consider alternative machine learning algorithms
that may be employed for this “one-class” training
approach.

One-class training means that we only use the user’s
own legitimate examples of commands they issue to build
the user’s self profile. Previous work uses both positive
and negative examples to build both self and non-self
profiles, except for Maxion [9], who considers the
problem of determining how vulnerable a user’s behavior
may be to mimicry attack. Here we extend this technique
using one-class SVM. This is important in many contexts,
especially when the only information available is the
history of the user’s activities. If a one-class training
algorithm can achieve similar performance to that
exhibited by a multi-class approach, we may provide a
significant benefit in real security applications; much less
data is required, and training can proceed independently
of any other user. The study reported in this paper
indicates that indeed one-class training algorithms
perform equally well as two class training approaches.

fritz
10

This self profile idea is similar to the widely used
“anomaly detection” techniques in intrusion detection
system [eg. 2, 3]. For example, the anomaly detector of
IDES [8] uses established normal usage profiles, which is
the expected behavior, to identify any large usage
deviation as a possible attack. Several methods have been
used to model the normal data, for example, decision trees
[7], neural network [4], and sparse Markov Transducers
[2], and Markov chains [19]. In this paper, we applied
one-class Naïve Bayes and one-class SVM algorithms to
the masquerade dataset of UNIX system call sequences.

In previous work, we believe there were several
methodological flaws in the manner in which data was
acquired and used. The “Schonlau dataset” from [14]
presents each user’s command line data with a varying
number of artificially created masquerade command
blocks, ranging from 0 to 24, out of a total of 100
command blocks to be classified. The previous work only
considered the average performance of a given method
when it is applied to all of the 50*100 blocks of
commands issued by the 50 users. However, since the
masquerade blocks are “randomly” inserted into each
user’s data by using some other user’s command block,
each user’s data has a different number of masquerade
blocks, and the content of these masquerade blocks all
differ. This data is not a good baseline to compare the
effectiveness of alternative detection methods because one
method might be better at detecting certain forms of
masquerade attack while others are not. Unfortunately,
since the distribution of such masquerade blocks appear
many times in the dataset, some algorithms appear to have
better performance over others, while, in practice or in
other contexts, this finding may not be true. To better
compare the alternative methods proposed in this work,
we follow the exhaustive “1v49” evaluation methodology
from [9], which will be described in detail in the section
about the experimental methodology and results. The
ROC score [5] is used to compare several one-class
training methods under different false positive rate
restrictions. This approach provides a better view to
indicate which algorithm is better for most users.

Even though one machine learning algorithm may
perform better than another in terms of detection and false
positive rate, our most important finding is that one-class
training can indeed perform as well as multi-class training.
Even so, the overall performance of both approaches
indicates that there is much room for improvement.

The rest of the paper is organized as follows. Section 2
describes the dataset we used in our research and provides
a review of recent work, and Section 3 discusses the one-
class Naïve Bayes and one-class SVM methods. Section 4
describes the experimental setting and our results, and
Section 5 concludes the paper with our analysis and
findings.

2. Recent Work

Schonlau et al. [14] and Maxion [9] provide a dataset
collected from keyboard commands on a UNIX platform.
The dataset is publicly available at
http://www.schonlau.net. Unfortunately, there are neither
timestamps nor other detailed command line arguments
available in the Schonlau dataset. Hence, the dataset in
question consists simply of sequential “truncated”
commands issued by each of 70 users. Each user is
represented by 15,000 commands, collected over time
from a few days to a few months. They randomly chose 50
users to serve as intrusion target, and the remaining 20
users as masqueraders. The first 5,000 commands of each
user are “clean data” (legitimately issued by the user), and
the next 10,000 commands of the target users were
randomly injected with commands issued by the 20
masquerade users, apparently none of whom are any of the
50 users. The commands are grouped into blocks, with
100 commands per block. The commands in one block are
either all clean or all masquerade attacks, called “dirty
blocks”. The task studied in [14] is to accurately classify
the “dirty” blocks as masquerade commands, while
classifying the clean blocks as belonging to the user. From
this point of view, this problem is very similar to a text
classification problem, where the commands may be
regarded as words or tokens in a document that is to be
classified. Their work identifies six masquerade-detection
schemes. They are: Bayes 1-Step Markov, Hybrid Multi-
Step Markov, Incremental Probabilistic Action Modeling
(IPAM), Uniqueness, Sequence-Match, and Compression.
These masquerade detection methods were directly
applied to this dataset; the first 5000 commands were used
for training, and the remaining 10000 commands were
inserted and used for testing, where each were processed
in blocks of 100 commands. Testing and training were
performed on a per block basis. The paper by Maxion [9]
presents a clear and concise review of these six methods.
The strategies behind each of these methods are quite
different, but the results show that no method completely
dominates another using cluster analysis and ROC curves.

Maxion [9] improved upon Schonlau’s result by
applying the Naïve Bayes classification algorithm using
the “bag of words” features. Naïve Bayes has been used in
text classification for a long time and proved to be very
efficient in this context as well. Naïve Bayes was also
used in the earlier work [15] on classifying malicious code
attachments in email messages. Maxion presents a
detailed analysis of the origins of the classification error,
revealing why some users are good masquerades and
others are not. That paper designed another experiment,
called “1v49”, to perform this error analysis. We also use
the “1v49” experimental setting in our work, but here it is

fritz
11

used to compare the performance of different classifiers
when applied to multiple classes.

The results for these reviewed methods are displayed in
Table 1 and serve as a baseline for comparison.

������������������������������	 �
 � ��
 � ��� ��� � �
 �� ��

 ���� ��� � �� ��� �
��	 �
 � ��
 � ��� ��� � �
 �� ��

 ���� ��� � �� ��� �
��	 �
 � ��
 � ��� ��� � �
 �� ��

 ���� ��� � �� ��� �
��	 �
 � ��
 � ��� ��� � �
 �� ��

 ���� ��� � �� ��� �
 ����

Method Hits False Positives

N. Bayes (updating) 61.5% 1.5%

N. Bayes (no Upd.) 66.2% 4.6%

Uniqueness 39.4% 1.4%

Hybrid Markov 49.3% 3.2%

1-step Markov 69.3% 6.7%

IPAM 41.4% 2.7%

Sequence Matching 36.8% 3.7%

Compression 34.2% 5.0%

3. Machine learning methods

3.1. Learning task

For this masquerade detection problem, the learning
task is to build a classifier that can accurately detect the
masquerade commands while not misclassifying the user’s
legitimate commands as a masquerade. Using the
Schonlau dataset, which is organized as a set of blocks of
100 commands, the learning task is to compute a binary
classifier whose input is a block of 100 commands and
whose output is a classification of that block as either
generated by a masquerader or not. The target
classification is to detect the masquerader’s command
blocks. Hence, the masqueraders’ data are positive
examples, while the user’s legitimate data are treated as
negative examples. Thus, a true positive outcome is a
masquerade block of 100 commands, while a false
positive outcome is a block of commands legitimately
issued by the user but misclassified as a masquerade. In
the following description, we call the masquerade blocks
positive examples and call the legitimate blocks, those
issued by the user himself, negative examples. One-class
training means that a classifier is computed using only
negative examples of the user himself as training data to
build the classifier, which will be used to classify both
positive and negative data. Thus, the task is to positively
identify masqueraders, but not to positively identify a
particular user.

3.2. One-class or two class

Previous work considered the problem as a multi-class
supervised training exercise. The dataset contains data for
50 users. For each user, a specific class, the first 5000
commands are treated as negative examples, while the
data from the other 49 users are treated as positive
examples. It is reasonable to assume the negative
examples, which belong to the same user, were treated
consistently, while the positive examples used in training
belong to another user. For the masquerade problem, it is
probably impossible and unreasonable to estimate how an
attacker would behave. Thus, treating sets of other users’
data as positive examples provides a substantive bias (to
those users’ behavior who probably was not behaving
maliciously). We next present the means of implementing
one-class training for Naïve Bayes classifier and for SVM,
using only data from a single user when training a
classifier to profile a distinct user.

3.3. Naïve Bayes Classifier

The Naïve Bayes classifier [12] is a simple and

efficient supervised learning algorithm, which has been
proved to be very effective in text classification, and many
other applications. It is based on Bayes’ rule,

)(
)|()(

)|(
dp

udPup
dup =

which calculates the probability of a class given an
example. Applied to the masquerade problem, it calculates
the likelihood that a command block belongs to a
masquerader (non-self), or some legitimate user. Different
commands ic , which are used as features here, are

assumed independent from each other. This is the Naïve
part of this method.

There are two common models used in Naïve Bayes
Classifier, one is the multi-variate Bernoulli model, and
the other is the multinomial model [11]. In the multi-
variate Bernoulli event model, a vector of binary attributes
is used to represent a document (in our case, a block of
100 commands), indicating whether the command occurs
or doesn’t occur in the document. The multinomial model
uses the number of command occurrences to represent a
document, which is called “bag-of-words” approach,
capturing the word frequency information in documents.
According to McCallurn [11]’s result, multi-variate
Bernoulli model performs better for small vocabulary size,
and the multinomial model usually performs better at
larger vocabulary size. Because the vocabulary size (the
number of distinct commands) of this masquerade
problem is 856, which is a moderate in size, we want to
compare both of these models for this problem.

fritz
12

Multi-variate Bernoulli model
Using the multi-variate Bernoulli Model, a command
block d is represented as a binary

vector))(),...,(),((21 dbdbdbd m=
→

, with)(dbi set to 1 if

the command ic occurs at least once in this block. Here

m is the total number of features, i.e., the number of
distinct commands. Given)|(ucp i , which is the

probability estimated for command ic for user u in the

training data, we can compute)|(udp of the test block
d as:

=)|(udp

)))|(1))((1()|()((
1

∏
=

−−+
m

i
iiii ucpdbucpdb (1)

where)|(ucp i is estimated with a Laplacean prior:

)(2
),(1

)|(
uN
ucN

ucp i
i +

+= (2)

)(uN is the number of training examples for user u ,

while),(ucN i is the number of documents containing the

command ic for user u .

Multinomial model

Using the standard bag-of-words approach, each
command block is represented by a feature

vector))(),...,(),((21 dndndnd m=
→

, where)(dni is the

number of times command ic appears in the command

block d . Similarly, given)|(ucp i , which is the frequency

count computed for command ic for user u in the training

data, we can compute)|(udp of the test block d as:

∏
=

=
m

i

dn
i

iucpudp
1

)())|(()|((3)

where)|(ucp i is derived from:

mdn

dn
ucp m

i

uN

j ji

uN

j ji

i
*)(

)(
)|(

1

)(

1

)(

1

α

α

+

+
=
� �

�

= =

= (4)

Here α is used for smoothing, which controls the
sensitivity to previously unseen commands. (This implies
there is a non-zero probability any command may be
issued by any user.) We set it to 0.01 following [9].

One-class Naïve Bayes

Adapting the above algorithm to one-class Naïve
Bayes, which uses only positive examples for training, is
very simple. We only compute)|(ucp i for useru ’s self

profile. For the non-self profile, we can assume each

command has equal probability m/1 , which is essentially
random. Thus, given a test d , we can compare

)|(selfdp with)|(nonselfdp . The larger the ratio of

)|(selfdp to)|(nonselfdp , the more likely this
command block d is from the user u .

Applying the one-class Naïve Bayes algorithm to our
specific dataset is also quite simple. Since each test
document (a block of commands) has a fixed number of
100 commands, the probability of “non-self” is the same
for all tested blocks. Since we do not have to compute the
probability of non-self; we may compare the probability
of being “self” to a threshold in order to decide whether
this block is a masquerade block or not. Furthermore, we
can easily adjust the threshold to control the false positive
and detection rate.

3.4. One-class support vector machine

Support Vector Machines (SVM) have been shown to
be highly effective in text classification as well [6], among
other important learning tasks. They are maximal-margin
classifiers, rather than probabilistic as is Naïve Bayes. In
the two-class formulation, the basic idea is to map feature
vectors to a high dimensional space and to compute a
hyperplane that not only separates the training vectors
from different classes, but also maximizes this separation
by making the margin as large as possible.

Scholkopf et al. [13] proposed a method to adapt the
SVM algorithm for one-class SVM, which only use
examples from one-class, instead of multiple classes, for
training. The one-class SVM algorithm first maps input
data into a high dimensional feature space via a kernel
function and treats the origin as the only example from
other classes. It then iteratively finds the maximal margin
hyperplane that best separates the training data from the
origin.

Considering that our training data set Xxxx ∈
�

,...,, 21 ,

Φ is the feature mapping FX → to a high-dimensional
space, we can define the kernel function as:

))()((),(yxyxk Φ⋅Φ=
Using kernel functions, the feature vectors need not be

computed explicitly, greatly improving computational
efficiency since we can directly compute the kernel values
and operate on their images. Some common kernels are
linear, polynomial, and radial basis function (rbf) kernels:
Linear Kernel:)(),(yxyxk ⋅=

P-th order polynomial kernel: pyxyxk)1(),(+⋅=

rbf kernel:
22 2/||||),(σyxeyxk −−=

Now, solving the one-class SVM problem is equivalent
to solving the dual quadratic programming (QP) problem:

fritz
13

�
ij

jiji xxk),(
2
1

min αα
α

subject to .1,
1

0 =≤≤ �
i

ii v
αα

�

where iα is a Lagrange multiplier, which can be thought

of as a weight on example ix , and ν is a parameter that

controls the trade-off between maximizing the number of
data points contained by the hyperplane and the distance
of the hyperplane from the origin.

After solving for iα , we can use a decision function to

classify data. The decision function is:

� −=
i ii xxkxf)),(sgn()(ρα

where the offset ρ can be recovered by

),(ijj j xxk�= αρ .

In our work, we used the LIBSVM 2.4 [1] available at
http://www.csie.ntu.tw/~cjlin/libsvm for our experiments.
LIBSVM is an integrated tool for support vector
classification and regression that implemented Sholkopf’s
algorithm for one-class SVM. We used the default rbf
kernel and the default values of the parameters for one-
class SVM.

Another problem to consider for one-class SVM is how
to represent the features. We used both a word count
representation and a binary representation, which are
equivalent to the multinomial model and multi-variate
Bernoulli model of Naïve Bayes algorithm, respectively.
The vectors are normalized to length 1.

4. Evaluation

We conducted two sets of experiments. The first
experiment repeats the experimental methodology of [14].
We show that the performance of one-class training is
almost the same as the performance of multi-class training.
This is a significant finding on its own.

The second experiment aims to compare the
performance of the two one-class training algorithms
when applied to multiple users. Following [9], we will call
the first the SEA experiment, which is from the authors’
names in [14], Schonlau et al. The second experiment is
called 1v49, because we trained using only one user’s data
and tested on all other 49 user’s data.

4.1. SEA Experiment

Recall that in this experiment, the first 5,000
commands of a user serve as positive examples, and the
first 5,000 commands of all the other 49 users serve as
negative examples. The resultant classifier is tested on the
rest of the 10,000 commands of the user. These have

inserted “dirty” command blocks under a probability
distribution from other users besides the 50 users whose
commands were trained on. For our one-class algorithm,
the test data remains the same, but we only use one user’s
training data (the first 5,000 commands) as negative
examples for training; there are no positive examples used
at all to compute the classifier. First we compare the
Naïve Bayes classifier using the multi-variate Bernoulli
model and the multinomial model. Then we compare the
one-class training algorithms against the multi-class
training algorithms. All the classification algorithms we
tested do no updating during the test of any parameters
because we want to compare the pure performance of each
of them. Maxion [9] used an empirically pre-fixed
threshold to update the classifier during the experiment,
which is not an intrinsic characteristic of the classification
algorithm.

� �� � ��� ��� 	 � � � � � �� �
 � �� � �� �� � ��� ��� 	 � � � � � �� �
 � �� � �� �� � ��� ��� 	 � � � � � �� �
 � �� � �� �� � ��� ��� 	 � � � � � �� �
 � �� � ��� �� � �� �
 � � ��

 �����
 ��� �� � �� �
 � � ��

 �����
 ��� �� � �� �
 � � ��

 �����
 ��� �� � �� �
 � � ��

 �����
 �
�
 �� � �� � ���� � ����� � ����� � �� � ����
 �� � �� � ���� � ����� � ����� � �� � ����
 �� � �� � ���� � ����� � ����� � �� � ����
 �� � �� � ���� � ����� � ����� � �� � ��� � �������� ��� � ����� �������� ��� � ����� �������� ��� � ����� �������� ��� � ����
� � ��!� �" � � ��

 � �� � �� � ��!� �" � � ��

 � �� � �� � ��!� �" � � ��

 � �� � �� � ��!� �" � � ��

 � �� � � � � � � � � � � � ��

� ��

� ��

� ��

 � ����� �� � !�� ����� �� � !�� ����� �� � !�� ����� �� � !�
��
 � �� ��� ��� ����
 � �� ��� ��� ����
 � �� ��� ��� ����
 � �� ��� ��� ������

Figure 1 displays plots comparing the multi-variate
Bernoulli model and the multinomial model of Naïve
Bayes classifier. When using multi-class training, the
multinomial model is obviously better than the Bernoulli
model. But the difference is not so obvious in one-class
training, especially when the false positive rate is low. We

fritz
14

thus compare both models in the following 1v49
experiment.

To compare the performance of the one-class training
algorithms against the multi-class training algorithm on
the same test data, we plot the ROC curves as displayed in
Figure 1. For the multi-class training algorithm, we only
use the multinomial model Naïve Bayes algorithm as the
baseline for comparison, which is better than Bernoulli
model and has been proved to the best among the variety
of methods as described in [9]. For the one-class SVM,
we compare both the binary and word count
representations. From Figure 2, we can see that only one-
class SVM using the word count representation is a little
bit worse than the other three methods. One-class SVM
using the binary representation and one-class Naïve Bayes
achieved almost the same performance as the two class
Naïve Bayes algorithm.

We also compare in Figure 3 the performance of all the
previous algorithms from Table 1 to one-class SVM
algorithm using binary features, which is best one among
the one-class training algorithms. One-class SVM-binary
is better than most of the previous algorithms except the
two-class multinomial Naïve Bayes algorithm with
updating.

This experiment confirmed our conjecture that for
masquerade detection, one-class training is as effective as
two class training.

� �� � �� �� � �� �� � �� �� � ��� # �� 	 � � � � � �� �
 � �� � ������� �� � ��

 ���� ��� � ��� # �� 	 � � � � � �� �
 � �� � ������� �� � ��

 ���� ��� � ��� # �� 	 � � � � � �� �
 � �� � ������� �� � ��

 ���� ��� � ��� # �� 	 � � � � � �� �
 � �� � ������� �� � ��

 ���� ��� � �
��� ���� �
 ��� �$ % & ��' � ���� �� ����� ���� �
 ��� �$ % & ��' � ���� �� ����� ���� �
 ��� �$ % & ��' � ���� �� ����� ���� �
 ��� �$ % & ��' � ���� �� ������

� �� � ��� (�� 	 � � � � � �� �� � ��� �� � ��� (�� 	 � � � � � �� �� � ��� �� � ��� (�� 	 � � � � � �� �� � ��� �� � ��� (�� 	 � � � � � �� �� � �� � � � � � � � � � ��

� ��

� ��

� ��

 � $) * � �
 �� � �� $) * � �
 �� � �� $) * � �
 �� � �� $) * � �
 �� � �
��� ��� ������ ������ ����
 ���� ��� ������ ������ ����
 ���� ��� ������ ������ ����
 ���� ��� ������ ������ ����
 � � �� � ����
 � ��
 ��� � � �� ��� � �� � ����
 � ��
 ��� � � �� ��� � �� � ����
 � ��
 ��� � � �� ��� � �� � ����
 � ��
 ��� � � �� ���
� ��� �
 �������
 ��� � �� � �� �� ��� � � ���
 � �� ��� �
 �������
 ��� � �� � �� �� ��� � � ���
 � �� ��� �
 �������
 ��� � �� � �� �� ��� � � ���
 � �� ��� �
 �������
 ��� � �� � �� �� ��� � � ���
 � �����

4.2. 1v49 Experiment

As we have pointed out, since the dataset used had
randomly inserted masquerade blocks in each user’s test
commands (10,000 commands following the first 5,000),
each user has a different number of “dirty” blocks and the
origins of these “dirty” blocks also differ. So the result of
the SEA experiment may not illustrate the real
performance of a classification algorithm. (There are too
many unfixed parameters.) To better evaluate the
performance of a classification algorithm, we can treat
these 50 users as our selected sample of common users. If
we can prove algorithm A is better than algorithm B for
most of the 50 users, we can infer A is better than B in a
general sense.

To meet this requirement, we follow the “1v49”
experiment, but for a different purpose. We use one user’s
first 5,000 commands as negative training data to compute
a classifier without any positive training data. For test data,
we use the non-masquerade blocks from the 10,000
additional commands of the same user as negative test
data, and the other 49 users’ first 5,000 commands as
positive test data. This data is also organized in blocks of
100 commands.

As we mentioned before, the same algorithm might
perform quite differently for different users. Figure 4
illustrates the difference. Figure 4 shows the ROC curve
for user 2, 20 and 40 using one-class SVM with the binary
feature representation. Such a difference occurs no matter
which algorithm has been used; the difference is
determined by the characteristic of each user.

fritz
15

� �� � ���+ ,�	 � � �� � �� �
 �� ��� ������� ���
� �� � ���+ ,�	 � � �� � �� �
 �� ��� ������� ���
� �� � ���+ ,�	 � � �� � �� �
 �� ��� ������� ���
� �� � ���+ ,�	 � � �� � �� �
 �� ��� ������� ���
 ��
 ��
 �� � ���
 ��
 �� � ���
 ��
 �� � ���
 ��
 �� � � � � � � � � � �

� ��

� ��

� ��

� ��

 �$) *�$) *�$) *�$) * ��� ��� ���� ���� ���� ��� ���� ���� ���� ��� ���� ���� ���� ��� ���� ���� � ��������

To compare the different methods for multiple users,

we compute the ROC score for each user. In general, a
ROC score is the fraction of the area under the ROC curve,
the larger the better. A ROC score of 1 means perfect
detection without any false positives. Figure 5 below
shows the ROC scores for users 20 and 40 using the one-
class SVM-binary algorithm.

� �� � ��� - ,� % ' �� � ��� � �� 	 � � �
 � ��� �
 �� � � �
 ��� # . �� �� � ��� - ,� % ' �� � ��� � �� 	 � � �
 � ��� �
 �� � � �
 ��� # . �� �� � ��� - ,� % ' �� � ��� � �� 	 � � �
 � ��� �
 �� � � �
 ��� # . �� �� � ��� - ,� % ' �� � ��� � �� 	 � � �
 � ��� �
 �� � � �
 ��� # . �
�� � � �
 ��� + . ,� �� �� ���� �� � � ��
 � �� �� � ����� � � � ����� � � �
 ��� + . ,� �� �� ���� �� � � ��
 � �� �� � ����� � � � ����� � � �
 ��� + . ,� �� �� ���� �� � � ��
 � �� �� � ����� � � � ����� � � �
 ��� + . ,� �� �� ���� �� � � ��
 � �� �� � ����� � � � ���
	 � � �� � �� ��	 � � �� � �� ��	 � � �� � �� ��	 � � �� � �� ������

Figure 6 illustrates the performance of several one-

class training algorithms as measured by ROC scores. The
figure includes results for all 50 users. From Figure 6, we
can see that one-class SVM using word-count features is
the worst among the four algorithms. At the high ROC
score region, with a ROC score higher than 0.8 (which is
what we prefer) one-class SVM using binary features
performs best among all. There is no big difference
between Naïve Byaes using the multinomial model or the
multi-variate Bernoulli model.

� �� � ���/ ,�� � � ���
 � � ��� � ��� �
 0 � ���� ��� ���� �� � �� �� � ���/ ,�� � � ���
 � � ��� � ��� �
 0 � ���� ��� ���� �� � �� �� � ���/ ,�� � � ���
 � � ��� � ��� �
 0 � ���� ��� ���� �� � �� �� � ���/ ,�� � � ���
 � � ��� � ��� �
 0 � ���� ��� ���� �� � �
� ��� �
 ���� ��� ��� � �� � �
 ��� ��� ����� � � ���� ���
 ��
 �� ��� �
 ���� ��� ��� � �� � �
 ��� ��� ����� � � ���� ���
 ��
 �� ��� �
 ���� ��� ��� � �� � �
 ��� ��� ����� � � ���� ���
 ��
 �� ��� �
 ���� ��� ��� � �� � �
 ��� ��� ����� � � ���� ���
 ��
 �
� �� " � �� � � �� � �� �� � � ��� � � �' � ���
 � �� 	 � � �
 � ���� �� " � �� � � �� � �� �� � � ��� � � �' � ���
 � �� 	 � � �
 � ���� �� " � �� � � �� � �� �� � � ��� � � �' � ���
 � �� 	 � � �
 � ���� �� " � �� � � �� � �� �� � � ��� � � �' � ���
 � �� 	 � � �
 � ���
�� ��
 � �� ��� ��
 � �� ��� ��
 � �� ��� ��
 � �� �����

For the masquerade problem, we are more interested in

the region of the ROC curve with a low false positive rate;
otherwise, the “annoyance level” of false alarms would
render the detector useless in practical use. Therefore, we
restrict the ROC scores to the curves with false positive
lower than P, which is called the ROC-P score. For
example, if we want to restrict the false positives to be
lower than 5% of all command blocks, we can compute
ROC-5. Similar to the general ROC score, the ROC-P
score is the fraction of the area under the ROC curve
where the false positive rate is lower than P%. Figure 7,
displays an example of ROC-10, based on the ROC-
curves of users 20 and 40. Only part of the ROC curve is
drawn here to highlight the plots.

� �� � ���1 ,�	 � �� �� � ���1 ,�	 � �� �� � ���1 ,�	 � �� �� � ���1 ,�	 � � �. �� ���
 ���# . ��� � ��
 ���+ . !�" � �� � ��
 ��. �� ���
 ���# . ��� � ��
 ���+ . !�" � �� � ��
 ��. �� ���
 ���# . ��� � ��
 ���+ . !�" � �� � ��
 ��. �� ���
 ���# . ��� � ��
 ���+ . !�" � �� � ��
 �
�� �� ���� �� � � �� �� ��
 � �� �� � ����� ����� � � �� 2 3 �. 4�� �� ���� �� � � �� �� ��
 � �� �� � ����� ����� � � �� 2 3 �. 4�� �� ���� �� � � �� �� ��
 � �� �� � ����� ����� � � �� 2 3 �. 4�� �� ���� �� � � �� �� ��
 � �� �� � ����� ����� � � �� 2 3 �. 4 ����
�� ��
 � �� ���� ���� ��
 � �� ���� ���� ��
 � �� ���� ���� ��
 � �� ���� ������

Since we can see that one-class SVM using the binary

feature is generally better than one-class SVM using the
word count feature, as depicted in Figure 6; here we only
compare the one-class SVM using the binary
representation with the multinomial model Naïve Bayes
and Bernoulli model Naïve Bayes in the following ROC-P
comparison. Figures 8 plots the comparison for ROC-5
and ROC-1, which means false positives are below 5%
and 1%, respectively. From these two plots, we can

fritz
16

determine that one-class SVM using the binary feature is
almost always better than the other two one-class Naïve
Bayes methods.

� �� � ��� 5 ,� � � � ���
 � � �� � $) *� �� � ��� 5 ,� � � � ���
 � � �� � $) *� �� � ��� 5 ,� � � � ���
 � � �� � $) *� �� � ��� 5 ,� � � � ���
 � � �� � $) * ��� ��� � " ��� ���� ��� � " ��� ���� ��� � " ��� ���� ��� � " ��� � � � � � � � � �
� ��

� ��

� ��

� ��

 � * � ���� � ���� � � � �� � �� * � ���� � ���� � � � �� � �� * � ���� � ���� � � � �� � �� * � ���� � ���� � � � �� � � � � � � � � � � � ��

� ��

� ��

� ��

 � � ��� � ���� � � !�� � ��� � ���� � � !�� � ��� � ���� � � !�� � ��� � ���� � � !�
��
 ���� ��� � � � - 4 � �� � � �4 � ���
 �� �
 ���� �� ����!���
 ���� ��� � � � - 4 � �� � � �4 � ���
 �� �
 ���� �� ����!���
 ���� ��� � � � - 4 � �� � � �4 � ���
 �� �
 ���� �� ����!���
 ���� ��� � � � - 4 � �� � � �4 � ���
 �� �
 ���� �� ����!�
��������
 � �� ��� ��� �� �� �� � ��� � � � � �
 � �� �� � ���� � � � ���� ��
 � �� ��� ��� �� �� �� � ��� � � � � �
 � �� �� � ���� � � � ���� ��
 � �� ��� ��� �� �� �� � ��� � � � � �
 � �� �� � ���� � � � ���� ��
 � �� ��� ��� �� �� �� � ��� � � � � �
 � �� �� � ���� � � � ���� ��
�
 ��
 �� ��" � �� � ���� �� �� �� ��� � ��' � ���
 ��� �	 � ��
 ��
 �� ��" � �� � ���� �� �� �� ��� � ��' � ���
 ��� �	 � ��
 ��
 �� ��" � �� � ���� �� �� �� ��� � ��' � ���
 ��� �	 � ��
 ��
 �� ��" � �� � ���� �� �� �� ��� � ��' � ���
 ��� �	 � � - !�- !�- !�- !�
	 � �	 � �	 � �	 � � ��
 � ����� ��
 � �� ���
 � ����� ��
 � �� ���
 � ����� ��
 � �� ���
 � ����� ��
 � �� �����

To compare the performance of different algorithms on

an individual user basis, we compare the ROC-P score
user by user. Figure 9 shows a user-by-user comparison of
one-class SVM using the binary feature representation and
one-class Naïve Bayes using the multinomial model, when
the false positive rate is lower than 1%. Again we can see,
for most of the 50 users, one-class SVM with binary
features is better than one-class Naïve Bayes using the
multinomial model. However, there are still some users
whose data exhibit better performance using the one-class
Naïve Bayes. This suggests that we can choose the best
algorithm to use for an individual user to improve the
whole system’s performance.

� �� � ��� 6 ,� 7
 ��� �� � ��� 6 ,� 7
 ��� �� � ��� 6 ,� 7
 ��� �� � ��� 6 ,� 7
 �� �������� �
 ��� � � � ���
 � � �� � $) *�
 ��� � � � ���
 � � �� � $) *�
 ��� � � � ���
 � � �� � $) *�
 ��� � � � ���
 � � �� � $) *
��� ��� � �� � ���� ��� � �� � ���� ��� � �� � ���� ��� � �� � � � � � � � � � � � ��

� ��

� ��

� ��

 ���� � ��� �� ��� �� ��� �� ��� �� � �� �
 � �
 �� � � �� ��� � �� �
 � �
 �� � � �� ��� � �� �
 � �
 �� � � �� ��� � �� �
 � �
 �� � � �� ��
� � ���� � ����� � ��!���
 ���� ��� �� ��4 ����
 ���
 ���� ��� � ���� � ����� � ��!���
 ���� ��� �� ��4 ����
 ���
 ���� ��� � ���� � ����� � ��!���
 ���� ��� �� ��4 ����
 ���
 ���� ��� � ���� � ����� � ��!���
 ���� ��� �� ��4 ����
 ���
 ���� ������

5. Discussion

From our work we can see that one-class SVM using
binary features performs better than one-class Naïve
Bayes and one-class SVM using word count features.

Even so, masquerade detection is a very hard problem,
and all three algorithms did not achieve very high
accuracy with near to zero false positive rates for every
user. This is partly caused by the inherent nature of the
data available and the difficulty of this problem. We
would like to reapply these methods using a richer set of
data as described by Maxion [10], incorporating command
arguments. We also believe that temporal data associated
with each user’s sequential commands will provide
considerable value as well to improve performance.

Another problem to consider for the practical utility of
these approaches is resiliency to direct attack; i.e. how
could we protect the models that were computed from, for
example, a mimicry attack by the masquerader?

In the experiments performed, we did not evaluate
feature selection. We tested one-class SVM using 100,

fritz
17

200, and 300 of the most frequently used UNIX
commands. Each of the results is worse than had we used
all of the available UNIX commands, whose total number
is around 870. We also conjectured that 2-gram features
(adjacent pairs of commands) would perform better than
individual commands (1-grams) as a feature. However, we
found that the results were worse when we used all of the
2-grams. In further work, we would evaluate some feature
selection methods to improve performance. For example,
we believe a selection of some features using both 1-gram
and 2-grams may improve the quality of the user profiles,
and thus the accuracy of the detector.

A system to detect masqueraders as described in this
paper should not be viewed as a single detector, but rather
as evidence to be correlated with other sensors and other
detectors. Thus, although the performance of the detectors
described herein and in prior work seemingly are not
accurate enough, when one wishes to limit false positives,
it may be wise to relax the threshold to generate higher
true positive rates. If the output of the detector were
combined with other evidence (for example, file system
access anomaly detection, or other sensors), it may be
possible to raise substantially the bar in protecting hosts
from malicious abuse.

6. Conclusion

In this paper, to solve the masquerade detection
problem, we use one-class training algorithms which only
train on a user’s clean data. It has been demonstrated that
one-class training algorithms can achieve similar
performance as multiple class methods, but require much
less effort in data collection and centralized management.
Besides masquerade detection, we believe one-class
training is also good for some other intrusion detection
problems where sample intrusion data are hard to get or
too variable to cluster.

We also give a detailed comparison of the performance
of different one-class algorithms as applied to multiple
users. The results show that for most users one-class SVM
using the binary feature representation is better than one-
class Naïve Bayes and one-class SVM using the word
count representation, especially when we want to restrict
the false positive rate to a relatively low level.

In our future work, we plan to include command
arguments, not only truncated commands, as features to
improve the accuracy of masquerade detection. As the
number of features increase, we also plan to do feature
selection to find the most informative features and to
discard those features that have no value for the target task.

Acknowledgments
This work was partially supported by DARPA contract

No. F30602-02-2-0209. We also thank Prof. Tony Jebara
for helpful suggestions and valuable comments.

Reference:

[1] Chih-Chung Chang and Chih-Jen Lin, “LIBSVM: a library

for support vector machines”, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[2] Eleazar Eskin, Wenke Lee and Salvatore J. Stolfo,
“Modeling System Calls for Intrusion Detection with
Dynamic Window Sizes”, Proceedings of DISCEX II, June,
2001.

[3] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and
Thomas A. Longstaff, “A sense of self for UNIX
processes”, In Proceedings of IEEE Symposium on Security
and Privacy, 1996.

[4] Anup K. Ghosh and Aaron Schwartzbard, “A study in
using neural networks for anomaly and misuse detection”,
In Proceedings of USENIX Security Symposium 1999

[5] M. Gribskov and N. L. Robinson, “Use of receiver
operating characteristic (ROC) analysis to evaluate
sequence matching”, Computers and Chemistry, 20(1):25–
33, 1996.

[6] Thorsten Joachims, “Text categorization with support
vector machines: Learning with many relevant features”, In
Proc. of the European Conference on Machine Learning
(ECML), pp. 137-142, 1998.

[7] W. Lee and S. J. Stolfo, “Data mining approaches for
intrusion detection”, In Proceedings of USENIX Security
Symposium 1998

[8] T. Lunt, A.Tamaru, F. Gilham, R. Jagannathan, C. Jalai,
H.S. Javitz, A. Valdes, and P.G. Neumann, “A Real-Time
Intrusion Detection Expert System," SRI CSL Tecnical
Report, SRI-CSL-90-05, June 1990.

[9] Maxion, Roy A. and Townsend, Tahlia N, “Masquerade
Detection Using Truncated Command Lines”, International
Conference on Dependable Systems and Networks (DSN-
02), pp. 219-228, Washington, D.C. 23-26 June 2002.

[10] Maxion, Roy A. “Masquerade Detection Using Enriched
Command Lines”, In International Conference on
Dependable Systems & Networks (DSN-03), pp. 5-14, San
Francisco, California, 22-25 June 2003. IEEE Computer
Society Press, Los Alamitos, California, 2003.

[11] A. McCallurn, K. Nigam, “A Comparison of Event Models
for Naive Bayes Text Classification”, AAAI-98 Workshop
on Learning for Text Categorization, 1998

[12] T. M. Mitchell, Bayesian Learning, Chapter 6 in Machine
Learning, pp. 154-200. McGraw-Hill, 1997.

[13] B. Scholkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola, and
R.C. Williamson, “Estimating the support of a high-
dimensional distribution”. Technique report, Microsoft
Research, MSR-TR-99-87, 1999.

fritz
18

[14] M. Schonlau, W. DuMouchel, W. -H. Ju, A. F. Karr, M.
Theus, and Y. Vardi, “Computer intrusion: Detecting
masquerades”, Statistical Science, 16(1):58-74, February
2001.

[15] Matthew G. Schultz, Eleazar Eskin, and Salvatore J. Stolfo,
“Malicious Email Filter - A UNIX Mail Filter that Detects
Malicious Windows Executables”, Proceedings of USENIX
Annual Technical Conference - FREENIX Track, Boston,
MA: June 2001.

[16] S. Y. Sedelow, “The Computer in the Humanities and Fine
Arts”, ACM Computing Surveys 2(2): 89-110 (1970)

[17] Salvatore J. Stolfo, Shlomo Hershkop, Ke Wang, Olivier
Nimeskern, and Chia-Wei Hu, “Behavior Profiling of
Email”, 1st NSF/NIJ Symposium on Intelligence & Security
Informatics (ISI 2003), June 2-3, 2003, Tucson, Arizona.

[18] O. De Vel, A. Anderson, M. Corney, and G. Mohay,
“Mining Email Content for Author Identification
Forensics”, SIGMOD: Special Section on Data Mining for
Intrusion Detection and Threat Analysis, December 2001.

[19] Nong Ye, “A Markov Chain Model of Temporal Behavior
for Anomaly Detection”, Proceedings of the IEEE Systems,
Man, and Cybernetics Information Assurance and Security
Workshop, 2000.

fritz
19

Learning Rules from System Call Arguments and Sequences for
Anomaly Detection

Gaurav Tandon and Philip Chan
Department of Computer Sciences

Florida Institute of Technology
Melbourne, FL 32901

{gtandon, pkc}@cs.fit.edu

Abstract

Many approaches have been suggested and
various systems been modeled to detect intrusions from
anomalous behavior of system calls as a result of an
attack. Though these techniques have been shown to be
quite effective, a key element seems to be missing – the
inclusion and utilization of the system call arguments to
create a richer, more valuable signature and to use this
information to model the intrusion detection system more
accurately. We put forth the idea of adopting a rule
learning approach that mobilizes rules based upon system
calls and models the system for normal traffic using
system call arguments and other key attributes. We present
variations of our techniques and compare the results with
those from some of the well known techniques based upon
system call sequences. The results show that system call
argument information is crucial and assists to successfully
detect U2R, R2L and Data attacks generating lesser false
alarms.

1. Introduction

Motivation: The Internet has invariably been a medium
for malicious purposes. Attacks on computers, be it some
graduate students trying to hack systems to prove their
mettle or intruders with more damaging intentions, is on a
steady rise. Moreover, novel attacks and hacking schemes
are developed all the time, making it hard for systems to be
made immune to all these vulnerabilities. It has thus
become imperative that these be checked early to minimize
losses.

Two different lines of approach have been adopted to
detect intrusions. The first technique, misuse (signature)
detection, is similar to pattern matching -- systems are

modeled upon known attack patterns and the test data is
checked for the occurrence of these patterns. These
systems have a high degree of accuracy but fail to detect
new attacks. The other method, anomaly detection, models
normal behavior and significant deviations from this
behavior are considered anomalous. The primary
advantage of this approach is that it can detect novel
attacks, the drawback being that it can generate a lot of
false alarms. This is attributed to the fact that not all
anomalies are necessarily attacks and will thus result in
false positives.

Intrusion Detection Systems (IDSs) can also be
categorized as network-based and host-based. In the
former, header fields of the various network protocols are
used to detect intrusions. For example, the IP header fields
- source IP address, destination IP address, source port
number, destination port number and others can be used to
check for malicious intent. In the latter approach (a host-
based IDS), the focus shifts to the operating system level.
System call data is extracted from audit logs like the
Solaris Basic Security Module (BSM) [16] and their
behavior is studied to detect attacks.

Most of the present techniques for host-based anomaly
detection systems revolve around sequences of system
calls. These techniques are based upon the observation that
an illegitimate activity results in an abnormal (novel)
sequence of system calls.

Problem: The efficacy of such systems might be improved
upon if more information is utilized. For system calls the
most intuitive option lies in the system call arguments.
Some other attributes related with system calls are the path
for the object, the return value and the error status. Does
adding these attributes assist in modeling a host-based
anomaly detection system better? How do such systems
fare (in terms of detections, false alarms, space and time

fritz
20

requirements) as compared to the systems based only upon
the sequence of system call information? These are some
of the key issues we seek to explore in this paper.

Approach: We extract system calls, their arguments, path,
return value and error status from the Solaris BSM audit
logs [16]. We then propose a host-based anomaly-
detection system using system calls and other
aforementioned key attributes by using variants of LERAD
(Learning Rules for Anomaly Detection) [14], which is a
conditional rule-learning algorithm. We aim at forming
rules for our anomaly detection system based upon the
system calls and their attributes. We suggest that including
these attributes to the system calls will result in learning
more information, thereby enabling us to model our
systems better and detecting more attacks. We propose
three models – the first one modeling system call
sequences using LERAD, the second modeling system call
arguments and other attributes, and the third approach
being a combination of the two. We juxtapose these
techniques and also compare them with some of the
previous well-known sequence-based techniques, namely
tide, stide, t-stide [20].

Contributions:

• We proposed the use of system call argument
information to enrich the representation of program
behavior in anomaly detection.

• We proposed modifications to LERAD to learn rules
that allow one of the attributes to be designated as a
pivotal attribute (system call in our case -- explanation
in Section 3.2.2) on which the rules are based.

• As compared to tide, stide and t-stide, three well
known sequence-based techniques (more details in
Section 2), our argument-based systems are able to
detect more attacks at lower false alarm rates.

• Our method that uses both sequence and argument
information generally detected the most attacks with
different false alarm rates.

Organization: Section 2 describes the related work in the
field of anomaly detection. In Section 3, we discuss the
approach that we adopt for prepare the data set for our
anomaly detection models. We give a brief explanation of
LERAD on which our models are based. Then we describe
the three variants of LERAD that are used to investigate
different issues. Section 4 gives a brief description of
evaluation data, procedure and criteria. Then we analyze
the results obtained from the experiments we performed. In
Section 5, we conclude and put forth some views for future
endeavors.

2. Related Work

Forrest et al. [2] proposed an approach for host based
anomaly detection called time-delay embedding (tide),
wherein traces of normal application executions were
noted. A sliding look-ahead window of a fixed length was
used to record correlations between pairs of system calls.
These correlations were stored in a database of normal
patterns, which was then used to monitor sequences during
the testing phase. Anomalies were accumulated over the
entire sequence and an alarm was raised if the anomaly
count exceeded the threshold. tide forms correlations
between pairs of system calls within a certain preset
window size. Some of the issues involved in their approach
were: using a small window does not help to form
correlations over a long period of time. Similar sequences
with minor variations could still be flagged as anomalous.

Later work by Warrender et al [20] extended this
technique in sequence time-delay embedding (stide), which
memorized all contiguous sequences of predetermined,
fixed lengths during training. An anomaly count was
defined as the number of mismatches in a temporally local
region. A threshold was set for the anomaly score above
which a sequence is flagged anomalous, indicating a
possible attack. stide memorizes all fixed length sequences
from the training data, irrespective of the number of
instances found in the dataset. An extension, called
sequence time-delay embedding with (frequency) threshold
(t-stide), was similar to stide with the exception that the
frequencies of these fixed length sequences were also
taken into account. Rare sequences were ignored from the
normal sequence database in this approach. When
encountered during the testing phase, they were also
counted as mismatches and aggregated to the locality
frame counts (anomaly counts). All these techniques
modeled normal behavior by using fixed length patterns of
training sequences. But there was no rationale in fixing the
length to a predetermined constant value.

Wespi et al. [21], [22] proposed a scheme to generate
variable length patterns by using Teiresias [17], a pattern-
discovery algorithm in biological sequences. These
techniques improved upon the fixed length pattern
methods cited above. Some extensions to (fixed and
variable length) sequence-based methods were also
proposed in [6], [7] and [8]. Though all the above
mentioned approaches use system call sequences, none of
them make use of the system call arguments. Given some
knowledge about the system being used, attackers can
devise some methodologies to evade such intrusion
detection systems. Wagner and Soto [19] made such an

fritz
21

attempt to model a malicious sequence by adding "no-ops"
(system calls having no effect) to compromise an IDS
based upon the sequence of system calls. This brings to
surface yet another shortcoming of sequence-based
methods. Such attacks would fail if the system call
arguments are also taken into consideration.

Sekar and others [18] proposed a method to build a
compact finite state automaton (FSA) in an efficient way to
detect intrusive activities. But no frequency information is
stored in the FSA. Again, there lies the inherent drawback
that the system call arguments are not considered. In [3],
Feng et al proposed a method that dynamically extracts
return address information from the call stack and program
counter information is recorded at each system call. This
technique performs equally well as compared to the
deterministic FSA approach in terms of detections,
convergence and false positives.

Artificial neural networks (ANNs) have been employed for
both anomaly and misuse (signature) detection. Ghosh and
Schwartzbad [4] expressed the idea of a process-based
intrusion detection system that can generalize from
previously observed behavior to recognize future unseen
behavior. But their system ignores isolated anomalies.

Machine learning approaches have also been used to
model intrusion detection systems. Lee at el. [11] verified
the feasibility of rule-learning approaches by using an
algorithm called RIPPER [1]. Mahoney and Chan [14]
introduced a machine-learning algorithm called LERAD
(Learning Rules for Anomaly Detection) to detect network
intrusions. This technique extended the network traffic
model to include a larger number of attributes. They also
introduced and used the concept of a non-stationary model
in [13], [14] and [15], in which the probability of an event
depends upon its most recent occurrence and not on the
frequency. LERAD is a conditional rule-learning algorithm
that selects good rules from a vast rule space. This paper
uses variants of LERAD for a host-based anomaly
detection system.

3. Approach

Rule learning techniques have been shown that they can be
successfully adapted to model systems for intrusion
detection [14]. Since our goal is to detect host-based
intrusions and we are dealing with BSM audit data, system
calls are instrumental in our system. We thus extend upon
the machine learning approach and incorporate the system
calls with its arguments to generate a richer set of rules and

measure the performance on the basis of number of
detections and the false alarm rate. We study and evaluate
three different variations of modeling a system using
LERAD: sequence of system calls, system calls and their
arguments, and a fusion of the previous two
methodologies. We compare and contrast the results from
these three models of our approach with tide, stide and t-
stide.

3.1. Learning Rules for Anomaly Detection
(LERAD)

LERAD is an efficient conditional rule-learning algorithm
that picks up attributes in a random fashion. LERAD is
briefly described here. More details can be obtained from
[14]. LERAD learns rules of the form:

,....},{,..., 21 xxXbBaA ∈�== (1)

where A, B, and X are attributes and a, b, x1, x2 are values
to the corresponding attributes. The learned rules
represent the patterns present in the training data that
consist of normal behavior. The set {x1, x2, …} in the
consequent constitutes all unique values of X when the
antecedent occurs in the training data. (These rules are
different from typical classification rules or association
rules.)

Records that match the antecedent but not the consequent
of a rule are considered anomalous. The degree of
anomaly is based on a probabilistic model. For each rule,
from the training data, the probability, p, of observing a
value not in the consequent is estimated by:

nrbBaAxxXp /,...),|...},{Pr(21 ===∉= (2)

where ‘r’ is the cardinality of the set, {x1, x2, …}, in the
consequent and ‘n’ is the number of records that satisfy the
antecedent. This probability estimation of novel (zero
frequency) events is due to Witten and Bell [23]. Since p
estimates the probability of a novel event, the larger p is,
the less anomalous a novel event is. Hence, during
detection, when a novel event is observed, the degree of
anomaly, or Anomaly Score, is estimated by:

rnpreAnomalySco //1 == (3)

fritz
22

The rule generation phase of LERAD comprises of three
main steps:

(i) Candidate rules are generated from patterns observed in
randomly selected pairs of training examples: Training
samples are picked up at random and then an initial set of
rules is generated based upon common attributes between
the samples. The conditional rules formed are of the type
depicted in Equation (1) above.

(ii) The rule set is minimized by removing rules that do not
cover/describe additional training examples: Redundant
rules are discarded and a minimal set of rules is generated.

(iii) A subset of the training set is chosen as a validation
set on which no training is performed: Rules learnt so far
are used to test the data in this validation set. Rules are
removed if they cause a false alarm in the validation set.
This is due to the fact that the validation data set comprises
of clean data (no attacks) and any anomaly implies a false
alarm.

The rule generation methodology of LERAD is described
next using Table 1.

Table 1: LERAD rule generation example: S1 – S6
are training samples with attributes A, B, C and D.

Training
Sample

A B C D

S1 1 2 3 4

S2 1 2 3 5

S3 6 7 8 4

S4 1 0 9 5

S5 1 2 3 4

S6 6 3 8 5

Step (i) Samples, say S1 and S2, are picked at random to
create an initial rule set. Rules are generated by selecting
matching attributes in a random order. In this example, the
S1 and S2 have the matching attributes A, B and C.
Selecting them in the order B, C and A, we get the
following 3 rules:

Rule1: * � B ∈ {2}

Rule 2: C=3 � B ∈ {2}

Rule 3: A=1, C=3 � B ∈{2}

A rule so generated implies that the attribute in the
consequent can have a value from a set of values only if

the conditions in the antecedent are satisfied. It may so
happen that there is a consequent but no antecedent in a
rule formed by LERAD. This means that an attribute can
take any value from its set of values without the need to
satisfy any other condition. Such a situation is presented in
Rule 1 where the antecedent is represented by a wildcard
character *.

Step (ii) Coverage test is applied to a subset of the training
set (say S1-S3) and rules are modified as follows:

Rule1: * � B ∈ {2, 7}

Rule 2: C=3 � B ∈ {2}

Rule 3: A=1, C=3 � B ∈{2}

Once we have the extended rule set, the probability p --
described in Equation (2) above -- is associated with every
rule. The rules are then sorted in increasing order of the
probability p:

Rule 2: C=3 � B ∉ {2} [p = 1/2]

Rule 3: A=1, C=3 � B ∉{2} [p = 1/2]

Rule 1: * � B ∉ {2, 7} [p = 2/3]

When the probabilities are equal, the rule with lesser
number of conditions in the antecedent is given higher
priority (Rule 2 is higher in priority than Rule 3 in our
example). Next, we desire a minimal set of rules. This is
achieved by removing those rules that do not give any new
information. In our example, Rule 2 is satisfied by samples
1 and 2. Rule 3 does not add any new value to the attribute
B and is thus deemed as redundant and is removed from
the rule set. The last rule (Rule 1) covers sample 3 as well
and is kept in the rule set.

Extending the two rules to the entire training (minus
validation) set (samples S1-S5 in our example), we get

Rule 2: C=3 � B ∉ {2} [p = 1/3]

Rule 1: * � B ∉ {2, 7, 0} [p = 3/5]

Step (iii): The last step comprises of testing the above set
of rules on the validation set, which is a subset of the
training data for which rules have not been generated. Any
rule which produces anomaly in the validation set is
removed. In our example, sample S6 forms the validation
set. Rule 1 is violated since attribute B has a novel value 3
in this sample. Thus, we are left with the following rule:

fritz
23

C=3 � B ∉ {2} [p = 1/3]

A non-stationary model is assumed for LERAD –
frequency is made irrelevant and only the last occurrence
of an event is assumed important. Since novel events are
bursty in conjunction with attacks, a ‘t’ factor was
introduced to capture the non-stationary characteristic,
where ‘t’ is the time interval since the last novel
(anomalous) event. When a novel event occurred recently,
or t is small, a novel event is more likely to occur at the
present moment. Hence, the anomaly score is measured by
t/p. Since a record can deviate from the consequent of
more than one rule, the total anomaly score of a record is:

ii
i

ii
i

i rntptlyScoreTotalAnoma // �� == (4)

where ‘i’ is the index of a rule from which the record has
deviated. The anomaly score is aggregated over all the
rules to combine the effect from violation of multiple rules.
The more the violations, more critical the anomaly is, and
the higher the anomaly score should be. LERAD yields
successful results for network-based anomaly detection
systems. This paper extends the algorithm for host-based
anomaly detection systems.

3.2. Variants of LERAD

Our goal is to create a system that can detect any anomaly
across any application/program. We developed a
taxonomy of the entire data set from the BSM audit log.
We classified the data into various applications/programs
and generated a model for each of them.

3.2.1. Sequence of system calls: S-LERAD

Using sequence of system calls is a very popular approach
for anomaly detection. We performed experiments wherein
we extracted system calls from the data. We used a
window of fixed length 6 (as this is claimed to give best
results in stide and t-stide [20]) and fed these sequences of
six system call tokens as input to LERAD. We called this
technique as S-LERAD since we are trying to capture
system call sequences by using LERAD.

For input to LERAD, we thus have a set of following
attributes: date and time when system call information
logged, the last two bytes of the destination IP address
used for identifying the hosts during the evaluation, a
system call and the previous five system calls, thereby
making it a sequence of 6 system calls. LERAD uses these

attributes at random to generate rules as described in
Section 3.1.

The purpose of performing this experiment was to explore
whether LERAD would be able to capture the correlations
among system calls in a sequence. Also, this experiment
would assist us in comparing results by using the same
algorithm for system call sequences as well as system call
arguments. Since stide and t-stide report best results for
sequences of length 6, we increased the maximum number
of allowed attributes in the antecedent of the rules
generated by LERAD from 3 to 5, keeping the consequent
fixed at 1 attribute.

A sample rule learned in a particular run of S-LERAD is:

()}{3()6(),2(),1 munmapSCopenSCmmapSCcloseSC ∈�===

n/r value = 455/1

This rule is analogous to encountering close() as the first
system call (represented as SC 1), followed by mmap() and
munmap(), and open() as the sixth system call (SC 6) in a
window of size 6 sliding across the audit trail. Each rule is
associated with an n/r value, as explained in Section 3.1.
The number 455 in the numerator refers to the number of
training instances that comply with the rule (n in Equation
3). The number 1 in the denominator implies that there
exists just one distinct value of the consequent (munmap()
in this case) when all the conditions in the premise hold
true (r in Equation 3 of Section 3.1).

3.2.2. System call arguments and other key attributes:
A-LERAD

We propose that argument and other key attribute
information is integral to modeling a good host-based
anomaly detection system. In this experiment, we extracted
arguments, object path, return value and error status of
system calls from the Solaris BSM audit log and examined
the effects of learning rules based upon system calls along
with these attributes.

We built models per application using LERAD with the
modification that the rules were forced to have system call
in the antecedent since it is the key attribute in a host based
system. The generic version of LERAD could have been
used to generate rules, but the motivation behind this is
that ours is a host-based system and is centered upon
system calls. We term the system call as a pivotal attribute

fritz
24

since our rules are based upon it. Thus, the system call will
always be a condition in the antecedent of the rule.

This model is given the nomenclature A-LERAD since our
motive here is to generate rules for various attributes given
the system calls. Any value for the other arguments (given
the system call) that was never encountered in the training
period for a long time would raise an alarm. A sample rule
is of the form:

}1240,2110,0102,1340{1() xxxArgmunmapSC ∈�=
 n/r value = 500/4

In the above rule, 500/4 refers to the n/r value for the rule
(Equation 3 in Section 3.1), that is, the number of training
instances complying with the rule (500 in this case)
divided by the cardinality of the set of allowed values in
the consequent. This rule gives the 4 different values
encountered for the first argument when the system call is
munmap().

The maximum number of arguments has been chosen as 5
since most of system calls do not take more than 5
arguments. Considering more number of arguments results
in more null values for the same and may cause formation
of not-so-important rules thereby degrading the system
performance. Thus only the high frequency arguments
were selected from the data set. There may be several other
approaches that can be adopted in this regard. Ours is just
one intuitive approach.

3.2.3. Merging argument information and sequence of
system calls: M-LERAD

The third set of experiments we conducted was to combine
the techniques discussed in Sections 3.3.1 and 3.3.2. The
first is a well acclaimed technique based upon sequence of
system calls and is known to be an effective technique; the
second one takes into consideration the attributes
(arguments, path, return value and error status), whose
efficacy we claim in this paper; so fusing the two to study
the effects was an obvious choice. We call this technique
as M-LERAD (short form for the merged system), as we
desire to combine system call sequences and the related
key attributes. Merging is accomplished by adding more
attributes in each tuple before input to LERAD. Each tuple
now comprises of the system call, arguments, object path,
return value, error status and the previous five system
calls. The n/r values obtained from the all rules violated

are aggregated into an anomaly score, which is then used
to generate an alarm based upon the threshold.

4. Experimental Evaluation

Our goal is to study if the rule-learning algorithm LERAD
can be modified to determine as many attacks with least
number of false alarms in a host-based anomaly detection
system.

4.1. Evaluation Data and Procedures

We evaluated out techniques using the 1999 DARPA
Intrusion Detection Evaluation Data Set [12]. The test bed
involved a simulation of an air force base that has
machines that are under frequent attack. These machines
comprised of Linux, SunOS, Sun Solaris and Windows
NT. Various intrusion detection systems were evaluated
using this test bed, which comprised of three weeks of
training data obtained from network sniffers, audit logs,
nightly file system dumps and BSM logs from Solaris
machine that trace system calls. Training was performed
on week 3 data (around 2.1 million system calls) and
testing on weeks 4 and 5 data (comprising over 7 million
system calls) from the BSM audit log. A total of 51 attacks
during weeks 4 and 5 were targeted at the Solaris machine,
from which the BSM log was collected.

Data from the Basic Security Module (BSM) [16] audit log
has to be preprocessed before it can be fed as input to
LERAD. This was important from the point of view that we
want to model process behavior for application. We
divided the entire data set into various applications. For
each application, we grouped the data on the basis of the
process ID. For a given process id, all the data from the
exec system call to the exit system call comprised the data
for that particular process. Data for which we could not
trace the start of the process was excluded from our
experiments. The fork system call was dealt in a special
way. A parent process spawns a child process with the fork
system call, that is, a copy of the parent process is created.
Unless fork is followed by exec, the child performs the
same tasks as the parent process. Therefore, all the system
calls for a child process are for the same application as the
parent process until it encounters its own exec system call.
In this way, we divided the data into applications, and
further into processes belonging to the various
applications/programs.

All the system calls (with their arguments) pertaining to a
single process were thus differentiated from the set of

fritz
25

system calls (and arguments) for another process
belonging to the same application. In a similar manner,
sequences of system calls for various processes of different
applications were differentiated from one another and were
ready to be used for our rule-based learning models.

The parameters for S-LERAD were the 6 contiguous
system calls; for A-LERAD they comprised of the system
call, its return value and error status besides other
arguments; and for M-LERAD it was a combination of the
two techniques. For tide, the parameters were all the pairs
of system calls within a window of fixed size 6; stide
comprised all contiguous sequences of length 6, and t-stide
added frequency information to the same. These sequence-
based methodologies have been discussed in Section 2. In
all models, alarms are accumulated for the applications and
then evaluated for true detections and false positives.

4.2. Evaluation Criteria

The performance metrics used in this 1999 DARPA
evaluation were the attack detection rate and the number of
false alarms generated. We have adopted the same for the
purpose of evaluating our system. As per the evaluation
criteria, a system is considered to have successfully
detected an attack if it generates an alarm within 60
seconds of the occurrence of the attack. We also follow the
same criterion for evaluating our schemes.

The attacks in the 1999 DARPA evaluation are classified
as probes, DoS, R2L, U2R and Data. These are based
upon the classification by Kendell[10]. The taxonomy is as
follows:

(i) Probes or scan attacks are attempts by hackers to collect
information prior to an attack. Examples include
illegalsniffer, ipsweep, mscan, portscan amongst others.

(ii) DoS (Denial of Service) attacks are the ones in which a
host or a network service is disrupted. For example,
arppoison, selfping, dosnuke and crashiis are all DoS
attacks.

(iii) R2L (Remote to Local) – In these attacks, an
unauthorized user gains access to a system. Examples of
R2L attacks are guest, dict, ftpwrite, ppmacro, sshtrojan
and framespoof.

(iv) U2R (User to Root) / Data attacks are those in which a
local user is able to execute non-privileged commands,
which only a super user can execute. Examples are eject,
fdformat, ffbconfig, perl, ps and xterm.

Some attacks are combinations, such as a U2R attack that
enables the attacker to steal secret data and are therefore
categorized as Data-U2R attacks. Similarly, there are also
Data-R2L attacks.

Lippmann et al [12] lists poorly detected attacks as the
ones even half of whose instances were not detected by the
any of the IDSs in the 1999 DARPA Evaluation. For the
Solaris host, these were all DoS attacks. Host-based
systems that use Solaris based audit data are more inclined
to detect R2L, U2R and Data attacks than network-based
intrusion detection systems.

As we are using more information (in the form of system
call arguments) for our models, another important criterion
is the space and the CPU time requirements, which is
discussed in Section 4.4.

4.3. Results and Analysis of Detection Rates

We built training models for various applications. We
reiterate our motivation for forcing rules based on system
calls, as they are the pivotal attributes for our model. We
trained our system on week 3 of the DARPA data and
tested on weeks 4 and 5. Putative detections were
considered as true positives if they occurred within 60
seconds of the attack segment for the correct destination
(victim) IP address, which in our case was a single Solaris
host.

0

2

4

6

8

10

Probes
(5)

DOS
(19)

R2L
(12)

U2R (9) Data (4) Data-
U2R (2)

Attack Types (Number of Attacks)

N
um

be
r o

f A
tta

ck
s

D
et

ec
te

d

tide stide t-stide
S-LERAD A-LERAD M-LERAD

Figure 1: Number of detections with 10 false
alarms per day for different attack categories.

fritz
26

Figure 1 plots the result based on a leeway of 10 false
alarms per day of testing week, making a total of 100 false
alarms for the two weeks of testing. The best technique
using sequence-only information was t-stide, detecting 2
probes, 5 DoS, 5 R2L, 5 U2R, 1 Data and 1 Data-U2R
attacks. Both stide and t-stide were able to find more
probes than our argument-based technique, but our claim
lies in finding more R2L, U2R and data attacks. A-LERAD
was able to detect 10 R2L, 5 U2R, 3 Data, and both the
Data-U2R attacks, apart from a probe and 6 DOS attacks.
On the other hand, S-LERAD was not able to detect many
of these attacks. The better performance of A-LERAD over
S-LERAD can be attributed to the inclusion of argument
information in the former model. The graph depicts no
improvement by adding sequence information to argument
information since A-LERAD and M-LERAD had exactly
the same detections for the given false alarm rate. This also
suggests that argument information is sufficient for
detecting anomalies and there is no need for adding
sequence information to A-LERAD.

Our techniques were also able to detect some poorly
detected attacks quoted in [12]. For the Solaris host, these
were DoS attacks, some of which we were able to capture
accurately. There was only one instance of tcpreset, which
our system detected successfully. We were also able to
detect 2 instances of warezclient, both of which were not
detected by the best system for that attack in the 1999
DARPA Evaluation.

0

5

10

15

20

25

30

35

1 5 10 50 100

False Alarms per Day

A
tt

ac
ks

 D
et

ec
te

d

M-LERAD A-LERAD t-stide

stide S-LERAD tide

Figure 2: Detections for the 6 techniques at variable
false alarms rates (for a total of 51 attacks in 2 weeks
of data).

Figure 2 plots the total attacks detected by various
techniques at 1, 5, 10, 50 and 100 false alarms per day
respectively. t-stide maintained to be the best sequence-
based technique, followed by stide, S-LERAD and tide. A-
LERAD fared better than S-LERAD and the other
sequence-based techniques, suggesting that argument
information is more useful than sequence information. The
M-LERAD curve is usually at or above the other curves,
indicating that M-LERAD usually detects more attacks at
various false alarm rates than the remaining five methods.

It can also be seen that the A-LERAD curve closely follows
the curve for M-LERAD. This may imply that the sequence
information is redundant; it is not adding substantial
information to what we already have from the arguments.
In other words, the attacks detected by using sequence
information were also detected by using argument
information, thereby giving similar results for M-LERAD
and A-LERAD. A key point to observe is that even though
the number of detections is almost same for the two
techniques, M-LERAD has a faster convergence than A-
LERAD.

We also observe that the significant difference in the
performance of M-LERAD and t-stide is only at 10 false
alarms per day. The reason for this is that the ROC curve is
plotted on the basis of 5 discrete points only. For lower
false alarm rates (1 and 5 per day), similar number of
attacks was easily detected by both techniques. This can be
attributed to the fact that these attacks contained both
sequence and argument based anomalies. But as we
increase the acceptable false alarm rate, we see that
sequence anomalies do not necessarily correspond to an
attack, whereas the argument anomalies are a good
representation of an occurrence of an attack. By relaxing
the allowed false alarm rate further (50 or 100 false alarms
per day), we certainly expect to get more detections. We
notice from the figure that we do get similar performance
for M-LERAD and t-stide in such cases, but it is
accompanied with a huge cost in terms of the number of
false alarms, which is unacceptable for real-time systems.

By performing the comparison of the various techniques,
we were also able to determine the effectiveness of the
anomaly scoring function. Amongst the most effective
techniques, A-LERAD and M-LERAD use a time based
probabilistic estimation and t-stide incorporates frequency
information. The way these techniques score anomalies is
also a crucial factor in such anomaly detection systems.

fritz
27

One of the issues we investigated was whether to force
LERAD to form rules based upon a system call as a
condition in the antecedent or let it formulate rules without
pivoting on a system call (as discussed in Section 3.2.2).
We performed some experiments using A-LERAD with and
without the enforcement of system call as a condition in
the antecedent. Based upon the empirical evidence, we
concluded that this enforcement resulted in the detection of
at least as many attacks as in the relaxed case with the
generation of fewer false alarms.

4.4. Results and Analysis of the CPU Time and
Space Requirements

Compared to sequence-based methods, our techniques
extract and utilize more information (system call
arguments and other attributes), making it imperative to
study the feasibility of our techniques in terms of space
and time requirements.

During training, for t-stide, all contiguous system call
sequences of length 6 along with their respective
frequencies are stored in a database. For M-LERAD,
system call sequences and other attributes are stored. In
both the cases, space complexity is of the order of O(n),
where ‘n’ is the total number of system calls, though the
M-LERAD requirement is more by a constant factor k since
it stores additional argument information. During
detection, M-LERAD uses only the learned set of rules (in
the range 14-35 at an average of 25.1 rules per application
in our experiments). t-stide, on the other hand, still
requires the entire database of fixed length sequences
during testing, which incur larger space overhead during
detection. We conducted experiments on the tcsh
application data. The entire week 3 training data set
comprises of over 2 million system calls and the test data
(weeks 4 and 5 combined) has over 7 million system calls.
For tcsh, system calls alongwith their arguments form a 33
MB input file for M-LERAD. The rules formed by M-
LERAD require less than 1.5 KB space, apart from a
mapping table to map strings and integers. For the same
application, the memory requirements for storing a system
call sequence database for t-stide were over 5 KB plus a
mapping table between strings and integers. The results
suggest that M-LERAD has better memory requirements
during the detection phase. We reiterate that the training
can be done offline. Once the rules are generated, M-
LERAD can be used to do online testing with lower
memory requirements.

The time overhead incurred by M-LERAD and t-stide in
our experiments is given in Table 2. The CPU times have

been obtained on a Sun Ultra 5 workstation with 256 MB
RAM and 400 MHz processor speed. We can infer from
the results that M-LERAD is slower than t-stide. During
training, t-stide is a much simpler algorithm and processes
less data than M-LERAD for building a model and hence t-
stide has a much shorter training time. During detection, t-
stide just needs to check if a sequence in the database,
which can be efficiently implemented with a hash table.
On the other hand, M-LERAD needs to check if a record
matches any of the learned rules. Also, M-LERAD has to
process additional argument information. Run-time
performance of M-LERAD can be improved with more
efficient rule matching algorithm. Also, t-stide will incur
significantly larger time overhead when the stored
sequences exceed the memory capacity and disk accesses
become unavoidable – M-LERAD does not encounter this
problem as easily as t-stide since it will still use a small set
of rules. More importantly, M-LERAD’s time overhead is
about tens of seconds for days of data, which is reasonable
for practical purposes.

Table 2: Comparison of CPU times during training
and testing phases for t-stide and M-LERAD for top 8
applications in terms of total number of system calls
(not necessarily in that order).

Application Training Time
(seconds)

[on 1 week of data]

Testing Time
(seconds)

[on 2 weeks of data]

 t-stide M-LERAD t-stide M-LERAD

ftpd 0.19 0.99 0.19 0.96
telnetd 0.96 7.87 1.05 9.79

ufsdump 6.76 33.33 0.42 1.78
tcsh 6.32 32.85 5.91 37.58
login 2.41 16.75 2.45 19.86

sendmail 2.73 15.09 3.23 21.63
quota 0.20 3.48 0.20 3.79

sh 0.21 3.25 0.40 5.63

5. Concluding Remarks

Even though system call sequences are beneficial in
modeling normal process behavior, they are not
omniscient. In this paper, we portrayed the efficacy of
incorporating system call argument information and used a
rule-learning algorithm to model a host-based anomaly
detection system. Our argument-based model, A-LERAD,
detected more attacks at lower false alarm rates than the
sequence-based techniques on the 1999 DARPA
evaluation dataset. Combining the two lines of approach

fritz
28

(argument and sequence information) resulted in creating a
richer and, more importantly, more accurate model for
anomaly detection, as illustrated by the empirical results of
M-LERAD. Though our techniques incur higher time
overhead due to the complexity of our techniques as well
as more information to be processed, they build more
succinct models that incur much less space overhead--our
techniques aim to generalize from the training data, rather
than simply memorize the data.

Our techniques can be easily extended to monitor audit
trails in continuum. Since we model each application
separately, some degree of parallelism can also be
achieved to test process sequences as they are being
logged. S-LERAD fares poorly as compared to stide and t-
stide. We are currently trying to analyze and rectify its
shortcomings, which might have an impact on the
performance of M-LERAD as well. Also, we were able to
see from our experiments that the time based probabilistic
estimation of anomaly score as proposed in LERAD and
the frequency component of t-stide are effective ways to
flag data as anomalous. These two functions can be
combined to give a more appropriate anomaly score. It
would be interesting to see how this would affect the
results. We might perform experiments and publish results
for the same in the near future.

Acknowledgements

This work is partially funded by DARPA (F30602-00-1-
0603). We thank the LLR members for their help on ideas
and the anonymous reviewers for their comments.

References

 [1] Cohen W. Fast Effective Rule Induction, in Machine
Learning. Proc. ICML 1995.

[2] Forrest S., Hofmeyr S., Somayaji A., and Longstaff T. A
Sense of Self for UNIX Processes. 1996 IEEE Symposium on
Research in Security and Privacy.

[3] Feng H., Kolesnikov O., Fogla P., Lee W. and Gong W.
Anomaly Detection Using Call Stack Information. IEEE
Symposium on Security and Privacy, 2003.

[4] Ghosh A., and Schwartzbad A. A Study in Using Neural
Networks for Anomaly and Misuse Detection. 1999 USENIX
Security Symposium.

[5] Hangal S. and Lam M.S. Tracking Down Software Bugs
Using Automatic Anomaly Detection. International Conference
on Software Engineering, 2002.

[6] Helman P. and Bhangoo J. A statistically based system for
prioritizing information exploration under uncertainty. IEEE

Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, 1997.

[7] Hofmeyr S. A., Forrest S., and Somayaji A. Intrusion
detection using sequences of system calls. Journal of Computer
Securit,y 1998.

[8] Jiang N., Hua K., and Sheu S. Considering Both Intra-pattern
and Inter-pattern Anomalies in Intrusion Detection. Proc. Intl.
Conf. Data Mining, 2002.

[9] Jones A., Li S. Temporal Signatures for Intrusion Detection.
Computer Security Applications Conference, 2001.

[10] Kendell K. A Database of Computer Attacks for the
Evaluation of Intrusion Detection Systems. Masters Thesis, MIT
1999.

[11] Lee W., Stolfo S., and Chan P. Learning Patterns from
UNIX Process Execution Traces for Intrusion Detection.
AAAI’97 workshop on AI methods in Fraud and risk
management.

[12] Lippmann R., Haines J., Fried D., Korba J., and Das K. The
1999 DARPA Off-Line Intrusion Detection Evaluation.
Computer Networks, 2000.

[13] Mahoney M. and Chan P. Packet Header Anomaly
Detection for Identifying Hostile Network Traffic, Florida Tech.
Technical Report CS-2001-04.

[14] Mahoney M., and Chan P. Learning Rules for Anomaly
Detection of Hostile Network Traffic, Proc. of the Third IEEE
International Conference on Data Mining, 2003 (to appear).

[15] Mahoney M. and Chan P. Learning non-stationary models
of normal network traffic for detecting novel attacks. Proc. Intl.
Conf. Knowledge Discovery and Data Mining, P 376-385, 2002.

[16] Osser W., and Noordergraaf A. Auditing in the SolarisTM 8
Operating Environment. Sun BlueprintsTM Online - February
2001.

[17] Rigoutsos Isidore and Floratos Aris. Combinatorial pattern
discovery in biological sequences. Bioinformatics, 1998.

[18] Sekar R., Bendre M., Dhurjati D., Bollineni P. A Fast
Automaton-based Method for Detecting Anomalous Program
Behaviors. IEEE Symposium on Security and Privacy, 2001.

[19] Wagner D., Soto P. Mimicry Attacks on Host-Based
Intrusion Detection Systems. ACM Conference on Computer and
Communications Security, 2002.

[20] Warrender C., Forrest S., Pearlmutter B. Detecting
Intrusions Using System Calls: Alternative Data Models. IEEE
Symposium on Security and Privacy, 1999.

[21] Wespi A., Dacier M., and Debar H. Intrusion detection
using variable-length audit trail patterns. Proc. RAID, 2000.

[22] Wespi A., Dacier M., and Debar H. An Intrusion-Detection
System Based on the Teiresias Pattern-Discovery Algorithm.
Proc. EICAR, 1999.

[23] Witten I. and Bell T., The zero-frequency problem:
estimating the probabilities of novel events in adaptive text
compression. IEEE Trans. on Information Theory, 1991.

fritz
29

Detection of Novel Network Attacks Using Data Mining

Levent Ertoz, Eric Eilertson, Aleksandar Lazarevic,
Pang-Ning Tan, Paul Dokas, Vipin Kumar, Jaideep Srivastava

Computer Science Department, 200 Union Street SE, 4-192, EE/CS Building,
University of Minnesota, Minneapolis, MN 55455, USA

{ertoz,eric,aleks,ptan,dokas,kumar,srivasta}@cs.umn.edu

Abstract

This paper introduces the Minnesota Intrusion
Detection System (MINDS), which uses a suite of data
mining techniques to automatically detect attacks against
computer networks and systems. While the long-term
objective of MINDS is to address all aspects of intrusion
detection, in this paper we present two specific
contributions. First, we present MINDS anomaly detection
module that assigns a score to each connection that
reflects how anomalous the connection is compared to the
normal network traffic. Experimental results on live
network traffic at the University of Minnesota show that
our anomaly detection techniques have been successful in
automatically detecting several novel intrusions that could
not be identified using state-of-the-art signature-based
tools such as SNORT. Many of these have been reported
on the CERT/CC list of recent advisories and incident
notes. We also present the results of comparing the
MINDS anomaly detection module to SPADE (Statistical
Packet Anomaly Detection Engine), which is designed to
detect stealthy scans.

1. Introduction

Traditional methods for intrusion detection are based

on extensive knowledge of attack signatures that are
provided by human experts. The signature database has
to be manually revised for each new type of intrusion
that is discovered. A significant limitation of signature-
based methods is that they cannot detect novel attacks. In
addition, once a new attack is discovered and its
signature developed, often there is a substantial latency
in its deployment. These limitations have led to an
increasing interest in intrusion detection techniques
based upon data mining [3, 4, 21, 26, 28], which
generally fall into one of two categories: misuse detection
and anomaly detection.

In misuse detection, each instance in a data set is
labeled as 'normal' or 'intrusive' and a learning algorithm
is trained over the labeled data. Research in misuse

detection has focused mainly on detecting network
intrusions using various classification algorithms [3, 10,
21, 24, 26, 33], rare class predictive models [14-17, 19],
association rules [3, 21, 28] and cost sensitive modeling
[9, 16]. Unlike signature-based intrusion detection
systems, models of misuse are created automatically, and
can be more sophisticated and precise than manually
created signatures. In spite of the fact that misuse
detection models have high degree of accuracy in
detecting known attacks and their variations, their
obvious drawback is the inability to detect attacks whose
instances have not yet been observed. In addition,
labeling data instances as normal or intrusive may
require enormous time for many human experts.

Anomaly detection algorithms build models of normal
behavior and automatically detect any deviation from it
[7, 12]. The major benefit of anomaly detection
algorithms is their ability to potentially detect unforeseen
attacks. In addition, they may be able to detect new or
unusual, but non-intrusive, network behavior that is of
interest to a network manager, and needs to be added to
the normal profile. A major limitation of anomaly
detection systems is a possible high false alarm rate.
There are two major categories of anomaly detection
techniques, namely supervised and unsupervised
methods. In supervised anomaly detection, given a set of
normal data to train from, and given a new piece of test
data, the goal is to determine whether the test data
belongs to “normal” or to an anomalous behavior.
Recently, there have been several efforts in designing
supervised network-based anomaly detection algorithms,
such as ADAM [3], PHAD [27], NIDES [2], and other
techniques that use neural networks [32], information
theoretic measures [22], network activity models [6] etc.
Unlike supervised anomaly detection where the models
are built only according to the normal behavior on the
network, unsupervised anomaly detection attempts to
detect anomalous behavior without using any knowledge
about the training data. Unsupervised anomaly detection
approaches are based on statistical approaches [36, 37],

fritz
30

clustering [8], outlier detection schemes [1, 5, 18, 31],
state machines [34], etc.

This paper introduces the Minnesota Intrusion
Detection System (MINDS) that uses a suite of data
mining techniques to automatically detect attacks against
computer networks and systems. While the long-term
objective of MINDS is to address all aspects of intrusion
detection, in this paper we present only an anomaly
detection technique that assigns a score to each network
connection reflecting how anomalous the connection is
compared to the normal network traffic. We also provide
an evaluation of MINDS anomaly detection schemes in
the context of real life network data at the University of
Minnesota. During the last year, this evaluation has
shown that anomaly detection algorithms have been
successful in automatically detecting numerous novel
intrusions that could not be identified using widely
popular tools such as SNORT [35]. In fact, many of
these attacks have been reported on the CERT/CC
(Computer Emergency Response Team/Coordination
Center) list of recent advisories and incident notes. We
chose to present results on real life network data since
publicly available data sets for evaluation of network
intrusion detection systems (e.g. DARPA 1998, DARPA
1999 data sets [23, 25]) are known to have serious
limitations [29]. In the absence of labels of network
connections (normal vs. intrusive), we are unable to
provide real estimate of detection rate, but nearly all
connections that are ranked highly by our anomaly
detection algorithms are found to be interesting and
anomalous by the network security analyst on our team.

2. The MINDS System

The Minnesota Intrusion Detection System (MINDS)

is a data mining based system for detecting network
intrusions. Figure 1 illustrates the process of analyzing
real network traffic data using the MINDS system. Input
to MINDS is Netflow version 5 data collected using
Netflow tools. Netflow tools only capture packet header

information (i.e., they do not capture message content),
and build one way sessions (flows). We are working
with Netflow data instead of tcpdump because we
currently do not have the capacity to collect and store the
tcpdump. Netflow data for each 10 minute window,
which typically result in 1 to 2 million flows, is stored in
a flat file. The analyst uses MINDS to analyze these 10-
minute data files in a batch mode. Before applying
MINDS to these data files, a data filtering step is
performed by the system administrator to remove
network traffic that the analyst is not interested in
analyzing. For example, the removed attack-free network
data in data filtering step may include the data coming
from trusted sources, non-interesting network data (e.g.
portions of http traffic) or unusual/anomalous network
behavior for which it is known that it does not
correspond to intrusive behavior.

The first step in MINDS includes constructing
features that are used in the data mining analysis. Basic
features include source IP address and port, destination
IP address and port, protocol, flags, number of bytes, and
number of packets. Derived features include time-
window and connection-window based features. Time-
window based features are constructed to capture
connections with similar characteristics in the last T
seconds, since typically of Denial of Service (DoS) and
scanning attacks involve hundreds of connections. A
similar approach was used for constructing features in
KDDCup'99 data [39]. Table 1 summarizes the time-
window based features.

 “Slow” scanning attacks, i.e. those that scan the hosts
(or ports) and use a much larger time interval than a few
seconds, e.g. one scan per minute or even one scan per
hour, cannot be detected using derived “time-window”
based features. To capture these types of the attacks, we
also derive “connection-window” features that capture
the same characteristics of the connection records as
time-window based features, but are computed in the last
N connections. The connection-window based features
are shown in Table 2.

network

Data capturing
device

Anomaly
detection

…
…

Anomaly
scores

Human
analyst

Detected
novel attacks

Summary
of attacks

MINDS system
M
I
N
D
S

Known attack
detection

Detected
known attacks

Labels

Filtering Feature
Extraction

Association
pattern analysis

MINDSA

Figure 1 Architecture of MINDS system

fritz
31

Table 1 The extracted “time-window” features

Table 2 The extracted “connection-window” based
features

After the feature construction step, the known attack
detection module is used to detect network connections
that correspond to attacks for which the signatures are
available, and then to remove them from further analysis.
For experiments reported in this paper, this step is not
performed.

Next, the data is fed into the MINDS anomaly
detection module that uses an outlier detection algorithm
to assign an anomaly score to each network connection.
A human analyst then has to look at only the most
anomalous connections to determine if they are actual
attacks or other interesting behavior.

3. MINDS Anomaly Detection

In this section, we only present the density based

outlier detection scheme used in our anomaly detection
module. For more detailed overview of our research in
anomaly detection the reader is referred to [20].

MINDS anomaly detection module assigns a degree
of being an outlier to each data point, which is called the
local outlier factor (LOF) [5]. The outlier factor of a
data point is local in the sense that it measures the degree
of being an outlier with respect to its neighborhood. For
each data example, the density of the neighborhood is
first computed. The LOF of specific data example p
represents the average of the ratios of the density of the
example p and the density of its nearest neighbors. To
illustrate advantages of the LOF approach, consider a
simple two-dimensional data set given in Figure 2. It is
apparent that the density of cluster C2 is significantly
higher that the density of cluster C1. Due to the low
density of cluster C1 it is apparent that for every example
q inside cluster C1, the distance between the example q
and its nearest neighbor is greater than the distance
between the example p2 and its nearest neighbor, which
is from cluster C2, and therefore example p2 will not be
considered as outlier.

Hence, the simple nearest neighbor approach based on
computing the distances fail in these scenarios. However,
the example p1 may be detected as outlier using the
distances to the nearest neighbor. On the other side, LOF
is able to capture both outliers (p1 and p2) due to the fact
that it considers the density around the points.

Figure 2 Outlier Examples

LOF requires the neighborhood around all data points
be constructed. This involves calculating pair-wise
distances between all data points which is an O(n2)
process, which makes it computationally infeasible for
millions of connections. To address this problem, we
sample the data to use as a training set and compare all
data points to this small set, which reduces the
complexity to O(n⋅m) where n is the size of the data and
m is the size of the sample. Apart from achieving
computational efficiency by sampling, anomalous
network behavior will not be able to match enough
examples in the sample to be called normal. This is
because rare behavior will not be represented in the
sample.

4. Experimental Evaluation of MINDS Anomaly
Detection

The output of the MINDS anomaly detector contains
the original Netflow data with the addition of the

Feature Name Feature description
count_dest_conn For the same source IP address,

number of unique destination IP
addresses inside the network in the
last N connections

count_src_conn For the same destination IP address,
number of unique source IP addresses
inside the network in the last N
connections

count_serv_
src_conn

Number of connections from the
source IP to the same destination port
in the last N connections

count_serv_
dest_conn

Number of connections from the
destination IP to the same source port
in the last N connections

Feature Name Feature description
count_dest For the same source IP address,

number of unique destination IP
addresses inside the network in the last
T seconds

count_src For the same destination IP address,
number of unique source IP addresses
inside the network in the last T seconds

count_serv_src Number of connections from the
source IP to the same destination port
in the last T seconds

count_serv_dest Number of connections from the
destination IP to the same source port
in the last T seconds

p2 p1

×

fritz
32

anomaly score and relative contribution of each of the 16
attributes to the score. Table 3 shows the 16 attributes.
The analyst typically looks at only the top few
connections that have the highest anomaly scores.
Figure 3 shows the most anomalous connections found
by MINDS on January 26th in a 10-minute window, 48
hours after the slammer attack. The University of
Minnesota network security analyst has been using
MINDS and SNORT independently to analyze the
university network traffic for the past seven months.
During this period, MINDS has been successful in
detecting many novel network attacks and emerging
network behavior that could not be detected using
SNORT.

In the following, we present a few examples that
demonstrate the effectiveness of the MINDS anomaly
detection algorithm. In addition, we present a
comparison of MINDS performance on detecting scans
to SPADE because it is already integrated into SNORT
and thus available as open source. Note that other
schemes exist that work in high bandwidth
environments; e.g. the scheme presented in [38]
identifies packets that are likely to be a probe and
performs scan detection on only those packets. But most
such schemes are not available as open source. Note that
the comparison with SPADE is only restricted to
detecting scans, as SPADE is not meant to find policy
violations and worms, which can be detected by MINDS.
We are unable to provide comparisons of MINDS with
other anomaly detection systems that are potentially
capable of finding intrusions other than scans, as either
they are available only in commercial products [38], or
require sanitized training data [27].

4.1 MINDS Anomaly Detection Results

Anomalies/attacks picked by MINDS include

scanning activities, worms, and non-standard behavior
such as policy violations and insider attacks. Many of
these attacks detected by MINDS, have already been on
the CERT/CC list of recent advisories and incident notes.
• On January 26, 2003, 48 hours after the “SQL
Slammer/Sapphire” worm started, network connections
related to the worm were only about 2% of the total
traffic. Despite this, they were still ranked at the top by
the anomaly detection algorithm (see Figure 3). The
network connections that are part of the “slammer
worm” are highlighted in light gray in Figure 3. It can be
observed that the highest contributions to anomaly score
for these connections were due to the features 9 and 11
(count_dest and count_serv_src from Table 1). This was
due to the fact that the infected machines outside our
network were still trying to communicate with many
machines inside our network. Similarly, it can be
observed from Figure 3 that during this time interval
there is another scanning activity (ICMP ping scan,
highlighted in dark gray) that was detected again mostly
due to the features 9 and 11. The two non-shaded flows
are replies from Half-Life game servers (running on port
27016/udp). They were flagged anomalous because
those machines were talking to only port 27016/udp. For
web connections, it is common to talk only on port 80,
and it is well represented in the normal sample.
However, since Half-Life connections did not match any
normal samples with high counts on feature 15, they
became anomalous.

score srcIP sPort dstIP dPort protocoflags packets bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
37674.69 63.150.X.253 1161 128.101.X.29 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.59 0 0 0 0 0
26676.62 63.150.X.253 1161 160.94.X.134 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.59 0 0 0 0 0
24323.55 63.150.X.253 1161 128.101.X.185 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
21169.49 63.150.X.253 1161 160.94.X.71 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
19525.31 63.150.X.253 1161 160.94.X.19 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
19235.39 63.150.X.253 1161 160.94.X.80 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
17679.1 63.150.X.253 1161 160.94.X.220 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
8183.58 63.150.X.253 1161 128.101.X.108 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.58 0 0 0 0 0
7142.98 63.150.X.253 1161 128.101.X.223 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
5139.01 63.150.X.253 1161 128.101.X.142 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
4048.49 142.150.X.101 0 128.101.X.127 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
4008.35 200.250.X.20 27016 128.101.X.116 4629 17 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3657.23 202.175.X.237 27016 128.101.X.116 4148 17 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3450.9 63.150.X.253 1161 128.101.X.62 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
3327.98 63.150.X.253 1161 160.94.X.223 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2796.13 63.150.X.253 1161 128.101.X.241 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2693.88 142.150.X.101 0 128.101.X.168 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
2683.05 63.150.X.253 1161 160.94.X.43 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2444.16 142.150.X.236 0 128.101.X.240 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
2385.42 142.150.X.101 0 128.101.X.45 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
2114.41 63.150.X.253 1161 160.94.X.183 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2057.15 142.150.X.101 0 128.101.X.161 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1919.54 142.150.X.101 0 128.101.X.99 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1634.38 142.150.X.101 0 128.101.X.219 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1596.26 63.150.X.253 1161 128.101.X.160 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
1513.96 142.150.X.107 0 128.101.X.2 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1389.09 63.150.X.253 1161 128.101.X.30 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
1315.88 63.150.X.253 1161 128.101.X.40 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
1279.75 142.150.X.103 0 128.101.X.202 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1237.97 63.150.X.253 1161 160.94.X.32 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1180.82 63.150.X.253 1161 128.101.X.61 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1107.78 63.150.X.253 1161 160.94.X.154 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0

Figure 3 Most anomalous connections found by MINDS anomaly detection algorithm in a 10-minute
window 48 hours after the “slammer worm” started.

fritz
33

• On October 10th, our anomaly detection module
detected two activities of the slapper worm that were not
identified by SNORT since they were variations of an
existing worm code. Once a machine is infected with the
worm, it communicates with other machines that are also
infected and attempts to infect other machines. The most
common version of the worm uses port 2002 for
communication, but some variations use other ports. Our
anomaly detector flagged these connections as
anomalous for two reasons. First, the source or
destination ports used in the connection may not have
been rare individually but the source-destination port
pairs were very rare (the anomaly detector does not keep
track of the frequency of pairs of attributes; however,
while building the neighborhoods of such connections,
most of their neighbors will not have the same source-
destination port pairs, which will contribute to the
distance). Second, the communication pattern of the
worm looks like a slow scan causing the value of the
variable count_serv_src_conn (number of connections
from the source IP to the same destination port in the last
N connections) to become large. SNORT has a rule for
detecting worm that uses port 2002 (and a few other
ports), but not for all possible variations. A single
general SNORT rule can be written to detect the
variations of the worm at the expense of a higher false
positive rate.

1 source IP 5 protocol
2 destination IP 6 duration
3 source Port 7 bytes/packet
4 destination Port 8 # packets
9 cnt_dest 13 cnt_src
10 cnt_dest_conn 14 cnt_src_conn
11 cnt_serv_src 15 cnt_serv_dest
12 cnt_serv_src_conn 16 cnt_serv_dest_conn

Table 3 List of features used in anomaly detection

• On August 9th, 2002, CERT/CC issued an alert for
“widespread scanning and possible denial of service
activity targeted at the Microsoft-DS service on port
445/TCP” as a novel Denial of Service (DoS) attack. In
addition, CERT/CC also expressed “interest in receiving
reports of this activity from sites with detailed logs and
evidence of an attack.” This type of attack was the top
ranked outlier on August 13th, 2002, by our anomaly
detection module in its regular analysis of University of
Minnesota traffic. The port scan module of SNORT
could not detect this attack, since the port scanning was
slow.
• On August 13th, 2002, our anomaly detection module
detected “scanning for an Oracle server” by ranking
connections associated with this attack as the second
highest ranked block set of connections (the top ranked
block of connections belonged to the denial of service
activity targeted at the Microsoft-DS service on port

445/TCP). This type of attack is difficult to detect using
other techniques, since the Oracle scan was embedded
within much larger Web scan, and the alerts generated by
Web scan could potentially overwhelm the human
analysts. On June 13th, CERT/CC had issued an alert for
the attack.
• On August 8th and 10th, 2002, our anomaly detection
techniques detected a machine running a Microsoft PPTP
VPN server, and another one running a FTP server,
which are policy violations, on non-standard ports. Both
policy violations were the top ranked outliers. Our
anomaly detector module flagged these servers as
anomalous since they are not allowed, and therefore very
rare. Since SNORT is not designed to look for rogue and
unauthorized servers, it was not able to detect these
activities. In addition, for the PPTP VPN server, the
collected GRE traffic is part of the normal traffic, and
not analyzed by tools such as SNORT.
• On January 27, 2003, our techniques detected odd,
not routable RFC1918 traffic coming from the Internet.
RFC1918 (Request for Comments) serves as Address
Allocation for Private Internets, while RFC1918 blocks
are segments of IP address space reserved by IANA
(Internet Assigned Numbers Authority) for use within an
organization. DNS records for RFC1918 addresses are
legitimate only within the network on which a host with
RFC1918 address resides. However, RFC1918 addresses
are not globally routed and they should not appear on the
public Internet.
• On February 6, 2003, our technique detected that the
IP address 128.101.6.0, which does not correspond to a
real computer, but to a network itself, has been targeted
with IP Protocol 0 traffic from Korea (61.84.X.97). This
type of network traffic is “exceedingly” bad as IP
Protocol 0 is not legitimate.
• On February 6, 2003, our techniques detected a
computer on the network apparently communicating with
a computer in California over a VPN. This scenario in
the worst case may correspond to a covert channel by
which someone might be gaining access to the
University network in an unauthorized way, and in the
best case to someone at the University creating
unauthorized tunnels between the University and some
other network, which is not allowed. However, both
types of behavior are extremely useful for security
analysts.
• On February 7, 2003, a computer in the CS
department talking on IPv6 was detected using our
techniques. This type of communication is extremely
rare and represents a possible covert tunnel to the outside
world. The follow-up analysis diagnosed that a suspect
who was doing this is on system staff and is in fact using
this as a covert tunnel to his home computers.
• On February 6, 2003, our anomaly detection
techniques detected unsolicited ICMP ECHOREPLY

fritz
34

messages to a computer previously infected with
Stacheldract worm (a DDos agent). Although infected
machine has been removed from the network, other
infected machines outside our network were still trying
to talk to infected machine from our network.

4.2 Comparison of MINDS and SPADE

SPADE: A brief overview. SPADE is a SNORT

plug-in that automatically detects stealthy port scans
[36]. Unlike traditional scan detectors that look for X
events in Y seconds, SPADE takes a radically different
approach and looks at the amount of information gained
by probing. It has four different methods of calculating
the likelihood of packets. However, the most successful
method measures the direct joint probability P(dest IP,
dest Port). SPADE examines TCP-SYN packets and
maintains the count of packets observed on (destIP,
destPort) tuples. When a new packet is observed,
SPADE checks the probability of observing that packet
on the (dest IP, dest Port) tuple. The lower the
probability, the higher the anomaly score. Note that
SPADE raises alarms on individual SYN packets
regardless of how many other destination IP/ports have
been scanned by the same source. In the case of an
IPsweep, the scanner will eventually touch a machine
that does not have the service being scanned for and
therefore will raise a SPADE alarm. In the case of a
portscan, an alarm will be raised when the scanner
touches a port for which the service is not available on
the target machine. In addition, SPADE will raise false
alarms on legitimate traffic for which (destination IP,
destination port) combinations are infrequent. This will
be even more prevalent on outbound connections. The
reason is that the number of IPs outside is much bigger
than the number of IPs inside the network. As reported
in [36], on DARPA99 data, as the number of variables in
the direct joint probability is increased to include the
source IP and source Port, the accuracy of SPADE
decreases. This can be attributed to the fact that when
extra attributes are used, the model essentially becomes
sparser and therefore gives more false alarms.

MINDS and SPADE both assign a score to each
connection that indicates its degree of being an outlier.
They are both unsupervised anomaly detection schemes
since neither one requires a labeled training set. The key
difference is in the method for computing the anomaly
score. In SPADE, the anomaly score is inversely related
to the probability of observing the connection based
upon the features used. If too many features are used (or
if any feature has too many values), then the probability
estimates are not reliable. The reason is that many of the
legitimate combinations of features may be previously
unseen or infrequent. In contrast, MINDS does not
suffer from increased dimensionality as much as SPADE

does, since MINDS constructs neighborhoods around
data points which is a better estimate of actual
probabilities when there is not enough data to adequately
develop the model. This allows MINDS to use a large
number of features as long as they are not spurious.
Even if MINDS used only two features (destination IP
and destination port), we argue that it can provide higher
quality outlier scores. To illustrate this consider the
following probability distribution (Table 4), where blank
represents no occurrences. If we observe a packet P1 on
IP2/Port3 and another packet P2 on IP4/Port1, SPADE
will assign equal anomaly scores to both of the packets.
However, one could argue that P2 should be more
anomalous than P1 since in the case of P2 neither the
port (Port1) nor the IP (IP4) by themselves are used
frequently, whereas for P1, both the port (Port3) and the
IP (IP2) are frequently used.

If we use MINDS anomaly detection module with
only 2 attributes, namely the destination IP and
destination port, packet P2 will be assigned a higher
anomaly score than P1. The reason is that P1 will be
closer to its neighbors than P2 will be to its neighbors.
Both P1 and P2 will have neighbors that are in dense
regions. If we compare the ratios of densities of P1 and
P2 to the density of their respective neighbors, P2 will
have a lower ratio, hence a higher anomaly score.

Frequency IP1 IP2 IP3 IP4
Port1 Low P2
Port2 High
Port3 High P1 High
Port4 Low High Low

Table 4. IP/Port frequency distribution

We ran the latest version of SPADE (v021031.1) on

live network traffic at the University of Minnesota for a
10-minute period using a threshold of 8. It generated
296,921 alarms out of approximately one million
TCP_SYN packets received during this 10-minute
window. Nearly 26% (76,956) of the alarms were on
inbound packets. Vast majority of outbound packets
were false alarms. This is not surprising since the space
of (IP/Port) combinations outside our network is very
large and the data is very sparse. This is a serious
limitation of SPADE, since outbound alarms tend to be
very important, as they often indicate infected machines
inside the network. In the rest of the discussion, we
focus on alarms on inbound packets. 25% (19020) of
inbound alarms were to web alarms, 6% (4608) to
common services other than web (https, mail, ftp, ssl
enabled imap, web proxies), 28.5% (21895) to peer-to-
peer applications (kazaa, gnutella, edonkey) and the
remaining 41% (31433) were hard to interpret. If we
ignore repetitions of the same alarm (same source IP,
destination IP, destination Port), we are left with 28973
alarms. There were a total of 21669 unique sources of

fritz
35

alarms, 20825 of them generated only 1 or 2 alarms.
(More detailed information about the distributions is
given in Table 5.) Although some of these alerts may
indicate very slow stealthy scans, majority of these alerts
are likely to be for legitimate connections on rarely used
destination IP, destination port combination.
Specifically, we can say that the alarms on p2p
applications are false alarms (not scans) since p2p
applications get the list of active servers from their
super-nodes instead of scanning for machines running
these applications. In any case, one cannot expect from a
system administrator to investigate alarms for so many
different sources in a short 10-minute window.

If we raise our threshold and look at only top 10,000
alerts, the distribution is very similar. If we look at the
breakdown of alarms by type, in the top 10,000
(threshold = 12.6108), web alerts are 59% (5927),
common services are 7.5% (754), p2p applications are
9% (923) and the remaining, hard-to-interpret ones are
24% (2396). There are 3306 unique sources that
generate 10,000 alarms, 3159 of which raised either 1 or
2 alarms. If we look at top 1000, 497 out of 547 unique
sources raised less than 3 alarms. If we look at top 100,
73 out of 78 unique sources raised less than 3 alarms.

If we do a similar analysis for alarms on web, P2P
(peer to peer), common services and the remaining
alarms separately, we still get a very similar picture; the
number of unique sources generating very few alarms is
very large. We argue that most of SPADE alarms are
effectively false alarms as the number of unique sources
generating the alarms is at a high percentage regardless
of the threshold.

SPADE does find some stealthy scans that will be
hard to find using simple scan detection schemes that
look for source IP’s that connect to more than X
destination Ports / IP’s in a specified time or connection
window. For example, among the top 10,000 alarms 66
unique sources generated at least 10 or more alarms.
Each one of these sources were either scanning a specific
IP for 10 or more ports, or scanning 10 or more IP’s for a
specific port. But in the process of finding these hard to
detect stealthy scans, SPADE generated false alarms for
far too many legitimate connections.

Number of alarms 1 2 3 4
Number of sources 19282 1543 394 151

Number of alarms 5-6 7-20 21-
50 51-150 151+

Number of sources 139 106 45 5 4
Table 5. Distribution of number of alarms from unique
sources (inbound alarms)

For the same 10-minute period, we ran MINDS and

asked our security expert to analyze top few hundred
anomalous connections ranked by the anomaly detector.

Most of these were scans, which were interleaved with
few non-scan connections. Most of these scans targeted
dozens of IPs inside the University of Minnesota
networks. Among non-scan anomalous connections, our
security expert identified a local machine running a web
proxy open to everyone, and lots of people were
browsing the web through the proxy to anonymize their
connections. Proxy settings were fixed after the issue
was identified. For privacy reasons, we cannot report the
individual connections but only provide a high level
summary. Note that stealthy scans that target only a few
machines during the 10-minute window are not likely to
receive high anomaly score by MINDS.

4.3 MINDS anomaly detection module versus

SNORT

Here we compare general capabilities of SNORT and
MINDS in detecting the following categories of attacks
and irregular behavior:

• content-based attacks
• scanning activities
• policy violations
Content based attacks. These attacks are out of

scope for our anomaly detection module since it does not
consider the content of the packets, and therefore
SNORT is superior in identifying those attacks.
However, SNORT is able to detect only those content-
based attacks that have known signatures/rules. Despite
the fact that SNORT is more successful in detecting the
content-based attacks, it is important to note that once a
computer has been attacked successfully, its behavior
could become anomalous and therefore detected by our
anomaly detection module, as seen in previous examples.

Scanning activities. When detecting various scanning
activities SNORT and MINDS anomaly detection
module have similar performance for certain types of
scans, but they have very different detection capabilities
for other types. There are two categories of scanning
activities, where SNORT and our anomaly detection
module might have different detection performance:

• Fast (regular) scans
• Slow scans
When detecting regular scans, SNORT portscan

module keeps track of the number of destination IP
addresses accessed by each source IP address in a given
time window (default value is 3 seconds). Let's denote
this variable count_dest, already defined in Table 1.
Whenever the value of count_dest is above a specified
threshold (SNORT default value is 4), SNORT raises an
alarm, thus indicating a scan by the source IP address.
Our anomaly detection module is also able to assign high
anomaly score to such network connections, since for
most normal connections the value of count_dest is low.
In addition, connections from many types of scanning

fritz
36

activities tend to have other features that are unusual
(such as very small payload), which make additional
contributions to the anomaly score.

A scan can be detected by SNORT provided the scan
is fast enough for chosen time window (default value is 3
seconds) and count threshold (default value is 4). If a
scanning activity is not fast enough (outside specified
parameters), it will not be detected by SNORT.
However, SNORT can still detect such activities by
increasing the time window and/or decreasing the
number of events counted within the time-window, but
this will tend to increase false alarm rate. On the other
side, our anomaly detection module is more suitable for
detecting slow scans since it considers both time-window
based and connection-window based features (as
opposed to SNORT that uses only time-window based
features), as well as other features of the connections
such as number of packets, number of bytes per packet,
etc.

Policy violations. MINDS anomaly detection module
is much more successful than SNORT in detecting policy
violations (e.g. rogue and unauthorized services), since it
looks for unusual network behavior. SNORT may detect
these policy violations only if it has a rule for each of
these specific activities. Since the number and variety of
these activities can be very large and unknown, it is not
practical to incorporate them into SNORT for the
following reasons. First, processing of all these rules will
require more processing time thus causing the
degradation in SNORT performance. It is important to
note that it is desirable for SNORT to keep the amount of
analyzed network traffic small by incorporating rules as
specific as possible. On the other hand, very specific
rules limit the generalization capabilities of a typical rule
based system, i.e., minor changes in the characteristics of
an attack might cause the attack to be undetected.

Second, SNORT's static knowledge has to be
manually updated by human analysts each time a new
suspicious behavior is detected. In contrast, MINDS
anomaly detection module is adaptive in nature, and it is
particularly successful in detecting anomalous behavior

originating from a compromised machine (e.g. attacker
breaks into a machine, installs unauthorized software and
uses it to launch attacks on other machines). Such
behavior is often undetected by SNORT's signatures.

5. Conclusions and Future Work

The overall goal for MINDS is to be a general

framework and system for detecting attacks and threats
to computer systems. Data generated from network
traffic monitoring tends to have very high volume,
dimensionality and heterogeneity. Coupled with the low
frequency of occurrence of attacks, this makes standard
data mining algorithms unsuitable for detecting attacks.
In addition, cyber attacks may be launched from several
different locations and targeted to many different
destinations, thus creating a need to analyze network data
from several locations/networks in order to detect these
distributed attacks. According to our initial analysis, the
intrusions detected by MINDS are complementary to
those of SNORT – a signature-based system. This
implies that the two can be combined to increase overall
attack coverage. In addition, MINDS will have a
summarization and visualization tools to aid the analyst
in better understanding anomalous/suspicious behavior
detected by the anomaly detection engine.

The key anomaly detection approach used by MINDS
is based on the analysis of unusual behavior, and is thus
suitable for detecting many types of threats. Figure 4
shows three such types. First type of threats corresponds
to outsider attacks that represent deviations from normal
connection behavior. Second threat type is insider attack,
where an authorized user logs into a system with
malicious intent. However, the malicious behavior
shown by such a user is often at variance with normal
procedures, and our behavior-analysis based approach
can pick it up as anomalous behavior, reporting it as a
possible attack. Since no security mechanism is fool
proof, an undetected successful outsider becomes
equivalent to an insider attack, and the same ideas apply.
Third threat type corresponds to a situation where a

 MINDS Research
• Defining normal behavior
• Feature extraction
• Similarity functions
• Outlier detection
• Result summarization
• Detection of attacks originating

from multiple sites
Worm/virus detection
after infection

Insider attack
• Policy violation

Outsider attack
• Network intrusion

Figure 4 Three types of threats that can be detected by MINDS anomaly detection module

fritz
37

virus/worm has entered an environment – either
undetected by a perimeter protection mechanism such as
virus scan of attachments, or through bringing in of an
infected portable hardware device, e.g. a laptop. The
unusual behavior shown by such a machine can
potentially be detected by our approach of analyzing
anomalous behavior.

A number of applications outside of intrusion
detection have similar characteristics, e.g. detecting
credit card and insurance frauds, early signs of potential
disasters in industrial process control, early detection of
unusual medical conditions – e.g. cardiac arrhythmia,
etc. We plan to explore the use of our techniques to such
problems.

Acknowledgments

This work was partially supported by Army High

Performance Computing Research Center contract
number DAAD19-01-2-0014 and NSF grants IIS-
0308264, ACI-9982274. The content of the work does
not necessarily reflect the position or policy of the
government and no official endorsement should be
inferred. Access to computing facilities was provided by
the AHPCRC and the Minnesota Supercomputing
Institute.

References

1. C. C. Aggarwal, P. Yu, Outlier Detection for High
Dimensional Data, Proceedings of the ACM
SIGMOD Conference, 2001.

2. Anderson, D., Lunt, T. F., Javitz, H., Tamaru, A.,
Valdes, A.: Detecting Unusual Program Behavior
Using the Statistical Component of the Next-
Generation Intrusion Detection Expert System
(NIDES), Technical Report SRI-CSL-95-06,
Computer Science Laboratory, SRI International,
Menlo Park, CA, 1995.

3. D. Barbara, N. Wu, S. Jajodia, Detecting Novel
Network Intrusions Using Bayes Estimators, First
SIAM Conference on Data Mining, Chicago, IL,
2001.

4. E. Bloedorn, et al., Data Mining for Network
Intrusion Detection: How to Get Started, MITRE
Technical Report, August 2001.

5. M. M. Breunig, H.P. Kriegel, R. T. Ng, J. Sander,
LOF: Identifying DensityBased Local Outliers,
Proceedings of the ACM SIGMOD Conference,
2000.

6. Cabrera, J. B. D., Ravichandran, B., Mehra, R. K.:
Statistical Traffic Modeling For Network Intrusion

Detection, Proceedings of the 8th International
Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, San
Francisco, CA, 2000.

7. D.E. Denning, An Intrusion Detection Model, IEEE
Transactions on Software Engineering, SE-13:222-
232, 1987.

8. E. Eskin, A. Arnold, M. Prerau, L. Portnoy, S.
Stolfo, A Geometric Framework for Unsupervised
Anomaly Detection: Detecting Intrusions in
Unlabeled Data, Data Mining for Security
Applications, Kluwer 2002.

9. W. Fan, S. J. Stolfo, J. Zhang, P. K. Chan, AdaCost:
Misclassification Cost-sensitive Boosting,
Proceedings of the Sixteenth International
Conference on Machine Learning, 97-105, Bled,
Slovenia, 1999.

10. A. Ghosh, A. Schwartzbard, A study in Using
Neural Networks for Anomaly and Misuse
Detection, Proceedings of the Eighth USENIX
Security Symposium, 141--151, Washington, DC,
August 1999.

11. Incident Storm Center, www.incidents.org.

12. H.S. Javitz, and A. Valdes, The NIDES Statistical
Component: Description and Justification, Technical
Report, Computer Science Laboratory, SRI
International, 1993.

13. K.S.Jones: A Statistical Interpretation Of Term
Specificity And Its Application In Retrieval, Journal
of Documentation, 28 (1) 11-21, 1972.

14. M. Joshi, V. Kumar, R. Agarwal, Evaluating
Boosting Algorithms to Classify Rare Classes:
Comparison and Improvements, First IEEE
International Conference on Data Mining, San Jose,
CA, 2001.

15. M. Joshi, R. Agarwal, V. Kumar, Predicting Rare
Classes: Can Boosting Make Any Weak Learner
Strong?, Proceedings of Eight ACM Conference
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Edmonton,
Canada, 2002.

16. M. Joshi, R. Agarwal, V. Kumar, PNrule, Mining
Needles in a Haystack: Classifying Rare Classes via
Two-Phase Rule Induction, Proceedings of ACM
SIGMOD Conference on Management of Data, May
2001.

17. M. Joshi, V. Kumar, CREDOS: Classification using
Ripple Down Structure (A Case for Rare Classes), in
review.

fritz
38

18. E. Knorr, R. Ng, Algorithms for Mining Distance-
based Outliers in Large Data Sets, Proceedings of
the VLDB Conference, 1998.

19. A. Lazarevic, N. Chawla, L. Hall, K. Bowyer,
SMOTEBoost: Improving the Prediction of Minority
Class in Boosting, AHPCRC Technical Report,
2002.

20. A. Lazarevic, L. Ertoz, A. Ozgur, V. Kumar, J.
Srivastava: A Comparative Study of Anomaly
Detection Schemes in Network Intrusion Detection,
Proceedings of Third SIAM International
Conference on Data Mining, May, San Francisco,
2003.

21. W. Lee, S. J. Stolfo, Data Mining Approaches for
Intrusion Detection, Proceedings of the 1998
USENIX Security Symposium, 1998.

22. W. Lee, D. Xiang: Information-Theoretic Measures
for Anomaly Detection, IEEE Symposium on
Security and Privacy, 2001.

23. R. P. Lippmann, R. K. Cunningham, D. J. Fried, I.
Graf, K. R. Kendall, S. W. Webster, M. Zissman,
Re-sults of the 1999 DARPA Off-Line Intrusion
Detection Evaluation, Proceedings of the Second
International Workshop on Recent Advances in
Intrusion Detection (RAID99), West Lafayette, IN,
1999.

24. R. Lippmann, R. Cunningham, Improving intrusion
detection performance using keyword selection and
neural networks, Computer Networks, 34(4):597--
603, 2000.

25. R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines,
K. P. Kendall, D. McClung, D. Weber, S. E.
Webster, D. Wyschogrod, R. K. Cunningham, and
M. A. Zissman, Evaluating Intrusion Detection
Systems: The 1998 DARPA Off-line Intrusion
Detection Evaluation, Proceedings DARPA
Information Survivability Conference and
Exposition (DISCEX) 2000, Vol 2, pp. 12-26, IEEE
Computer Society Press, Los Alamitos, CA, 2000.

26. J. Luo, Integrating Fuzzy Logic With Data Mining
Methods for Intrusion Detection, Master's thesis,
Department of Computer Science, Mississippi State
University, 1999.

27. M. Mahoney, P. Chan: Learning Nonstationary
Models of Normal Network Traffic for Detecting
Novel Attacks, Proceedings of 8th International
Conference on Knowledge Discovery and Data
Mining, 376-385, 2002.

28. S. Manganaris, M. Christensen, D. Serkle, and K.
Hermix, A Data Mining Analysis of RTID Alarms,

Proceedings of the 2nd International Workshop on
Recent Advances in Intrusion Detection (RAID 99),
West Lafayette, IN, September 1999.

29. J. McHugh, The 1998 Lincoln Laboratory IDS
Evaluation (A Critique), Proceedings of the Recent
Advances in Intrusion Detection, 145-161,
Toulouse, France, 2000.

30. Net flow tools, www.splintered.net/sw/flow-tools.

31. S. Ramaswamy, R. Rastogi, K. Shim, Efficient
Algorithms for Mining Outliers from Large Data
Sets, Proceedings of the ACM SIGMOD
Conference, 2000.

32. J. Ryan, M-J. Lin, R. Miikkulainen, Intrusion
Detection with Neural Networks, Proceedings of
AAAI-97 Workshop on AI Approaches to Fraud
Detection and Risk Management, 72-77, AAAI
Press, 1997.

33. C. Sinclair, L. Pierce, S. Matzner, An Application of
Machine Learning to Network Intrusion Detection,
Proceedings of the 15th Annual Computer Security
Applications Conference, 371-377, Phoenix, AZ,
December 1999.

34. R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A.
Tiwari, H. Yang, S. Zhou: Specification Based
Anomaly Detection: A New Approach for Detecting
Network Intrusions, ACM Conference on Computer
and Communications Security, 2002.

35. SNORT Intrusion Detection System. www.snort.org.

36. S. Staniford, J. Hoagland, J. McAlerney, Practical
Automated Detection of Stealthy Portscans, Journal
of Computer Security, vol. 10, No. 1-2, 105-136,
2002.

37. K. Yamanishi, J. Takeuchi, G. Williams, P. Milne,
On-line Unsupervised Oultlier Detection Using
Finite Mixtures with Discounting Learning
Algorithms, Proceedings of the Sixth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, 320-324, Boston, MA,
2000.

38. S. Robertson, E. V. Siegel, M. Miller, S. J. Stolfo,
Surveillance Detection in High Bandwidth
Environments, DARPA DISCEX, 2003.

39. KDD cup 99,
kdd.ics.uci.edu/databases/kddcup99/task.html

fritz
39

Passive Operating System Identification From TCP/IP Packet Headers*

Richard Lippmann, David Fried, Keith Piwowarski, William Streilein
MIT Lincoln Laboratory

244 Wood Street, Lexington, MA 02173, USA
lippmann@ll.mit.edu

* This work was sponsored by the Federal Aviation Administration under Air Force Contract F19628-00-C-0002. Opinions,
interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United
States Government.

Abstract

Accurate operating system (OS) identification by
passive network traffic analysis can continuously update
less-frequent active network scans and help interpret
alerts from intrusion detection systems. The most recent
open-source passive OS identification tool (ettercap)
rejects 70% of all packets and has a high 75-class error
rate of 30% for non-rejected packets on unseen test data.
New classifiers were developed using machine-learning
approaches including cross-validation testing, grouping
OS names into fewer classes, and evaluating alternate
classifier types. Nearest neighbor and binary tree
classifiers provide a low 9-class OS identification error
rate of roughly 10% on unseen data without rejecting
packets. This error rate drops to nearly zero when 10% of
the packets are rejected.

1. Introduction

One of the most difficult tasks of security-conscious
system administrators is maintaining accurate information
on the numbers, locations, and types of hosts being
protected. This information is useful for many purposes
including configuring network-based intrusion detection
systems and maintaining a site security policy.

Configuring network-based intrusion detection systems
using operating system (OS) information makes it possible
to prioritize the large numbers of extraneous alerts caused
by failed attacks and normal background traffic. A re-
analysis of the data presented in [10] demonstrates that
simply knowing whether the OS of each web server on a
class B network is a version of Microsoft Windows,
Solaris, or any type of UNIX makes it possible to assign a
low-priority to from 33% to 87% of remote-to-local alerts
produced by the snort [12] intrusion detection system.
Filtering is performed by dismissing an alert when the
vulnerability associated with the alert cannot occur for the
OS of that host. A prior analysis [5] also demonstrated that
knowledge of the OS of monitored hosts on a few small

networks could assign roughly 30% of all remote-to-local
alerts to a lower priority. This approach is best used to
perform a preliminary analysis of recently-connected hosts
or of hosts that can not be actively scanned. Much greater
alert filtering eliminating as many as 95% of all remote-to-
local alerts can be achieved through knowledge of the
exact OS version, server software types and versions, and
the patch status of hosts [10].

Detecting recently installed hosts and identifying
operating systems is also useful for maintaining a site
security policy. A site policy may specify the types of
hosts that are allowed and it may specifically disallow old
OS versions or those that are not supported by the network
infrastructure. Detecting newly installed hosts as soon as
possible using passive approaches is particularly important
because these hosts are often most likely to be running old
or insecure operating systems or to be configured
incorrectly and be most vulnerable to remote attacks. They
also may represent a new host attached by inside attackers
to capture traffic or passwords. Knowing the OS may help
a system administrator gauge the threat posed by a recently
installed host. For example, it may be more urgent to
investigate a new host running Linux on a primarily
Window’s network than to investigate a new Window’s
OS on the same network.

Operating systems can be determined using two
complimentary approaches. Active scanning provides
detailed information episodically by actively sending
queries to hosts while passive analysis of captured network
traffic provides instantaneous real-time, but less detailed,
information. Active scanning includes the use of
automated and often expensive network management
systems (e.g. see [1]), semi-automated use of more limited
open-source tools such as nmap [7], and manual analysis
via direct logins to each host. Active scanning provides the
most information about each host, but its use is often
limited. Because scanning consumes bandwidth and host
resources and may reveal security weaknesses it is often
performed infrequently. Scanning durations can also be
long on enterprise networks, security analysts responsible

fritz
40

for maintaining network intrusion detection systems are
often not permitted to scan parts of enterprise networks,
SNMP host clients required to support network
management systems may not be allowed because they
open up potential vulnerabilities in hosts that can be
exploited by attackers, and scanning using such tools as
nmap [7] is often not allowed because it can cause some
devices to halt. Passive traffic analysis has none of these
limitations because no extra network traffic is generated. It
can either provide a continuous update to the last active
scan or be used when active scanning is not allowed.

A major goal of the work described in this paper is to
determine how accurate the OSes of hosts can be
determined using passive OS analysis of TCP/IP packet
header information. Other goals are to evaluate existing
open-source tools that perform OS identification and to
develop and evaluate an improved classifier using data
mining/pattern-classification techniques.

2. Passive OS “Fingerprinting”

The first paper we are aware of that described
approaches to passive OS identification and provided a
small database of examples was published in May 2000
[15]. This paper, and open-source tools that have been

developed since then rely heavily on the concept of
“passive OS fingerprinting”. Passive fingerprinting is an
extension of “active OS fingerprinting” described in [6]
and included in the nmap scanner [7].

Active fingerprinting relies on the observation that the
TCP/IP protocol specification does not clearly describe
how to handle unusual situations and has left certain
header field values and behaviors unspecified.
Programmers implementing TCP/IP have made different
decisions that have lead to a variety of behaviors and
default field values in different OSes. In addition, some
programmers have not followed the specifications
correctly and some OSes have not incorporated more
recent optional advanced features. This has led to
“idiosyncrasies” that can be revealed by actively probing a
host with both malformed and normal packets and
observing the responses. Features extracted from responses
can be used for OS classification. These features include
default values in the TCP/IP header, flags that indicate
whether advanced features are supported, flags that
indicate different response behaviors including “no
response” and data content in the reply message. All
features for an unknown OS form a feature vector that is
compared to a database of exemplars containing stored

Table 1. TCP/IP features used in open-source tools.

Feature Name Range Description
TCP Window Size
(WS)

0-65,535 Data bytes a sender can transmit without receiving an acknowledgement equal
to buffer size available on the receiver.

IP Time to Live
(TTL)

0-255 Number of routing hops allowed before the packet is dropped, decremented
by one by each router (prevents accidental routing loops).

IP Don’t Fragment
(DF)

0-1 Instructs routers not to fragment this IP packet, but to drop it if it is too large
for the next network segment.

TCP Max Segment
Size Option* (MSS)

0-65,535 Maximum size of data component of packet that a receiver can accept.

TCP Window Scaling
Option Flag* (WSO)

 0-1 Flag that indicates the TCP scaling option is being used to obtain bigger WS
windows.

TCP Selective
Acknowledgments
Options Flag* (SOK)

0-1 Flag that indicates when the TCP selective acknowledgements option was set.

TCP NOP Option
Flag* (NOP)

0-1 Flag that indicates one or more NOP’s were added to align other options on a
word boundary.

Packet Size (PS) 0-255 Length of packet in bytes.
TCP Timestamp
Option Flag* (TS)

0-1 Flag that indicates one of the TCP timestamp options was included.

SYN vs SYN-ACK
Packet Flag (SYN)

0-1 Flag set to one for SYN-ACK packets and zero for SYN packets.

fritz
41

feature vectors from known OSes. If a stored exemplar
exactly matches the responses of an unknown host, then
that exemplar represents the “fingerprint” of the unknown
host and the name of the host that originated the exemplar
is reported. Nmap currently performs nine different types
of tests on a host and extracts a core set of 17 features
from the responses to queries in these tests. As many as 55
features are available when an OS responds to all queries.
In addition, Nmap has a database containing 989
exemplars, each with feature values and an OS name.
Although the performance of active OS fingerprinting has
never been carefully evaluated, this approach is in
widespread use and many system administrators believe
that the results are accurate.

Passive OS fingerprinting doesn’t send probes to
the unknown host, but instead examines values of fields in
the TCP/IP packet header. In contrast to active
fingerprinting, passive OS fingerprinting relies only on
default packet-header field values and not on other
idiosyncrasies elicited by unusual packets. Packet-header
field values represent less than a third of the core features
used by nmap for active fingerprinting. Passive
fingerprinting may thus not be as accurate as active
fingerprinting and the concept of “fingerprinting” as used
in nmap may not be appropriate. In particular, requiring an
exact match to stored exemplars, creating a new class for
every new OS, adding any new feature that might seem
useful, and storing only exemplars that differ from those
currently in a database, may not provide best performance.

3. Passive Open-Source Tools

Three open-source tools have been developed for
passive OS classification. All use values of fields in
TCP/IP packet headers to identify OSes. Using these
values is attractive because header information can be
obtained even when popular encrypted protocols such as
SSH and HTTPS are used, header fields are well defined,
and values are easily extracted. The first three features
shown in Table 1 were recommended in [15] because they
appeared to vary more with the source host than with
characteristics of the transmission channel and they occur
in every TCP/IP packet. All three features depend on the
host configuration. The Time to Live (TTL) is normally
equal to a power of two for most hosts. Because TTL

values are decremented by one by every router in the path
to the packet capture location, these values cannot be
compared directly to those in stored exemplars. Instead,
TTL values in captured packets are rounded up to the
nearest power of two before the comparison.

A proof-of-concept tool named siphon [13] was
developed that implemented suggestions presented in [15].
It extracted the first three features in Table 1 from TCP
SYN or ACK packets sent from the source of TCP
connections and compared these to stored values recorded
previously for known operating systems. The database
provided with this tool contains only 47 exemplars holding
values of these three features along with corresponding OS
names. Classification involves extracting features from
new packets and finding the first exact match to a stored
exemplar. If there is no match, then no OS is reported and
the packet is “rejected”.

Following the release of siphon, two other open-source
tools were released. Characteristics of these tools and of
siphon are shown in Table 2. To the best of our
knowledge, none of these tools has been carefully
evaluated. Table 2 shows the number of packet-header
features extracted for each tool, the number of exemplars
provided, the number of OS classes that contain three or
more exemplars, and the types of packets that are
analyzed. The numbers in this table exclude exemplars
with ambiguous OS names or with names that are for
scanning tools such as nmap [7] and not for operating
systems.

Before any tool evaluations could be performed, it was
necessary to map OS names to classes. This task was
complicated because OS names were not entered
uniformly. Names were normalized initially using the
following steps: (1) Map all names to lower case and
eliminate spaces and dashes; (2) Whenever a Linux kernel
version is provided, use linux and the version as the class;
(3) Whenever a Cisco IOS version is provided, use cisco
and the version as the class; (4) Identify exemplars that list
multiple versions of OSes and keep only the first entry in
any list; (5) Keep only the first two decimal separated
numbers found (e.g. 2.12 instead of 2.12.34); and (6)
Unify different names that refer to the same OS (e.g.
“sunos5.8/solaris8”, “redhatlinux/redhat”, “windows2k/
windows2000). Every normalized name that occurs three
or more times forms a separate class. Such classes

Table 2. Characteristics of three open-source passive OS identification tools.

Tool Features Exemplars Classes With Three
or More Exemplars

Packets

siphon [13] 3 47 6 SYN, ACK
p0f [14] 8 150 14 SYN

ettercap [11] 10 1093 75 SYN, SYN-ACK

fritz
42

represent the more popular and frequently occurring OSes
and make it possible to use cross-validation testing to
estimate classification accuracy. Three exemplars were
required to form a class because some ettercap exemplars
appear to have been duplicated by setting the WSO feature
to “missing” in an attempt to improve performance. When
only two exemplars were available for a unique OS name,
this practice would invalidate cross-validation testing
results because the exemplars were not sampled
independently. Exemplars for operating systems that
occurred fewer than three times and that were clearly not
members of the already labeled classes were placed in a
class named “other”. These are primarily network devices
and rare OSes.

The last column in Table 2 shows the types of packets
that are analyzed by each tool. Siphon analyzes the
initiating SYN packet or following ACK packets from the
originating source of a TCP connection, p0f analyzes only
initiating SYN packets, and ettercap analyzes both the
initiating SYN packet from the connection source and the
initial SYN-ACK response from the destination. These
choices affect the utility of these tools. Siphon and p0f can
only analyze connections from the originating source of
TCP connections. These include web, mail, ftp and other
clients. Ettercap, however, can analyze both packets from
client programs and responses from servers.

The three tools in Table 2 use different features. Siphon
uses the first three features in Table 1, p0f uses the first
eight features, and ettercap uses all features. The
additional features used by p0f and ettercap are primarily
related to TCP options set only on the initiating SYN and
the SYN-ACK response that starts a TCP connection.
Features that occur only in these packets are marked using
asterisks in the first column of Table 1. The use of these
options limits the application of these tools to initiating
SYN and SYN-ACK packets, but also adds new features
that can potentially help discriminate between different
classifiers. Two other features are the packet size and a
flag for ettercap to indicate whether the packet analyzed
was a SYN or SYN-ACK packet. This flag doesn’t
indicate OS type, but would be useful if options were used
differently for the two packet types.

All three open-source tools report an OS with
confidence only if a perfect match is found between
features extracted from packets and features in a stored
exemplar. Although the more recent tools will find inexact
matches, they deprecate the OS reported in this situation
and indicate that these names are not to be trusted. In
addition, although there may be multiple exemplars in a
database that match perfectly, all tools report only the OS
of the first exemplar found in the database with an exact
match. This behavior is used as a benchmark to represent
these tools in the remainder of this paper.

4. Assumptions and Caveats

Results presented in the remainder of this paper are
purposefully limited in scope and need to be interpreted
with some important caveats in mind. The most important
is that, as noted in [15], many features used to classify
OSes are default values in packet headers. Some of these
default values such as TTL can easily be changed to allow
one OS to masquerade as another. Although this is
currently uncommon, it is possible and sometimes
recommended to defeat both active and passive OS
identification. In the remainder of this paper it is assumed
that default header values have not been altered.

Another concern is that network devices such as proxy
firewalls and the types of traffic normalization suggested
in [8] modify some packet header values used for OS
identification. Again, it will be assumed that packets
captured to form exemplars for OS identification have not
been modified (except for the normal decrement in TTL at
each router) by network devices. It will also be assumed
that the OS labels and feature vectors that make up
exemplars in ettercap are correct. These assumptions will
be explored using new unseen test data with carefully
captured packets and direct confirmation of OS names.

Finally, this work focuses solely on features extracted
from single packet headers. Other information that could
potentially be used for passive OS identification is not
considered. Some of this other information is not always
available and can only be used opportunistically. For
example, the network interface card manufacturer
indicated by the ethernet MAC address is only available on
a host’s local network and the content of FTP, Web, and
SNMP server banners is only available from servers and if
another host happens to query the server. In addition,
statistical multi-packet features such as those used in [3]
that require observing from 10 to 100 consecutive TCP
connections per host are not considered because the initial
focus is on single-packet performance.

Table 3. Numbers of SYN and SYN-ACK
exemplars in ettercap and LL-test data.

Database SYN SYN-
ACK

TOTAL

Ettercap 355 738 1093

LL-test 95 104 199

5. Evaluation Approach

All evaluations used the two databases shown in Table
3. Ettercap data contains 355 exemplars extracted from
SYN packets and 738 exemplars extracted from SYN-

fritz
43

ACK packets. P0f and siphon data is not used because few
exemplars are provided and some appear to be already
included in ettercap data. The LL-test database (labeled
LL for Lincoln Laboratory) was created for this study.
SYN packets were received by a mail and SSH server on a
local class-C network over two days. SYN-ACK packets
were received in response to an nmap port scan performed
on the same network. Features were extracted using a
modified version of ettercap. Operating systems in the LL
database were determined by logging directly into each
host on this network because nmap active scanning was
found to be inaccurate for some hosts. All unique
exemplars were kept for each of 83 hosts. Care was taken
to make sure OS names were correct by verifying the
MAC address for hosts that use the DHCP protocol to
obtain IP addresses and by verifying the status of dual-
boot hosts and portable laptops when packets were
captured. Ettercap exemplars were used for training
classifiers and for cross-validation testing. LL-test
exemplars were never used to train or tune classifiers.
They were only used to estimate generalization error on
previously unseen data.

All evaluations used all features listed in Table 1 or
subsets of these features. Features were pre-processed to
make it possible to explore alternate classifiers using
LNKnet pattern classification software [9]. As noted
above, if the TTL was not a power of two, it was rounded
up to the next power of two. This feature, WS, MSS, and
PS all are large numbers that typically vary by powers of
two across different OSes. Instead of using these numbers
directly as inputs to classifiers, the log base 2 of these
numbers was used to make the typical changes observed in
these features similar to those of binary features. All other
features were binary. They indicated the presence or
absence of a TCP option (DF, WSO, SOK, NOP, TS) or
whether the packet analyzed to produce the exemplar was
a SYN or SYN-ACK packet (SYN). The value used for

the window scaling option (WSO) was not used as a
feature because values were present infrequently and they
appear to depend more on the channel than the host. Only
a binary WSO feature was used that specified the presence
of this option. The features WSO, PS, and MSS were
sometimes missing in ettercap exemplars. Missing features
were replaced with the most common value of that feature.

6. Baseline 75-Class Experiments

Initial 10-fold cross-validation experiments were
performed using the 1093 ettercap exemplars grouped into
75 classes including the “other” class as described above.
In this analysis, all ettercap exemplars are divided into 10
splits with roughly equal numbers of exemplars in each
split. Ten evaluations are performed using exemplars from
9 of the 10 splits as training data and exemplars from the
remaining split for testing. Errors from the 10 evaluations
are then combined. This can be thought of as a
retrospective analysis of the performance of ettercap.
Since exemplars are being added to ettercap over time, its
performance changes and cross-validation performance
can be thought of as the performance expected for new
exemplars not seen before.

After combining OS names into classes, it was found
that the top 20 classes with the most exemplars contain
roughly 50% of the exemplars not in the “other” class.
Labels for these classes are bsdi, freebsd2.2, bsdi,
freebsd2.2, linux, linux2.0, linux2.1, linux2.2, macosx,
solaris2.62, solaris7, solaris8, windows, windows2000,
windows2000pro, windows2000server, windows98,
windowsme, windowsnt, windowsnt4, windowsxp, and
windowsxppro. Note that ettercap attempts to separately
identify operating systems that are very similar to each
other such as windowsxp and windowsxppro. In addition,
ettercap allows generic OS names such as linux even when
versions of the same OS are included with specific version
numbers. It was also found that the “other” class contains
224 exemplars from 191 different operating systems.
Examples of OS names placed in the “other” class are:
3com812adslrouter, acornriscos3.6, amigaos3.1, beos5.0,
crayunicos9.0, debian3.0, gauntlet4.0,
hplaserjet2100series, hpux11.00, novellnetware4.0,
scounixware7.0, suse8.0, ultrixv4.5, and vms. These
include rare operating systems with only one or two
exemplars, printers, and network devices.

Performance of the baseline ettercap classification
approach is poor. This classifier rejects patterns that don’t
match exemplars exactly and reports the class of the first
exemplar that matches exactly as the classification result.
The baseline classifier rejected 84% (796/948) of the test
exemplars and the error rate for the accepted patterns was
44% (67/152). Two problems contribute to this poor

Figure 1. Baseline 75-class error rates for exact-

match and k-nearest neighbor classifiers.

0

20

40

60

80

100

EXACT KNN EXACT KNN

%
 E

R
R

O
R

CROSS
VALIDATION

 LL TEST DATA

2σ2σ

fritz
44

performance. First, substitution errors occur because
exemplars in different classes (e.g. windowsxp and
windows2000) have exactly the same feature values. Such
errors can only be eliminated by combining classes. This is
illustrated by the first three exemplars in Table 4. These
three exemplars for the windows2k and the windowsXP
class are identical. This table shows log base 2 of the WS,
TTL, MSS, and PS features. A second reason for poor
performance is the high rejection rate caused by
differences between feature values within an OS class. The
bottom part of Table 4 shows feature values for the first
five exemplars of the windows2k class ordered by the
value of the WS feature. All the five exemplars in this
table differ in at least one feature.

These examples of exemplars suggest that performance
of the baseline classifier could be improved by using a k-
nearest-neighbor (KNN) classifier where small differences
in feature values would not lead to rejected patterns as in
an exact-match classifier. Figure 1 compares the overall
error rate for an exact match and a KNN classifier for 10-
fold cross-validation testing on all ettercap exemplars and
for testing on LL test data. These and following results use
a KNN classifier with k=3 instead of 1 to prevent a
nearest-neighbor classifier from selecting classes randomly
when multiple classes share identical exemplars. Two
binomial standard deviations in Figure 1 are roughly 3
percentage points on the left half and 7 on the right. These
results demonstrate large reductions in the overall error
rate with a KNN classifier for both cross-validation testing
and testing on unseen LL test data. They also show the
predicted overall error rate for the exact-match baseline
classifier using LL test data is roughly 72%. The rejection
rate is 60% (107/177) and the substitution error rate is
30% (21/70). The overall error drops to roughly 50% with
no rejections using a KNN classifier. These error rates are
all too high to create a useful passive OS identification
system.

These results suggest that the “fingerprint” concept
does not apply to the large numbers of OSes that ettercap
attempts to resolve. Even with more than 1000 training
exemplars, more than 60% of new unseen exemplars do

not match any training exemplar. Confusions for cross-
validation testing of the baseline knn classifier, however,
suggest that combining OS names into fewer classes could
reduce the error rate and still provide useful OS
identification.

7. Grouping OS Names into Fewer Classes

Fewer classes were created by combining or eliminating
the original 75 classes using the results of a series of eight
10-fold KNN cross-validation experiments and all ettercap
exemplars. At each stage after the first, from one to five
classes with the highest overall error rate were eliminated
or combined with another class. An OS was combined with
another if it was confused often with the other OS at that
stage (e.g freebsd and macosx; win9x and winnt) or if
domain knowledge suggests that the OSes are related (e.g.
win95, win98, and win98secondedition). If the error rate
was high and could not be reduced by combining classes,
then the OS was eliminated and exemplars from that OS
were not used in the following experiments.

The first stage of the analysis reduced the number of
classes from 75 to 24. This was accomplished by grouping
the following into single classes: (1) All versions of HP
Laser Jet printers; (2) All devices using any Cisco IOS; (3)
All versions of FreeBSD UNIX; (4) All versions of IRIX;
(5) Linux 2.2 and 2.3; (5) All versions of MacOS9; (6)
Solaris 2.3 through 2.5; (7) All versions of Windows2000;
(8) All versions of Windows9; (9) All versions of
WindowsNT; (10) All versions of WindowsXP; (11) All
versions of Novell Netware; and (12) All versions of SCO
UNIX. In addition Redhat, Slackware, Suse, Mandrake,
and yellowdog versions of Linux were mapped into the
underlying common Linux kernel version 2.2 or 2.4
because this kernel determines how the OS responds to
TCP connections. Finally, all classes where no exemplars
were identified correctly were eliminated. These class
names included aix, hpux, macos7, macos8, openbsd,
netbsd, solaris8, and vms.

Figure 2 shows the class names for the seven
experiments where the number of classes was reduced

Table 4. Examples of feature values for ettercap exemplars.

CLASS WS TTL DF MSS WSO SOK NOP PS TS SYN
windowsxp 1 4 . 0 7 . 0 1 15.49 0 1 1 5 .5 8 0 0
windowsxp 1 4 . 0 7 . 0 1 15.49 0 1 1 5 .5 8 0 0
windows2k 1 4 . 0 7 . 0 1 15.49 0 1 1 5 .5 8 0 0
windows2k 9 . 9 6 . 0 1 10.40 1 1 1 5 .5 8 1 0
windows2k 1 0 . 0 5 . 0 0 10.00 0 0 0 5 .4 5 0 1
windows2k 1 0 . 4 7 . 0 1 10.43 0 1 1 5 .5 8 0 1
windows2k 1 2 . 5 7 . 0 1 9 . 0 6 0 1 1 5 .5 8 0 1
windows2k 1 3 . 0 5 . 0 1 15.49 0 0 0 5 .5 8 0 0

fritz
45

from 24 to 9. Bold names indicate when classes were
combined or eliminated and brackets indicate where
classes were combined. As can be seen, it was not possible
to accurately differentiate between all versions of
Windows. The number of classes for the Windows OS
collapses from four on the left to only one on the right. It
was also not possible to differentiate between Solaris 2.6
and Solaris 7 or between MacOSX and FreeBSD. The
MacOSX and FreeBSD confusion might be expected
because MaxOSX is based on various versions of BSD
UNIX including FreeBSD. Confusions between
successive versions of different OSes is also expected
because kernel code that handles TCP interactions is often
not changed between versions.

Figure 3 shows that the cross-validation error rate

measured on ettercap exemplars drops slowly from 68% to
33% wrong as the number of classes is reduced from 75 to
9. It also shows that the generalization error, measured on
LL test data, drops from roughly 49% to 10% wrong. The
error rate on LL test data is roughly 10% and two binomial
standard deviations are roughly 4 percentage points for
from 9 to 12 classes. This low error rate is acceptable for
many applications of passive OS identification.

A number of factors suggest that the low LL test data
error rate might be more representative of the
generalization error of this classifier than the ettercap
exemplar cross-validation results. Table 5 shows the per-
class error rates for the KNN classifier using 10-fold cross
validation testing on ettercap exemplars and using the LL
test data.

This table shows that with nine classes, the overall
cross-validation error rate is 33.4% with cross-validation
testing and 9.8% when testing on the LL data. The high
cross-validation error rate is not caused by any one class.
Per-class error rates on the LL data are much lower than
cross-validation error rates except for the “other” class that
contained only 9 examples (a disk server and Tektronix
printers). For example, the error rate for the win-all class is
25.2% with cross-validation testing and only 9.8% with LL
data. The error rate for the solaris6-7 class is 37.3% with
cross-validation testing and only 4% with LL data. Both of
these differences are well beyond two binomial standard
deviations of these per-class error rates.

8. The Effect of Eliminating Ettercap Outliers

The high cross-validation error rates appear to be
caused by the method used to collect ettercap exemplars.
Documentation on the ettercap web site states “If a

0

10

20

30

40

50

60

70

80

75 24 19 15 13 12 10 9

NUMBER OF CLASSES

%
 E

R
R

O
R

CROSS-
VALIDATION
TEST ON LL DATA

2σ

Figure 3. KNN 10-fold cross-validation and on LL

test data error for from 75 to 9 classes

 24
baynet

bsdi
cisco
hpjet

ibmos
irix

lexmark
linux2.0
linux2.1
linux2.2
linux2.4
macos9
macosx
freebsd

netbsd1.4
netware

solaris2.3
solaris2.6

solaris7
win9x
winnt
win2k
winxp

other

19
baynet

bsdi
cisco

ibmos
irix

lexmark
linux2.0
linux2.1
linux2.2
linux2.4
macos9
macosx
freebsd

netware

solaris2.3
solaris6-7

win9-nt

win2k-xp

other

15

bsdi
cisco

irix

linux2.0
linux2.1
linux2.2
linux2.4
macos9
macosx
freebsd

solaris2.3
solaris6-7

win9-nt

win2k-xp

other

13

bsdi
cisco

irix

linux2.0
linux2.1
linux2.2
linux2.4
macos9
macosx
freebsd

solaris6-7

win-all

other

12

bsdi
cisco

irix

linux2.0
linux2.1
linux2.2
linux2.4

macos9

mac-bsd

solaris6-7

win-all

other

10

bsdi
cisco

linux2.0
linux2.1
linux2.2
linux2.4

mac-bsd

solaris6-7

win-all

other

9

bsdi

linux2.0
linux2.1
linux2.2
linux2.4

mac-bsd

solaris6-7

win-all

other

24
baynet

bsdi
cisco
hpjet

ibmos
irix

lexmark
linux2.0
linux2.1
linux2.2
linux2.4
macos9
macosx
freebsd

netbsd1.4
netware

solaris2.3
solaris2.6

solaris7
win9x
winnt
win2k
winxp

other

19
baynet

bsdi
cisco

ibmos
irix

lexmark
linux2.0
linux2.1
linux2.2
linux2.4
macos9
macosx
freebsd

netware

solaris2.3
solaris6-7

win9-nt

win2k-xp

other

15

bsdi
cisco

irix

linux2.0
linux2.1
linux2.2
linux2.4
macos9
macosx
freebsd

solaris2.3
solaris6-7

win9-nt

win2k-xp

other

13

bsdi
cisco

irix

linux2.0
linux2.1
linux2.2
linux2.4
macos9
macosx
freebsd

solaris6-7

win-all

other

12

bsdi
cisco

irix

linux2.0
linux2.1
linux2.2
linux2.4

macos9

mac-bsd

solaris6-7

win-all

other

10

bsdi
cisco

linux2.0
linux2.1
linux2.2
linux2.4

mac-bsd

solaris6-7

win-all

other

9

bsdi

linux2.0
linux2.1
linux2.2
linux2.4

mac-bsd

solaris6-7

win-all

other

24
baynet

bsdi
cisco
hpjet

ibmos
irix

lexmark
linux2.0
linux2.1
linux2.2
linux2.4
macos9
macosx
freebsd

netbsd1.4
netware

solaris2.3
solaris2.6

solaris7
win9x
winnt
win2k
winxp

other

19
baynet

bsdi
cisco

ibmos
irix

lexmark
linux2.0
linux2.1
linux2.2
linux2.4
macos9
macosx
freebsd

netware

solaris2.3
solaris6-7

win9-nt

win2k-xp

other

15

bsdi
cisco

irix

linux2.0
linux2.1
linux2.2
linux2.4
macos9
macosx
freebsd

solaris2.3
solaris6-7

win9-nt

win2k-xp

other

13

bsdi
cisco

irix

linux2.0
linux2.1
linux2.2
linux2.4
macos9
macosx
freebsd

solaris6-7

win-all

other

12

bsdi
cisco

irix

linux2.0
linux2.1
linux2.2
linux2.4

macos9

mac-bsd

solaris6-7

win-all

other

10

bsdi
cisco

linux2.0
linux2.1
linux2.2
linux2.4

mac-bsd

solaris6-7

win-all

other

9

bsdi

linux2.0
linux2.1
linux2.2
linux2.4

mac-bsd

solaris6-7

win-all

other

24
baynet

bsdi
cisco
hpjet

ibmos
irix

lexmark
linux2.0
linux2.1
linux2.2
linux2.4
macos9
macosx
freebsd

netbsd1.4
netware

solaris2.3
solaris2.6

solaris7
win9x
winnt
win2k
winxp

other

19
baynet

bsdi
cisco

ibmos
irix

lexmark
linux2.0
linux2.1
linux2.2
linux2.4
macos9
macosx
freebsd

netware

solaris2.3
solaris6-7

win9-nt

win2k-xp

other

15

bsdi
cisco

irix

linux2.0
linux2.1
linux2.2
linux2.4
macos9
macosx
freebsd

solaris2.3
solaris6-7

win9-nt

win2k-xp

other

13

bsdi
cisco

irix

linux2.0
linux2.1
linux2.2
linux2.4
macos9
macosx
freebsd

solaris6-7

win-all

other

12

bsdi
cisco

irix

linux2.0
linux2.1
linux2.2
linux2.4

macos9

mac-bsd

solaris6-7

win-all

other

10

bsdi
cisco

linux2.0
linux2.1
linux2.2
linux2.4

mac-bsd

solaris6-7

win-all

other

9

bsdi

linux2.0
linux2.1
linux2.2
linux2.4

mac-bsd

solaris6-7

win-all

other

Figure 2. Class names for experiments with from 24 to 9 classes.

fritz
46

fingerprint is not found in the current database it is shown
as UNKNOWN and you can contribute to the database by
adding the new fingerprint and the respective OS.” This
suggests that the relative frequency of ettercap exemplars
across classes does not represent the true prior distribution
of OSes and that the distribution of individual exemplars
within a class also is not representative of the underlying
prior distribution. In fact, the data collection method might
be more prone to collecting misleading outlier exemplars
than to collecting representative exemplars. Reasons for
outliers could include incorrect labeling of the true OS,
network devices between the OS and the network traffic
collection site that change packet header contents, or OSes
where packet header default values have been changed for
security purposes.

Table 5. Nine-class KNN error rate.

 CROSS-
VALIDATION

LL TEST
DATA

CLASS Exemplars % Err Exemplars % Err
bsdi 13 23.1% 0 -
linux2.0 22 63.6% 11 27.3%
linux2.1 20 35% 0 -
linux2.2 57 45.6% 0 -
linux2.4 76 46.1% 12 16.7%
mac-bsd 95 28.4% 12 0%
solaris6-7 51 37.3% 99 4.0%
win-all 270 25.2% 41 9.8%
other 153 35.3% 9 55.6%
TOTAL 757 33.4% 184 9.8%

To partially assess the effect of outliers in ettercap

exemplars, outliers were detected by comparing only the
first three features which prior analysis [15] suggests are
important for OS identification. Outliers were eliminated
for each class by keeping only exemplars where the first
three feature values occurred in at least 1,2, or 3 other
exemplars for the same class. This eliminates exemplars
where the first three feature values are rare, that are
presumably outliers. All features were used to assess
performance of a KNN classifier with 9 classes as above.
Table 6 shows the results.

Table 6 shows that more than half of the “outlier”
ettercap exemplars can be eliminated with no statistically
significant increase in the error rate measured on LL data.
In addition, as more outlier exemplars are eliminated, the
cross-validation error rate drops and comes closer to the
error rate measured on LL data. These results suggest that
more data should be collected to develop a training set
where exemplars are labeled correctly and also where they
span a wide range of OSes. They also suggest that ettercap
data should be used with caution. The good KNN

performance provided with ettercap exemplars despite the
inclusion of outliers might be due to: (1) The addition of a
new signature for a new OS name, even for only minor
differences in names and (2) The addition of a new
signature when any feature value in the signature value
differs.

Table 6. Nine-class KNN error rates after
eliminating different numbers of outlying ettercap

exemplars.

Duplicate
Matches
to Keep

Training
Exemplars

Cross-
Validation
Error

LL-Test
Data
Error

0 (Normal) 757 33.4% 9.8%
1 560 30.5% 12.5%
2 420 19.1% 10.9%
3 297 8.8% 10.3%

9. Other Classifiers and Rejections

Cross-validation experiments with the 9-class ettercap
data were performed to set parameters for other types of
classifiers followed by tests with LL test data to measure
generalization error. Good performance similar to that
obtained with the KNN classifier could be obtained using
binary tree classifiers similar to those described in [2],
Gaussian kernel support vector machine classifiers [4], and
multi-layer perceptron classifiers [9]. All classifiers were
versions included in the current version of LNKnet [9].
The binary tree classifier with 40 nodes provided good
cross-validation performance that was no more than two
standard deviations worse than the error provided by larger
trees. A multi-layer-perceptron classifier with 10 inputs, 40
hidden nodes, and 9 output nodes provided good cross-
validation performance when trained with stochastic
gradient descent training and 50 epochs. It performed
better than similar classifiers with from 10 to 60 nodes and
with 25 or 75 epochs of training. Finally, a Gaussian
kernel support vector machine classifier with a Gaussian
sigma of 2.0 and an upper bound on Lagrange multipliers
of 5.0 provided better cross-validation performance than
linear or quadratic support vector machine classifiers. It
also performed better than Gaussian kernel support vector
machine classifiers with a sigma of 1.0 or 4.0 or with
different upper bounds of 1 or 10. Generalization error
rates on LL-data for all classifiers including the KNN
classifier (k=3) are shown in Table 7.

Table 7 shows that all four classifiers provide good
performance on the LL-data patterns with an error rate of
roughly 10%. With the 184 test patterns, two binomial
standard deviations is roughly 4.4 percentage points and
the spread of error rates without rejection across patterns is
less than this range. Cross-validation error rates were much

fritz
47

higher, as with the KNN classifier, and ranged from 27.1%
(binary tree) to 35.4% (support vector machine classifier).

Table 7. Nine-class error rate on LL test data for four
classifiers.

No Rejections Reject 10% of
Input Patterns

Classifier

Errors % Error # Errors % Error
KNN 18 9.8% 12 7.0%
Binary Tree 16 8.7% 1 0.9%
MLP 23 12.5% 13 8.2%
SVM 20 10.9% 8 5.2%

Table 7 also shows the error rate after 10% of the input

test patterns are rejected. Each classifier provides an
estimate of the posterior probability for every class.
Patterns are rejected when the estimate for the selected
class is below a threshold and the threshold is adjusted to
reject 10% of the input patterns. As can be seen, the error
rate for all classifiers improves when patterns are rejected.
Best performance with rejection was provided by the
binary tree classifier. It misclassified only 1 out of 165 test
patterns. For comparison, the exact-match algorithm used
in ettercap has a low substitution error rate of 3% (4/128)
but rejects 30% (56/184) of the test patterns.

10. The Effect Of Feature Selection And
Using Only SYN Or SYN-ACK Packets

The earliest proposed passive OSID system [13] used
only the first three features shown in Table 1 (WS, TTL,
DF) and other systems added the remaining features. No
experiments, however, analyzed the benefits provided by
different feature combinations. Forward-backward feature
selection was performed using cross-validation
experiments on the 9-class KNN and binary tree classifiers
described above. These experiments found the smallest set
of features that provided performance no more than two
binomial standard deviations worse than the best
performance found with any feature subset. With the KNN
classifier, five features (WS, TTL, DF, SOK, PS) were
selected. With the binary tree classifier only three features
(WS, TTL, MSS) were selected. Error rates with the LL
test data were then measured after this feature selection
was performed. It was found that these error rates were
statistically identical (within 1.2 percentage points) to
error rates obtained using all features. These result
demonstrate that all the features shown in Table 1 are not
required for good performance. They show that WS and
TTL, which are often suggested as good features, are
important, but that other features such as one that indicates

whether the input packet was a SYN or SYN-ACK packet
are not required.

Some OSID systems such as p0f [14] only analyze SYN
packets while others such as ettercap use both SYN and
SYN-ACK packets. These two approaches were compared
using the 9-class error rate for the KNN classifier. In a new
condition, only ettercap SYN packets were used for
training and only LL SYN packets were used for testing.
This was compared to the normal classifier where both
SYN and SYN-ACK packets were used for training and
testing. The error rate on LL test data was 6.9% (7/102)
for the new condition and 9.85 (18/184) for the normal
condition. Both error rates are similar and low. Two
binomial standard deviations for these error rates are
roughly five percentage points and the difference between
these error rates is thus not statistically significant. A
second new condition was created where only SYN-ACK
packets were used for training and testing. The error rate
under this condition was 12.2% (10/82). This error rate is
also low. Although it is 5.3 percentage points above the
error rate with SYN packets alone, this difference is again
not statistically significant and is primarily cause by fewer
patterns in the more difficult “other” class with SYN
packets. These results suggest that SYN and SYN-ACK
packet headers are equally effective when performing
passive OS identification.

11. Discussion and Summary

Passive operating system (OS) identification from
packet header information is possible, but low error rates
can only be obtained using a small number of classes that
is much less than the more than 100 different OS names
found in the most recent open-source tool. Machine
learning evaluations demonstrated that many of the rules-
of-thumb used to develop open-source tools may not be
valid. For example, best performance is not provided using
WS, TTL, and DF features. Other feature combinations
provide best performance, especially for the binary tree
classifier. Best performance is also not provided using
only SYN packets. Similar low error rates are provided
with SYN packets, with SYN-ACK packets or with both
types of packets. In addition, best performance is not
obtained by adding exemplars to a training data only when
they differ from existing exemplars. This may lead to the
inclusion of many outlier patterns in training data. Better
performance would be provided by sampling packet
headers generated at many sites from a wide range of OSes
and correctly identifying each OS. Finally, the concept of
OS “fingerprints” is misleading. Each OS does not have a
unique “fingerprint”. Instead, feature values extracted from
packet headers vary within and between classes and

fritz
48

machine-learning classifiers can account for this
variability.

Experiments led to new nearest neighbor and binary
tree classifiers that provide nine-class error rates of
roughly 10% without rejection. Other classifiers including
multi-layer perceptron and support vector machine
classifiers provide similar low error rates. When 10% of
the patterns are rejected, the error rate is lowest and near
zero with the binary tree classifier. The binary tree
classifier requires only three features to provide the lowest
error rate (WS, TTL, MSS). The KNN classifier requires
five features (WS, TTL, DF, SOK, PS). Nine-class OS
identification is accurate and similar for SYN packets
alone, for SYN-ACK packets alone, or for both packet
types combined in one classifier.

Further work could improve passive OS identification
performance by collecting more accurately labeled patterns
for classifier development. The frequency of occurrence of
OS names in these patterns should reflect the prior
distribution of OS names and the frequency of occurrence
of patterns in each class should reflect the true distribution
of patterns. In addition, information concerning protocols,
contents of server banners, email headers, and other
content could be extracted to improve passive OS
identification in some situations. Finally, when multiple
TCP connections are observed for a host, statistical multi-
packet features might improve OS identification accuracy.
These could include features used in [3] such as averages
of features in Table 1 and statistics on how source ports
are incremented and TCP sequence numbers are changed
between TCP connections. Use of these additional
features may make it possible to detect OS masquerading
when some feature values are changed to make one OS
appear to be another.

Bibliography

[1] Boardman, Bruce, “Middle Managers,” Network
Computing, February 6 2003, 37-46,
http://img.cmpnet.com/nc/1402/graphics/1402f2_file.pdf.

[2] Breiman, L., J.H. Friedman, R.A. Olshen, and C.J.
Stone, Classification and Regression Trees, 1984:
Belmont, CA: Wadsworth International Group.

[3] Carter, P. and A. Berger, “Passive Operating System
Identification: What can be inferred from TCP Syn Packet
Headers?” 2002, Presented at the Workshop on Statistical
and Machine Learning Techniques in Computer Intrusion
Detection, Johns Hopkins University,
http://www.mts.jhu.edu/~cidwkshop/Presentations2002.ht
ml.

[4] Cristianini, N. and J. Shawe-Taylor, An Introduction to
Support Vector Machines, 2000: Cambridge University
Press.

[5] Dayioglu, B. and A. Ozgit, “Use of Passive Network
Mapping to Enhance Signature Quality of Misuse Network
Intrusion Detection Systems,” in Proceedings of the
Sixteenth International Symposium on Computer and
Information Sciences, 2001, http://www.dayioglu.net/
publications/iscis2001.pdf.

[6] Fyodor, “Remote OS Detection Via TCP/IP Stack
FingerPrinting,” 2002, http://www.insecure.org/nmap/
nmap-fingerprinting-article.html.

[7] Fyodor, “The Nmap Stealth Port Scanner,” 2003,
http://www.insecure.org/nmap.

[8] Handley, Mark and Vern Paxson, “Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to-
End Protocol Semantics,” Proceedings 10th USENIX
Security Symposium, USENIX Association Washington,
D.C., 2001, http://www.usenix.org/publications/library/
proceedings/sec01/handley.html.

[9] Lippmann, R.P., Kukolich, L., and Singer, E.
“LNKnet: Neural Network, Machine-Learning, and
Statistical Software for Pattern Classification,” Lincoln
Laboratory Journal, 6(2) p 249-268, 1993.

[10] Lippmann, Richard, Seth Webster, and Douglas
Stetson, “The Effect of Identifying Vulnerabilities and
Patching Software on the Utility of Network Intrusion
Detection,” in A. Wespi, G. Vigna, and L. Deri (Eds.):
RAID 2002, Lecture Notes in Computer Science 2516, pp.
307–326, Springer-Verlag Berlin, 2002,
http://www.informatik.uni-
trier.de/~ley/db/conf/raid/raid2002.html.

[11] Ornaghi, Alberto and Marco Valleri, “Ettercap,”
2003, http://ettercap.sourceforge.net/index.php?s=home.

[12] Roesch, M., “Snort - Lightweight Intrusion Detection
for Networks,” in USENIX 13th Systems Administration
Conference - LISA '99. 1999: Seattle, Washington,
http://www.usenix.org/publications/library/proceedings/lis
a99/roesch.html.

[13] Subterrain Security Group, “Siphon Project,” 2000,
http://siphon.datanerds.net/.

[14] Stearns, William and Michael Zalewski, “p0f –
Passive OS Fingerprinting Tool,” 2003,
http://www.stearns.org/p0f/.

[15] Spitzner, Lance, “Know Your Enemy: Passive
Fingerprinting,” 2000, http://project.honeynet.org/papers/
finger/.

fritz
49

Boundary Detection in Tokenizing Network Application Payload for
Anomaly Detection

Rachna Vargiya and Philip Chan

Department of Computer Sciences
Florida Institute of Technology

Melbourne, FL 32901
rvargiya@fit.edu and pkc@cs.fit.edu

Abstract

Most of the current anomaly detection methods for
network traffic rely on the packet header for studying
network traffic behavior. We believe that significant
information lies in the payload of the packet and
hence it is important to model the payload as well.
Since many protocols exist and new protocols are
frequently introduced, parsing the payload based on
the protocol specification is time-consuming. Instead
of relying on the specification, we propose four
different characteristics of streams of bytes, which
can help us to develop algorithms for parsing the
payload into tokens. We feed the extracted tokens
from the payload to an anomaly detection algorithm.
Our empirical results indicated that our parsing
techniques can extract tokens that can improve the
detection rate.

1. Introduction

Motivation: Traditional intrusion detection systems
use misuse/signature detection, which models known
attacks, and generally cannot detect novel attacks.
Anomaly detection models normalcy and identifies
deviations, which potentially can be novel attacks.
During training, network anomaly detection models
the normal patterns of network traffic. During
detection, scores are assigned to anomalous events
and significant anomalies cause alerts indicating
possible attacks. Existing anomaly detection
techniques usually rely on information derived only
from the packet headers; however, this is not
sufficient since more sophisticated attacks involve the
application payload. Parsing packet headers is
relatively simple as there are few commonly used

protocols such as IP, TCP, UDP, and ICMP.
However, for application payloads, parsing is more
challenging due to the large number of application
protocols available and relatively frequent
introduction of new protocols. Hard coding the
parser for each application protocol could be time
consuming, particularly when the protocols are
complicated. Furthermore, updates to existing
protocols or introduction of new protocols will
require additional efforts.

Problem statement: We desire to parse application
payload into tokens without explicit knowledge of the
application protocols. Given a set of exemplar
payloads, an algorithm learns a model that can parse
the payloads into “meaningful” tokens. Furthermore,
the algorithm needs to be independent of the
protocols. The extracted tokens can then be used as
attributes for modeling normal traffic for anomaly
detection (the same techniques can also be used to
identify tokens for misuse detection as well, but
anomaly detection is the focus of this paper).

Approach: We propose four characteristics of
relevant tokens in a continuous stream of bytes, and
based on them, design algorithms that propose
possible boundaries for tokens. We use these
characteristics individually and in combination to
estimated boundaries. The sequence of bytes between
the two successive boundaries is considered a token
which can be used to model the behavior of the
payload. The characteristics are based on Boundary
Entropy, Frequency, Augmented Expected Mutual
Information, and Minimum Description Length.
These characteristics do not depend on any particular
property of a protocol.

fritz
50

Contributions:

• We describe four algorithms based on the
characteristics mentioned above, and apply them to
parse the payload to extract tokens from network
traffic.
• We also explore techniques using more than one
such characteristic in combination.
• We discuss four evaluation techniques to
evaluate such tokens.
• We demonstrate that the tokens found by our

algorithm can improve the detection rate of the
LERAD anomaly detection algorithm.

• Our algorithms would work on encrypted data as
well, since they are domain independent.

Organization: The next section, Section 2, discusses
the related work. Section 3 details the four
characteristics and the associated algorithms. In
section 4 we discuss results obtained from our
experimental evaluation, and finally we conclude in
Section 5.

2. Related work

A variety of approaches have been adopted for the
boundary detection problem. Some of them are
unique and achieve interesting results.

One of the early studies include that described in
Forrest et al. [1] They used fixed length patterns to
represent the process model and used it for intrusion
detection purpose. However, a main limitation of this
approach is that there is no rationale for selecting the
optimal pattern length, which has a major influence on
the detection capabilities of the intrusion detection
system. In addition, it uses fixed length patterns,
which makes it a difficult task to select the optimal
pattern length. Long patterns are expected to be more
process specific than short patterns. Our approach is
independent of such a parameter like length and hence
overcomes this problem.

Wespi et al. [14] use Teiresias algorithm [12] in
combination with a pattern reduction algorithm to
construct patterns. All maximal variable length
patterns contained in the set of training sequences are
determined and a reduction algorithm is applied to
prune the entries in the pattern table. Their pattern-
matching algorithm returns the groups of consecutive
uncovered events and the length of each of these
groups. The greater the length, the more likely it is
that an intrusion is observed.

Liao et al. [6] use a k-Nearest Neighbor classifier to
characterize program behavior as normal or intrusive
depending on the short sequences of system calls.
Even though the computation required for this
technique is reduced, it is unable to detect attacks that
consist of abuse of a legal attack, e.g. Process table
attack. Some text categorization work is also done by
Dumais et. al [3].

Jiang et al. [5] consider both Intra pattern and Inter
pattern anomalies. They provide a pattern extraction
algorithm to identify maximal patterns. Then they use
a Pattern overlap relationship module where
adjacency lists are formed from patterns in which
overlap relationship between patterns is stored.
Pattern adjacency lists are then traversed at real time
to identify both intra pattern and inter pattern
mismatches. Significant deviations from the normal
behavior cause the module to raise alerts.

Valdes [13] proposes a system that maintains a library
of patterns that may be initially empty. When a pattern
is observed, its similarity with respect to other patterns
in the library is observed. If it matches one or more
stored patterns above a configurable threshold, then
the new pattern is considered to belong to the class of
the best matching. However, their approach works
only with a alphabet size and small number of actual
observed patterns.

Michael [11] uses suffix trees of a fixed height to find
frequent occurring sequences of system calls. Very
frequent sequences are replaced with meta-symbols,
resulting in a more compact representation of the
system calls. Based on the revised vocabulary, a
regular language is learned to represent the normal
behavior of system call traces. One of the algorithms,
SEQUITUR proposed by Manning and Witten [10]
provides a technique for parsing the text, which is our
first step. It is based on the principle that phrases,
which appear more than once, can be replaced by a
grammatical rule that generates that phrase. The rule
generated is different from conventional grammar
since the rules are not generalized and they generate
only one token.

Another algorithm proposed by Cohen et al. [2],
called VOTING EXPERTS consists of experts that
evaluate the features of the episodes, namely
Boundary Entropy and Frequency, and votes for
boundaries in the corpus based on these features. A
window is passed through the corpus and each
location garners 0 or 1 vote from each expert. The
location with the least boundary entropy and highest

fritz
51

frequency receive votes from the two experts
respectively. The drawback of their technique is that
their votes are binary; the confidence in a particular
boundary cannot be indicated.

3. Approach

Our approach consists of parsing the payload and
extracting tokens providing some information about
the payload, and using these tokens to model the
network behavior for anomaly detection. This
approach demands a good algorithm to parse the
payload. There are characteristics that can categorize
bytes belonging to some relevant token. Hence, these
characteristics can be exploited to detect boundaries in
a continuous stream of characters. By extracting the
token between two boundaries, we can derive a set of
bytes belonging to the same token.

Our approach is inspired by VOTING EXPERTS [3]
as in features are used to detect boundaries. However,
there are many differences in the details of the
approaches. Not only have we created more experts
for casting votes and combined those experts, we also
intend to make a system that allows certain feature to
cast multiple votes, depending on how strongly that
feature believes that a boundary exists at that location.
In VOTING EXPERTS, each feature was independent
and could cast only binary votes, whether the feature
strongly suggested a boundary or there was just a
slight indication of the same. Since the features we use
to assess potential boundaries are statistical, our
approach is independent of the language or in our
case, independent of the protocol of the application
layer. Hence, our technique is domain independent.
Two sample records from port #21 are:

^@USER anonymous^M^ ^JPASS chiaraa@delta.peach.mil^M^ ^JSYST^M^ ^JPORT
194,7,248,153,4,241^M^ ^JLIST^M^ ^JCWD mailing_list^M^ ^JPORT
194,7,248,153,4,242^M^ ^JLIST^M^ ^JCWD archive^M^ ^JPORT
194,7,248,153,4,243^M^ ^JLIST^M^ ^JCWD music^M^ ^JPORT
194,7,248,153,4,244^M^ ^JLIST^M^ ^JTYPE I^M^ ^JPORT 194,7,248,153,4,245^M^
^JRETR 0016.html^M^ ^JQUIT^M^ ^J

^@GET anonymous^M^ ^JPASS pablot@delta.peach.mil^M^ ^JSYST^M^ ^JPORT
194,7,248,153,4,255^M^ ^JLIST^M^ ^JCWD man^M^ ^JPORT 194,7,248,153,5,0^M^
^JLIST^M^ ^JCWD man3^M^ ^JPORT 194,7,248,153,5,1^M^ ^JLIST^M^ ^JTYPE
I^M^ ^JPORT 194,7,248,153,5,2^M^ ^JRETR cpp.1^M^ ^JQUIT^M^ ^J

The first record shows a normal connection record for
port #21. However, the second connection record
shows an anomaly. The first keyword in a FTP
connection record is usually “USER”. The keyword
“GET” is inappropriate and suggests malicious data.

The general working of the algorithm includes a
window of arbitrary size (given as an input), say w,
which is slid through the corpus to be segmented. At
each instant, w bytes from the corpus are observed.
Each feature evaluates the value for each possible
boundary within the window, and decides whether the
value is good enough for a boundary or not. If yes, a
vote is cast, otherwise the window simply slides one
character forward, examining again the token of length
w, differing in one byte from the previous token. Two
parses are required for this approach on the corpus,
first to evaluate the feature value for each possible
token, second to compare the various possible
boundary locations based on the evaluated feature
value and to assign votes.

There are four features used to cast votes in our
model. Two of them are similar to the ones in
VOTING EXPERTS: Boundary Entropy and
Frequency. The other two are Augmented Expected
Mutual Information (AEMI) and Minimum
Description length. Finally, we propose techniques by
combining some or all of them. Each one is discussed
in some detail below. We note again that we adopt
weighted voting according to the confidence of each
expert, which is different from the original VOTING
EXPERTS.

3.1 Boundary Entropy

The entropy in patterns exhibits a trend that is
exploited in this technique. It starts with a relatively
high value, then drops as we go further, and peaks at
the end of a valid word. This is because entropy gives
us the uncertainty or degree of randomness in a
system. When we see the first few characters of a
word, it is difficult to predict what the word is. E.g.,
given the character ‘W’, it is difficult to say what the
word is. It could be ‘What’, ‘Where’ or any other such
word. Hence, the entropy after ‘W’ is relatively high.
However, as we move further, the uncertainty drops.
E.g., if we have the token ‘Wha’ then we know that
the word probably is ‘What’. At the end of the
meaningful token, the entropy peaks. This is because
it becomes very uncertain what the following word is
going to be, and hence what the next character should
be. In our example, any word could follow ‘What’, so
it is difficult to say what the next character will be.

We exploit this property to create an expert to detect
boundaries. The entropy at each possible location is

fritz
52

calculated using the formula, similar to voting experts,
i.e.

�−)(log)(xPxP (1)

P(x) is the probability of the byte x following the
current window. (More precisely, P(x) is actually P
(x|s), where s is the sequence of bytes in the window
of size w.) The entire expression gives us the
uncertainty of the byte following the token in the
window. During the first parse, the window is moved
across the file and the byte following the window is
noted and P(x) is estimated. In the second parse, the
window is moved again and Boundary entropy at the
end of each window is calculated using the formula in
Equation (1).

The positions that have the maximum entropy get a
vote from the expert. However, since we desire to
signal only boundaries with reasonable confidence, we
introduce a threshold that suppresses votes from
boundaries with low entropy values. We use the
average boundary entropy of the corpus as the
threshold. To allow fair voting among experts, the
boundary entropies are normalized before votes are
cast. The votes cast are proportional to the number of
standard deviations away from the mean value.

3.2 Frequency

The second method computes the frequency of each
token that occurs in the corpus. The most frequent set
of tokens are assumed to be valid tokens and
boundaries are assigned at the ends of such tokens. As
the window moves forward, the frequency of each
possible token of length 1 to the window size, within
the window, is calculated. E.g. if the window consists
of “examsare”, then the frequency of ‘e’, ‘ex’, ‘exa’
and so on is calculated. Boundary is voted at the end
of the most frequent token. The votes given are
proportional to the number of standard deviations that
the frequency of the token is away from the mean.

The window is moved through the corpus and each
token formed is counted. Hence, at the end of the
parse, we have a list of all possible words, which the
window may consist of, and their frequency.
Generally, in most domains, there is a relationship
between the length and frequency of patterns. Short
patterns tend to be more common than the long ones.
E.g.,‘t’ would be more common than ‘the’ even

though ‘the’ is a valid word and ‘t’ is not. We want to
compare how unusual a pattern is, not just how
frequent it is. Therefore, comparing the frequencies of
short patterns with that of long patterns would not be
appropriate. To accommodate this, we normalize the
frequencies of the tokens for tokens of the same
length. We subtract the sample mean from the value
and divide by the sample standard deviation.

3.3 Augmented Expected Mutual
Information (AEMI)

A lot of information can be gathered about a character
based on the context it appears in. Generally, the
concept of mutual information is used to evaluate the
relationship between two events. Mutual Information
can estimate the likelihood of the occurrence of a
token given some other token. E.g. talking about food,
given that we have seen ‘POP’ it is very likely that the
next word would be ‘CORN’. Hence, this approach is
based on co-occurrence of tokens: if two tokens
appear together frequently, they are probably part of
the same word. Mutual information is given by:

))]()(/(),(lg[),(bPaPbaPbaMI = (2)

In other words, MI gives us the reduction of
uncertainty in presence of ‘b’ in the window if
presence of ‘a’ is known (or vice versa). However, this
metric only considers the presence of both the words
but not the absence of either of them. That is, it does
not consider what the probability of seeing one token
in the absence of the other. This leads to
misinterpretations if the token whose occurrence is
being measured is highly frequent. E.g., we would
expect that ‘pop-corn’ is more correlated than ‘is in’,
however since ‘is’ is relatively more common. This
would lead to a high MI value. The presence of one
token without the other one counts for adverse
correlation and proves to be counter evidence.
Augmented Expected Mutual Information [1]
incorporates the idea of independent existence of 'a'
and 'b' as well, which appropriately incorporates the
counter evidence. It is defined as:

),(),(),(),(
),(),(),(

baMIbaPbaMIbaP

baMIbaPBAAEMI

¬¬−¬¬
−=

 (3)

Equation 3 sums the supporting evidence and
subtracts the counter evidence. a is defined as the

fritz
53

event of the first token, and b is the event of the token
following the first one. Higher values of AEMI
indicate that a and b are probably part of the same
word. We only consider three cases with each pair of
tokens, occurrences when both the tokens appear
together, when token a appears without token b, and
token b appears without token a. The case when
neither a nor b appears is disregarded since it does not
really present much information about whether a and
b co-occur or not. The window is again moved across
for each possible boundary, the left and right sub
tokens are considered. E.g. If a window contains
“abcdef” we consider left and right sub tokens ‘a’ and
‘bcdef’, then ‘ab’ and ‘cdef’, then ‘abc’ and ‘def’ and
so on. Then for each set of left and right sub tokens
within a window, AEMI value is computed and
compared. For each window, the location with the
minimum AEMI value suggests a boundary, and the
expert gives votes proportional to the standard
deviations from the average AEMI.

3.4 Minimum Description Length

In coding theory, tokens that are more frequent are
assigned a shorter code so that the overall coding
length is minimized for a message with multiple
tokens. Minimum Description Length (MDL)
assumes a perfect encoding and measures the fewest
number of bits necessary to encode a message. We
calculate the description length per byte of a token by:

||/)(lg
},{

i
rightlefti

i ttPMDL �
∈

−= (4)

Where ti denotes the two tokens on the left and right
of the possible boundaries, P (ti) is the probability of ti
and | ti | is the length of ti in bytes. The assumption is
that if we were to compress the file, we would assign
minimum number of bits to the most frequently
occurring token; hence, it would have the minimum
length. –lg [P (ti)] which gives us the number of bits
used for ti, dividing it by the length of ti, | ti |, which,
gives us the number of bits per byte of the token or its
description length.

The preprocessing is similar to that in AEMI. The first
parse is used to look at all the left and right sub tokens
and compute the probability of seeing those two
tokens. This probability is then used in the second
phase, which computes the sum of the description
lengths of left and right sub tokens. As the window

slides over the data, the boundary that yields the
shortest coding length is voted as the boundary and
the number of votes is again proportional to the
number of standard deviations from the average
coding length.

3.5 Combined Approach with Weighted
Voting

All the approaches discussed so far use a single expert
to suggest boundaries. We desire to design a model
that combines the opinions from all the experts and
then decides upon the boundary. In this method, we
allow each expert to run a scan on the file and decide
where to vote, and how much to vote. Votes from each
expert are normalized, as some approaches may tend
to assign more votes than the others do. These votes
are then combined to locate positions most strongly
suggested as the boundary after consideration by all
the experts. A list of votes from all the experts is
gathered. This list is normalized so that the votes from
each expert indicate the confidence of the expert and
are on the same scale. In order to normalize the list,
the standard deviation of the votes is computed and
each value in the list is divided by the standard
deviation. This scales the value with respect to the
other values in the list. In order to give more weight to
a particular expert, the votes from this expert can be
increased by a certain factor. For each boundary, the
final votes from each expert, after normalization, are
summed. A threshold is set computed depending on
the final set of votes. Once again, it is the average of
the votes assigned to each boundary. A boundary is
placed at a certain position if and only if the votes at
that position exceed the threshold.

We tried combining all the algorithms and then
combining the strongest algorithms, frequency and
minimum description length.

3.6 Anomaly Detection

Once we have placed the boundaries according to our
experts, we can easily extract the meaningful tokens
from the file. Our anomaly detection system, LERAD
[9], forms rules based on attributes picked from the
network data (including header and payload).
Currently, it uses tokens from the payload that are
“space” separated. Instead, we modify it to use tokens
that are separated by boundaries identified by the
algorithms discussed above.

fritz
54

4. Experimental Evaluation

4.1 Evaluation Criteria

We present four different types of evaluations
depending on various attributes that would indicate
the “meaningfulness” of the tokens retrieved in the
output file.

The first evaluation, Evaluation A, is based on how
many words, present in the input file, were we able to
retrieve in the output file with the boundaries placed at
positions suggested by the expert. All space or
punctuation separated tokens are assumed to be
“meaningful” tokens. This evaluation works for text-
based protocols only. It doesn’t work for non-text
based protocols because bytes that represent “spaces”
usually do not exist. Moreover, Evaluation A only
approximates how "tokens" are defined. E.g. a file
name could consist of ‘/’ to denote the path of the file.
The entire path should be considered as one token,
however since our evaluation would consider ‘/’ as
space, it will consider each directory a unique token.
Also, for hyphenated words, even though they would
logically be the same token, this evaluation would
evaluate them as being separate tokens. Based on the
space-separated words, we report the percentage of
words recovered by our methods.

The second evaluation, Evaluation B, is similar to the
first evaluation except that it looks for certain
keywords that are characteristic of the particular
application protocol. These keywords are collected
from the specification of each protocol (Request for
Comments or RFC). However, this evaluation is
limited to text-based protocols for the reasons
mentioned above and is an approximation since tokens
between two keywords are not specified. Based on
the known keywords, we report the percentage of
keywords recovered by our methods.

The third evaluation, Evaluation C, calculates the
entropies of the output files. The motivation for this
evaluation is that if the expert was successful and it
found most of meaningful tokens, then the tokens
should be repeated often in the output file, leading to
less randomness in the output file and therefore to
lower entropy values for the file. Thus, in our
evaluation, the lower the entropy value of the output
file, the better is the feature or expert. This evaluation
is independent of any text-based assumptions and

hence can be used for all kinds of ports. It gives a
good estimate of the output file. It can be used to
compare the performance of an approach on any kind
of protocol.

The fourth evaluation, Evaluation D, is the detection
rate evaluation, which is the most important
evaluation, while Evaluations A and C are
intermediate approximations. We measure the number
of detections at various false alarm rates and compare
the performance of the original LERAD with LERAD
using tokens extracted by our proposed methods.

4.2 Evaluation Data and Procedures

The proposed methods were evaluated using the 1999
DARPA Intrusion Detection Evaluation Data Set [7].
The test bed involved a simulation of an air force base
that has machines that are under frequent attack.
These machines comprise of Linux, SunOS, Sun
Solaris and Windows NT. Various intrusion detection
systems have been evaluated using this test bed. It
comprises of three weeks of training data obtained
from network sniffers, audit logs, nightly file system
dumps and BSM logs from Solaris machine that trace
system calls and two weeks of testing data. Weeks 1
and 3 of the data are attack free while various attacks
are present in Weeks 4 and 5 of the data.

To our knowledge, the DARPA 99 data set is the
most comprehensive publicly available data set for
evaluation of intrusion detection. We are aware of the
simulation artifacts in the data set as discussed in
[8].The focus of this paper is comparing tokenization
techniques for extracting features to enrich the
representation of the training dataset for anomaly
detection algorithms. We are not comparing anomaly
detection algorithms and fixed the algorithm to be
LERAD. We plan to extend our investigation to
datasets that contain collected traffic from real-life
networks.

For our first three evaluations, where we compute the
number of words retrieved, number of keywords
retrieved, and the entropy of the output file, we use
only the data from Week 3. The reason for using week
3 for evaluations A, B, and C is that Weeks 4 and 5
are for testing only and we do not want to have the
advance knowledge of which tokenization methods
work better in Weeks 4 and 5. Weeks 4 and 5 contain
an evidence of 146 simulated attacks. However these
attacks are across all the ports. We have tested only

fritz
55

some of the ports from the entire data. We used the
first four days of Week 3 for training and the last three
days for testing. This gives us an estimate of how
predictive the approaches are, and how well they
would perform on unseen data in the network traffic.
We studied the ports with the most traffic and results
from these ports are reported. The window size was a
parameter set to six, which was experimentally
observed to be the best value.

The anomaly detection system LERAD [9] works in
three phases. In the first phase, it samples training
pairs to suggest rules. In the second and third phases,
it removes redundant rules and rules that generate
alarms on attack free traffic respectively. LERAD
learns rules based on 23 attributes taken from the TCP
header and the payload. First 15 attributes are picked
from the packet header and the remaining eight are
picked from the payload. LERAD, originally picks the
first eight space separated tokens from the payload--
space as boundary is not applicable to non-text
protocols. We replace these eight space separated
tokens with the more intelligently found boundary
separated words from our approaches. For Evaluation
D, we use Week 3 for training and Weeks 4 and 5 for
testing.

4.3 Experimental Results and analysis

For each evaluation criterion, we compare results from
six different approaches, four approaches being the
results of the four algorithms independently, fifth
being the combination of all the algorithms and sixth
being the combination of two of the strongest
algorithms, Frequency and MDL. The reason for
combining Frequency and MDL is that, from our
experience with this data set, they provide maximum
coverage and complement each other.

4.3.1 Evaluation A: Space Separated
Tokens

Table 4.3.1 reports the results of all the approaches on
popular ports with text-based protocols, SMTP (25),
HTTP (80), FTP (21) and Finger (79), based on
Evaluation A. For all these ports, Boundary Entropy
gives the poorest results. Frequency performs the best
for SMTP and Finger, however Freq + MDL performs
best for HTTP and FTP. On qualitative analysis, Freq
+ MDL seems to give a more consistent output with
long relevant tokens. Hence, we suggest that
Freq+MDL together give the best results followed by

the single approach of Frequency. The model of all
the algorithms combined follows these two
techniques. MDL performs better than Frequency
when trained and tested on the same set; however it is
not very predictive. Frequency on the other hand, is
highly predictive. Hence, these two algorithms tend to
find different kinds of words. When combined they
give maximum coverage and hence best results.

Table 4.3.1 Evaluation A: % of Space-Separated

Tokens Recovered

4.3.2 Evaluation B: Keywords in RFCs

Table 4.3.2 Evaluation B: % of Keywords in RFCs
Recovered

Method Port #25 Port #80 Port #21

Frequency 31 28 40

Min Desc.
Length

7 6 1

AEMI 9 5 2

Boundary
Entropy

3 2 2

All 4
experts

12 13 21

Freq +
MDL

40 36 59

Table 4.3.2 reports the results for all the methods
based on Evaluation B. Results for port #79 are absent
since no keywords were available for port #79. Here
again Frequency + MDL performs the best for ports
#80 and #21. The ranking of the algorithms remains

Method Port #25

Port #80

Port #21

Port #79

 Frequency 15 16 13 99

Min Desc.
Length

6 7 3 25

AEMI 5 9 4 32

Boundary
Entropy

3 3 1 9

All 4 experts 21 14 5 12

Freq + MDL 52 26 21 81

fritz
56

the same and reinforces our conclusions from the
previous evaluation.

4.3.3 Evaluation C: Entropy

Table 4.3.3 Evaluation C: Entropy of Output

Method Port

#25

Port

#80

Port

#21

Port

#79

Port

#1023

Port

#22

Frequency 9.19 5.11 5.17 3.78 0.86 5.79

Min Desc.
Length

8.61 5.26 5.50 1.43 0.77 8.61

AEMI 8.66 5.74 9.23 6.27 1.10 7.32

Boundary
Entropy

7.89 5.36 6.79 2.63 0.96 7.75

All 4
experts

9.52 5.07 5.36 6.32 1.39 5.74

Freq +
MDL

7.94 4.98 9.04 4.31 1.91 8.32

Table 4.3.3 reports the results of all the approaches
based on Evaluation C on four text based and two non
text based ports, Smtp (25), Http (80), Ftp (21),
Finger (79), SSH (22), and TCP Reserved (1023).
This evaluation compares the schemes on both text
based as well as non-text based ports and allows us to
compare the techniques without any bias. The relative
values vary for different ports. For port #25 Boundary
Entropy gives the best results, however for ports #79
and #1023, Minimum Description Length gives lowest
entropy. Frequency gives lowest entropy values for
port #21, Freq + MDL and the combination of all four
methods achieve the lowest entropy for #80 and #22
respectively. Since all techniques are very close in
this evaluation, it is difficult to say which technique is
best for all ports based on this evaluation only.
However we can make port specific conclusions like
for port #80, Freq + MDL is the best technique.

4.3.4 Evaluations on Combined models

Since Frequency + MDL and the model combined of
all algorithms have the potential of giving better
boundaries indicated by evaluations A-B and
evaluation C respectively, we performed experiments
on the remaining ports with these two techniques.

Table 4.3.4 Results from Additional Ports for Freq +
MDL and ALL

Port # Evaluation A

% Words
Found

Evaluation B

% Keywords
Found

Evaluation C

Entropy

 Frq +
MDL

ALL Frq +
MDL

ALL Frq +
MDL

ALL

23 13 7 5 3 7.88 8.08

113 43 20 -- -- 4.45 5.18

515 38 14 -- -- 7.66 7.27

Table 4.3.4 reports results of the two models,
Frequency + MDL and the combination of all
algorithms on additional ports, for all three
evaluations. Based on these results, it is evident that
Frq+MDL performs better than the model combining
all four approaches. Even though Frq+MDL performs
very well, the inclusion of the other two techniques
weakens the model. This could be attributed to the
probability that with the inclusion of AEMI and BE
the model gets confused and results deteriorate.
Boundary Entropy in particular attempts to vote at too
many positions and lowers the performance.

4.3.4 Evaluation D: Detection Rate

Table 4.3.5 Detection Rate for Space Separated
LERAD and Boundary Separated LERAD using Freq

+ MDL tokenization

PORT# 10 FP/day 100 FP/day

 Space-
Separated

Boundary-
Separated

Space-
Separated

Boundary-
Separated

20 2 2 4 5

21 14 16 14 17

22 3 3 3 3

23 13 14 13 14

25 15 16 16 16

79 3 3 3 3

80 10 10 11 13

113 2 2 2 2

Overall 59 62 63 68

fritz
57

Based on our first three evaluations, we picked the
most promising technique for our fourth and most
important evaluation. From the previous evaluations,
it was obvious that certain techniques may be better
depending on the port. However, the model consisting
of Frequency and Minimum Description Length gave
a good performance consistently. Thus, we decided to
perform our final evaluation on this technique.

LERAD forms conditional rules that are used to test
tuples from test data. The alarms generated were
evaluated for two different allowed false alarm rates –
10 and 100 per day respectively. The results, reported
in Table 4.3.5, indicate some improvements in the
total number of detections for both text based and
non-text based protocols. Port #20 shows an
improvement of one detection when the false alarm
rate is set to 100 per day. Considerable improvement
for port #s 21, 23 is observed for both false alarm
rates. Port #25 and #80 also show an improvement of
one attack each at false alarm rates of 10 per day and
100 per day respectively. For other ports where the
results are comparable, we suggest two possible
reasons. Firstly, the training data for these ports was
not sufficient for the experts to cast vote during the
testing phase. In addition, for certain ports, it never
generated any rules based on the tokens from the
payload—LERAD did not find the payload tokens to
be indicative of normal behavior. In such cases, even
if tokens that are more meaningful were extracted by
our algorithms, the results would not be affected.

 We also present a set of “Overall” results which
indicate the total number of attacks detected over all
the ports, excluding the duplicate detections. This
means that there are several attacks which occur
across ports, multiple detections of the same attack in
different ports are discarded. Even the overall
detection shows an improvement of 3 attacks when
false alarm rate is set to 10; and an improvement of 5
when the false alarm rate is set to 100. That is an
improvement of 5% and 8% respectively.

We also performed experiments using a combined
model of all the ports instead of using port specific
data. Even then LERAD with space-separated tokens
finds 36 attacks in week 4 data as compared to 38
attacks detected if boundary separated tokens are
considered. The false alarm rate was 10 per day for
this result. On increasing this rate to 100 per day, the
former still detects 36 attacks while the latter detects
39. Data for week 5 was not used for these results and

experiments are still being conducted to evaluate this
technique on week 5 data of the DARPA data set.

5. Concluding Remarks

In this paper, we present the four algorithms based on
characteristics mentioned above, and apply them to
parse the payload to extract more information about
the traffic. The results of each of those techniques
applied independently and then applied in various
combinations based on these evaluations are given.
According to the experimental results obtained from
the DARPA 99 dataset, we observed that Frequency
and MDL are two strong experts individually and
achieve good results. MDL works even better when
training and testing sets are more similar. Frequency is
highly predictive and does well on different training
and testing sets. When combined, the model formed
by combining Frequency and MDL is found to be the
strongest. Combining all four methods does not do as
well as Frequency + MDL. This payload parsing
method, when applied to the LERAD anomaly
detection algorithm, leads to an increase in the
detection rate in two configurations: individual
LERAD model per port or single LERAD model for
all ports. The overall detection rate also showed a
significant improvement of 5% and 8% at the rate of
10 and 100 False-alarms/day respectively. One
significant contribution we would like to bring forth is
that we have made use of information from the
payload while most IDS concentrate on the header
information. Also our payload parsing technique is
such that it can be applied to any protocol. Our
parsing techniques also use weighted voting, which is
different from the original VOTING EXPERTS.

Our goal is to use these approaches to improve the
features used by the anomaly detection algorithm
LERAD [7]. One may also point that payloads may be
encrypted. However, the payload has to be decrypted
somewhere; that is, the detection algorithm can be
placed after the payload is decrypted.

Our algorithm is offline. Adapting to protocol
changes would require retraining, but retraining is far
less labor intensive than changing hand-coded parser.
Furthermore, our offline algorithm can be applied in a
semi-online manner. For example, learn a model
using data from one day, and then learn a model using
data from two days and so on. That is, the model is
updated each day.

fritz
58

The algorithms do show improvement over the
original LERAD. Moreover, the techniques are
subject to further investigation that can improve the
results further. Another improvement can be made by
using the tokens which are likely to give maximum
information instead of the first eight boundary
separated tokens. This property of the tokens can be
measured by again looking at features like frequency,
AEMI and so on. Of the words that are retrieved in the
output, the ones with maximum feature value are
likely to give us maximum information. We will also
try to integrate our technique, i.e. incorporating
information from the payload, to more intrusion
detection systems. We will also be apply the
technique to real data in the near future.

6. Acknowledgement

This work is partially funded by DARPA (F30602-
00-1-0603). We thank the LLR members for their
help on ideas and the anonymous reviewers for their
comments.

References

[1] Philip K. Chan, Constructing web user profiles: A
non-invasive learning approach, In Web Usage
Analysis and User Profiling, LNAI 1836, Springer-
Verlag, p39-55, 2000.

[2] Paul Cohen, Brent Heeringa, and Niall Adams. An
unsupervised algorithm for segmenting categorical
time series into episodes, IEEE International
Conference on Data Mining, 2002.

[3] Susan Dumais, John Platt, David Heckerman,
Inductive Learning Algorithms and Representations
for Text Categorization, In Proc. of ACM-CIKM98,
1998.

[4] Steven A. Hofmeyr, Stephanie Forrest and Anil
Somayaji. Intrusion detection using sequences of
system calls. Journal of computer security, 1998.

[5] Jiang N., Hua K., and Sheu S. Considering Both
Intra-pattern and Inter-pattern Anomalies in Intrusion
Detection, In Proc. of International Conference on
Data Mining, 2002.

[6] Yihua Liao, V. Rao Vemuri. Using text
categorization techniques for intrusion detection, In
Proc. 11th USENIX Security Symposium, 2002.

[7] R. Lippmann, J. Haines, D. Fried, J. Korba & K.
Das. The 1999 DARPA Off-Line Intrusion Detection
Evaluation, Computer Networks, 34(4), p579-595,
2000.

[8] Matthew V. Mahoney, Philip K. Chan, An
Analysis of the 1999 DARPA/Lincoln Laboratory
Evaluation Data for Network Anomaly Detection,
Proc. 6th Intl. Symp. Recent Advances in Intrusion
Detection, p. 220-237, 2003.

[9] Matthew V. Mahoney, Philip K. Chan, Learning
Models of Network Traffic for Detecting Novel
Attacks, In Proc. of the Third IEEE International
Conference on Data Mining, 2003 (to appear).

[10] Nevill Manning, C.G., Witten, I.H. Identifying
hierarchical structure in sequences: A linear time
algorithm, Journal of Artificial Intelligence Research,
7, 67-82.

[11] C. C. Michael, Finding the Vocabulary of
Program Behavior Data for Anomaly Detection, In
DISCEX, 2003.

[12] Isidore Rigoutsos and Aris Floratos.
Combinatorial pattern discovery in biological
sequences, Bioinformatics, 14(1):55–67, 1998.

 [13] Alfonso Valdes, Detecting Novel Scans Through
Pattern Anomaly Detection, In Proc. DISCEX, 2003

 [14] Andreas Wespi, Marc Dacier, and Herve Debar.
Intrusion detection using variable length audit trail
patterns, In Proc. of Recent Advances in Intrusion
Detection, 2000.

fritz
59

1

Detecting Privilege-Escalating Executable Exploits

Jesse C. Rabek, Robert K. Cunningham, and Roger I. Khazan
MIT Lincoln Laboratory

rkc@ll.mit.edu, rkh@ll.mit.edu

Abstract1

 The Lincoln Laboratory Malicious Code Detector
(LIMACODE) is a system for statically detecting
privilege-escalating exploits in data streams, such as files
and network traffic. LIMACODE operates as follows: it
scans data streams, identifies the language of the stream,
then extracts language-specific features for input to a
feed-forward neural network classifier which labels the
stream as either malicious or benign. LIMACODE is
designed to be a relatively lightweight system that can
classify a large number of streams quickly so as to be
deployed at sites where new data streams (e.g., software)
appear frequently. This paper describes a part of
LIMACODE that detects privilege-escalating exploits
embedded in UNIX Executable and Linking Format (ELF)
files; the detectors for C and shell code exploits were
described earlier elsewhere.

1. Introduction

There are many routes an attacker may take when
attempting to compromise a computer system, including
employing social engineering, exploiting a vulnerability
in a network or local service, or tampering with a
physically accessible computer system. However, the
damage caused, information gained, resources obtained,
etc. is limited by the privileges held by the attacker. On
UNIX-based systems, such privileges allow a user to
access only those resources that have been specifically
granted to the user, to the user’s groups, or to the
programs that the user is allowed to use [1].

Often attackers attempt to increase the privileges that
they hold in order to obtain access to resources that are
otherwise unavailable to them. In order to increase their
privileges, attackers must either cause the operating
system to grant them unauthorized privileges or cause a

1 This research was sponsored by the Defense Advanced

Research Project Agency (DARPA) under Air Force Contract
F19628-00-C-0002. Opinions, interpretations, conclusions, and
recommendations are those of the authors and are not
necessarily endorsed by the United States Government.

process with a different set of privileges to perform
unauthorized actions on their behalf. Unauthorized
privileges can be granted if a system is configured in an
insecure manner or if users select weak passwords;
attacks against these vulnerability classes are not the
focus of this paper. Unauthorized actions can be
performed if an attacker can inject code and cause the
privileged process to run it. Our focus is this latter case.
Specifically, we wish to detect exploits used to perform
code injection via out-of-bounds writes, also known as
buffer overflows. Buffer overflow vulnerabilities have
been and remain one of the most common: between July
2002 and July 2003, 231 out of 712 (approximately 32%)
of high severity vulnerabilities published by NIST were
from buffer overflows [2].

This paper describes The Lincoln Laboratory
Malicious Code Detector (LIMACODE). LIMACODE
can detect privilege-escalating C, shell, and executable
code. Detectors for source code analysis of attacks that
exploit buffer overflows and time-of-check-to-time-of-use
errors [3] in privilege escalating C and Shell code are
described elsewhere [4]. This paper describes a detector
for attacks that exploit buffer overflows in privilege
escalating code appearing in Executable and Linking
Format (ELF) files compiled for the x86 architecture.
ELF is the most common binary executable format used
in Linux and Solaris OSs, and x86 processors are the most
prevalent. However, there is nothing inherent in our
approach that would prevent it from being used on other
file system formats, operating systems, or architectures.

2. Background and Related Work

Buffer overflow attacks can be detected using dynamic
or static analysis. Dynamic analysis monitors software
that is executing, and therefore requires an appropriate
environment for running the exploit and vulnerable
software, and obtaining information about their
interactions. The requisite environment includes the
correct operating system, libraries and external programs
and an audit system to report on the executing software.
In contrast, static techniques examine code without
running it. Such techniques are useful in a network in
which the ingress of all software is to be monitored, but

fritz
6

fritz
60

the software is arriving through various methods (e.g.
downloaded in a web browser or pulled from the local ftp
server to which outside users upload files) for different
operating environments. While the software can be
examined as it arrives, the host on which it is arriving or
passing through may not be able to run the software for
various reasons (e.g. wrong operating system,
architecture, or available libraries). Static analysis is also
useful for forensic analysis. It is important for our system
to be able to detect old attacks, variations on old attacks,
and novel attacks. There are several different static
analysis approaches that we considered pursuing to meet
these requirements. A signature scanner [5] is fast, but
does not reliably handle variations on old attacks even
when the signature language is highly expressive. Some
commercial virus detection systems using this approach
are unable to handle even modest code obfuscation [6].
Neither a policy enforcement approach [7] nor an
emulation approach were selected because of the
computational overhead [8].

Instead, we pursued a machine learning approach to
achieve accurate detection, initially examining source
code because it was easier to perform feature extraction
[9]. Others have pursued similar strategies with binary
data, although most examined detection of viruses on
DOS and Windows systems. Feature extraction must be
performed to achieve fast, accurate classification of
malicious software. The amount of intelligence built into
the preprocessing step ranges from none, where software
is treated as byte sequences with different likelihoods of
being in malicious software [10], to some, where a feature
is either a byte sequence, a string or a dynamically linked
library [11], to substantial, where software is converted
into an abstraction pattern prior to matching [6]. In our
approach, a few instructions are interpreted and machine
learning combines these to create an accurate system that
is moderately robust to obfuscating transformations, but
which can quickly process new files.

3. System Overview

LIMACODE is a static analysis system that detects old
attacks, variations on old attacks, and novel attacks. It
uses a language-specific static feature extractor with a
feed-forward neural network classifier since this type of
system is able to define general classes of privilege
escalating attacks and is therefore more robust in
determining both novel attacks and variations on old
attacks.

The remainder of this section provides a system
overview to LIMACODE. A high level flow diagram of
the detection process appears in Figure 1.

Figure 1. LIMACODE flow chart
The diagram depicts a byte stream (e.g. from a file or
network packets) being fed into a language identifier. The
language identifier determines which detector (language-
specific feature extractor and attack classifier), if any,
should be used to analyze the byte stream. The chosen
feature extractor examines the byte stream for interesting
features and reports them in the form of a vector of
integers and real numbers; the vector is then fed into the
attack classifier. The output of the attack classifier is the
posterior probability that the byte stream does or does not
contain privilege-escalating code.

Using this approach, our system is easily extensible to
new attack vectors, such as those that employ scripting
language formats, by adding more feature extractors and
attack classifiers, and then updating the language
identifier to include the new byte stream type.

The ELF Attack Detector discussed in this paper
operates on ELF files; hence, in the remainder of the
paper the byte stream source is assumed to be a file.

3.1. Language Identification

The first step in processing a given file is to identify its
language type so that the appropriate feature extractor and
attack classifier are used. The language classifier allows
each file to only be processed by one detector, thereby
speeding the overall detection process at the possible cost
of a missed detection. LIMACODE uses a rule-based
system that exploits a language’s defined structure and
syntax to determine a file’s type. For ELF files, the
language identifier looks for the presence of the ELF
magic number at a fixed offset into the file. This simple
approach has correctly identifying every ELF file we have
encountered. For C and shell source code, the language
identifier parses the contents of the file; however, this was
not required for ELF files [4].

fritz
61

3

3.2. Attack Feature Extraction

In order to understand the privilege-escalating attack
features and the extraction process, some background on
ELF binaries is necessary. ELF binaries consist of a
required header section and one or more optional sections
[12]. The header section contains information such as the
version, target architecture, and the virtual memory
address at which the ELF file is loaded. The remaining
sections are optional although there are some, such as the
.text and .data sections, that are almost always present.
The .text section contains the actual executable code, the
.data section contains initialized data, and the .rodata
section contains the read-only data.

The ELF feature extractor parses an ELF file into its
.text and .(ro)data sections, analyzes these sections, and
produces statistics that could identify a given file as
malicious. Attack feature statistics represent the steps
necessary for injecting code into one or more buffer
overflow vulnerabilities. To achieve the best performance
on the widest variety of attack code, each feature should
encode all possible ways to accomplish a particular part
of the attack.

We started with a large number of features in various
groups, some inspired from the best features in the
LIMACODE C and shell classifiers and some based on
our knowledge of how privilege-escalating attacks work.
We then used a forward-and-backward, leave-one-out
selection process [13] to select those sets of features that
best divided the sample space. The selected features can
be categorized as a kernel call, instructions in data, or
other, and are shown in Table 1.

Table 1: Features used to classify privilege-
escalating code.

Group Name Count
Type

Description

Exec N Exec family of functions

K
er

ne
l

C
al

l

System N System family of functions

In
st

ru
ct

io
ns

in
 D

at
a

Payload M
Instruction sequences or
combinations typically
found in injectable buffers

Code in
Strings

P
C or shell source code
present in strings in the
.data sections

O
th

er

Size
Data

M
Size of the largest .data
section

Count Legend: (P)resent, (N)ormalized, (M)aximum.

There are several ways the features statistics are
measured: Present, Normalized, and Maximum. Present
indicates if a sample does or does not have a feature.
Normalized is the number of times a feature appears in a
sample normalized by an appropriate divisor to obtain a
notion of the density of the feature. Maximum records the
value of the window with the highest score. All possible
combinations were considered during feature selection
and the best method for counting a feature is presented in
the Count column in Table 1.

The remainder of this section describes the
observations that led to creating these features and the
specifics of our implementations.

Kernel Calls
Observation: Privilege escalating code needs to pass

information to a higher privilege process in order to
exploit it. Sometimes this is done by starting a vulnerable
program with carefully selected arguments. Empirical
tests indicate that most benign binaries have a low density
of calls to the program initiating services exec and system.
Shorter exploit programs that launch a vulnerable, higher
privilege application have a higher density of these calls.
We imagine the same is true for inter-process
communication calls as well, although we were unable to
gather enough training and test samples to verify this.

Implementation: Independently decode and count the
occurrences of process creation using the exec family of
functions1 that fully specify program path and input, and
also the system call that uses the shell to specify the
environment and determine the absolute program path.

E x t e n s i o n : I n t e r p r o c e s s c o m m u n i c a t i o n
(pipe/signal/shmat/connect) should also be
counted.

Instructions in Data
Observation: Certain types of executable actions rarely

appear in localized parts of non-exploit data sections
unless constructed specifically for injection and execution
in a higher privilege process. Among these are software
that isolates code location, zeros out registers, and
includes control flow.

Implementation: The feature extractor examines a
fixed-size sliding window of decoded instructions looking
for particular instructions and instruction sequences that
accomplish actions that are commonly performed by
injected code, adding one point for each type found. Each
action is counted only once, even if multiple examples of
the action occur within the sliding window. The count
thus encodes the number of diverse actions present in a
window. The window is used to require locality of
actions; window sizes of 20, 30, 40…100 were used with
the training data and a window size of 50 consecutive

1 execl, execle, execlp, execv and execvp

fritz
6

fritz
62

instructions was found to give the best discrimination.
Large non-attack binaries may also contain many of these
actions in the .data section, but they are distributed over
the entire section, whereas dedicated exploit code has
tended to have more densely packed features. The
following paragraphs detail what each action does and
why it is important to look for it.

The first action determines the location of code so that
once the exploit has occurred and the buffer is executing,
it can pass the address of local data as arguments both to
functions provided by standard libraries and to the kernel.
This is necessary because the exact location where the
payload is injected can depend on the version of the
victim application and late-bound library load order,
among other factors. An example instruction sequence
that will accomplish this is a relative call to a p o p
instruction. In this sequence, the call instruction causes
the address of the next function to be placed on the stack.
The immediate pop will place that address into a register,
which can then be used as a reference point for its local
data. If there is a jmp instruction that redirects control
flow to the initial call instruction in this sequence, then
two points are added to the total score for this window
since this sequence is prevalent in our training data and is
more indicative of an injectable buffer.

The next action looks for instructions that cause
control flow changes, since injected code makes decisions
based on return codes, and often loops to perform various
actions (e.g. file scanning or denying access to some
service). LIMACODE looks for local calls and jumps that
direct control flow to somewhere within the instruction
window. One point is awarded if one or more control flow
actions are found.

Another common action is setting a register to zero.
Empirical tests indicate that instructions and instruction
sequences that zero registers are common in the part of
the .data sections of malicious ELF files that contain an
injectable buffer. There are many ways to do this; for this
system, we only include common, single-instruction
instructions that accomplish this: Xor register register;
mov register, 0; a n d imul register, 0. One point is
awarded if one or more instructions are found that set a
register to zero, regardless of the register used.

The final code-in-data action identifies the presence of
one or more kernel calls since injected code frequently
needs to interact with the operating system. On x86 based
Linux operating systems, this instruction is INT 0x80
(interrupt 0x80). This instruction causes a transition into
the kernel from where the call is handled.

 In regards to the Payload feature as a whole, we
found that such a heuristic was necessary since simpler
schemes, such as looking for runs of valid instructions,
did not work because the IA-32 instruction set is very
dense and a random sequence of bytes has a high
probability of being a valid sequence of instructions. One

of the features that was eliminated as a result of feature
selection involved the detection of a payload by
identifying valid sequences of instructions in the .data
section.

Extensions: Other instructions that should also be
counted include multiple-instruction sequences that zero
registers as well as instructions that reference
environment string memory locations.

Other
This final group of features also indicates that the

sample attempts to increase privileges, but did not fit into
the other two classes.

Observation: It is rare for non-exploit code to embed C
or shell code in the .data section of an executable; in
contrast, exploit code often includes shell code as part of
its launching or exploitation process. Also, sometimes C
source of an exploit is included in attack software so that
it can be compiled differently based on the exact details of
the victim application (e.g. version or configuration).

Implementation: In order to detect both C and shell
code appearing in strings, all strings appearing in the
.data section are used as byte stream inputs to a modified
versions of the C and shell classifiers respectively [9].

Observation: The vast majority of our training samples
had small .data sections. This is due to the fact that the
exploit code we used for training contained an injectable
buffer, the name of the vulnerable program, and little else.
Compiler options may dramatically affect the size of the
.text sections (e.g. static versus dynamically linked), but
not the .data sections. While not a good indicator on its
own, when combined with the other features it
significantly improves the ability of the classifier.

Implementation: During the ELF parsing process, the
size of the largest .data section is recorded and included
as part of the feature vector.

3.3. Attack Classification

The attack classifier’s neural network is a multi-layer
perceptron classifier with a single hidden layer trained
using back-propagation of errors [14]. A gradient descent
method with a squared error cost function is used for
training in which the new weights propagating backward
through the network. Training time is negligible using
these techniques on the feature vectors and sample sizes
used here. Other machine learning techniques were
informally explored, but this approach gave the best
results for the cases considered.

Prior probabilities of the attack and training classes
were equalized to maximize detection rate at the cost of
an increased error rate, since more files are benign than
malicious. LIMACODE is therefore more likely to

fritz
63

5

misclassify a benign file as malicious than to misclassify
a malicious file as benign.

4. Data Sources

Benign and privilege escalating samples were collected
at two different times in order to test the ability of the
system to detect new, unseen attacks.

For the malicious samples, C source code was obtained
from various websites. Only code that had privilege
escalating intent was collected. There are 221 training
samples that were collected between July 2001 and
January 2002 and included attacks that were released
from before that time period. The 68 testing samples
were collected between January 2002 and September
2002 and only included samples released in that time
period. Test samples were verified as distinct from
training samples by performing a byte level comparison
of each compiled test sample against the existing
compiled training samples. The malicious C files were
compiled in as similar a method as possible to the benign
samples so as not to leave compilation artifacts that could
easily identify the malicious samples.

The benign samples were taken from the /usr/bin
directory of a default Red Hat 7.1 installation. The 1280
total benign files were portioned into training and test
sets: 979 were randomly chosen to be in the training set
and the remaining 301 were used in the test set, to match
the ratio of the training and test set of the malicious data.

5. Evaluation

This section presents the ability of LIMACODE to
detect new, unseen privilege-escalating ELF binaries and
its data processing speed.

5.1. Detection

Figure 2 displays the accuracy of LIMACODE in the
form of a detection error tradeoff (DET) curve [15]. In
the figure, the false alarm percentage is plotted against the
miss percentage for various operating points (i.e.
thresholds applied to the output of the classifier). The
axes are scaled by normal probability deviates to magnify
the target zone.

Unlike fixed-heuristic or signature-based systems,
LIMACODE can be operated over a range of operating
values, with the operating point selected by a user who
specifies the relative value of misses and false alarms.
Three points are of particular interest for different uses:
the point where the false alarm rate approaches zero, the
equal error rate, and the point where the miss rate
approaches zero. The first point is interesting for virus
detection-like applications where the user wants some

protection but mostly does not want other applications to
be erroneously labeled. Here, the false alarm rate
approaches zero when the miss rate is approximately
30%. Next, the equal error rate describes the point at
which miss and false alarm rates are equally important;
for LIMACODE’s Malicious ELF detector the rate is
4.65%. The final point of interest is one which might be
used to scan a captured disk, and for which missing an
exploit is much worse then spending the time to examine
a false alarm. The miss rate approaches zero when the
false alarm rate is about 35%.

Figure 2: LIMACODE Performance
The results of training and testing the classifier on

three different single features are also presented alongside
the primary result, since it is conceivable that single
features dominate the output. As is clear from the figure,
combining multiple features significantly improves the
accuracy of the system over most of its operating range.
The curves for the accuracy of the isolated System and
Code in Strings features do not appear on the graph as
they lie outside the region in view. Although individually
inaccurate, the integrated system accuracy improves when
these features are included.

For false alarm rates less than about 0.6%, the single
payload feature is a better discriminator than the classifier
that uses all the features. At these low rates, features other
than the payload feature introduce a significant amount of
noise.

fritz
6

fritz
64

5.2. Throughput

In evaluating the throughput of the system,
LIMACODE was used to classify the contents of the
/usr/bin directory on a RedHat 9.0 installation. On an
Intel Pentium III running at 800 MHz it classified 2,336
files with a total size of 170 MB in 142 seconds or 1.17
MB/s. During execution, LIMACODE spends the vast
majority of its time in the feature extraction phase.

6. Discussion

The LIMACODE system does not use signature
matching, and is therefore able to detect attacks that it has
not seen before. Instead of looking for specific sequences
of instructions, features representing actions that are
required to exploit a vulnerability in another process
encode the fact that there are multiple ways to accomplish
the same goal. Our implementation requires locality of
multiple required actions. For an attacker to hide from the
system, he must obfuscate multiple actions. This is
harder to do than to change an isolated signature.

Our approach is resilient to many common obfuscation
techniques [6]. It is not affected by code transposition (in
which instruction order of an attack is altered), because
there is no explicit model of instruction sequences. It is
not affected by register reassignment (in which the
specific registers used by an attack is changed), because
there is no explicit model of a given register for a given
attack. It is relatively insensitive to instruction
substitution, because in the case where instruction classes
are used, all equivalent single-instruction cases are
included. (It remains possible to use multi-instruction
code to accomplish similar ends, and this is not yet
addressed.) Finally, the system is insensitive to dead-
code insertion, provided the amount of dead code injected
does not cause the exploit to become longer than the
scanning window.

There are a number of features that could be added to
LIMACODE to increase its accuracy. First, the Payload
feature could be extended to include more injected buffer
actions such as identifying references to environment
variable locations, decryptor blocks for obfuscated
payloads, and typical API usage sequences. Also, the C
source feature set identified calls to link as part of the
System Call group. This feature helped detect exploits of
race conditions. However, due to an insufficient number
of samples in this newer data set, it was not included in
the executable feature set. Collecting a sufficient number
of such samples with which to train and test would allow
LIMACODE to be tuned to detect this class of privilege
escalating attacks.

It is, however, possible to bypass LIMACODE, by
causing the counts of the features to change. An attacker
could increase the feature count by adding unexecuted

dead code to an exploit. Other techniques will work
equally well. To respond to this, our system would need
to either remove dead code or, equivalently, increase the
window size in the presence of dead code. Alternatively,
an attacker can decrease the feature count, perhaps by
encrypting or obfuscating actions, encoding an action
using an instruction or instruction sequence that we don’t
count, or by spreading out the actions in the .data section
so that they fall outside of the code window.

Finally, an attacker can avoid the system altogether.
Most modern UNIX-like operating systems have
compatibility modes, and can execute the older a.out file
format (as well as several others). While there is nothing
to prevent us from adding support for these file formats,
we have not done so.

7. Summary of Results

The most important result from this paper is that it is
possible to build an accurate detector of unobfuscated
ELF attack code by identifying the specific actions that
privilege-escalating code must take in order to accomplish
its goal and then detecting code which accomplishes these
actions.

LIMACODE raises the skill level required for creating
and transmitting an exploit into an enclave. We found
that much of the easily obtainable privilege escalating
code does not attempt to hide its intent. Therefore, in
order to compromise a system protected by LIMACODE,
an attacker would have to find or develop intentionally
obfuscated attack code.

8. Acknowledgements

We would like to thank Craig Stevenson for his work
on the C and Shell code part of the LIMACODE project
[4] and his contributions to an early version of the
malicious ELF file detector.

References

[1] S. Garfinkel and E. H. Spafford, Practical Unix and
Internet Security, 2nd ed: O'Reilly & Associates, Inc., 1996.
[2] NIST, "ICAT Metabase," 2000.
[3] M. Bishop and M. Dilger, "Checking for Race Conditions
in File Accesses," Computing Systems, vol. 9, pp. 131-152,
1996.
[4] C. S. Stevenson and R. K. Cunningham, "Accurately
Detecting Source Code of Attacks that Increase Privilege,"
presented at Recent Advances in Intrusion Detection, Davis,
CA, 2001.
[5] S. Kumar and E. H. Spafford, "A Generic Virus Scanner in
C++," Purdue University, West Lafayette, IN, Technical Report
September 17 1992.

fritz
65

7

[6] M. Christodorescu and S. Jha, "Static Analysis of
Executables to Detect Malicious Patterns," presented at 12th
USENIX Security Symposium, Washington, D.C., 2003.
[7] M. D. J. Bergeron, J. Desharnais, M. M. Erhioui, Y. Lavoie
and N. Tawbi, "Static Detection of Malicious Code in
Executable Programs," presented at Symposium on
Requirements Engineering for Information Security,
Indianapolis, Indiana, USA, 2001.
[8] F. Leitold, "Reductions of the general virus detection
problem," presented at EICAR International Conference, 2001.
[9] R. K. Cunningham and C. Stevenson, "Accurately
Detecting Source Code of Attacks that Increase Privilege,"
presented at Recent Advances in Intrusion Detection, Davis,
CA, 2001.
[10] J. O. Kephart and W. C. Arnold, "Automatic Extraction of
Computer Virus Signatures," presented at 4th Annual Virus
Bulletin International Conference, Abingdon, England, 1994.

[11] M. G. Schultz, E. Eskin, E. Zadok, M. Bhattacharyya, and
S. J. Stolfo, "MEF: Malicious Email Filter," presented at 2001
USENIX Annual Technical Conference, Boston, MA, 2001.
[12] "Tool Interface Standard (TIS) Executable and Linking
Format (ELF) Standard, Version 1.2," 1995.
[13] Feature Extraction Construction and Selection: A Data
Mining Perspective: Kluwer International, 1998.
[14] R. P. Lippmann, L. C. Kukolich, and E. Singer, "LNKnet:
Neural Network, Machine Learning, and Statistical Software for
Pattern Classification," Lincoln Laboratory Journal, vol. 6, pp.
249-268, 1993.
[15] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M.
Przybocki, "The DET Curve in Assessment of Detection Task
Performance," presented at Eurospeech97, Rhodes, Greece,
1997.

fritz
6

fritz
66

A Prototype Tool for Visual Data Mining of
Network Traffic for Intrusion Detection∗

William Yurcik Kiran Lakkaraju James Barlow Jeff Rosendale

National Center for Supercomputing Applications (NCSA)
University of Illinois at Urbana-Champaign
{byurcik,kiran,jbarlow,jeffr}@ncsa.uiuc.edu

∗ This research is supported in part by a grant from the Office of Naval Research (ONR) within the National Center for Advanced
Secure Systems Research (NCASSR) <www.ncassr.org>

Abstract

Human comprehension of the overall security of large
and complex networks of machines is currently limited
since security staff use multiple applications, each with
limited scope, most without visual output. We have
developed a new tool called NVisionIP for allowing an
operator to interactively assess the security situational
awareness of an entire network using visualizations
derived from NetFlow log data that is continuously
collected. This tool is a novel contribution because for
the first time it shows the macro/micro relationships
between individual machine events, subnet events, and
network-wide events on a single screen, specifically a
color-coded grid with drill-down views representing an
entire Class B IP address. We provide examples of
experimental output results showcasing tool utility for
managing security on large and complex networks,
concluding with plans for deployment in production
environments.

1. Introduction

The current state of computer security on most
networked systems is dangerous and by most metrics
getting worse. There are many unpatched software
vulnerabilities as well as point-and-click software that
will exploit these vulnerabilities allowing intrusions and
disruptive attacks. While the Internet has enabled
impressive productivity gains due to connectivity, this
same connectivity also allows malicious attackers
worldwide direct access to your network perimeter. In
addition, corporate security incident surveys report that
insider attacks, staff with privileged access and
knowledge, are an even greater threat.

We propose that the solution for security begins with
human awareness and subsequent understanding of
exactly what is occurring on a network – Know thy
network! Ignorance is bliss, but it is also very risky;
unfortunately this is still where most organizations find
themselves due to the lack of satisfactory tools. While

situational awareness of computational security has
evolved from “Is there a problem?” to “Where is the
problem?” to “What is the problem?” - state-of-the-art
tools still do not facilitate assessing entire networks as a
whole. Identifying and disabling individual compromised
machines, scanning for known vulnerabilities that are
unpatched, and filtering specific perimeter traffic may
produce short-term gains, however, the ability of a human
operator to efficiently, clearly, and continuously assess
the security posture of an entire network at any instant in
time are long-term requirements currently not being
addressed.

We would like to briefly highlight two of the stated
requirements: (1) monitoring an entire network and (2)
monitoring continuously. Monitoring an entire network
as a holistic system is important because a malicious
software foothold (no matter how small) anywhere inside
the perimeter will endanger all machines [13]. It is vital
to be able to assess the security posture of a network at
both the macro and micro scales simultaneously in order
to comprehend the relationship between individual events
(an intrusion on an individual machine) and network-wide
events (disruptions and/or attacks on multiple machines
across the network). We will show how the macro/micro
views has enabled detection of attacks that otherwise
would not have been detected. Monitoring continuously
is important because there is a need for vigilance over
time – technology changes over time will necessitate
adaptation by both offense and defense that should be
considered and attackers are both intelligent and
persistent, they will circumvent static protection unless
monitoring can dynamically track and be poised to react
to new attacks (so called “zero-day” exploits). We are
not expecting a human to sit at a screen 24X7 but will
also show how animated visualizations can leverage
human cognitive abilities to understand events in the time
domain efficiently and effectively.

We have developed a visual data mining software tool
that meets these requirements. Our unique tool,
NVisionIP, allows an operator to interactively monitor the
security status of an entire network on one screen using a

fritz
67

visualization derived from processing audit log data that
is continuously collected. NVisionIP is novel because no
other tool allows an operator to visually assess situational
awareness of an entire network in one screen (actually a
Class B IP address space of 65K hosts with each host
having 130K (TCP/UDP ports) based on time-series
events. Typically security staff can view only small,
highly aggregated portions of the network and are forced
to use multiple applications because each individual
application only provides limited information (signature
matches, network/machine performance status, traffic
filter statistics, worm/virus detection).

Since clear interpretation by a human operator is
another requirement, we intentionally made the output of
NVisionIP visual for reasons of human cognitive
processing: (1) it is estimated that humans can process
visual information at 150Mb/s [11], (2) human vision is
especially tuned for discriminating tiny but high contrast
visual effects (referred to in psychology as the just-
noticeable-difference), and (3) humans perform well at
recognizing visual patterns especially when intuition can
be used (ecological design).

The remainder of this paper is organized as follows:
Section 2 provides background on network visualizations
and the NetFlow application (NetFlow is our efficient data
source satisfying our last requirement). Section 3 presents
the architecture of NVisionIP and output results from
different experiments. Section 4 discusses both the
significance and limitations of this new tool. In Section 5
we close with a summary, conclusions, and directions for
future work.

2. Background

To put our research in context, we summarize
previous work in visualizing networks and security, as
well as introducing the application we utilize for source
data. This background highlights the unique contribution
of our new tool to current capabilities since previous
work is primarily focused on network overlays to
geographical maps or logical network configurations,
both of which convey few insights about security.

2.1. Visualizing Networks and Security

[3] provides a comprehensive overview of network
visualizations. Low-dimension visualizations include
networks mapped onto geography, logical diagrams of
equipment (including network management tools based
on SNMP), traffic level representations in x-y
diagrams/pie charts/histograms, connectivity diagrams
with links sized/colored corresponding to bandwidth
capacity, and packet-level animation of network

simulations (as best exemplified in OPNET1 and
Nam)[4]. High-dimension visualizations include the
peacock diagrams of Lumeta2 which show the Internet in
its own space independent of geography and the
SKITTER diagrams of CAIDA3 which show peer
interconnections projected on a polar-projected longitude
graph.

There has been a small amount of work combining
network visualization and security that we now describe
(in chronological order). [5] presents a prototype design
tool from the Harris Corporation named the Network
Vulnerability Tool (NVT) which visually depicts the
network topology under study (using HP’s Openview
SNMP product) and generates a vulnerability assessment
window with results from proactive scans and a
vulnerability database. [6] proposes visual symbols to
better communicate security events to users. [12] states
visualization should be the next focus of intrusion
detection systems (IDSs) since it can convert the
essentially serial IDS alarm process to the parallel
process of visual perception. [10] presented a
visualization of network routing information that can
detect inter-domain routing attacks and routing
misconfigurations. The most relevant work is a rapid
visual feedback system originally developed by the
NASA Jet Propulsion Laboratory for tracking the status
of spacecraft components that has now been adapted for
network security as a commercial tool called TowerView
Security [7]. To our knowledge, [7] and [10] are the
only working examples of computer network security
visualizations and they are both significantly different
that what we present in this paper.

2.2. Source Data: NetFlow Audit Logs

We utilize NetFlow audit logs as the data source for
our tool. Although there are a number of tools that
process NetFlow data4, the only NetFlow visualization
tool we are aware of is FlowScan that produces near real-
time x-y utilization diagrams of network traffic levels
geared toward bandwidth management [9]. NetFlow data
is derived from routers caching recent flows for lookup
efficiency. For the NetFlow application, a distinct flow is
defined as either a unidirectional TCP connection (where
a sequence of packets take the same path) or individual
unidirectional UDP datagrams. As shown in Table 1, an
individual record within a NetFlow log file consists of
some or all of the following: IP address pairs
(source/destination), port pairs (source/destination),
protocol (TCP/UDP), packets per second, timestamps
(start/end and/or time duration), and byte counts. While

1 http://www.opnet.com/
2 http://www.lumeta.com/
3 http://www.caida.org/
4 http://www.splintered.net/sw/flow-tools/

fritz
68

 Table 1. NetFlow Record Contents

NetFlow logs can grow large over time, depending on
the size of the network, amount of data transferred, and
duration of analysis, NetFlow logs are efficient since they
are typically much smaller in size than logs that capture
raw packets. NetFlow was initially introduced in Cisco
routers as a proprietary tool but has since become a
defacto feature across the majority of router vendors, with
the IETF Realtime Flow Management (RTFM) working
group preparing to standardize its implementation.5

NetFlow data is difficult to spoof and has been used
to identify security compromises based on suspicious
traffic patterns between source/destination IP addresses
and/or ports. NetFlow also exhibits a strong multiplicative
effect in that once a single clue is found, an operator can
subsequently use NetFlow to monitor traffic to specific IP
addresses and ports leading to other compromised
machines. Examples of the use of NetFlow for
computational security include identifying the source and
destination of denial-of-service attacks as well as
identifying compromised machines involved in:

• uploading/downloading unapproved software

(high traffic levels from a non-server machine)
• hosting Internet relay chat (IRC) servers (a

large number of unexpected flows from
multiple source IP addresses to a single
destination IP address which is a non-server
machine)

• worm/virus propagation (a large number of
flows from a single source IP address to
multiple destination IP addresses or ports)

• network and host probing6 - small scale
preattack reconnaissance to identify machine
platforms and port services that may be
vulnerable

• network and host scanning7 - large scale

5 The RFTM IETF Working Group home page can be found here:
<http://www2.auckland.ac.nz/net//Internet/rtfm/>. RTFM concerns itself with
current issues in traffic flow measurement including security issues relating to
both traffic measuring devices and the data they produce and existing work in
traffic flow measurement.
6 a host probe is a single connection request from a single source IP address to a
single destination IP address, a port probe is a single connection request from a
single source IP address to a single destination port on a single IP address, in the
same category as operating system fingerprinting
7 exhaustive one-dimensional host range scans – connection requests from a single
source IP address to a sequential range of multiple destination IP addresses,
exhaustive one-dimensional port range scans – connection requests from a single
source IP address to a sequential range of multiple destination ports on a single
destination IP address, exhaustive two-dimensional host/port range scans –
connection requests from a single source IP address to a sequential range of
multiple destination ports on a sequential range of multiple destination IP

preattack reconnaissance to identify machine
platforms and port services that may be
vulnerable, also used to virtually map a
network for malicious navigation, a host scan
can be detected as a source IP “touching” more
than a preset threshold number or ports on a
single machine while a network scan can be
detected as a source IP “touching” more than a
preset threshold number of destination IPs.

• hosting remotely installed “bots” that are
remote controlled (traffic patterns on unusual
ports)

While NetFlow logs efficiently provide a rich set of

network data, its size over time and streaming nature
makes finding useful security information difficult (such
as identifying the security situations just listed). Thus the
original scope of our investigation was to transform
unmanageable network data, from a source like NetFlow,
into something manageable for security purposes without
losing information. While our border router operating at
Gigabit/second second speeds represents a challenge for
NetFlow I/O interfaces for data management that can only
be solved using sampling techniques (with current
technology), we have been able to merge NetFlows from
multiple internal routers operating at slower speeds
without losing any information.

3. NVisionIP

NVisionIP is designed to meet three objectives. The
first objective is to accurately and concisely visualize
status information of an entire IP address space on one
screen. The second objective is to provide more detailed
information about specific machines. The third objective
is the ability to process different sources of input data.
NVisionIP achieves all three of these objectives, the first
by representing an entire class B IP address space as a
255X255 grid, the second by allowing an operator
multiple views of traffic activity to/from specific
machines within this address space, and the third by
making the architecture independent of source data.

addresses, distributed scans – connection requests from multiple source IP
addresses to multiple/single destination IP addresses or multiple/single destination
ports on multiple/single destination IP addresses, temporal scans – connection
requests from multiple/single source IP addresses to multiple/single destination IP
addresses and/or multiple/single destination ports on multiple/single destination
addresses over a period of time

fritz
69

Figure 1. The NVisionIP Architecture

The NetFlow logs that serve as our initial input to
NVisionIP are created by multiple routers and stored by a
“collector” data server in one unified file every five
minutes. These unified files can then be cumulatively
loaded (automatically or manually) to analyze a specific
time period. Once the NetFlow data is loaded, NVisionIP
generates the following statistics for each machine
corresponding to an IP address (note not all IP addresses
have a corresponding physical machine):

• Count of all connection flows to and from
• Count of external source IP flows
• Count of external destination IP flows
• Byte count of all traffic to/from
• Byte count of all outbound source traffic binned by

port number
• Byte count of all inbound destination traffic binned

by port number

We are developing animations of events over time by
incorporating two save features: (1) an applet that
contains current visualization environment variables with
file information for further query ability and (2) a single
frame .jpg visualization file that can grouped with other
single frames in an application like MacromediaMX Flash
to create a multi-frame animation.

3.1. System Architecture

Figure 1 highlights the organization of NVisionIP and
its relationship to the Data-to-Knowledge (D2K) data
mining software package. D2K is a rapid, flexible
machine learning system that effectively integrates
different data mining methods. It offers a visual
programming environment that allows users to connect
software components using drag-and-drop. D2K also
supplies a standard set of software modules and
application templates with a standard API for component

development. Other advantages of building within the
D2K environment are: fast file I/O, efficient internal data
representation, and multiple visualization options [1].

Integrating information from heterogeneous sources is
an overarching goal of this research. The use of D2K to
create an internal representation of the data creates a layer
of abstraction between NVisionIP and the input such that
new audit log sources can be incorporated. Leveraging
the D2K framework to split NVisionIP into two
independent parts, the first to compute statistics and the
second to display visualizations makes NVisionIP easily
extensible.

3.2. Experimental Results

Before reporting our experimental results that are in
the form of visual output, we would first like to give an
example of our statistic generation capability and its
relevance to security. Given that the instrumented
network has approximately two thousand machines, Table
2 shows a concentration of flow connections into a
relatively small number of machines. This concentration
is indicative of a scale-free network where connectivity is
unevenly distributed such that a focused attack on hub
machines can have devastating consequences [2].8 This
statistic provides a way to identify and thus focus
protection on hub machines running approved services,
however some hubs may turn out to be unexpected
machines with suspicious traffic. This statistic can be
generated for each of many different services (e.g., http,
ftp, telnet) since different machines will generally be hubs

8 In a random network, the distribution of the number of links from one node to
other nodes is a normal (Bell Curve) distribution. Scale-Free networks are
characterized as having an uneven distribution of connectedness with “very
connected” hub nodes that shape the way the network operates (including security
and survivability). The term scale-free refers to the ratio of the number of hub
nodes to the number of nodes in the rest of the network remaining constant as the
network changes in size (scale). Particularly devastating attacks on a hub include
denial-of-service attacks for disruption and targeted worm/virus infections for
speeding propagation via cascading outbreaks.

fritz
70

for different services.

 Table 2. Flow Connection Statistics

Concentrated
IP Addresses

Sum Count All Flow
Connections

Flow Count - Internal IP listed as
Destination Address (Ingress)

Flow Count - Internal IP listed
as Source Address (Egress)

Top 5 IP addresses 28.8% 27.7% 32.4%

Top 10 IP addresses 37.3% 35.6% 40.6%
Top 15 IP addresses 44.6% 42.6% 48.1%
Top 20 IP addresses 50.3% 47.7% 54.4%

Figure 2 shows the visual input/output GUI of

NVisionIP as it displays an entire network as a color-
coded grid allowing users to search for patterns that
provide knowledge about the state of the computational
security. The instrumented Class B network being
investigated is represented as a grid of 255 X 255 boxes
(each box is a 2 pixel by 2 pixel) in order to provide
65,025 possible IP addresses.9 According to Tufte,
humans are able to distinguish up to 625 points in one
square inch, a density higher than we have created (please
note figures in this paper are reduced, the actual screen
images are larger) [11]. Each 2 X 2 pixel box in the grid
represents one IP address. The subnets within the
instrumented network are listed on the X-axis and the
hosts within the subnet are listed on the Y-axis. Each
pixel box within the grid represents an attribute of the
corresponding IP address classified by colors with a
legend shown in the output window. For the purposes of
this black and white publication, the color range has been
mapped to a gray scale for later figures. In practice, the
use of contrasting colors (green, yellow, red) greatly
enhances discrimination.

Although a grid provides assessment of the overall
state of security for an entire address space, it is still
necessary to “drill-down” to specific IP addresses for
more information. NVisionIP allows two levels of
interactive zoom capabilities: (1) to a subset of the
network and (2) to the port activity within a specific IP
address. At each stage of magnification, the user can
select which attribute to view such as flow connection or
byte counts.

The GUI provides a 2-level interactive filtering ability
for all possible query combinations: (1) IP addresses
(all/source/destination/subset); (2) ports
(all/source/destination/subset); (3) protocols (all/subset);
and (4) activity type (flow connections/byte count). The
motivation behind this comprehensive capability is that it
is hard to anticipate which information may be useful in
discovering future security events.

In Figure 3 we show a visualization of flow

9 Note one minor detail about the mapping of all possible IP addresses to actual
machines: not all possible IP address within an address space are valid to map to
actual machines, some IP addresses are reserved for other purposes (the same also
holds for port numbers).

connection counts for a network highlighting these zoom
capabilities. Figure 3A shows the Galaxy View of an
entire Class B IP address space where the color of each
grid point maps to user-specified bins corresponding to
count ranges and represents the number of times a
specific machine has appeared as a source or destination
IP address in the flow file. Figure 3A clearly shows the
high-traffic subnets as vertical line patterns corresponding
to the instrumented network. After using a mouse to
select a subset of machines to investigate further, an
operator can view more detailed information. Figure 3B
shows an inset displaying port traffic histograms of a
subset of IP addresses (the Small Multiple View). Figure
3C shows an inset of information about one specific
machine selected by the mouse input, in this case port
byte traffic information (the Machine View).

The NVisionIP GUI, shown most clearly in Figures 2
and 3A, is split into three sections: (1) the top left
contains statistical information about the corresponding
flow file; (2) the bottom allows operators to dynamically
select which statistic to visualize; and (3) the right-hand
side (60% of the GUI) contains the main content - a
Galaxy View of a Class B IP address space. In addition
to a mouse-over event-handler that displays a small pop-
up IP address adjacent to each dot under the pointer, we
have implemented a linear magnification widget that can
be dragged across the screen to highlight areas of interest.
Under development is a fisheye capability that will
provide a third dimension to further highlight areas of
interest by user-controllable distortion.

Figure 4 is a Galaxy View of byte counts (to and from
aggregate) for all active machines found in a particular
flow file. An unusually large traffic volume may indicate
a compromised machine subverted as a server of non-
approved software. As a real example, we recently had
an intrusion on the instrumented network where large
files were subdivided into smaller files (all with the exact
same byte count) for transfer to and from compromised
machines. In this case we are able to add a new attribute
to NVisionIP that highlights the machines with this
particular byte count signature.

Figures 5 and 6 are Galaxy View of ingress (inbound)
and egress (outbound) IP flow connections for all active
hosts within a NetFlow file respectively. For each

fritz
71

machine within the internal instrumented network, we
measured the number of times it appeared as a
destination/ingress (source/egress) IP address in a flow
connection with external IP address. While such traffic
may be normal, it can also indicate a compromised
machine that has been widely advertised in the
underground for downloading unapproved software.

Figure 7 shows the difference in the number of
aggregate (ingress and egress) flow connections on the
instrumented network between two points in time. This
comparison output can be used to further pinpoint
suspicious machines we alluded to in Figures 5 and 6
(machines that have been compromised in the interim
period of time and are now exhibiting different flow
connection patterns as a result). To enhance human
cognitive abilities for discovery, we use color processing
to emphasize. It should be noted that this Galaxy View
has a reversed color scheme (not a gray scale) to indicate
a difference-file with darker colors (black, green)
indicating little or no change and contrasting colors (red,
yellow) indicating large change. More detailed change
information can be found by zooming to either the Small
Multiple View or the Machine View.

4. Discussion

It has become more difficult to characterize
application activity on a network due to: (1) increases in
the number of different applications, (2) applications
(malicious and otherwise) whose underlying protocol
does not depend on registered well-known port numbers,
and (3) dynamic changes in application mix over time [8].
This has made it challenging to profile normal network
traffic activity in order to distinguish suspiciously
abnormal network traffic activity as a sign of potential
security events (anomaly detection).

NVisionIP based on NetFlow data facilitates
characterization of network traffic since it provides: (1)
an overall view of an entire IP address space for selected
traffic dimensions (bytes, flow connections) at a specific
instant in time; (2) an interactive specific view for
selected port traffic dimensions (bytes, flow connections)
on individual machines at specific instants in time; and
(3) the ability to interactively contrast views from
different instances in time or between different machines.
Changes in the IP address space as represented in the
Galaxy View using visual cues of spot location, color,
and geometric patterns have the capacity to transmit on
the order of Mbytes of information to a user when
considering all the possible permutations of these cues.
For example, we have used the Galaxy View and Small
Multiple View to visually determine patterns of fast and
slow network scans (over time) and small-scale DoS
attacks that otherwise would not have been detected using

multiple IDS alerts.
In the Machine View, comparing histograms of the

traffic byte counts or flow connection counts to/from
different ports on different hosts or on the same host over
time also has the capacity to transmit on the order of
Mbytes of information to a user when considering the
number of potential ports per host and all the possible
count levels. For example, we have used the Machine
View to visually determine patterns of fast and slow host
scans (over time) and single machine sources of network-
wide events that otherwise would not have been detected.

The primary limitation we faced with NetFlow data is
generating statistics. For the instrumented network under
investigation, NetFlow generated on the order of 500
Mbytes daily which makes generating statistics a lengthy
process. Although the time to generate statistics cannot
be significantly reduced, we found caching statistics such
that calculations do not need to be repeated can reduce
time processing.

5. Summary

We present a visual data mining tool, NVisionIP,
which allows a human operator to interactively visualize
the security status of an entire IP address space of
networked machines in one screen. We report results
from experiments based on NetFlow source data that
convey how NVisionIP can be used to assess the
situational awareness of a network for security.
NVisionIP has been designed to accept multiple data
sources so our initial success with NetFlow source data is
especially encouraging since the NetFlow application is
not specifically designed for security analysis. We are in
the process of creating a website for distribution of
NVisionIP including installation instructions, version
announcements, hot fixes, and licensing restrictions (it is
hoped we can pursue open source).

NVisionIP is a novel advance for managing security
because it is the only extensible tool that currently
provides a simultaneous view of events on individual
machines, subnets, and across an entire IP address space
(in the case of NCSA a Class B IP address space of 65K
hosts with each host having 65K ports). The unique
contribution of this tool is that it provides a new
visualization capability to detect attacks with
macro/micro relationships that otherwise would not be
identified. Future work is focused on gaining experience
with NVisionIP in different production environments.
We plan to consider usability feedback from security
experts; test different input data sources, develop GUI
enhancements and automated pattern recognition
algorithms, and last, but not least, evaluate impact on
actual security incident detection, prediction, and
response.

fritz
72

6. Acknowledgments

We especially thank Jennifer Rexford and Carsten
Lund of AT&T Labs-Research for their insightful
feedback and detailed suggestions from their own work
with NetFlows for network management. We received
important input and encouragement from Jiawei Han and
Yuanyuan Zhou from the Department of Computer
Science at the University of Illinois at Urbana-Champaign
and Vipin Kumar, Jaideep Srivastava, Yongdae Kim, and
Paul Dokas from the Department of Computer Science at
the University of Minnesota. We would like to
acknowledge the following members of the NCSA
Security Research team who made significant indirect
contributions to this paper (in alphabetical order): Loretta
Auvil, Ratna Bearavolu, Randy Butler, Dora Cai, David
Clutter, Yifan Li, Doru Marcusiu, Duane Searsmith,
David Tcheng, Michael Welge, and Xiaoxin Yin. Lastly
we would like to thank the anonymous reviewers for their
insightful comments most of which we have been able to
incorporate here in this paper with the rest to be
addressed in future papers.

7. References

[1] L. Auvil, D2K Reference Manual, National Center for

Supercomputing Applications, 2001.
 <http://alg.ncsa.uiuc.edu>

[2] A-L. Barabasi, Linked: The New Science of Networks,

Perseus Publishing, 2002.

[3] M. Dodge, R. Kitchin, Atlas of Cyberspace, Addison-

Wesley, 2001.

[4] D. Estrin et al., “Network Visualization with Nam, the

VINT Network Animator,” IEEE Computer, Nov. 2000,
pp. 63-68.

[5] R. Henning, K. Fox, “The Network Vulnerability Tool

(NVT) – A System Vulnerability Visualization
Architecture,” National Information Systems Security
Conference (NISSC), 1999.

[6] H. Hosmer, “Visualizing Risks: Icons for Information

Attack Scenarios,” National Information Systems Security
Conference (NISSC), 2000.

[7] W. Jackson, “NASA Software Finds Cybersecurity

Niche,” Government Computer News, Sept 9, 2002, p. 46.

[8] D. Liu, F. Huebner, “Application Profiling of IP Traffic,”

IEEE Local Computer Networks (LCN), 2002.

[9] D. Plonka, “A Network Traffic Flow Reporting and

Visualization Tool,” USENIX LISA XIV, 2000.

[10] S-T. Teoh et al. “ELISHA: A Visual-Based Anomaly

Detection System,” RAID 2002.

[11] E. Tufte, Visual Display of Quantitative Information 2nd

edition, Graphics Press, 2001.

[12] P. Varner and J. Knight, “Security Monitoring,

Visualization, and System Survivability,” Information
Survivability Workshop (ISW), 2001.

[13] W. Yurcik and D. Doss, “A Survivability-Over-Security

(SOS) Approach to Holistic Cyber-Ecosystem
Assurance," IEEE Workshop on Information Assurance,
2002.

fritz
73

Figure 2. The NVisionIP GUI

 (A) (B) (C)

Figure 3. NVisionIP Connection Count Output - (A) “Galaxy View”; (B) “Small Multiple View” inset within

the Galaxy View (C) “Machine View” inset within the Small Multiple View inset within the Galaxy View

fritz
74

Figure 4: NVisionIP Byte Count Output

 Figure 5: Ingress Flow Count Figure 6: Egress Flow Count Figure 7: Flow Count Difference

fritz
75

