
Workshop on  

Data Mining for Computer Security 

www.cs.fit.edu/~pkc/dmsec03/ 
 
 
 

in conjunction with  
IEEE International Conference on Data Mining 

November 19-22, 2003 

Melbourne, Florida 
 
 
 
 
 
 
 
 

Workshop Organizers: 
Philip Chan, Florida Tech 

Vipin Kumar, University of Minnesota 
Wenke Lee, Georgia Tech 

Srinivasan Parthasarathy, Ohio State University 



Program Committee: 
• Wenke Lee, Georgia Tech (Co-Chair)  
• Srinivasan Parthasarathy, Ohio State U (Co-Chair)  
• Daniel Barbara, GMU  
• Philip Chan, Florida Tech  
• Eleazar Eskin, Hebrew U  
• Wei Fan, IBM Watson  
• Anup Ghosh, DARPA  
• Sushil Jajodia, GMU  
• Vipin Kumar, U. Minnesota  
• Terran Lane, U. New Mexico  
• Aleksandar Lazarevic, U. Minnesota  
• Richard Lippmann, MIT Lincoln Lab  
• Matthew Mahoney, Florida Tech  
• Roy Maxion, CMU  
• Chris Michael, Cigital  
• R. Sekar, Stony Brook U  
• Jaideep Srivastava, U. Minnesota  
• Salvatore Stolfo, Columbia U  
• Kymie Tan, CMU  
• Alfonso Valdes, SRI  

 
 
External Reviewers: 
 

• Zoran Duric, George Mason University 
• Eric Eilertson, University of Minnesota  
• Levent Ertoz, University of Minnesota  
• Amol Ghoting, Ohio State University 
• Matthew Otey, Ohio State University 
• Aysel Ozgur, University of Minnesota  
• Joseph Pamula, George Mason University 
• Xinzhou Qin, Georgia Institute of Technology 
• Sankardas Roy, George Mason University 



TABLE OF CONTENTS 
 
 
INVITED TALKS 
 
Authenticating Users by Profiling Behavior       1 
Tom Goldring, NSA          
 
Behavior-based Security         1 
Salvatore J. Stolfo, Columbia University 
 
 
ANOMALY DETECTION 
 
One Class Support Vector Machines for Detecting Anomalous Windows                              2 
Registry Accesses 
Katherine Heller, Krysta Svore, Angelos Keromytis, and Salvatore Stolfo 
[Columbia University] 
 
One Class Training for Masquerade Detection      10 
Ke Wang and  Salvatore J. Stolfo  [Columbia University] 
 
Learning Rules from System Call Arguments and Sequences for Anomaly    20 
Detection 
Gaurav Tandon and Philip Chan  [Florida Institute of Technology] 
 
Detection of Novel Network Attacks Using Data Mining     30 
Levent Ertoz, Eric Eilertson , Aleksandar Lazarevic, Pang-Ning Tan,  
Paul Dokas, Vipin Kumar, and Jaideep Srivastava  [University of Minnesota] 
 
 
FEATURE EXTRACTION 
 
Passive Operating System Identification from TCP/IP Packet Headers    40 
Richard Lippmann, David Fried, Keith Piwowarski, and William Streilein 
 [MIT Lincoln Laboratory] 
 
Boundary Detection in Tokenizing Network Application Payload for     50 
Anomaly Detection 
Rachna Vargiya and Philip Chan [Florida Institute of Technology] 
 
 
MISUSE DETECTION 
 
Detecting Privilege-Escalating Executable Exploits      60 
Jesse C. Rabek, Robert K. Cunningham, and Roger I. Khazan 
 [MIT Lincoln Laboratory] 
 
 
VISUALIZATION 
 
A Prototype Tool for Visual Data Mining of Network Traffic for Intrusion Detection  67 
William Yurcik, Kiran Lakkaraju, James Barlow and Jeff Rosendale 
[NCSA/University of Illinois at Urbana-Champaign] 



Introduction 
 
 
Computer security is a broad field that encompasses issues both theoretical and practical aspects. It 
is of incredible importance to a wide variety of practical domains ranging from the banking 
industry to multi-national corporations, from space exploration to the intelligence community and 
so on. Computer security is frequently associated with three core areas: confidentiality, integrity 
and authentication. Although security policies and mechanisms address all three of these areas, 
they are not perfect and more and more organizations are becoming vulnerable to a wide variety of 
security breaches due to decreasing cost of the information processing and Internet accessibility. 
The most common security breaches include different cyber attacks to single computers, computer 
networks, wireless networks, databases or authentication compromises (e.g. masquerading). 
 
The main aim of this workshop is to bring together leading figures from academia, government and 
industry to explore the applications of data mining in computer security. 
 
Presentations in this workshop focus on several aspects of computer security, mainly in the area of 
intrusion detection. They are organized in the following four sessions:  

• Anomaly Detection 
• Feature Extraction 
• Misuse Detection 
• Visualization 

 
The first session presents different data mining based anomaly detection techniques for recognizing 
novel and emerging computer attacks. Papers in the feature extraction session investigate various 
attributes that may be beneficial in data mining based techniques for intrusion detection. The paper 
in the misuse detection session presents a statistical based detector of malicious codes, while in the 
visualization session new data mining based prototype is presented to help security analysts to 
interactively assess security situational awareness of an entire network traffic. 
 
The workshop program contains 8 papers selected from 17 submissions after a peer review process. 
Since two of the organizers (Chan and Kumar) submitted papers to the workshop, the other two 
organizers (Lee and Parthasarathy) organized the reviewing process and made the decisions on 
paper acceptance to avoid conflicts of interests. Three reviews were sought for each paper -- in 
select cases a fourth review was solicited either in the event of a missing review or in the event of 
low-confidence reviews. We like to thank the program committee members and external reviewers 
for their help in reviewing the submissions and providing comments for the authors. Special thanks 
are due to Xinzhou Qin (Georgia Tech) for setting up the workshop management system that 
facilitated paper submission and reviewing, and to Aleksandar Lazarevic (University of Minnesota) 
for workshop publicity as well as putting together the workshop proceedings. Lastly, we would like 
to express our appreciation to Tom Goldring for his invited talk on “Authenticating Users by 
Profiling Behavior” and Sal Stolfo on “Behavior-based Security”. 



INVITED TALKS 
 
 
 
Authenticating Users by Profiling Behavior 
Tom Goldring, NSA          
 
Building profiles of computer user activity entails collecting user session data, then learning models from this 
data, which can be used to classify new sessions. From the Computer Security viewpoint, the purpose would 
be to authenticate logins and detect insider misuse. A good data source will reflect user behavior and allow us 
to filter out system noise, both with a high degree of accuracy. Numerous published studies have used 
command line data, but this is probably no longer a viable source in today's environment. 

The next step is feature selection, which allows us to choose among various existing classification algorithms 
to solve the authentication problem. But even the best algorithms will perform badly if the features are poor. 
Depending on what the data looks like, finding the right features and coaxing them into a usable form can be 
nontrivial. For nearly two years we have been monitoring "real" users on an operational Windows NT 
network that was part of a closed, internal network laboratory. In this talk we will describe our data, discuss 
the features we are currently using, and present results obtained to date. 
 
 
Behavior-based Security 
Salvatore J. Stolfo, Columbia University 
 
Abstract. Behavior-based security systems are a new generation of computer security technologies that 
defend and protect critical IT assets by detecting deviations from a system's normal behavior.  Behavior-
based security systems provide the means of detecting attacks from remote sources, and from within, i.e. the 
insider problem. 

The Email Mining Toolkit (EMT) is a data mining system that computes behavior profiles or models of user 
email accounts. These models may be used for a variety of forensic analyses and detection tasks. In this talk 
we describe the application of these models to detect the early onset of a viral propagation without "content-
based" (or signature-based) analysis in common use in virus scanners.  We present several experiments using 
real email from 15 users with injected simulated viral emails and describe how the combination of different 
behavior models improves overall detection rates. The performance results vary depending upon parameter 
settings, approaching 99% true positive (TP) (percentage of viral emails caught) in general cases and with 
0.38% false positive (FP) (percentage of emails with attachments that are mislabeled as viral). 

The principle behind behavior-based security is to model communication flows between systems and users, 
(possibly including content) using well grounded statistical techniques. The statistics gathered may be used to 
determine "social clique and communication communities" that typically exchange information, and the 
frequency of messages and the typical times and days those messages are exchanged. All this information can 
be used to model accounts, hosts or systems to determine typical behaviors that may be used to detect 
deviations of interest that may indicate misbehavior or security breaches. 

We believe EMT thus serves as a model anomaly detection system for any audit stream and detection 
problem of interest. This work suggests a general framework that is the subject matter of our ongoing work. 
This framework posits that anomaly detection is best cast as a problem to optimally correlate multiple 
detectors, where each detector models normal behavior using different features of the audit stream. These 
detectors generate alerts when there are violations of volume and velocity statistics, anomalous values 
exhibited in an audit stream, and abnormal or inconsistent formation of vertices when viewing data in the 
audit stream in graph theoretic formulations. All of these concepts and modeling techniques are embodied in 
EMT. 
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One Class Support Vector Machines for Detecting Anomalous Windows Registry
Accesses

Katherine A. Heller Krysta M. Svore Angelos D. Keromytis Salvatore J. Stolfo
Dept. of Computer Science

Columbia University
1214 Amsterdam Avenue

New York, NY 10025�
heller,kmsvore,angelos,sal � @cs.columbia.edu

Abstract

We present a new Host-based Intrusion Detection Sys-
tem (IDS) that monitors accesses to the Microsoft Windows
Registry using Registry Anomaly Detection (RAD). Our sys-
tem uses a one class Support Vector Machine (OCSVM) to
detect anomalous registry behavior by training on a dataset
of normal registry accesses. It then uses this model to de-
tect outliers in new (unclassified) data generated from the
same system. Given the success of OCSVMs in other ap-
plications, we apply them to the Windows Registry anomaly
detection problem. We compare our system to the RAD sys-
tem using the Probabilistic Anomaly Detection (PAD) algo-
rithm on the same dataset. Surprisingly, we find that PAD
outperforms our OCSVM system due to properties of the hi-
erarchical prior incorporated in the PAD algorithm. In the
future, these properties may be used to develop an improved
kernel and increase the performance of the OCSVM system.

1. Introduction

One of the most popular and most often attacked oper-
ating systems is Microsoft Windows. Malicious software
is often run on the host machine to inflict attacks on the
system. Several methods can be used to combat malicious
attacks, such as virus scanners and security patches. How-
ever, these methods are not able to combat unknown at-
tacks, so frequent updates of the virus signatures and se-
curity patches must be made.

An alternative to these methods is a Host-based Intru-
sion Detection System (IDS). Host-based IDS systems de-
tect intrusions on a host system by monitoring system ac-
cesses. Most IDS systems utilize signature based algo-
rithms that rely on knowing the attacks and their signatures,

which limits their ability to detect unknown attack meth-
ods. Alternatively, “behavior-blocking” technology aims to
detect and stop malicious activities using a set of signature-
based descriptions of good behavior, i.e. what is expected
of program or system execution. To improve performance,
data mining techniques have recently been applied to IDS
systems [20, 22] to automatically learn models of “good
behavior” and “bad behavior” by observing a system un-
der normal operation. In this paper, we describe a new
approach based on anomaly detection, utilizing a method
that trains on normal data and looks for anomalous behav-
ior that deviates from the normal model [11, 12, 13]. This
method can better identify unknown attacks. Previous work
using IDS systems has been done using system call anal-
ysis [14, 15, 17, 19, 24] and network intrusion detection
[13, 18, 21].

We use the Registry Anomaly Detection (RAD) system
to monitor Windows registry queries [9]. During normal
computer activity, a certain set of registry keys are typi-
cally accessed by Windows programs. Users tend to use
certain programs regularly, so registry activity is fairly reg-
ular and thus provides a good platform to detect anomalous
behavior. We apply an OCSVM algorithm to the RAD sys-
tem to detect anomalous activity in the windows registry.
Although OCSVMs have previously been applied success-
fully to other anomaly detection problems, they have never
before been used to detect anomalous accesses to the Win-
dows registry. The OCSVM builds a model from training
on normal data and then classifies test data as either normal
or attack based on its geometrical deviation from the nor-
mal training data [23]. We present our results of the RAD
system using the OCSVM algorithm and demonstrate its
abilities to detect anomalous behavior with several different
kernels. We also compare our system with work done on
the RAD system using the Probabilistic Anomaly Detection
(PAD) algorithm [14, 9]. PAD outperforms the OCSVM
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system due to the use of the estimator developed by Fried-
man and Singer [16]. This estimator uses a Dirichlet-based
hierarchical prior to smooth the distribution and account for
the likelihoods of unobserved elements in sparse data sets
by adjusting their probability mass based on the number of
values seen during training. An understanding of the dif-
ferences between these two models and the reasons for dif-
ferences in detection performance may help to construct a
more discriminative kernel, and is critical to the develop-
ment of effective anomaly detection systems in the future.

2. The Windows Registry and the RAD system

The Windows registry is a database that stores config-
uration settings for programs, security information, user
profiles, and many other system parameters. The registry
consists of entries, which are called registry keys, and their
associated values. Programs query the registry for infor-
mation by accessing a specific registry key. Each registry
query has five components: the name of the process, the
type of query, an associated key, the result, and the success
status of the query. The process may be an attack or normal
process. Each record in both our test dataset and training
dataset contains all five of these entries. A sample record
entry appears as:

Process: EXPLORER.EXE
Query: OpenKey
Key: HKCR\CLSID\B41DB860-8EE4-11D2-9906
-E49FADC173CA\shellex\MayChange
DefaultMenu
Response: SUCCESS
ResultValue: NOTFOUND

The Registry Anomaly Detection (RAD) system has
three parts: an audit sensor, a model generator, and an
anomaly detector. Each registry access is either stored as
a record in the training set or sent to the detector for anal-
ysis by the audit sensor. The model generator develops a
model of normal behavior from the training dataset, and the
anomaly detector uses this model to classify new registry
accesses as normal or anomalous.

The Registry Anomaly Detection (RAD) system utilizes
the five raw features given above, such that the algorithm
used for anomaly detection classifies each entry as either
normal or attack according to these feature values. The pro-
cess is the name of the process querying the registry. The
query is the type of access being sent to the registry. The
key is the key currently being accessed. The response is the
outcome of the query. The value of the accessed key is the
result value. For more detailed information on RAD and the
Windows registry, refer to [9].

3. The PAD Algorithm

The Probabilistic Anomaly Detection (PAD) algorithm,
developed by Eskin [14, 9], trains a model over normal data
features. It is essentially density estimation, where the esti-
mation of a density function ������� over normal data allows
the definition of anomalies as data elements that occur with
low probability. The detection of low probability data (or
events) are represented as consistency checks over the nor-
mal data, where a record is labeled anomalous if it fails any
one of these tests.

First and second order consistency checks are applied.
First order consistency checks verify that a value is consis-
tent with observed values of that feature in the normal data
set. It computes the likelihood of an observation of a given
feature, ����	�
�� , where 	�
 are the feature variables. Second
order consistency checks determine the conditional proba-
bility of a feature value given another feature value, denoted
by ����	�
� 	���� , where 	�
 and 	�� are the feature variables.

One way to compute these probabilities would be to esti-
mate a multinomial that computes the ratio of the counts of
a given element to the total counts. However, this results in
a biased estimator when there is a sparse data set. Instead,
the estimator given by Friedman and Singer is used to de-
termine these probability distributions [16]. Let � be the
total number of observations, � 
 be the number of obser-
vations of symbol � , � be the “pseudo count” that is added
to the count of each observed symbol, ��� be the number of
observed symbols, and � be the total number of possible
symbols. Then the probability for an observed element � is
given by:

����	�������� � 
�� �
� � � � �

 
(1)

and the probability for an unobserved element � is:

����	!�"���#�
$

�&%'� � �
$ %  � (2)

where
 

, the scaling factor, accounts for the likelihood of
observing a previously observed element versus an unob-
served element. In [16], they compute

 
as:

 �(��)+*,.-/,.0 �1��� � ��2� � �43 , �5�6) ,87�,.0 3 , �:9<; (3)

where 3 , �=���?>@�A�B� ,DC,.-E,.0GFBH ,5IKJFBH ,5IKLNMOJ
and ���6>P���B� is

a prior probability associated with the size of the subset of
elements in the alphabet that have non-zero probability.

In PAD, however, the above computation of
 

is too
costly, so a heuristic method is used, where

 
is given by:

 � �
� � �&%'� � (4)
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They normalize the consistency check to account for the
number of possible outcomes of � by considering if � is
the probability estimated from the consistency check, then
they report �������?���2� $ � �+� �����������?� � � �������?� � .

Since there are five feature values for each record in the
RAD system, there are 5 first order consistency checks and
20 second order consistency checks. A record is labeled
anomalous if any of the 25 consistency checks is below
a given threshold. This method labels every record in the
dataset as normal or anomalous. To improve the detection
rate, pairs of features are examined since a record may have
a set of feature values that are inconsistent even though all
single feature values are consistent for that record. Most
attacks effect a large number of records.

The PAD algorithm takes time � �
	������� , where 	 is the
number of unique record values for each record component
and  is the number of record components. The space re-
quired to run the algorithm is � ��	����� .

4. One Class Support Vector Machine
(OCSVM)

Instead of using PAD for model generation and anomaly
detection, we apply an algorithm based on the one class
SVM algorithm given in [23]. Previously, OCSVMs have
not been used in Host-based anomaly detection systems.
The OCSVM code was developed by [10] and has been
modified to compute kernel entries dynamically due to
memory limitations. The OCSVM algorithm maps input
data into a high dimensional feature space (via a kernel) and
iteratively finds the maximal margin hyperplane which best
separates the training data from the origin. The OCSVM
may be viewed as a regular two-class SVM where all the
training data lies in the first class, and the origin is taken as
the only member of the second class. Thus, the hyperplane
(or linear decision boundary) corresponds to the classifica-
tion rule:

� ���/�#����������� ��� (5)

where � is the normal vector and � is a bias term. The
OCSVM solves an optimization problem to find the rule

�
with maximal geometric margin. We can use this classifica-
tion rule to assign a label to a test example � . If

� �
�/���! 
we label � as an anomaly, otherwise it is labeled normal.
In practice there is a trade-off between maximizing the dis-
tance of the hyperplane from the origin and the number of
training data points contained in the region separated from
the origin by the hyperplane.

4.1. Kernels

Solving the OCSVM optimization problem is equivalent
to solving the dual quadratic programming problem:

"$#&%I
$
'�(

 �
�E
?�<��) ����
*���2�8� (6)

subject to the constraints

 $+ � 
 +
$
, � (7)

and

(


� 
 � $

(8)

where � 
 is a lagrange multiplier (or “weight” on exam-
ple � such that vectors associated with non-zero weights are
called “support vectors” and solely determine the optimal
hyperplane), , is a parameter that controls the trade-off be-
tween maximizing the distance of the hyperplane from the
origin and the number of data points contained by the hyper-
plane, � is the number of points in the training dataset, and) ��� 
-� �2��� is the kernel function. By using the kernel func-
tion to project input vectors into a feature space, we allow
for nonlinear decision boundaries. Given a feature map:

.0/ 	2143 M (9)

where
.

maps training vectors from input space 	 to a high-
dimensional feature space, we can define the kernel function
as:

) �����-52�#�6� . �����7� . �
5B��� (10)

Feature vectors need not be computed explicitly, and in
fact it greatly improves computational efficiency to directly
compute kernel values ) ������5B� . We used three common
kernels in our experiments:

Linear kernel: ) ������5B�#� ���98:52�
Polynomial kernel: ) �����-52�O�P���;8�5 � $ �-< , where = is the
degree of the polynomial
Gaussian kernel: ) �����-5B���?> 9A@CB 9EDF@CG-H H �JI G J , where KL� is
the variance

Our OCSVM algorithm uses sequential minimal opti-
mization to solve the quadratic programming problem, and
therefore takes time � ��= �NM8� , where = is the number of di-
mensions and � is the number of records in the training
dataset. Typically, since we are mapping into a high dimen-
sional feature space d exceeds O� from the PAD complex-
ity. Also for large training sets �NM will significantly exceed	�� , thereby causing the OCSVM algorithm to be a much
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more computationally expensive algorithm than PAD. An
open question remains as to how we can make the OCSVM
system in high bandwidth real time environments work well
and efficiently. All feature values for every example must
be read into memory, so the required space is � ��= �?� ��� ��� ,
where � is the number of records in the test dataset. Al-
though this is more space efficient than PAD, we compute
our kernel values dynamically in order to conserve mem-
ory, resulting in the added d term to our time complexity.
If we did not do this the memory needed to run this algo-
rithm would would be � ��= �?� ��� ���D� which is far too large
to fit in memory on a standard computer for large training
sets (which are inherent to the windows anomaly detection
problem).

5. Experiments and Results

The one class SVM system we develop detects abnormal
accesses to the Windows registry. The training and testing
datasets were developed from real usage of the Windows
system, and each experiment took one to two weeks to run
on a 1.5GHZ Pentium IV dual processor. The training data
we used was collected on Windows NT 4.0 and consists of
approximately 500,000 attack-free records. These attack-
free records are labeled normal and consist of operating sys-
tem programs and typical Windows programs. The test data
consists of approximately 300,000 records of which approx-
imately 2,000 are labeled attacks. Possible attacks include
aimrecover, browslist, setuptrojan, and other publicly avail-
able attacks [1, 2, 3, 4, 5, 6, 7, 8].

We obtained kernels from binary feature vectors by map-
ping each record into a feature space such that there is one
dimension for every unique entry for each of the five given
record values. This means that a particular record has the
value 1 in the dimensions which correspond to each of its
five specific record entries, and the value 0 for every other
dimension in feature space. We then computed linear ker-
nels, second order polynomial kernels, and gaussian kernels
using these feature vectors for each record.

We also computed kernels from frequency-based feature
vectors such that for any given record, each feature cor-
responds to the number of occurences of the correspond-
ing record component in the training set. For example, if
the second component of a record occurs three times in the
training set, the second feature value for that record is three.
We then used these frequency-based feature vectors to com-
pute linear and polynomial kernels.

To evaluate the system’s accuracy, two statistics have
been computed: detection rate and false positive rate. The
detection rate is the percentage of attack records that have
been correctly identified. The false positive rate is the per-
centage of normal records that have been mislabeled as
anomalous. The threshold is the value that determines if

Threshold False Positive Rate (%) Detection Rate (%)

-1.08307 0.790142 0.373533
-1.08233 0.828005 0.480256
-1.07139 1.54441 0.533618
-0.968913 1.65734 1.17396
-0.798767 3.58736 3.89541
-0.79858 3.63784 5.60299
-0.798347 3.68999 6.77695
-0.767411 3.72054 6.83031
-0.746663 4.35691 7.47065
-0.746616 4.63025 8.00427
-0.71255 8.34283 20.9712
-0.712503 8.75201 22.0918

Table 1. The effects of varying the threshold
on the false positive rate and the detection
rate.

a record is normal or attack. Table 1 includes a sample of
the varying thresholds and their effects on the detection rate
and false positive rate.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Percentage of Normal Data Labeled Anomalies

P
er

ce
nt

ag
e 

of
 T

ru
e 

A
no

m
al

ie
s 

C
or

re
ct

ly
 Id

en
tif

ie
d

PAD
Binary Gaussian
Binary Polynomial (degree 2)
Binary Linear

Figure 1. ROC curve for the kernels using bi-
nary feature vectors (false positives versus
true positives).

We can measure the performance of the one class SVM
on our test data by plotting its Receiver Operator Charac-
teristic (ROC) curve. The ROC curve plots the percentage
of false positives (normal records labeled as attacks) versus
the percentage of true positives. As the discriminant thresh-
old increases, more records are labeled as attacks. Ran-
dom classification results in 50% of the area lying under
the curve, while perfect classification results in 100% of the
area lying under the curve. Results from our one class SVM
system are shown with the results of the PAD system on the
same dataset in Figures 1 and 2. Figure 1 is the ROC curve
for the linear and polynomial kernels using binary feature
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Figure 2. ROC curve for the kernels using
frequency-based feature vectors (false pos-
itives versus true positives).

vectors. We have used a sigma value of 0.84 for our gaus-
sian function. The binary linear kernel most accurately clas-
sifies the records. Figure 2 is the ROC curve for the linear
and polynomial kernels using frequency-based feature vec-
tors. The frequency-based linear and frequency-based poly-
nomial kernels demonstrate similar classification abilities.
Overall, in our experiments, the linear kernel using binary
feature vectors results in the most accurate classification.

In Tables 2 and 3, information on the records and their
discriminants are listed for the linear and polynomial ker-
nels using binary feature vectors. From Table 2, it is
seen that if the threshold is set at % $�� � '�� '��F' , then the
bo2kcfg.exe would be labeled as attack, as would msinit.exe
and ononce.exe. False labels would be given to WINLO-
GON.exe, systray.exe and other normal records.

The results of the OCSVM system produce less accu-
rate results than the PAD system demonstrated in [9, 14].
The PAD system is able to more accurately discriminate
between normal and anomalous records. The OCSVM sys-
tem labels records with fair accuracy, but could be improved
with a stronger kernel, where more significant information
is captured in the data representation.

The ability of the OCSVM to detect anomalies is highly
dependent on the information captured in the kernel (the
data representation). Our results show that kernels com-
puted from binary feature vectors or frequency-based fea-
ture vectors alone do not capture enough information to de-
tect anomalies as well as the PAD algorithm. With other
choices of kernels, similar results will occur unless a novel
technique which incorporates more discriminative informa-
tion is used to compute the kernel. A simple example of

this is if we have a dataset in which good discrimination
depends upon pairs of features, then we will not be able to
discriminate well with a linear decision boundary regardless
of how we tweak its parameters. However, if we use a poly-
nomial kernel we can account for pairs of features and will
discriminate well. In this manner, having a well defined ker-
nel which accounts for highly discriminative information is
extremely important. For the purpose of this research, we
believe our kernel choices are sufficient to reliably compare
the OCSVM system with PAD.

The advantage of the PAD algorithm over the OCSVM
system lies in the use of a hierarchical prior to estimate
probabilities. A scaling factor (see equation (4)) is com-
puted and applied to a Dirichlet prediction which assumes
that all possible elements have been seen, giving varying
probability mass to outcomes unseen in the training set. In
general, knowing the likelihood of encountering a previ-
ously unencountered feature value is extremely important
for anomaly detection, and it would be valuable to be able
to incorporate this information into a kernel for use with
our OCSVM system, perhaps by adding weighted “pseudo-
counts” to the features in our frequency-based feature vec-
tors.

6. Conclusions

By monitoring the Windows registry activity on a host
system, we were able to use our OCSVM algorithm to la-
bel all records in the given experiments as either normal
or attack with moderate accuracy and a low false positive
rate. We have shown that since registry activity is regular, it
can be used as a reliable anomaly detection platform. Note
that it would also be informative to study detection rates for
specific attack processes as a function of the discriminant
threshold.

In the comparitive evaluation of our OCSVM system and
the PAD system, we have shown that PAD is more reliable.
However, understanding the reasons for this will lead to an
improvement of the OCSVM system and will expedite the
future development of anomaly detectors. Since there is
currently no effective way to learn a “most optimal” kernel
for a given dataset, we must rely on our domain knowledge
in order to develop a kernel that leads to a highly accurate
anomaly detection system. By analyzing algorithms (such
as PAD) which currently discriminate well, we can iden-
tify information which is important to capture in our data
representation and is crucial for the development of a more
optimal kernel.

In the future, we plan on testing the system on file system
accesses and on the Unix platform. We also plan to create a
system to update the model as new data is labeled. This will
help counter the effects of concept drift over time. Finding
an efficient means of remodeling the data over time within
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the OCSVM framework could improve the accuracy of the
system.

Finally, since most users accept the default installation
location when installing a program, the location of pro-
grams tends to be the same on all computers. Thus an attack
does not need to query the registry for program location in-
formation. By forcing a location declaration other than the
default location, a given program will not have the same
location on all Windows machines. Attacks will have to
query the registry to discover program locations, thus forc-
ing all attacks to be monitored by the anomaly detector. A
system such as this would improve the anomaly detection
capabilities of the RAD system since no malicious attacks
can bypass querying the registry. This would enhance the
protection of the system against malicious users.
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Program Name Label Number of Records Min. Record Value Max. Record Value
REGMON.EXE NORMAL 259 -0.794953 -0.280406
SPOOLSS.EXE NORMAL 72 -1.152717 -0.021361
CloseKey NORMAL 429 -1.082720 -0.374784
OpenKey NORMAL 502 -0.959895 -0.365539
QueryValue NORMAL 594 -1.082909 -0.374972
EnumerateValue NORMAL 28 -0.570206 -0.284935
DeleteValueKey NORMAL 3 -1.078758 -0.370822
AimRecover.exe NORMAL 61 -1.082720 -0.374784
aim.exe NORMAL 1702 -1.064796 -0.356860
ttssh.exe NORMAL 12 -0.969706 -0.375161
ttermpro.exe NORMAL 1639 -1.083098 -0.285123
NTVDM.EXE NORMAL 271 -0.798204 -0.410065
notepad.exe NORMAL 2673 -1.083098 -0.285123
CMD.EXE NORMAL 116 -1.139322 -0.375161
TASKMGR.EXE NORMAL 99 -0.570017 -0.284935
INS0432. MP NORMAL 443 -1.423272 -1.423272

WINLOGON.EXE NORMAL 399 -1.423272 -1.423272
systray.exe NORMAL 17 -1.423272 -1.423272
em exec.exe NORMAL 29 -1.423272 -1.423272
OSA9.EXE NORMAL 705 -1.083098 -0.375161
findfast.exe NORMAL 176 -1.083098 -0.375161
WINWORD.EXE NORMAL 1541 -1.083098 -0.375161
winmine.exe NORMAL 21 -0.429351 -0.429351
POWERPNT.EXE NORMAL 617 -1.083098 -0.285123
PING.EXE NORMAL 50 -1.083098 -0.375161
QueryKey NORMAL 11 -0.712317 -0.375161
wscript.exe NORMAL 527 -1.083098 -0.375161
AcroRd32.exe NORMAL 1598 -1.083098 -0.375161
0” NORMAL 404 -1.083098 -0.375161
WINZIP32.EXE NORMAL 3043 -1.083098 -0.375161
explore.exe NORMAL 108 -1.083098 -0.375161
EXCEL.EXE NORMAL 1782 -1.083098 -0.375161
bo2kss.exe[2] ATTACK 12 -0.712317 -0.375161
bo2k 1 0 intl.e[2] ATTACK 78 -1.083098 -0.375161
browselist.exe[4] ATTACK 32 -0.798770 -0.411763
bo2kcfg.exe[2] ATTACK 289 -1.423272 -1.423272
bo2k.exe[2] ATTACK 883 -1.423272 -1.091776
mstinit.exe[2] ATTACK 11 -1.423272 -1.423272
runonce.exe[2] ATTACK 8 -1.423272 -1.423272
Patch.exe[2] ATTACK 174 -1.083098 -0.375161
install.exe[3] ATTACK 18 -1.083098 -0.375161
xtcp.exe[3] ATTACK 240 -1.083098 -0.285123
l0phtcrack.exe[7] ATTACK 100 -0.798581 -0.285123
LOADWC.EXE[2] ATTACK 1 -1.423272 -1.423272
happy99.exe[5] ATTACK 29 -0.570017 -0.411575

Table 2. Information about test records for the linear kernel in the binary setting. The maximum and
minimum discriminants are given for each process, as well as the assigned classification label. Listed
next to the attack processes is the attack source. [1] AIMCrack. [2] BackOrifice. [3] Backdoor.xtcp.
[4] Browse List. [5] Happy 99. [6] IPCrack. [7] L0pht Crack. [8] Setup Trojan.
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Program Name Label Number of Records Min. Record Value Max. Record Value
REGMON.EXE NORMAL 259 -4.062785 -1.524777
SPOOLSS.EXE NORMAL 72 -5.422540 -0.272565
CloseKey NORMAL 429 -5.210662 -1.788163
OpenKey NORMAL 502 -4.828603 -1.758730
QueryValue NORMAL 594 -5.211228 -1.789106
EnumerateValue NORMAL 28 -3.311164 -1.542890
DeleteValueKey NORMAL 3 -5.1955757 -1.766465
AimRecover.exe NORMAL 61 -5.210285 -1.792879
aim.exe NORMAL 1702 -5.148589 -1.703827
ttssh.exe NORMAL 12 -4.860299 -1.794766
ttermpro.exe NORMAL 1639 -5.211794 -1.543456
NTVDM.EXE NORMAL 271 -4.234352 -1.794766
notepad.exe NORMAL 2673 -5.211794 -1.543456
CMD.EXE NORMAL 116 -5.388013 -1.794766
TASKMGR.EXE NORMAL 99 -3.309843 -1.543456
INS0432. MP NORMAL 443 -6.239865 -6.239865

WINLOGON.EXE NORMAL 399 -6.239865 -6.239865
systray.exe NORMAL 17 -6.239865 -6.239865
em exec.exe NORMAL 29 -6.239865 -6.239865
OSA9.EXE NORMAL 705 -5.211794 -1.789672
findfast.exe NORMAL 176 -5.211794 -1.794766
WINWORD.EXE NORMAL 1541 -5.211794 -1.789672
winmine.exe NORMAL 21 -1.794766 -1.794766
POWERPNT.EXE NORMAL 617 -5.211794 -1.543456
PING.EXE NORMAL 50 -5.211794 -1.789672
QueryKey NORMAL 11 -4.022096 -1.789672
wscript.exe NORMAL 527 -5.211794 -1.789672
AcroRd32.exe NORMAL 1598 -5.211794 -1.794766
0” NORMAL 404 -5.211794 -1.789672
WINZIP32.EXE NORMAL 3043 -5.211794 -1.789672
explore.exe NORMAL 108 -5.211794 -1.789672
EXCEL.EXE NORMAL 1782 -5.211794 -1.789672
bo2kss.exe[2] ATTACK 12 -4.022096 -1.789672
bo2k 1 0 intl.e[2] ATTACK 78 -5.211794 -1.789672
browselist.exe[4] ATTACK 32 -4.087124 -1.789672
bo2kcfg.exe[2] ATTACK 289 -6.239865 -6.239865
bo2k.exe[2] ATTACK 883 -6.239865 -5.245378
mstinit.exe[2] ATTACK 11 -6.239865 -6.239865
runonce.exe[2] ATTACK 8 -6.239865 -6.239865
Patch.exe[2] ATTACK 174 -5.211794 -1.789672
install.exe[3] ATTACK 18 -5.211794 -1.794766
xtcp.exe[3] ATTACK 240 -5.211794 -1.543456
l0phtcrack.exe[7] ATTACK 100 -4.194165 -1.543456
LOADWC.EXE[2] ATTACK 1 -6.239865 -6.239865
happy99.exe[5] ATTACK 29 -3.309843 -1.794766

Table 3. Information about test records for the second order polynomial kernel in the binary set-
ting. The maximum and minimum discriminants are given, as well as the assigned classification
label. Listed next to the attack processes is the attack source. [1] AIMCrack. [2] BackOrifice. [3]
Backdoor.xtcp. [4] Browse List. [5] Happy 99. [6] IPCrack. [7] L0pht Crack. [8] Setup Trojan.
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Abstract 
 

We extend prior research on masquerade detection 
using UNIX commands issued by users as the audit 
source. Previous studies using multi-class training 
requires gathering data from multiple users to train 
specific profiles of self and non-self for each user. One-
class training uses data representative of only one user. 
We apply one-class Naïve Bayes using both the multi-
variate Bernoulli model and the Multinomial model, and 
the one-class SVM algorithm. The result shows that one-
class training for this task works as well as multi-class 
training, with the great practical advantages of collecting 
much less data and more efficient training. One-class 
SVM using binary features performs best among the one-
class training algorithms.  
 
1. Introduction 
 

The Masquerade attack may be one of the most serious 
security problems. It commonly appears as spoofing, 
where an intruder impersonates another person and uses 
that person’s identity, for example, by stealing their 
passwords or forging their email address. Masqueraders 
can be insiders or outsiders. As an outsider, the 
masquerader may try to gain superuser access from a 
remote location and can cause considerable damage or 
theft. A simpler insider attack can be executed against an 
unattended machine within a trusted domain. From the 
system’s point of view, all of the operations executed by 
an insider masquerader may be technically legal and 
hence not detected by existing access control or 
authentication schemes. To catch such a masquerader, the 
only useful evidence is the operations he executes, i.e., his 
behavior. Thus, we can compare one user’s recent 
behavior against their profile of typical behavior and 
recognize a security breach if the user’s recent behavior 
departs sufficiently from his profiled behavior, indicating 
a possible masquerader. 

The insider problem in computer security is shifting the 
attention of the research and commercial community from 
intrusion detection at the perimeter of network systems. 
Research and development is going on in the area of 
modeling user behaviors in order to detect anomalous 
misbehaviors of importance to security; for example, the 
behavior of user-issued OS commands as represented in 

this paper, and in email communications [17]. 
Considerable work is ongoing in certain communities to 
detect not only impersonation, but also author 
identification. For example, Sedelow [16] and Vel [18] 
are two examples bracketing the length of time this topic 
has existed in the literature. 

The masquerade problem is a challenging problem. If 
the masquerader can mimic the user’s behavior 
successfully, he won’t be detected. In addition, if the user 
himself is behaving much differently than his trained 
profile, the detector will misclassify him as masquerader, 
which may cause annoying false alarms. There have been 
several attempts to solve this problem using command line 
sequences, [14] and [9]. The best results so far reported 
are 60-70% accuracy with a false positive rate as low as 1-
2%. The profiles were computed using supervised 
machine learning algorithms that classify training data 
acquired from multiple user. These approaches considered 
training user profiles as a multi-class supervised learning 
task where data gathered on a user is treated as an 
example of one-class, i.e. a distinct user. 

In this paper, we consider a different approach with 
substantial practical advantage.  We examine the task of 
profiling a user by modeling his data exclusively, without 
using examples from other users, and achieving good 
detection performance and minimal false positive rates. 
We also consider alternative machine learning algorithms 
that may be employed for this “one-class” training 
approach.  

One-class training means that we only use the user’s 
own legitimate examples of commands they issue to build 
the user’s self profile. Previous work uses both positive 
and negative examples to build both self and non-self 
profiles, except for Maxion [9], who considers the 
problem of determining how vulnerable a user’s behavior 
may be to mimicry attack. Here we extend this technique 
using one-class SVM. This is important in many contexts, 
especially when the only information available is the 
history of the user’s activities. If a one-class training 
algorithm can achieve similar performance to that 
exhibited by a multi-class approach, we may provide a 
significant benefit in real security applications; much less 
data is required, and training can proceed independently 
of any other user. The study reported in this paper 
indicates that indeed one-class training algorithms 
perform equally well as two class training approaches. 
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This self profile idea is similar to the widely used 
“anomaly detection” techniques in intrusion detection 
system [eg. 2, 3]. For example, the anomaly detector of 
IDES [8] uses established normal usage profiles, which is 
the expected behavior, to identify any large usage 
deviation as a possible attack. Several methods have been 
used to model the normal data, for example, decision trees 
[7], neural network [4], and sparse Markov Transducers 
[2], and Markov chains [19]. In this paper, we applied 
one-class Naïve Bayes and one-class SVM algorithms to 
the masquerade dataset of UNIX system call sequences. 

In previous work, we believe there were several 
methodological flaws in the manner in which data was 
acquired and used. The “Schonlau dataset” from [14] 
presents each user’s command line data with a varying 
number of artificially created masquerade command 
blocks, ranging from 0 to 24, out of a total of 100 
command blocks to be classified. The previous work only 
considered the average performance of a given method 
when it is applied to all of the 50*100 blocks of 
commands issued by the 50 users. However, since the 
masquerade blocks are “randomly” inserted into each 
user’s data by using some other user’s command block, 
each user’s data has a different number of masquerade 
blocks, and the content of these masquerade blocks all 
differ. This data is not a good baseline to compare the 
effectiveness of alternative detection methods because one 
method might be better at detecting certain forms of 
masquerade attack while others are not. Unfortunately, 
since the distribution of such masquerade blocks appear 
many times in the dataset, some algorithms appear to have 
better performance over others, while, in practice or in 
other contexts, this finding may not be true. To better 
compare the alternative methods proposed in this work, 
we follow the exhaustive “1v49” evaluation methodology 
from [9], which will be described in detail in the section 
about the experimental methodology and results. The 
ROC score [5] is used to compare several one-class 
training methods under different false positive rate 
restrictions. This approach provides a better view to 
indicate which algorithm is better for most users. 

Even though one machine learning algorithm may 
perform better than another in terms of detection and false 
positive rate, our most important finding is that one-class 
training can indeed perform as well as multi-class training. 
Even so, the overall performance of both approaches 
indicates that there is much room for improvement.  

The rest of the paper is organized as follows. Section 2 
describes the dataset we used in our research and provides 
a review of recent work, and Section 3 discusses the one-
class Naïve Bayes and one-class SVM methods. Section 4 
describes the experimental setting and our results, and 
Section 5 concludes the paper with our analysis and 
findings. 
 

2. Recent Work 
 

Schonlau et al. [14] and Maxion [9] provide a dataset 
collected from keyboard commands on a UNIX platform. 
The dataset is publicly available at 
http://www.schonlau.net. Unfortunately, there are neither 
timestamps nor other detailed command line arguments 
available in the Schonlau dataset. Hence, the dataset in 
question consists simply of sequential “truncated” 
commands issued by each of 70 users. Each user is 
represented by 15,000 commands, collected over time 
from a few days to a few months. They randomly chose 50 
users to serve as intrusion target, and the remaining 20 
users as masqueraders. The first 5,000 commands of each 
user are “clean data” (legitimately issued by the user), and 
the next 10,000 commands of the target users were 
randomly injected with commands issued by the 20 
masquerade users, apparently none of whom are any of the 
50 users. The commands are grouped into blocks, with 
100 commands per block. The commands in one block are 
either all clean or all masquerade attacks, called “dirty 
blocks”. The task studied in [14] is to accurately classify 
the “dirty” blocks as masquerade commands, while 
classifying the clean blocks as belonging to the user. From 
this point of view, this problem is very similar to a text 
classification problem, where the commands may be 
regarded as words or tokens in a document that is to be 
classified. Their work identifies six masquerade-detection 
schemes. They are: Bayes 1-Step Markov, Hybrid Multi-
Step Markov, Incremental Probabilistic Action Modeling 
(IPAM), Uniqueness, Sequence-Match, and Compression. 
These masquerade detection methods were directly 
applied to this dataset; the first 5000 commands were used 
for training, and the remaining 10000 commands were 
inserted and used for testing, where each were processed 
in blocks of 100 commands. Testing and training were 
performed on a per block basis. The paper by Maxion [9] 
presents a clear and concise review of these six methods. 
The strategies behind each of these methods are quite 
different, but the results show that no method completely 
dominates another using cluster analysis and ROC curves. 

Maxion [9] improved upon Schonlau’s result by 
applying the Naïve Bayes classification algorithm using 
the “bag of words” features. Naïve Bayes has been used in 
text classification for a long time and proved to be very 
efficient in this context as well. Naïve Bayes was also 
used in the earlier work [15] on classifying malicious code 
attachments in email messages. Maxion presents a 
detailed analysis of the origins of the classification error, 
revealing why some users are good masquerades and 
others are not. That paper designed another experiment, 
called “1v49”, to perform this error analysis. We also use 
the “1v49” experimental setting in our work, but here it is 
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used to compare the performance of different classifiers 
when applied to multiple classes. 

The results for these reviewed methods are displayed in 
Table 1 and serve as a baseline for comparison. 
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Method Hits False Positives 

N. Bayes (updating) 61.5% 1.5% 

N. Bayes (no Upd.) 66.2% 4.6% 

Uniqueness 39.4% 1.4% 

Hybrid Markov 49.3% 3.2% 

1-step Markov 69.3% 6.7% 

IPAM 41.4% 2.7% 

Sequence Matching 36.8% 3.7% 

Compression 34.2% 5.0% 

 
 

3. Machine learning methods 
 
3.1. Learning task 
 

For this masquerade detection problem, the learning 
task is to build a classifier that can accurately detect the 
masquerade commands while not misclassifying the user’s 
legitimate commands as a masquerade. Using the 
Schonlau dataset, which is organized as a set of blocks of 
100 commands, the learning task is to compute a binary 
classifier whose input is a block of 100 commands and 
whose output is a classification of that block as either 
generated by a masquerader or not.  The target 
classification is to detect the masquerader’s command 
blocks. Hence, the masqueraders’ data are positive 
examples, while the user’s legitimate data are treated as 
negative examples. Thus, a true positive outcome is a 
masquerade block of 100 commands, while a false 
positive outcome is a block of commands legitimately 
issued by the user but misclassified as a masquerade. In 
the following description, we call the masquerade blocks 
positive examples and call the legitimate blocks, those 
issued by the user himself, negative examples. One-class 
training means that a classifier is computed using only 
negative examples of the user himself as training data to 
build the classifier, which will be used to classify both 
positive and negative data. Thus, the task is to positively 
identify masqueraders, but not to positively identify a 
particular user. 
 
 
 

3.2. One-class or two class 
 

Previous work considered the problem as a multi-class 
supervised training exercise. The dataset contains data for 
50 users. For each user, a specific class, the first 5000 
commands are treated as negative examples, while the 
data from the other 49 users are treated as positive 
examples. It is reasonable to assume the negative 
examples, which belong to the same user, were treated 
consistently, while the positive examples used in training 
belong to another user. For the masquerade problem, it is 
probably impossible and unreasonable to estimate how an 
attacker would behave. Thus, treating sets of other users’ 
data as positive examples provides a substantive bias (to 
those users’ behavior who probably was not behaving 
maliciously).  We next present the means of implementing 
one-class training for Naïve Bayes classifier and for SVM, 
using only data from a single user when training a 
classifier to profile a distinct user.  
 
3.3. Naïve Bayes Classifier 

 
The Naïve Bayes classifier [12] is a simple and 

efficient supervised learning algorithm, which has been 
proved to be very effective in text classification, and many 
other applications. It is based on Bayes’ rule, 

)(
)|()(

)|(
dp

udPup
dup =  

which calculates the probability of a class given an 
example. Applied to the masquerade problem, it calculates 
the likelihood that a command block belongs to a 
masquerader (non-self), or some legitimate user. Different 
commands ic , which are used as features here, are 

assumed independent from each other. This is the Naïve 
part of this method.  

There are two common models used in Naïve Bayes 
Classifier, one is the multi-variate Bernoulli model, and 
the other is the multinomial model [11]. In the multi-
variate Bernoulli event model, a vector of binary attributes 
is used to represent a document (in our case, a block of 
100 commands), indicating whether the command occurs 
or doesn’t occur in the document. The multinomial model 
uses the number of command occurrences to represent a 
document, which is called “bag-of-words” approach, 
capturing the word frequency information in documents. 
According to McCallurn [11]’s result, multi-variate 
Bernoulli model performs better for small vocabulary size, 
and the multinomial model usually performs better at 
larger vocabulary size. Because the vocabulary size (the 
number of distinct commands) of this masquerade 
problem is 856, which is a moderate in size, we want to 
compare both of these models for this problem.  
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Multi-variate Bernoulli model 
Using the multi-variate Bernoulli Model, a command 
block d is represented as a binary 

vector ))(),...,(),(( 21 dbdbdbd m=
→

, with )(dbi  set to 1 if 

the command ic  occurs at least once in this block. Here 

m is the total number of features, i.e., the number of 
distinct commands. Given )|( ucp i , which is the 

probability estimated for command ic for user u  in the 

training data, we can compute )|( udp  of the test block 
d  as: 

=)|( udp  

)))|(1))((1()|()((
1

∏
=

−−+
m

i
iiii ucpdbucpdb         (1) 

where )|( ucp i is estimated with a Laplacean prior: 
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)(uN  is the number of training examples for user u , 

while ),( ucN i is the number of documents containing the 

command ic  for user u . 

 
Multinomial model 

Using the standard bag-of-words approach, each 
command block   is represented by a feature 

vector ))(),...,(),(( 21 dndndnd m=
→

, where )(dni is the 

number of times command ic appears in the command 

block d . Similarly, given )|( ucp i , which is the frequency 

count computed for command ic for user u in the training 

data, we can compute )|( udp  of the test block d  as: 
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Here α  is used for smoothing, which controls the 
sensitivity to previously unseen commands. (This implies 
there is a non-zero probability any command may be 
issued by any user.) We set it to 0.01 following [9].  

 
One-class Naïve Bayes 

Adapting the above algorithm to one-class Naïve 
Bayes, which uses only positive examples for training, is 
very simple. We only compute )|( ucp i  for useru ’s self 

profile. For the non-self profile, we can assume each 

command has equal probability m/1 , which is essentially 
random. Thus, given a test d , we can compare 

)|( selfdp  with )|( nonselfdp . The larger the ratio of 

)|( selfdp  to )|( nonselfdp , the more likely this 
command block d  is from the user u . 

Applying the one-class Naïve Bayes algorithm to our 
specific dataset is also quite simple. Since each test 
document (a block of commands) has a fixed number of 
100 commands, the probability of “non-self” is the same 
for all tested blocks. Since we do not have to compute the 
probability of non-self; we may compare the probability 
of being “self” to a threshold in order to decide whether 
this block is a masquerade block or not. Furthermore, we 
can easily adjust the threshold to control the false positive 
and detection rate.  
 
3.4. One-class support vector machine 
 

Support Vector Machines (SVM) have been shown to 
be highly effective in text classification as well [6], among 
other important learning tasks. They are maximal-margin 
classifiers, rather than probabilistic as is Naïve Bayes. In 
the two-class formulation, the basic idea is to map feature 
vectors to a high dimensional space and to compute a 
hyperplane that not only separates the training vectors 
from different classes, but also maximizes this separation 
by making the margin as large as possible. 

Scholkopf et al. [13] proposed a method to adapt the 
SVM algorithm for one-class SVM, which only use 
examples from one-class, instead of multiple classes, for 
training. The one-class SVM algorithm first maps input 
data into a high dimensional feature space via a kernel 
function and treats the origin as the only example from 
other classes. It then iteratively finds the maximal margin 
hyperplane that best separates the training data from the 
origin.  

Considering that our training data set Xxxx ∈
�

,...,, 21 , 

Φ  is the feature mapping FX →  to a high-dimensional 
space, we can define the kernel function as: 

))()((),( yxyxk Φ⋅Φ=  
Using kernel functions, the feature vectors need not be 

computed explicitly, greatly improving computational 
efficiency since we can directly compute the kernel values 
and operate on their images. Some common kernels are 
linear, polynomial, and radial basis function (rbf) kernels: 
Linear Kernel: )(),( yxyxk ⋅=  

P-th order polynomial kernel: pyxyxk )1(),( +⋅=  

rbf kernel: 
22 2/||||),( σyxeyxk −−=  

Now, solving the one-class SVM problem is equivalent 
to solving the dual quadratic programming (QP) problem: 
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where iα  is a Lagrange multiplier, which can be thought 

of as a weight on example ix , and ν is a parameter that 

controls the trade-off between maximizing the number of 
data points contained by the hyperplane and the distance 
of the hyperplane from the origin.  

After solving for iα , we can use a decision function to 

classify data. The decision function is:  

� −=
i ii xxkxf )),(sgn()( ρα  

where the offset ρ  can be recovered by 

),( ijj j xxk�= αρ . 

In our work, we used the LIBSVM 2.4 [1] available at 
http://www.csie.ntu.tw/~cjlin/libsvm for our experiments. 
LIBSVM is an integrated tool for support vector 
classification and regression that implemented Sholkopf’s 
algorithm for one-class SVM. We used the default rbf 
kernel and the default values of the parameters for one-
class SVM. 

Another problem to consider for one-class SVM is how 
to represent the features. We used both a word count 
representation and a binary representation, which are 
equivalent to the multinomial model and multi-variate 
Bernoulli model of Naïve Bayes algorithm, respectively. 
The vectors are normalized to length 1.  
 
4. Evaluation 
 

We conducted two sets of experiments. The first 
experiment repeats the experimental methodology of [14]. 
We show that the performance of one-class training is 
almost the same as the performance of multi-class training. 
This is a significant finding on its own. 

The second experiment aims to compare the 
performance of the two one-class training algorithms 
when applied to multiple users. Following [9], we will call 
the first the SEA experiment, which is from the authors’ 
names in [14], Schonlau et al. The second experiment is 
called 1v49, because we trained using only one user’s data 
and tested on all other 49 user’s data. 

 
4.1. SEA Experiment 
 

Recall that in this experiment, the first 5,000 
commands of a user serve as positive examples, and the 
first 5,000 commands of all the other 49 users serve as 
negative examples. The resultant classifier is tested on the 
rest of the 10,000 commands of the user. These have 

inserted “dirty” command blocks under a probability 
distribution from other users besides the 50 users whose 
commands were trained on. For our one-class algorithm, 
the test data remains the same, but we only use one user’s 
training data (the first 5,000 commands) as negative 
examples for training; there are no positive examples used 
at all to compute the classifier. First we compare the 
Naïve Bayes classifier using the multi-variate Bernoulli 
model and the multinomial model. Then we compare the 
one-class training algorithms against the multi-class 
training algorithms. All the classification algorithms we 
tested do no updating during the test of any parameters 
because we want to compare the pure performance of each 
of them. Maxion [9] used an empirically pre-fixed 
threshold to update the classifier during the experiment, 
which is not an intrinsic characteristic of the classification 
algorithm. 
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Figure 1 displays plots comparing the multi-variate 
Bernoulli model and the multinomial model of Naïve 
Bayes classifier. When using multi-class training, the 
multinomial model is obviously better than the Bernoulli 
model. But the difference is not so obvious in one-class 
training, especially when the false positive rate is low. We 
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thus compare both models in the following 1v49 
experiment.  

To compare the performance of the one-class training 
algorithms against the multi-class training algorithm on 
the same test data, we plot the ROC curves as displayed in 
Figure 1. For the multi-class training algorithm, we only 
use the multinomial model Naïve Bayes algorithm as the 
baseline for comparison, which is better than Bernoulli 
model and has been proved to the best among the variety 
of methods as described in [9]. For the one-class SVM, 
we compare both the binary and word count 
representations. From Figure 2, we can see that only one-
class SVM using the word count representation is a little 
bit worse than the other three methods. One-class SVM 
using the binary representation and one-class Naïve Bayes 
achieved almost the same performance as the two class 
Naïve Bayes algorithm.  

We also compare in Figure 3 the performance of all the 
previous algorithms from Table 1 to one-class SVM 
algorithm using binary features, which is best one among 
the one-class training algorithms. One-class SVM-binary 
is better than most of the previous algorithms except the 
two-class multinomial Naïve Bayes algorithm with 
updating.  

This experiment confirmed our conjecture that for 
masquerade detection, one-class training is as effective as 
two class training. 
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4.2. 1v49 Experiment 
 

As we have pointed out, since the dataset used had 
randomly inserted masquerade blocks in each user’s test 
commands (10,000 commands following the first 5,000), 
each user has a different number of “dirty” blocks and the 
origins of these “dirty” blocks also differ. So the result of 
the SEA experiment may not illustrate the real 
performance of a classification algorithm. (There are too 
many unfixed parameters.) To better evaluate the 
performance of a classification algorithm, we can treat 
these 50 users as our selected sample of common users. If 
we can prove algorithm A is better than algorithm B for 
most of the 50 users, we can infer A is better than B in a 
general sense. 

To meet this requirement, we follow the “1v49” 
experiment, but for a different purpose. We use one user’s 
first 5,000 commands as negative training data to compute 
a classifier without any positive training data. For test data, 
we use the non-masquerade blocks from the 10,000 
additional commands of the same user as negative test 
data, and the other 49 users’ first 5,000 commands as 
positive test data. This data is also organized in blocks of 
100 commands.  

As we mentioned before, the same algorithm might 
perform quite differently for different users. Figure 4 
illustrates the difference. Figure 4 shows the ROC curve 
for user 2, 20 and 40 using one-class SVM with the binary 
feature representation. Such a difference occurs no matter 
which algorithm has been used; the difference is 
determined by the characteristic of each user. 
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To compare the different methods for multiple users, 

we compute the ROC score for each user. In general, a 
ROC score is the fraction of the area under the ROC curve, 
the larger the better. A ROC score of 1 means perfect 
detection without any false positives. Figure 5 below 
shows the ROC scores for users 20 and 40 using the one-
class SVM-binary algorithm. 
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Figure 6 illustrates the performance of several one-

class training algorithms as measured by ROC scores. The 
figure includes results for all 50 users. From Figure 6, we 
can see that one-class SVM using word-count features is 
the worst among the four algorithms. At the high ROC 
score region, with a ROC score higher than 0.8 (which is 
what we prefer) one-class SVM using binary features 
performs best among all. There is no big difference 
between Naïve Byaes using the multinomial model or the 
multi-variate Bernoulli model.  
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For the masquerade problem, we are more interested in 

the region of the ROC curve with a low false positive rate; 
otherwise, the “annoyance level” of false alarms would 
render the detector useless in practical use. Therefore, we 
restrict the ROC scores to the curves with false positive 
lower than P, which is called the ROC-P score. For 
example, if we want to restrict the false positives to be 
lower than 5% of all command blocks, we can compute 
ROC-5. Similar to the general ROC score, the ROC-P 
score is the fraction of the area under the ROC curve 
where the false positive rate is lower than P%. Figure 7, 
displays an example of ROC-10, based on the ROC-
curves of users 20 and 40. Only part of the ROC curve is 
drawn here to highlight the plots. 
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Since we can see that one-class SVM using the binary 

feature is generally better than one-class SVM using the 
word count feature, as depicted in Figure 6; here we only 
compare the one-class SVM using the binary 
representation with the multinomial model Naïve Bayes 
and Bernoulli model Naïve Bayes in the following ROC-P 
comparison. Figures 8 plots the comparison for ROC-5 
and ROC-1, which means false positives are below 5% 
and 1%, respectively. From these two plots, we can 
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determine that one-class SVM using the binary feature is 
almost always better than the other two one-class Naïve 
Bayes methods. 
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To compare the performance of different algorithms on 

an individual user basis, we compare the ROC-P score 
user by user. Figure 9 shows a user-by-user comparison of 
one-class SVM using the binary feature representation and 
one-class Naïve Bayes using the multinomial model, when 
the false positive rate is lower than 1%. Again we can see, 
for most of the 50 users, one-class SVM with binary 
features is better than one-class Naïve Bayes using the 
multinomial model. However, there are still some users 
whose data exhibit better performance using the one-class 
Naïve Bayes. This suggests that we can choose the best 
algorithm to use for an individual user to improve the 
whole system’s performance.  
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5. Discussion 
 

From our work we can see that one-class SVM using 
binary features performs better than one-class Naïve 
Bayes and one-class SVM using word count features.  

Even so, masquerade detection is a very hard problem, 
and all three algorithms did not achieve very high 
accuracy with near to zero false positive rates for every 
user. This is partly caused by the inherent nature of the 
data available and the difficulty of this problem.  We 
would like to reapply these methods using a richer set of 
data as described by Maxion [10], incorporating command 
arguments. We also believe that temporal data associated 
with each user’s sequential commands will provide 
considerable value as well to improve performance.  

Another problem to consider for the practical utility of 
these approaches is resiliency to direct attack; i.e. how 
could we protect the models that were computed from, for 
example, a mimicry attack by the masquerader?  

In the experiments performed, we did not evaluate 
feature selection. We tested one-class SVM using 100, 
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200, and 300 of the most frequently used UNIX 
commands. Each of the results is worse than had we used 
all of the available UNIX commands, whose total number 
is around 870. We also conjectured that 2-gram features 
(adjacent pairs of commands) would perform better than 
individual commands (1-grams) as a feature. However, we 
found that the results were worse when we used all of the 
2-grams. In further work, we would evaluate some feature 
selection methods to improve performance. For example, 
we believe a selection of some features using both 1-gram 
and 2-grams may improve the quality of the user profiles, 
and thus the accuracy of the detector.  

A system to detect masqueraders as described in this 
paper should not be viewed as a single detector, but rather 
as evidence to be correlated with other sensors and other 
detectors. Thus, although the performance of the detectors 
described herein and in prior work seemingly are not 
accurate enough, when one wishes to limit false positives, 
it may be wise to relax the threshold to generate higher 
true positive rates. If the output of the detector were 
combined with other evidence (for example, file system 
access anomaly detection, or other sensors), it may be 
possible to raise substantially the bar in protecting hosts 
from malicious abuse.  
 
6. Conclusion 
 

In this paper, to solve the masquerade detection 
problem, we use one-class training algorithms which only 
train on a user’s clean data. It has been demonstrated that 
one-class training algorithms can achieve similar 
performance as multiple class methods, but require much 
less effort in data collection and centralized management. 
Besides masquerade detection, we believe one-class 
training is also good for some other intrusion detection 
problems where sample intrusion data are hard to get or 
too variable to cluster. 

We also give a detailed comparison of the performance 
of different one-class algorithms as applied to multiple 
users. The results show that for most users one-class SVM 
using the binary feature representation is better than one-
class Naïve Bayes and one-class SVM using the word 
count representation, especially when we want to restrict 
the false positive rate to a relatively low level. 

In our future work, we plan to include command 
arguments, not only truncated commands, as features to 
improve the accuracy of masquerade detection. As the 
number of features increase, we also plan to do feature 
selection to find the most informative features and to 
discard those features that have no value for the target task. 
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Abstract 
 

Many approaches have been suggested and 
various systems been modeled to detect intrusions from 
anomalous behavior of system calls as a result of an 
attack. Though these techniques have been shown to be 
quite effective, a key element seems to be missing – the 
inclusion and utilization of the system call arguments to 
create a richer, more valuable signature and to use this 
information to model the intrusion detection system more 
accurately. We put forth the idea of adopting a rule 
learning approach that mobilizes rules based upon system 
calls and models the system for normal traffic using 
system call arguments and other key attributes. We present 
variations of our techniques and compare the results with 
those from some of the well known techniques based upon 
system call sequences. The results show that system call 
argument information is crucial and assists to successfully 
detect U2R, R2L and Data attacks generating lesser false 
alarms. 
 
 
1. Introduction 
 

Motivation: The Internet has invariably been a medium 
for malicious purposes. Attacks on computers, be it some 
graduate students trying to hack systems to prove their 
mettle or intruders with more damaging intentions, is on a 
steady rise. Moreover, novel attacks and hacking schemes 
are developed all the time, making it hard for systems to be 
made immune to all these vulnerabilities. It has thus 
become imperative that these be checked early to minimize 
losses.  

 
Two different lines of approach have been adopted to 
detect intrusions. The first technique, misuse (signature) 
detection, is similar to pattern matching -- systems are 

modeled upon known attack patterns and the test data is 
checked for the occurrence of these patterns. These 
systems have a high degree of accuracy but fail to detect 
new attacks. The other method, anomaly detection, models 
normal behavior and significant deviations from this 
behavior are considered anomalous. The primary 
advantage of this approach is that it can detect novel 
attacks, the drawback being that it can generate a lot of 
false alarms. This is attributed to the fact that not all 
anomalies are necessarily attacks and will thus result in 
false positives. 
 
Intrusion Detection Systems (IDSs) can also be 
categorized as network-based and host-based. In the 
former, header fields of the various network protocols are 
used to detect intrusions. For example, the IP header fields 
- source IP address, destination IP address, source port 
number, destination port number and others can be used to 
check for malicious intent. In the latter approach (a host-
based IDS), the focus shifts to the operating system level. 
System call data is extracted from audit logs like the 
Solaris Basic Security Module (BSM) [16] and their 
behavior is studied to detect attacks. 
 
Most of the present techniques for host-based anomaly 
detection systems revolve around sequences of system 
calls. These techniques are based upon the observation that 
an illegitimate activity results in an abnormal (novel) 
sequence of system calls.  
 
Problem: The efficacy of such systems might be improved 
upon if more information is utilized. For system calls the 
most intuitive option lies in the system call arguments. 
Some other attributes related with system calls are the path 
for the object, the return value and the error status. Does 
adding these attributes assist in modeling a host-based 
anomaly detection system better? How do such systems 
fare (in terms of detections, false alarms, space and time 
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requirements) as compared to the systems based only upon 
the sequence of system call information? These are some 
of the key issues we seek to explore in this paper. 
 
Approach: We extract system calls, their arguments, path, 
return value and error status from the Solaris BSM audit 
logs [16]. We then propose a host-based anomaly-
detection system using system calls and other 
aforementioned key attributes by using variants of LERAD 
(Learning Rules for Anomaly Detection) [14], which is a 
conditional rule-learning algorithm. We aim at forming 
rules for our anomaly detection system based upon the 
system calls and their attributes. We suggest that including 
these attributes to the system calls will result in learning 
more information, thereby enabling us to model our 
systems better and detecting more attacks. We propose 
three models – the first one modeling system call 
sequences using LERAD, the second modeling system call 
arguments and other attributes, and the third approach 
being a combination of the two. We juxtapose these 
techniques and also compare them with some of the 
previous well-known sequence-based techniques, namely 
tide, stide, t-stide [20]. 
 
Contributions: 

• We proposed the use of system call argument 
information to enrich the representation of program 
behavior in anomaly detection. 

• We proposed modifications to LERAD to learn rules 
that allow one of the attributes to be designated as a 
pivotal attribute (system call in our case -- explanation 
in Section 3.2.2) on which the rules are based. 

• As compared to tide, stide and t-stide, three well 
known sequence-based techniques (more details in 
Section 2), our argument-based systems are able to 
detect more attacks at lower false alarm rates.  

• Our method that uses both sequence and argument 
information generally detected the most attacks with 
different false alarm rates.  
 

Organization: Section 2 describes the related work in the 
field of anomaly detection. In Section 3, we discuss the 
approach that we adopt for prepare the data set for our 
anomaly detection models. We give a brief explanation of 
LERAD on which our models are based. Then we describe 
the three variants of LERAD that are used to investigate 
different issues. Section 4 gives a brief description of 
evaluation data, procedure and criteria. Then we analyze 
the results obtained from the experiments we performed. In 
Section 5, we conclude and put forth some views for future 
endeavors. 

2. Related Work 
 
Forrest et al. [2] proposed an approach for host based 
anomaly detection called time-delay embedding (tide), 
wherein traces of normal application executions were 
noted. A sliding look-ahead window of a fixed length was 
used to record correlations between pairs of system calls. 
These correlations were stored in a database of normal 
patterns, which was then used to monitor sequences during 
the testing phase. Anomalies were accumulated over the 
entire sequence and an alarm was raised if the anomaly 
count exceeded the threshold. tide forms correlations 
between pairs of system calls within a certain preset 
window size. Some of the issues involved in their approach 
were:  using a small window does not help to form 
correlations over a long period of time. Similar sequences 
with minor variations could still be flagged as anomalous.  

 

Later work by Warrender et al [20] extended this 
technique in sequence time-delay embedding (stide), which 
memorized all contiguous sequences of predetermined, 
fixed lengths during training. An anomaly count was 
defined as the number of mismatches in a temporally local 
region. A threshold was set for the anomaly score above 
which a sequence is flagged anomalous, indicating a 
possible attack. stide memorizes all fixed length sequences 
from the training data, irrespective of the number of 
instances found in the dataset. An extension, called 
sequence time-delay embedding with (frequency) threshold 
(t-stide), was similar to stide with the exception that the 
frequencies of these fixed length sequences were also 
taken into account. Rare sequences were ignored from the 
normal sequence database in this approach. When 
encountered during the testing phase, they were also 
counted as mismatches and aggregated to the locality 
frame counts (anomaly counts). All these techniques 
modeled normal behavior by using fixed length patterns of 
training sequences. But there was no rationale in fixing the 
length to a predetermined constant value.  

 

Wespi et al. [21], [22] proposed a scheme to generate 
variable length patterns by using Teiresias [17], a pattern-
discovery algorithm in biological sequences. These 
techniques improved upon the fixed length pattern 
methods cited above. Some extensions to (fixed and 
variable length) sequence-based methods were also 
proposed in [6], [7] and [8]. Though all the above 
mentioned approaches use system call sequences, none of 
them make use of the system call arguments. Given some 
knowledge about the system being used, attackers can 
devise some methodologies to evade such intrusion 
detection systems. Wagner and Soto [19] made such an 
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attempt to model a malicious sequence by adding "no-ops" 
(system calls having no effect) to compromise an IDS 
based upon the sequence of system calls. This brings to 
surface yet another shortcoming of sequence-based 
methods. Such attacks would fail if the system call 
arguments are also taken into consideration.  

 

Sekar and others [18] proposed a method to build a 
compact finite state automaton (FSA) in an efficient way to 
detect intrusive activities. But no frequency information is 
stored in the FSA. Again, there lies the inherent drawback 
that the system call arguments are not considered. In [3], 
Feng et al proposed a method that dynamically extracts 
return address information from the call stack and program 
counter information is recorded at each system call. This 
technique performs equally well as compared to the 
deterministic FSA approach in terms of detections, 
convergence and false positives.  

 

Artificial neural networks (ANNs) have been employed for 
both anomaly and misuse (signature) detection. Ghosh and 
Schwartzbad [4] expressed the idea of a process-based 
intrusion detection system that can generalize from 
previously observed behavior to recognize future unseen 
behavior. But their system ignores isolated anomalies.  

 

Machine learning approaches have also been used to 
model intrusion detection systems. Lee at el. [11] verified 
the feasibility of rule-learning approaches by using an 
algorithm called RIPPER [1]. Mahoney and Chan [14] 
introduced a machine-learning algorithm called LERAD 
(Learning Rules for Anomaly Detection) to detect network 
intrusions. This technique extended the network traffic 
model to include a larger number of attributes. They also 
introduced and used the concept of a non-stationary model 
in [13], [14] and [15], in which the probability of an event 
depends upon its most recent occurrence and not on the 
frequency. LERAD is a conditional rule-learning algorithm 
that selects good rules from a vast rule space. This paper 
uses variants of LERAD for a host-based anomaly 
detection system. 
 
3. Approach 
 
Rule learning techniques have been shown that they can be 
successfully adapted to model systems for intrusion 
detection [14]. Since our goal is to detect host-based 
intrusions and we are dealing with BSM audit data, system 
calls are instrumental in our system. We thus extend upon 
the machine learning approach and incorporate the system 
calls with its arguments to generate a richer set of rules and 

measure the performance on the basis of number of 
detections and the false alarm rate. We study and evaluate 
three different variations of modeling a system using 
LERAD: sequence of system calls, system calls and their 
arguments, and a fusion of the previous two 
methodologies. We compare and contrast the results from 
these three models of our approach with tide, stide and t-
stide. 

 

3.1. Learning Rules for Anomaly Detection 
(LERAD) 
 

LERAD is an efficient conditional rule-learning algorithm 
that picks up attributes in a random fashion. LERAD is 
briefly described here. More details can be obtained from 
[14].  LERAD learns rules of the form: 

                                               
,....},{,..., 21 xxXbBaA ∈�==                       (1)                                         

 

where A, B, and X are attributes and a, b, x1, x2 are values 
to the corresponding attributes.  The learned rules 
represent the patterns present in the training data that 
consist of normal behavior.  The set {x1, x2, …} in the 
consequent constitutes all unique values of X when the 
antecedent occurs in the training data.  (These rules are 
different from typical classification rules or association 
rules.)   

 

Records that match the antecedent but not the consequent 
of a rule are considered anomalous.  The degree of 
anomaly is based on a probabilistic model.   For each rule, 
from the training data, the probability, p, of observing a 
value not in the consequent is estimated by: 

                                        
nrbBaAxxXp /,...),|...},{Pr( 21 ===∉=     (2) 

 

where ‘r’ is the cardinality of the set, {x1, x2, …}, in the 
consequent and ‘n’ is the number of records that satisfy the 
antecedent.  This probability estimation of novel (zero 
frequency) events is due to Witten and Bell [23].  Since p 
estimates the probability of a novel event, the larger p is, 
the less anomalous a novel event is.  Hence, during 
detection, when a novel event is observed, the degree of 
anomaly, or Anomaly Score, is estimated by: 

                                                        
rnpreAnomalySco //1 ==                     (3) 
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The rule generation phase of LERAD comprises of three 
main steps: 

(i) Candidate rules are generated from patterns observed in 
randomly selected pairs of training examples: Training 
samples are picked up at random and then an initial set of 
rules is generated based upon common attributes between 
the samples. The conditional rules formed are of the type 
depicted in Equation (1) above.  

(ii) The rule set is minimized by removing rules that do not 
cover/describe additional training examples:  Redundant 
rules are discarded and a minimal set of rules is generated. 

(iii) A subset of the training set is chosen as a validation 
set on which no training is performed: Rules learnt so far 
are used to test the data in this validation set. Rules are 
removed if they cause a false alarm in the validation set. 
This is due to the fact that the validation data set comprises 
of clean data (no attacks) and any anomaly implies a false 
alarm. 

 

The rule generation methodology of LERAD is described 
next using Table 1. 

 

Table 1: LERAD rule generation example: S1 – S6 
are training samples with attributes A, B, C and D.  

Training 
Sample 

A B C D 

S1 1 2 3 4 

S2 1 2 3 5 

S3 6 7 8 4 

S4 1 0 9 5 

S5 1 2 3 4 

S6 6 3 8 5 

 

Step (i) Samples, say S1 and S2, are picked at random to 
create an initial rule set. Rules are generated by selecting 
matching attributes in a random order. In this example, the 
S1 and S2 have the matching attributes A, B and C. 
Selecting them in the order B, C and A, we get the 
following 3 rules: 
 

Rule1: * �  B ∈  {2} 

Rule 2: C=3 �  B ∈  {2} 

Rule 3: A=1, C=3 �  B ∈{2} 
 

A rule so generated implies that the attribute in the 
consequent can have a value from a set of values only if 

the conditions in the antecedent are satisfied. It may so 
happen that there is a consequent but no antecedent in a 
rule formed by LERAD. This means that an attribute can 
take any value from its set of values without the need to 
satisfy any other condition. Such a situation is presented in 
Rule 1 where the antecedent is represented by a wildcard 
character *.  

 

Step (ii) Coverage test is applied to a subset of the training 
set (say S1-S3) and rules are modified as follows: 
 

Rule1: * �  B ∈  {2, 7} 

Rule 2: C=3 �  B ∈  {2} 

Rule 3: A=1, C=3 �  B ∈{2} 
 

Once we have the extended rule set, the probability p -- 
described in Equation (2) above -- is associated with every 
rule. The rules are then sorted in increasing order of the 
probability p: 
 

Rule 2: C=3 �  B ∉  {2} [p = 1/2] 

Rule 3: A=1, C=3 �  B ∉{2} [p = 1/2] 

Rule 1: * �  B ∉  {2, 7} [p = 2/3] 
 

When the probabilities are equal, the rule with lesser 
number of conditions in the antecedent is given higher 
priority (Rule 2 is higher in priority than Rule 3 in our 
example). Next, we desire a minimal set of rules. This is 
achieved by removing those rules that do not give any new 
information. In our example, Rule 2 is satisfied by samples 
1 and 2. Rule 3 does not add any new value to the attribute 
B and is thus deemed as redundant and is removed from 
the rule set. The last rule (Rule 1) covers sample 3 as well 
and is kept in the rule set. 

 

Extending the two rules to the entire training (minus 
validation) set (samples S1-S5 in our example), we get 
 

Rule 2: C=3 �  B ∉  {2} [p = 1/3] 

Rule 1: * �  B ∉  {2, 7, 0} [p = 3/5] 
 

Step (iii): The last step comprises of testing the above set 
of rules on the validation set, which is a subset of the 
training data for which rules have not been generated. Any 
rule which produces anomaly in the validation set is 
removed. In our example, sample S6 forms the validation 
set. Rule 1 is violated since attribute B has a novel value 3 
in this sample. Thus, we are left with the following rule: 
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C=3 �  B ∉  {2} [p = 1/3] 
 

A non-stationary model is assumed for LERAD – 
frequency is made irrelevant and only the last occurrence 
of an event is assumed important. Since novel events are 
bursty in conjunction with attacks, a ‘t’ factor was 
introduced to capture the non-stationary characteristic, 
where ‘t’ is the time interval since the last novel 
(anomalous) event.  When a novel event occurred recently, 
or t is small, a novel event is more likely to occur at the 
present moment.  Hence, the anomaly score is measured by 
t/p.  Since a record can deviate from the consequent of 
more than one rule, the total anomaly score of a record is: 

                                            

ii
i

ii
i

i rntptlyScoreTotalAnoma // �� ==               (4)                           

where ‘i’ is the index of a rule from which the record has 
deviated. The anomaly score is aggregated over all the 
rules to combine the effect from violation of multiple rules. 
The more the violations, more critical the anomaly is, and 
the higher the anomaly score should be. LERAD yields 
successful results for network-based anomaly detection 
systems. This paper extends the algorithm for host-based 
anomaly detection systems.  

 

3.2. Variants of LERAD 
 

Our goal is to create a system that can detect any anomaly 
across any application/program. We developed a 
taxonomy of the entire data set from the BSM audit log. 
We classified the data into various applications/programs 
and generated a model for each of them.  

 

3.2.1. Sequence of system calls: S-LERAD 
 

Using sequence of system calls is a very popular approach 
for anomaly detection. We performed experiments wherein 
we extracted system calls from the data. We used a 
window of fixed length 6 (as this is claimed to give best 
results in stide and t-stide [20]) and fed these sequences of 
six system call tokens as input to LERAD. We called this 
technique as S-LERAD since we are trying to capture 
system call sequences by using LERAD. 

For input to LERAD, we thus have a set of following 
attributes: date and time when system call information 
logged, the last two bytes of the destination IP address 
used for identifying the hosts during the evaluation, a 
system call and the previous five system calls, thereby 
making it a sequence of 6 system calls. LERAD uses these 

attributes at random to generate rules as described in 
Section 3.1. 

 

The purpose of performing this experiment was to explore 
whether LERAD would be able to capture the correlations 
among system calls in a sequence. Also, this experiment 
would assist us in comparing results by using the same 
algorithm for system call sequences as well as system call 
arguments. Since stide and t-stide report best results for 
sequences of length 6, we increased the maximum number 
of allowed attributes in the antecedent of the rules 
generated by LERAD from 3 to 5, keeping the consequent 
fixed at 1 attribute. 

 

A sample rule learned in a particular run of S-LERAD is: 
 

()}{3()6(),2(),1 munmapSCopenSCmmapSCcloseSC ∈�===   

n/r value = 455/1 

 

This rule is analogous to encountering close() as the first 
system call (represented as SC 1), followed by mmap() and 
munmap(), and open() as the sixth system call (SC 6) in a 
window of size 6 sliding across the audit trail. Each rule is 
associated with an n/r value, as explained in Section 3.1. 
The number 455 in the numerator refers to the number of 
training instances that comply with the rule (n in Equation 
3). The number 1 in the denominator implies that there 
exists just one distinct value of the consequent (munmap() 
in this case) when all the conditions in the premise hold 
true (r in Equation 3 of Section 3.1).  

 

3.2.2. System call arguments and other key attributes: 
A-LERAD 
 

We propose that argument and other key attribute 
information is integral to modeling a good host-based 
anomaly detection system. In this experiment, we extracted 
arguments, object path, return value and error status of 
system calls from the Solaris BSM audit log and examined 
the effects of learning rules based upon system calls along 
with these attributes.  

 

We built models per application using LERAD with the 
modification that the rules were forced to have system call 
in the antecedent since it is the key attribute in a host based 
system. The generic version of LERAD could have been 
used to generate rules, but the motivation behind this is 
that ours is a host-based system and is centered upon 
system calls. We term the system call as a pivotal attribute 
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since our rules are based upon it. Thus, the system call will 
always be a condition in the antecedent of the rule. 

 

This model is given the nomenclature A-LERAD since our 
motive here is to generate rules for various attributes given 
the system calls. Any value for the other arguments (given 
the system call) that was never encountered in the training 
period for a long time would raise an alarm. A sample rule 
is of the form: 
 

}1240,2110,0102,1340{1() xxxArgmunmapSC ∈�=
 n/r value = 500/4 

 

In the above rule, 500/4 refers to the n/r value for the rule 
(Equation 3 in Section 3.1), that is, the number of training 
instances complying with the rule (500 in this case) 
divided by the cardinality of the set of allowed values in 
the consequent. This rule gives the 4 different values 
encountered for the first argument when the system call is 
munmap(). 

 

The maximum number of arguments has been chosen as 5 
since most of system calls do not take more than 5 
arguments. Considering more number of arguments results 
in more null values for the same and may cause formation 
of not-so-important rules thereby degrading the system 
performance. Thus only the high frequency arguments 
were selected from the data set. There may be several other 
approaches that can be adopted in this regard. Ours is just 
one intuitive approach.  

 

3.2.3. Merging argument information and sequence of 
system calls: M-LERAD 
 

The third set of experiments we conducted was to combine 
the techniques discussed in Sections 3.3.1 and 3.3.2. The 
first is a well acclaimed technique based upon sequence of 
system calls and is known to be an effective technique; the 
second one takes into consideration the attributes 
(arguments, path, return value and error status), whose 
efficacy we claim in this paper; so fusing the two to study 
the effects was an obvious choice. We call this technique 
as M-LERAD (short form for the merged system), as we 
desire to combine system call sequences and the related 
key attributes. Merging is accomplished by adding more 
attributes in each tuple before input to LERAD. Each tuple 
now comprises of the system call, arguments, object path, 
return value, error status and the previous five system 
calls. The n/r values obtained from the all rules violated 

are aggregated into an anomaly score, which is then used 
to generate an alarm based upon the threshold.  

 
4. Experimental Evaluation 
 
Our goal is to study if the rule-learning algorithm LERAD 
can be modified to determine as many attacks with least 
number of false alarms in a host-based anomaly detection 
system.  

 

4.1. Evaluation Data and Procedures 
 

We evaluated out techniques using the 1999 DARPA 
Intrusion Detection Evaluation Data Set [12]. The test bed 
involved a simulation of an air force base that has 
machines that are under frequent attack. These machines 
comprised of Linux, SunOS, Sun Solaris and Windows 
NT. Various intrusion detection systems were evaluated 
using this test bed, which comprised of three weeks of 
training data obtained from network sniffers, audit logs, 
nightly file system dumps and BSM logs from Solaris 
machine that trace system calls. Training was performed 
on week 3 data (around 2.1 million system calls) and 
testing on weeks 4 and 5 data (comprising over 7 million 
system calls) from the BSM audit log. A total of 51 attacks 
during weeks 4 and 5 were targeted at the Solaris machine, 
from which the BSM log was collected. 

 

Data from the Basic Security Module (BSM) [16] audit log 
has to be preprocessed before it can be fed as input to 
LERAD. This was important from the point of view that we 
want to model process behavior for application. We 
divided the entire data set into various applications. For 
each application, we grouped the data on the basis of the 
process ID. For a given process id, all the data from the 
exec system call to the exit system call comprised the data 
for that particular process. Data for which we could not 
trace the start of the process was excluded from our 
experiments. The fork system call was dealt in a special 
way. A parent process spawns a child process with the fork 
system call, that is, a copy of the parent process is created. 
Unless fork is followed by exec, the child performs the 
same tasks as the parent process. Therefore, all the system 
calls for a child process are for the same application as the 
parent process until it encounters its own exec system call. 
In this way, we divided the data into applications, and 
further into processes belonging to the various 
applications/programs. 

 

All the system calls (with their arguments) pertaining to a 
single process were thus differentiated from the set of 
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system calls (and arguments) for another process 
belonging to the same application. In a similar manner, 
sequences of system calls for various processes of different 
applications were differentiated from one another and were 
ready to be used for our rule-based learning models.  

 

The parameters for S-LERAD were the 6 contiguous 
system calls; for A-LERAD they comprised of the system 
call, its return value and error status besides other 
arguments; and for M-LERAD it was a combination of the 
two techniques. For tide, the parameters were all the pairs 
of system calls within a window of fixed size 6; stide 
comprised all contiguous sequences of length 6, and t-stide 
added frequency information to the same. These sequence-
based methodologies have been discussed in Section 2.  In 
all models, alarms are accumulated for the applications and 
then evaluated for true detections and false positives.  

 

4.2. Evaluation Criteria   
 

The performance metrics used in this 1999 DARPA 
evaluation were the attack detection rate and the number of 
false alarms generated. We have adopted the same for the 
purpose of evaluating our system. As per the evaluation 
criteria, a system is considered to have successfully 
detected an attack if it generates an alarm within 60 
seconds of the occurrence of the attack. We also follow the 
same criterion for evaluating our schemes. 

 

The attacks in the 1999 DARPA evaluation are classified 
as probes, DoS, R2L, U2R and Data. These are based 
upon the classification by Kendell[10]. The taxonomy is as 
follows: 

 

(i) Probes or scan attacks are attempts by hackers to collect 
information prior to an attack.   Examples include 
illegalsniffer, ipsweep, mscan, portscan amongst others. 

(ii) DoS (Denial of Service) attacks are the ones in which a 
host or a network service is disrupted. For example, 
arppoison, selfping, dosnuke and crashiis are all DoS 
attacks. 

(iii) R2L (Remote to Local) – In these attacks, an 
unauthorized user gains access to a system. Examples of 
R2L attacks are guest, dict, ftpwrite, ppmacro, sshtrojan 
and framespoof. 

(iv) U2R (User to Root) / Data attacks are those in which a 
local user is able to execute non-privileged commands, 
which only a super user can execute. Examples are eject, 
fdformat, ffbconfig, perl, ps and xterm. 

Some attacks are combinations, such as a U2R attack that 
enables the attacker to steal secret data and are therefore 
categorized as Data-U2R attacks. Similarly, there are also 
Data-R2L attacks. 

 

Lippmann et al [12] lists poorly detected attacks as the 
ones even half of whose instances were not detected by the 
any of the IDSs in the 1999 DARPA Evaluation. For the 
Solaris host, these were all DoS attacks. Host-based 
systems that use Solaris based audit data are more inclined 
to detect R2L, U2R and Data attacks than network-based 
intrusion detection systems. 

 

As we are using more information (in the form of system 
call arguments) for our models, another important criterion 
is the space and the CPU time requirements, which is 
discussed in Section 4.4. 

 

4.3. Results and Analysis of Detection Rates   
 

We built training models for various applications. We 
reiterate our motivation for forcing rules based on system 
calls, as they are the pivotal attributes for our model. We 
trained our system on week 3 of the DARPA data and 
tested on weeks 4 and 5. Putative detections were 
considered as true positives if they occurred within 60 
seconds of the attack segment for the correct destination 
(victim) IP address, which in our case was a single Solaris 
host. 
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Figure 1: Number of detections with 10 false 
alarms per day for different attack categories.  
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Figure 1 plots the result based on a leeway of 10 false 
alarms per day of testing week, making a total of 100 false 
alarms for the two weeks of testing. The best technique 
using sequence-only information was t-stide, detecting 2 
probes, 5 DoS, 5 R2L, 5 U2R, 1 Data and 1 Data-U2R 
attacks. Both stide and t-stide were able to find more 
probes than our argument-based technique, but our claim 
lies in finding more R2L, U2R and data attacks. A-LERAD 
was able to detect 10 R2L, 5 U2R, 3 Data, and both the 
Data-U2R attacks, apart from a probe and 6 DOS attacks. 
On the other hand, S-LERAD was not able to detect many 
of these attacks. The better performance of A-LERAD over 
S-LERAD can be attributed to the inclusion of argument 
information in the former model. The graph depicts no 
improvement by adding sequence information to argument 
information since A-LERAD and M-LERAD had exactly 
the same detections for the given false alarm rate. This also 
suggests that argument information is sufficient for 
detecting anomalies and there is no need for adding 
sequence information to A-LERAD. 

 

Our techniques were also able to detect some poorly 
detected attacks quoted in [12]. For the Solaris host, these 
were DoS attacks, some of which we were able to capture 
accurately. There was only one instance of tcpreset, which 
our system detected successfully. We were also able to 
detect 2 instances of warezclient, both of which were not 
detected by the best system for that attack in the 1999 
DARPA Evaluation. 
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Figure 2: Detections for the 6 techniques at variable 
false alarms rates (for a total of 51 attacks in 2 weeks 
of data).  

Figure 2 plots the total attacks detected by various 
techniques at 1, 5, 10, 50 and 100 false alarms per day 
respectively. t-stide maintained to be the best sequence-
based technique, followed by stide, S-LERAD and tide. A-
LERAD fared better than S-LERAD and the other 
sequence-based techniques, suggesting that argument 
information is more useful than sequence information. The 
M-LERAD curve is usually at or above the other curves, 
indicating that M-LERAD usually detects more attacks at 
various false alarm rates than the remaining five methods.  

 

It can also be seen that the A-LERAD curve closely follows 
the curve for M-LERAD. This may imply that the sequence 
information is redundant; it is not adding substantial 
information to what we already have from the arguments. 
In other words, the attacks detected by using sequence 
information were also detected by using argument 
information, thereby giving similar results for M-LERAD 
and A-LERAD. A key point to observe is that even though 
the number of detections is almost same for the two 
techniques, M-LERAD has a faster convergence than A-
LERAD. 

 

We also observe that the significant difference in the 
performance of M-LERAD and t-stide is only at 10 false 
alarms per day. The reason for this is that the ROC curve is 
plotted on the basis of 5 discrete points only. For lower 
false alarm rates (1 and 5 per day), similar number of 
attacks was easily detected by both techniques. This can be 
attributed to the fact that these attacks contained both 
sequence and argument based anomalies. But as we 
increase the acceptable false alarm rate, we see that 
sequence anomalies do not necessarily correspond to an 
attack, whereas the argument anomalies are a good 
representation of an occurrence of an attack.  By relaxing 
the allowed false alarm rate further (50 or 100 false alarms 
per day), we certainly expect to get more detections. We 
notice from the figure that we do get similar performance 
for M-LERAD and t-stide in such cases, but it is 
accompanied with a huge cost in terms of the number of 
false alarms, which is unacceptable for real-time systems. 

 

By performing the comparison of the various techniques, 
we were also able to determine the effectiveness of the 
anomaly scoring function. Amongst the most effective 
techniques, A-LERAD and M-LERAD use a time based 
probabilistic estimation and t-stide incorporates frequency 
information. The way these techniques score anomalies is 
also a crucial factor in such anomaly detection systems. 
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One of the issues we investigated was whether to force 
LERAD to form rules based upon a system call as a 
condition in the antecedent or let it formulate rules without 
pivoting on a system call (as discussed in Section 3.2.2). 
We performed some experiments using A-LERAD with and 
without the enforcement of system call as a condition in 
the antecedent. Based upon the empirical evidence, we 
concluded that this enforcement resulted in the detection of 
at least as many attacks as in the relaxed case with the 
generation of fewer false alarms. 

 

4.4. Results and Analysis of the CPU Time and 
Space Requirements 
 
Compared to sequence-based methods, our techniques 
extract and utilize more information (system call 
arguments and other attributes), making it imperative to 
study the feasibility of our techniques in terms of space 
and time requirements.  
 

During training, for t-stide, all contiguous system call 
sequences of length 6 along with their respective 
frequencies are stored in a database. For M-LERAD, 
system call sequences and other attributes are stored. In 
both the cases, space complexity is of the order of O(n), 
where ‘n’ is the total number of  system calls, though the 
M-LERAD requirement is more by a constant factor k since 
it stores additional argument information. During 
detection, M-LERAD uses only the learned set of rules (in 
the range 14-35 at an average of 25.1 rules per application 
in our experiments). t-stide, on the other hand, still 
requires the entire database of fixed length sequences 
during testing, which incur larger space overhead during 
detection. We conducted experiments on the tcsh 
application data. The entire week 3 training data set 
comprises of over 2 million system calls and the test data 
(weeks 4 and 5 combined) has over 7 million system calls. 
For tcsh, system calls alongwith their arguments form a 33 
MB input file for M-LERAD. The rules formed by M-
LERAD require less than 1.5 KB space, apart from a 
mapping table to map strings and integers. For the same 
application, the memory requirements for storing a system 
call sequence database for t-stide were over 5 KB plus a 
mapping table between strings and integers. The results 
suggest that M-LERAD has better memory requirements 
during the detection phase. We reiterate that the training 
can be done offline. Once the rules are generated, M-
LERAD can be used to do online testing with lower 
memory requirements. 

 
The time overhead incurred by M-LERAD and t-stide in 
our experiments is given in Table 2. The CPU times have 

been obtained on a Sun Ultra 5 workstation with 256 MB 
RAM and 400 MHz processor speed. We can infer from 
the results that M-LERAD is slower than t-stide. During 
training, t-stide is a much simpler algorithm and processes 
less data than M-LERAD for building a model and hence t-
stide has a much shorter training time.  During detection, t-
stide just needs to check if a sequence in the database, 
which can be efficiently implemented with a hash table.  
On the other hand, M-LERAD needs to check if a record 
matches any of the learned rules.  Also, M-LERAD has to 
process additional argument information.  Run-time 
performance of M-LERAD can be improved with more 
efficient rule matching algorithm. Also, t-stide will incur 
significantly larger time overhead when the stored 
sequences exceed the memory capacity and disk accesses 
become unavoidable – M-LERAD does not encounter this 
problem as easily as t-stide since it will still use a small set 
of rules. More importantly, M-LERAD’s time overhead is 
about tens of seconds for days of data, which is reasonable 
for practical purposes. 

 

Table 2: Comparison of CPU times during training 
and testing phases for t-stide and M-LERAD for top 8 
applications in terms of total number of system calls 
(not necessarily in that order). 

Application Training Time 
(seconds) 

[on 1 week of data] 

Testing Time    
(seconds) 

[on 2 weeks of data] 

 t-stide M-LERAD t-stide M-LERAD 

ftpd 0.19 0.99 0.19 0.96 
telnetd 0.96 7.87 1.05 9.79 

ufsdump 6.76 33.33 0.42 1.78 
tcsh 6.32 32.85 5.91 37.58 
login 2.41 16.75 2.45 19.86 

sendmail 2.73 15.09 3.23 21.63 
quota 0.20 3.48 0.20 3.79 

sh 0.21 3.25 0.40 5.63 

 

5. Concluding Remarks 
 
Even though system call sequences are beneficial in 
modeling normal process behavior, they are not 
omniscient. In this paper, we portrayed the efficacy of 
incorporating system call argument information and used a 
rule-learning algorithm to model a host-based anomaly 
detection system. Our argument-based model, A-LERAD, 
detected more attacks at lower false alarm rates than the 
sequence-based techniques on the 1999 DARPA 
evaluation dataset. Combining the two lines of approach 
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(argument and sequence information) resulted in creating a 
richer and, more importantly, more accurate model for 
anomaly detection, as illustrated by the empirical results of 
M-LERAD. Though our techniques incur higher time 
overhead due to the complexity of our techniques as well 
as more information to be processed, they build more 
succinct models that incur much less space overhead--our 
techniques aim to generalize from the training data, rather 
than simply memorize the data. 

 

Our techniques can be easily extended to monitor audit 
trails in continuum. Since we model each application 
separately, some degree of parallelism can also be 
achieved to test process sequences as they are being 
logged. S-LERAD fares poorly as compared to stide and t-
stide. We are currently trying to analyze and rectify its 
shortcomings, which might have an impact on the 
performance of M-LERAD as well. Also, we were able to 
see from our experiments that the time based probabilistic 
estimation of anomaly score as proposed in LERAD and 
the frequency component of t-stide are effective ways to 
flag data as anomalous. These two functions can be 
combined to give a more appropriate anomaly score. It 
would be interesting to see how this would affect the 
results. We might perform experiments and publish results 
for the same in the near future.  
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Abstract 

This paper introduces the Minnesota Intrusion 
Detection System (MINDS), which uses a suite of data 
mining techniques to automatically detect attacks against 
computer networks and systems. While the long-term 
objective of MINDS is to address all aspects of intrusion 
detection, in this paper we present two specific 
contributions. First, we present MINDS anomaly detection 
module that assigns a score to each connection that 
reflects how anomalous the connection is compared to the 
normal network traffic. Experimental results on live 
network traffic at the University of Minnesota show that 
our anomaly detection techniques have been successful in 
automatically detecting several novel intrusions that could 
not be identified using state-of-the-art signature-based 
tools such as SNORT. Many of these have been reported 
on the CERT/CC list of recent advisories and incident 
notes. We also present the results of comparing the 
MINDS anomaly detection module to SPADE (Statistical 
Packet Anomaly Detection Engine), which is designed to 
detect stealthy scans. 

 
1. Introduction 

 
Traditional methods for intrusion detection are based 

on extensive knowledge of attack signatures that are 
provided by human experts. The signature database has 
to be manually revised for each new type of intrusion 
that is discovered. A significant limitation of signature-
based methods is that they cannot detect novel attacks. In 
addition, once a new attack is discovered and its 
signature developed, often there is a substantial latency 
in its deployment. These limitations have led to an 
increasing interest in intrusion detection techniques 
based upon data mining [3, 4, 21, 26, 28], which 
generally fall into one of two categories: misuse detection 
and anomaly detection. 

In misuse detection, each instance in a data set is 
labeled as 'normal' or 'intrusive' and a learning algorithm 
is trained over the labeled data. Research in misuse 

detection has focused mainly on detecting network 
intrusions using various classification algorithms [3, 10, 
21, 24, 26, 33], rare class predictive models [14-17, 19], 
association rules [3, 21, 28] and cost sensitive modeling 
[9, 16]. Unlike signature-based intrusion detection 
systems, models of misuse are created automatically, and 
can be more sophisticated and precise than manually 
created signatures. In spite of the fact that misuse 
detection models have high degree of accuracy in 
detecting known attacks and their variations, their 
obvious drawback is the inability to detect attacks whose 
instances have not yet been observed. In addition, 
labeling data instances as normal or intrusive may 
require enormous time for many human experts. 

Anomaly detection algorithms build models of normal 
behavior and automatically detect any deviation from it 
[7, 12]. The major benefit of anomaly detection 
algorithms is their ability to potentially detect unforeseen 
attacks. In addition, they may be able to detect new or 
unusual, but non-intrusive, network behavior that is of 
interest to a network manager, and needs to be added to 
the normal profile. A major limitation of anomaly 
detection systems is a possible high false alarm rate. 
There are two major categories of anomaly detection 
techniques, namely supervised and unsupervised 
methods. In supervised anomaly detection, given a set of 
normal data to train from, and given a new piece of test 
data, the goal is to determine whether the test data 
belongs to “normal” or to an anomalous behavior. 
Recently, there have been several efforts in designing 
supervised network-based anomaly detection algorithms, 
such as ADAM [3], PHAD [27], NIDES [2], and other 
techniques that use neural networks [32], information 
theoretic measures [22], network activity models [6] etc. 
Unlike supervised anomaly detection where the models 
are built only according to the normal behavior on the 
network, unsupervised anomaly detection attempts to 
detect anomalous behavior without using any knowledge 
about the training data. Unsupervised anomaly detection 
approaches are based on statistical approaches [36, 37], 
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clustering [8], outlier detection schemes [1, 5, 18, 31], 
state machines [34], etc. 

This paper introduces the Minnesota Intrusion 
Detection System (MINDS) that uses a suite of data 
mining techniques to automatically detect attacks against 
computer networks and systems. While the long-term 
objective of MINDS is to address all aspects of intrusion 
detection, in this paper we present only an anomaly 
detection technique that assigns a score to each network 
connection reflecting how anomalous the connection is 
compared to the normal network traffic. We also provide 
an evaluation of MINDS anomaly detection schemes in 
the context of real life network data at the University of 
Minnesota. During the last year, this evaluation has 
shown that anomaly detection algorithms have been 
successful in automatically detecting numerous novel 
intrusions that could not be identified using widely 
popular tools such as SNORT [35]. In fact, many of 
these attacks have been reported on the CERT/CC 
(Computer Emergency Response Team/Coordination 
Center) list of recent advisories and incident notes. We 
chose to present results on real life network data since 
publicly available data sets for evaluation of network 
intrusion detection systems (e.g. DARPA 1998, DARPA 
1999 data sets [23, 25]) are known to have serious 
limitations [29]. In the absence of labels of network 
connections (normal vs. intrusive), we are unable to 
provide real estimate of detection rate, but nearly all 
connections that are ranked highly by our anomaly 
detection algorithms are found to be interesting and 
anomalous by the network security analyst on our team. 

 
2.  The MINDS System 

 
The Minnesota Intrusion Detection System (MINDS) 

is a data mining based system for detecting network 
intrusions.  Figure 1 illustrates the process of analyzing 
real network traffic data using the MINDS system.  Input 
to MINDS is Netflow version 5 data collected using 
Netflow tools.  Netflow tools only capture packet header 

information (i.e., they do not capture message content), 
and build one way sessions (flows).  We are working 
with Netflow data instead of tcpdump because we 
currently do not have the capacity to collect and store the 
tcpdump.  Netflow data for each 10 minute window, 
which typically result in 1 to 2 million flows, is stored in 
a flat file.  The analyst uses MINDS to analyze these 10-
minute data files in a batch mode.  Before applying 
MINDS to these data files, a data filtering step is 
performed by the system administrator to remove 
network traffic that the analyst is not interested in 
analyzing. For example, the removed attack-free network 
data in data filtering step may include the data coming 
from trusted sources, non-interesting network data (e.g. 
portions of http traffic) or unusual/anomalous network 
behavior for which it is known that it does not 
correspond to intrusive behavior. 

The first step in MINDS includes constructing 
features that are used in the data mining analysis. Basic 
features include source IP address and port, destination 
IP address and port, protocol, flags, number of bytes, and 
number of packets. Derived features include time-
window and connection-window based features. Time-
window based features are constructed to capture 
connections with similar characteristics in the last T 
seconds, since typically of Denial of Service (DoS) and 
scanning attacks involve hundreds of connections. A 
similar approach was used for constructing features in 
KDDCup'99 data [39]. Table 1 summarizes the time-
window based features. 

 “Slow” scanning attacks, i.e. those that scan the hosts 
(or ports) and use a much larger time interval than a few 
seconds, e.g. one scan per minute or even one scan per 
hour, cannot be detected using derived “time-window” 
based features. To capture these types of the attacks, we 
also derive “connection-window” features that capture 
the same characteristics of the connection records as 
time-window based features, but are computed in the last 
N connections. The connection-window based features 
are shown in Table 2. 
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Table 1 The extracted “time-window” features 

Table 2 The extracted “connection-window” based 
features 

After the feature construction step, the known attack 
detection module is used to detect network connections 
that correspond to attacks for which the signatures are 
available, and then to remove them from further analysis.  
For experiments reported in this paper, this step is not 
performed. 

Next, the data is fed into the MINDS anomaly 
detection module that uses an outlier detection algorithm 
to assign an anomaly score to each network connection.  
A human analyst then has to look at only the most 
anomalous connections to determine if they are actual 
attacks or other interesting behavior.  

 
3. MINDS Anomaly Detection 

 
In this section, we only present the density based 

outlier detection scheme used in our anomaly detection 
module. For more detailed overview of our research in 
anomaly detection the reader is referred to [20]. 

MINDS anomaly detection module assigns a degree 
of being an outlier to each data point, which is called the 
local outlier factor (LOF) [5].  The outlier factor of a 
data point is local in the sense that it measures the degree 
of being an outlier with respect to its neighborhood. For 
each data example, the density of the neighborhood is 
first computed. The LOF of specific data example p 
represents the average of the ratios of the density of the 
example p and the density of its nearest neighbors. To 
illustrate advantages of the LOF approach, consider a 
simple two-dimensional data set given in Figure 2. It is 
apparent that the density of cluster C2 is significantly 
higher that the density of cluster C1. Due to the low 
density of cluster C1 it is apparent that for every example 
q inside cluster C1, the distance between the example q 
and its nearest neighbor is greater than the distance 
between the example p2 and its nearest neighbor, which 
is from cluster C2, and therefore example p2 will not be 
considered as outlier. 

Hence, the simple nearest neighbor approach based on 
computing the distances fail in these scenarios. However, 
the example p1 may be detected as outlier using the 
distances to the nearest neighbor. On the other side, LOF 
is able to capture both outliers (p1 and p2) due to the fact 
that it considers the density around the points. 

Figure 2 Outlier Examples 

LOF requires the neighborhood around all data points 
be constructed.  This involves calculating pair-wise 
distances between all data points which is an O(n2) 
process, which makes it computationally infeasible for 
millions of connections.  To address this problem, we 
sample the data to use as a training set and compare all 
data points to this small set, which reduces the 
complexity to O(n⋅m) where n is the size of the data and 
m is the size of the sample.  Apart from achieving 
computational efficiency by sampling, anomalous 
network behavior will not be able to match enough 
examples in the sample to be called normal.  This is 
because rare behavior will not be represented in the 
sample. 

4. Experimental Evaluation of MINDS Anomaly 
Detection 
 

The output of the MINDS anomaly detector contains 
the original Netflow data with the addition of the 

Feature Name Feature description 
count_dest_conn For the same source IP address, 

number of unique destination IP 
addresses inside the network in the 
last N connections 

count_src_conn For the same destination IP address, 
number of unique source IP addresses 
inside the network in the last N
connections 

count_serv_ 
src_conn 

Number of connections from the 
source IP to the same destination port 
in the last N connections 

count_serv_ 
dest_conn 

Number of connections from the 
destination IP to the same source port 
in the last N connections 

Feature Name Feature description 
count_dest For the same source IP address, 

number of unique destination IP 
addresses inside the network in the last 
T seconds  

count_src For the same destination IP address, 
number of unique source IP addresses 
inside the network in the last T seconds

count_serv_src Number of connections from the 
source IP to the same destination port 
in the last T seconds 

count_serv_dest Number of connections from the 
destination IP to the same source port 
in the last T seconds 

 
p2   p1 

× 
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anomaly score and relative contribution of each of the 16 
attributes to the score.  Table 3 shows the 16 attributes.  
The analyst typically looks at only the top few 
connections that have the highest anomaly scores.  
Figure 3 shows the most anomalous connections found 
by MINDS on January 26th in a 10-minute window, 48 
hours after the slammer attack. The University of 
Minnesota network security analyst has been using 
MINDS and SNORT independently to analyze the 
university network traffic for the past seven months.  
During this period, MINDS has been successful in 
detecting many novel network attacks and emerging 
network behavior that could not be detected using 
SNORT.   

In the following, we present a few examples that 
demonstrate the effectiveness of the MINDS anomaly 
detection algorithm.  In addition, we present a 
comparison of MINDS performance on detecting scans 
to SPADE because it is already integrated into SNORT 
and thus available as open source.  Note that other 
schemes exist that work in high bandwidth 
environments; e.g. the scheme presented in [38] 
identifies packets that are likely to be a probe and 
performs scan detection on only those packets.  But most 
such schemes are not available as open source.  Note that 
the comparison with SPADE is only restricted to 
detecting scans, as SPADE is not meant to find policy 
violations and worms, which can be detected by MINDS.  
We are unable to provide comparisons of MINDS with 
other anomaly detection systems that are potentially 
capable of finding intrusions other than scans, as either 
they are available only in commercial products [38], or 
require sanitized training data [27]. 

 
4.1 MINDS Anomaly Detection Results 

 
Anomalies/attacks picked by MINDS include 

scanning activities, worms, and non-standard behavior 
such as policy violations and insider attacks. Many of 
these attacks detected by MINDS, have already been on 
the CERT/CC list of recent advisories and incident notes. 
• On January 26, 2003, 48 hours after the “SQL 
Slammer/Sapphire” worm started, network connections 
related to the worm were only about 2% of the total 
traffic.  Despite this, they were still ranked at the top by 
the anomaly detection algorithm (see Figure 3).  The 
network connections that are part of the “slammer 
worm” are highlighted in light gray in Figure 3.  It can be 
observed that the highest contributions to anomaly score 
for these connections were due to the features 9 and 11 
(count_dest and count_serv_src from Table 1).  This was 
due to the fact that the infected machines outside our 
network were still trying to communicate with many 
machines inside our network. Similarly, it can be 
observed from Figure 3 that during this time interval 
there is another scanning activity (ICMP ping scan, 
highlighted in dark gray) that was detected again mostly 
due to the features 9 and 11.  The two non-shaded flows 
are replies from Half-Life game servers (running on port 
27016/udp).  They were flagged anomalous because 
those machines were talking to only port 27016/udp.  For 
web connections, it is common to talk only on port 80, 
and it is well represented in the normal sample.  
However, since Half-Life connections did not match any 
normal samples with high counts on feature 15, they 
became anomalous. 

score    srcIP sPort   dstIP dPort protocoflags packets  bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
37674.69 63.150.X.253 1161 128.101.X.29 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.59 0 0 0 0 0
26676.62 63.150.X.253 1161 160.94.X.134 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.59 0 0 0 0 0
24323.55 63.150.X.253 1161 128.101.X.185 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
21169.49 63.150.X.253 1161 160.94.X.71 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
19525.31 63.150.X.253 1161 160.94.X.19 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
19235.39 63.150.X.253 1161 160.94.X.80 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
17679.1 63.150.X.253 1161 160.94.X.220 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
8183.58 63.150.X.253 1161 128.101.X.108 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.58 0 0 0 0 0
7142.98 63.150.X.253 1161 128.101.X.223 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
5139.01 63.150.X.253 1161 128.101.X.142 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
4048.49 142.150.X.101 0 128.101.X.127 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
4008.35 200.250.X.20 27016 128.101.X.116 4629 17 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3657.23 202.175.X.237 27016 128.101.X.116 4148 17 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3450.9 63.150.X.253 1161 128.101.X.62 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
3327.98 63.150.X.253 1161 160.94.X.223 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2796.13 63.150.X.253 1161 128.101.X.241 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2693.88 142.150.X.101 0 128.101.X.168 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
2683.05 63.150.X.253 1161 160.94.X.43 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2444.16 142.150.X.236 0 128.101.X.240 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
2385.42 142.150.X.101 0 128.101.X.45 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
2114.41 63.150.X.253 1161 160.94.X.183 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2057.15 142.150.X.101 0 128.101.X.161 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1919.54 142.150.X.101 0 128.101.X.99 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1634.38 142.150.X.101 0 128.101.X.219 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1596.26 63.150.X.253 1161 128.101.X.160 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
1513.96 142.150.X.107 0 128.101.X.2 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1389.09 63.150.X.253 1161 128.101.X.30 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
1315.88 63.150.X.253 1161 128.101.X.40 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
1279.75 142.150.X.103 0 128.101.X.202 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1237.97 63.150.X.253 1161 160.94.X.32 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1180.82 63.150.X.253 1161 128.101.X.61 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1107.78 63.150.X.253 1161 160.94.X.154 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0

Figure 3 Most anomalous connections found by MINDS anomaly detection algorithm in a 10-minute 
window 48 hours after the “slammer worm” started. 
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• On October 10th, our anomaly detection module 
detected two activities of the slapper worm that were not 
identified by SNORT since they were variations of an 
existing worm code.  Once a machine is infected with the 
worm, it communicates with other machines that are also 
infected and attempts to infect other machines.  The most 
common version of the worm uses port 2002 for 
communication, but some variations use other ports. Our 
anomaly detector flagged these connections as 
anomalous for two reasons.  First, the source or 
destination ports used in the connection may not have 
been rare individually but the source-destination port 
pairs were very rare (the anomaly detector does not keep 
track of the frequency of pairs of attributes; however, 
while building the neighborhoods of such connections, 
most of their neighbors will not have the same source-
destination port pairs, which will contribute to the 
distance). Second, the communication pattern of the 
worm looks like a slow scan causing the value of the 
variable count_serv_src_conn (number of connections 
from the source IP to the same destination port in the last 
N connections) to become large.  SNORT has a rule for 
detecting worm that uses port 2002 (and a few other 
ports), but not for all possible variations.  A single 
general SNORT rule can be written to detect the 
variations of the worm at the expense of a higher false 
positive rate.   

1 source IP 5 protocol 
2 destination IP 6 duration 
3 source Port 7 bytes/packet 
4 destination Port 8 # packets 
9 cnt_dest 13 cnt_src 
10 cnt_dest_conn 14 cnt_src_conn 
11 cnt_serv_src 15 cnt_serv_dest 
12 cnt_serv_src_conn 16 cnt_serv_dest_conn 

Table 3 List of features used in anomaly detection 

• On August 9th, 2002, CERT/CC issued an alert for 
“widespread scanning and possible denial of service 
activity targeted at the Microsoft-DS service on port 
445/TCP” as a novel Denial of Service (DoS) attack.  In 
addition, CERT/CC also expressed “interest in receiving 
reports of this activity from sites with detailed logs and 
evidence of an attack.” This type of attack was the top 
ranked outlier on August 13th, 2002, by our anomaly 
detection module in its regular analysis of University of 
Minnesota traffic. The port scan module of SNORT 
could not detect this attack, since the port scanning was 
slow. 
• On August 13th, 2002, our anomaly detection module 
detected “scanning for an Oracle server” by ranking 
connections associated with this attack as the second 
highest ranked block set of connections (the top ranked 
block of connections belonged to the denial of service 
activity targeted at the Microsoft-DS service on port 

445/TCP). This type of attack is difficult to detect using 
other techniques, since the Oracle scan was embedded 
within much larger Web scan, and the alerts generated by 
Web scan could potentially overwhelm the human 
analysts. On June 13th, CERT/CC had issued an alert for 
the attack. 
• On August 8th and 10th, 2002, our anomaly detection 
techniques detected a machine running a Microsoft PPTP 
VPN server, and another one running a FTP server, 
which are policy violations, on non-standard ports.  Both 
policy violations were the top ranked outliers.  Our 
anomaly detector module flagged these servers as 
anomalous since they are not allowed, and therefore very 
rare.  Since SNORT is not designed to look for rogue and 
unauthorized servers, it was not able to detect these 
activities. In addition, for the PPTP VPN server, the 
collected GRE traffic is part of the normal traffic, and 
not analyzed by tools such as SNORT. 
• On January 27, 2003, our techniques detected odd, 
not routable RFC1918 traffic coming from the Internet. 
RFC1918 (Request for Comments) serves as Address 
Allocation for Private Internets, while RFC1918 blocks 
are segments of IP address space reserved by IANA 
(Internet Assigned Numbers Authority) for use within an 
organization. DNS records for RFC1918 addresses are 
legitimate only within the network on which a host with 
RFC1918 address resides. However, RFC1918 addresses 
are not globally routed and they should not appear on the 
public Internet. 
• On February 6, 2003, our technique detected that the 
IP address 128.101.6.0, which does not correspond to a 
real computer, but to a network itself, has been targeted 
with IP Protocol 0 traffic from Korea (61.84.X.97). This 
type of network traffic is “exceedingly” bad as IP 
Protocol 0 is not legitimate. 
• On February 6, 2003, our techniques detected a 
computer on the network apparently communicating with 
a computer in California over a VPN. This scenario in 
the worst case may correspond to a covert channel by 
which someone might be gaining access to the 
University network in an unauthorized way, and in the 
best case to someone at the University creating 
unauthorized tunnels between the University and some 
other network, which is not allowed. However, both 
types of behavior are extremely useful for security 
analysts. 
• On February 7, 2003, a computer in the CS 
department talking on IPv6 was detected using our 
techniques. This type of communication is extremely 
rare and represents a possible covert tunnel to the outside 
world. The follow-up analysis diagnosed that a suspect 
who was doing this is on system staff and is in fact using 
this as a covert tunnel to his home computers. 
• On February 6, 2003, our anomaly detection 
techniques detected unsolicited ICMP ECHOREPLY 
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messages to a computer previously infected with 
Stacheldract worm (a DDos agent). Although infected 
machine has been removed from the network, other 
infected machines outside our network were still trying 
to talk to infected machine from our network. 

 
4.2 Comparison of MINDS and SPADE 

 
SPADE: A brief overview. SPADE is a SNORT 

plug-in that automatically detects stealthy port scans 
[36]. Unlike traditional scan detectors that look for X 
events in Y seconds, SPADE takes a radically different 
approach and looks at the amount of information gained 
by probing.  It has four different methods of calculating 
the likelihood of packets.  However, the most successful 
method measures the direct joint probability P(dest IP, 
dest Port).  SPADE examines TCP-SYN packets and 
maintains the count of packets observed on (destIP, 
destPort) tuples.  When a new packet is observed, 
SPADE checks the probability of observing that packet 
on the (dest IP, dest Port) tuple.  The lower the 
probability, the higher the anomaly score. Note that 
SPADE raises alarms on individual SYN packets 
regardless of how many other destination IP/ports have 
been scanned by the same source.  In the case of an 
IPsweep, the scanner will eventually touch a machine 
that does not have the service being scanned for and 
therefore will raise a SPADE alarm.  In the case of a 
portscan, an alarm will be raised when the scanner 
touches a port for which the service is not available on 
the target machine.  In addition, SPADE will raise false 
alarms on legitimate traffic for which (destination IP, 
destination port) combinations are infrequent.  This will 
be even more prevalent on outbound connections.  The 
reason is that the number of IPs outside is much bigger 
than the number of IPs inside the network.  As reported 
in [36], on DARPA99 data, as the number of variables in 
the direct joint probability is increased to include the 
source IP and source Port, the accuracy of SPADE 
decreases.  This can be attributed to the fact that when 
extra attributes are used, the model essentially becomes 
sparser and therefore gives more false alarms. 

MINDS and SPADE both assign a score to each 
connection that indicates its degree of being an outlier.  
They are both unsupervised anomaly detection schemes 
since neither one requires a labeled training set.  The key 
difference is in the method for computing the anomaly 
score.  In SPADE, the anomaly score is inversely related 
to the probability of observing the connection based 
upon the features used.  If too many features are used (or 
if any feature has too many values), then the probability 
estimates are not reliable.  The reason is that many of the 
legitimate combinations of features may be previously 
unseen or infrequent.  In contrast, MINDS does not 
suffer from increased dimensionality as much as SPADE 

does, since MINDS constructs neighborhoods around 
data points which is a better estimate of actual 
probabilities when there is not enough data to adequately 
develop the model.  This allows MINDS to use a large 
number of features as long as they are not spurious.  
Even if MINDS used only two features (destination IP 
and destination port), we argue that it can provide higher 
quality outlier scores.  To illustrate this consider the 
following probability distribution (Table 4), where blank 
represents no occurrences.  If we observe a packet P1 on 
IP2/Port3 and another packet P2 on IP4/Port1, SPADE 
will assign equal anomaly scores to both of the packets.  
However, one could argue that P2 should be more 
anomalous than P1 since in the case of P2 neither the 
port (Port1) nor the IP (IP4) by themselves are used 
frequently, whereas for P1, both the port (Port3) and the 
IP (IP2) are frequently used. 

If we use MINDS anomaly detection module with 
only 2 attributes, namely the destination IP and 
destination port, packet P2 will be assigned a higher 
anomaly score than P1.  The reason is that P1 will be 
closer to its neighbors than P2 will be to its neighbors.  
Both P1 and P2 will have neighbors that are in dense 
regions.  If we compare the ratios of densities of P1 and 
P2 to the density of their respective neighbors, P2 will 
have a lower ratio, hence a higher anomaly score. 

Frequency IP1 IP2 IP3 IP4 
Port1  Low  P2 
Port2  High   
Port3 High P1 High  
Port4 Low High Low  

Table 4. IP/Port frequency distribution 
 
We ran the latest version of SPADE (v021031.1) on 

live network traffic at the University of Minnesota for a 
10-minute period using a threshold of 8.  It generated 
296,921 alarms out of approximately one million 
TCP_SYN packets received during this 10-minute 
window.  Nearly 26% (76,956) of the alarms were on 
inbound packets. Vast majority of outbound packets 
were false alarms.  This is not surprising since the space 
of (IP/Port) combinations outside our network is very 
large and the data is very sparse.  This is a serious 
limitation of SPADE, since outbound alarms tend to be 
very important, as they often indicate infected machines 
inside the network.  In the rest of the discussion, we 
focus on alarms on inbound packets.  25% (19020) of 
inbound alarms were to web alarms, 6% (4608) to 
common services other than web (https, mail, ftp, ssl 
enabled imap, web proxies), 28.5% (21895) to peer-to-
peer applications (kazaa, gnutella, edonkey) and the 
remaining 41% (31433) were hard to interpret.  If we 
ignore repetitions of the same alarm (same source IP, 
destination IP, destination Port), we are left with 28973 
alarms.  There were a total of 21669 unique sources of 
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alarms, 20825 of them generated only 1 or 2 alarms. 
(More detailed information about the distributions is 
given in Table 5.)  Although some of these alerts may 
indicate very slow stealthy scans, majority of these alerts 
are likely to be for legitimate connections on rarely used 
destination IP, destination port combination.  
Specifically, we can say that the alarms on p2p 
applications are false alarms (not scans) since p2p 
applications get the list of active servers from their 
super-nodes instead of scanning for machines running 
these applications.  In any case, one cannot expect from a 
system administrator to investigate alarms for so many 
different sources in a short 10-minute window. 

If we raise our threshold and look at only top 10,000 
alerts, the distribution is very similar.  If we look at the 
breakdown of alarms by type, in the top 10,000 
(threshold = 12.6108), web alerts are 59% (5927), 
common services are 7.5% (754), p2p applications are 
9% (923) and the remaining, hard-to-interpret ones are 
24% (2396).  There are 3306 unique sources that 
generate 10,000 alarms, 3159 of which raised either 1 or 
2 alarms.  If we look at top 1000, 497 out of 547 unique 
sources raised less than 3 alarms.  If we look at top 100, 
73 out of 78 unique sources raised less than 3 alarms.   

If we do a similar analysis for alarms on web, P2P 
(peer to peer), common services and the remaining 
alarms separately, we still get a very similar picture; the 
number of unique sources generating very few alarms is 
very large. We argue that most of SPADE alarms are 
effectively false alarms as the number of unique sources 
generating the alarms is at a high percentage regardless 
of the threshold. 

SPADE does find some stealthy scans that will be 
hard to find using simple scan detection schemes that 
look for source IP’s that connect to more than X 
destination Ports / IP’s in a specified time or connection 
window.  For example, among the top 10,000 alarms 66 
unique sources generated at least 10 or more alarms.  
Each one of these sources were either scanning a specific 
IP for 10 or more ports, or scanning 10 or more IP’s for a 
specific port.  But in the process of finding these hard to 
detect stealthy scans, SPADE generated false alarms for 
far too many legitimate connections. 

 
Number of alarms 1 2 3 4 
Number of sources 19282 1543 394 151 

Number of alarms 5-6 7-20 21-
50 51-150 151+ 

Number of sources 139 106 45 5 4 
Table 5. Distribution of number of alarms from unique 
sources (inbound alarms) 

 
For the same 10-minute period, we ran MINDS and 

asked our security expert to analyze top few hundred 
anomalous connections ranked by the anomaly detector.  

Most of these were scans, which were interleaved with 
few non-scan connections.  Most of these scans targeted 
dozens of IPs inside the University of Minnesota 
networks.  Among non-scan anomalous connections, our 
security expert identified a local machine running a web 
proxy open to everyone, and lots of people were 
browsing the web through the proxy to anonymize their 
connections.  Proxy settings were fixed after the issue 
was identified.  For privacy reasons, we cannot report the 
individual connections but only provide a high level 
summary.  Note that stealthy scans that target only a few 
machines during the 10-minute window are not likely to 
receive high anomaly score by MINDS. 

 
4.3 MINDS anomaly detection module versus 

SNORT  
 

Here we compare general capabilities of SNORT and 
MINDS in detecting the following categories of attacks 
and irregular behavior: 

• content-based attacks 
• scanning activities 
• policy violations 
Content based attacks. These attacks are out of 

scope for our anomaly detection module since it does not 
consider the content of the packets, and therefore 
SNORT is superior in identifying those attacks.  
However, SNORT is able to detect only those content-
based attacks that have known signatures/rules.  Despite 
the fact that SNORT is more successful in detecting the 
content-based attacks, it is important to note that once a 
computer has been attacked successfully, its behavior 
could become anomalous and therefore detected by our 
anomaly detection module, as seen in previous examples. 

Scanning activities. When detecting various scanning 
activities SNORT and MINDS anomaly detection 
module have similar performance for certain types of 
scans, but they have very different detection capabilities 
for other types. There are two categories of scanning 
activities, where SNORT and our anomaly detection 
module might have different detection performance: 

• Fast (regular) scans 
• Slow scans 
When detecting regular scans, SNORT portscan 

module keeps track of the number of destination IP 
addresses accessed by each source IP address in a given 
time window (default value is 3 seconds). Let's denote 
this variable count_dest, already defined in Table 1. 
Whenever the value of count_dest is above a specified 
threshold (SNORT default value is 4), SNORT raises an 
alarm, thus indicating a scan by the source IP address. 
Our anomaly detection module is also able to assign high 
anomaly score to such network connections, since for 
most normal connections the value of count_dest is low. 
In addition, connections from many types of scanning 
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activities tend to have other features that are unusual 
(such as very small payload), which make additional 
contributions to the anomaly score. 

A scan can be detected by SNORT provided the scan 
is fast enough for chosen time window (default value is 3 
seconds) and count threshold (default value is 4). If a 
scanning activity is not fast enough (outside specified 
parameters), it will not be detected by SNORT. 
However, SNORT can still detect such activities by 
increasing the time window and/or decreasing the 
number of events counted within the time-window, but 
this will tend to increase false alarm rate. On the other 
side, our anomaly detection module is more suitable for 
detecting slow scans since it considers both time-window 
based and connection-window based features (as 
opposed to SNORT that uses only time-window based 
features), as well as other features of the connections 
such as number of packets, number of bytes per packet, 
etc.  

Policy violations. MINDS anomaly detection module 
is much more successful than SNORT in detecting policy 
violations (e.g. rogue and unauthorized services), since it 
looks for unusual network behavior. SNORT may detect 
these policy violations only if it has a rule for each of 
these specific activities. Since the number and variety of 
these activities can be very large and unknown, it is not 
practical to incorporate them into SNORT for the 
following reasons. First, processing of all these rules will 
require more processing time thus causing the 
degradation in SNORT performance. It is important to 
note that it is desirable for SNORT to keep the amount of 
analyzed network traffic small by incorporating rules as 
specific as possible. On the other hand, very specific 
rules limit the generalization capabilities of a typical rule 
based system, i.e., minor changes in the characteristics of 
an attack might cause the attack to be undetected.  

Second, SNORT's static knowledge has to be 
manually updated by human analysts each time a new 
suspicious behavior is detected. In contrast, MINDS 
anomaly detection module is adaptive in nature, and it is 
particularly successful in detecting anomalous behavior 

originating from a compromised machine (e.g. attacker 
breaks into a machine, installs unauthorized software and 
uses it to launch attacks on other machines). Such 
behavior is often undetected by SNORT's signatures. 

 
5. Conclusions and Future Work 
 
The overall goal for MINDS is to be a general 

framework and system for detecting attacks and threats 
to computer systems. Data generated from network 
traffic monitoring tends to have very high volume, 
dimensionality and heterogeneity. Coupled with the low 
frequency of occurrence of attacks, this makes standard 
data mining algorithms unsuitable for detecting attacks. 
In addition, cyber attacks may be launched from several 
different locations and targeted to many different 
destinations, thus creating a need to analyze network data 
from several locations/networks in order to detect these 
distributed attacks. According to our initial analysis, the 
intrusions detected by MINDS are complementary to 
those of SNORT – a signature-based system. This 
implies that the two can be combined to increase overall 
attack coverage. In addition, MINDS will have a 
summarization and visualization tools to aid the analyst 
in better understanding anomalous/suspicious behavior 
detected by the anomaly detection engine. 

The key anomaly detection approach used by MINDS 
is based on the analysis of unusual behavior, and is thus 
suitable for detecting many types of threats. Figure 4 
shows three such types. First type of threats corresponds 
to outsider attacks that represent deviations from normal 
connection behavior. Second threat type is insider attack, 
where an authorized user logs into a system with 
malicious intent. However, the malicious behavior 
shown by such a user is often at variance with normal 
procedures, and our behavior-analysis based approach 
can pick it up as anomalous behavior, reporting it as a 
possible attack. Since no security mechanism is fool 
proof, an undetected successful outsider becomes 
equivalent to an insider attack, and the same ideas apply. 
Third threat type corresponds to a situation where a 

   MINDS Research 
• Defining normal behavior 
• Feature extraction 
• Similarity functions 
• Outlier detection 
• Result summarization 
• Detection of attacks originating 

from multiple sites 
Worm/virus detection
after infection

Insider attack 
• Policy violation

Outsider attack 
• Network intrusion

Figure 4 Three types of threats that can be detected by MINDS anomaly detection module 
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virus/worm has entered an environment – either 
undetected by a perimeter protection mechanism such as 
virus scan of attachments, or through bringing in of an 
infected portable hardware device, e.g. a laptop. The 
unusual behavior shown by such a machine can 
potentially be detected by our approach of analyzing 
anomalous behavior. 

A number of applications outside of intrusion 
detection have similar characteristics, e.g. detecting 
credit card and insurance frauds, early signs of potential 
disasters in industrial process control, early detection of 
unusual medical conditions – e.g. cardiac arrhythmia, 
etc. We plan to explore the use of our techniques to such 
problems. 
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Abstract 
 

Accurate operating system (OS) identification by 
passive network traffic analysis can continuously update 
less-frequent active network scans and help interpret 
alerts from intrusion detection systems. The most recent 
open-source passive OS identification tool (ettercap) 
rejects 70% of all packets and has a high 75-class error 
rate of 30% for non-rejected packets on unseen test data. 
New classifiers were developed using machine-learning 
approaches including cross-validation testing, grouping 
OS names into fewer classes, and evaluating alternate 
classifier types. Nearest neighbor and binary tree 
classifiers provide a low 9-class OS identification error 
rate of roughly 10% on unseen data without rejecting 
packets. This error rate drops to nearly zero when 10% of 
the packets are rejected. 

1. Introduction 

One of the most difficult tasks of security-conscious 
system administrators is maintaining accurate information 
on the numbers, locations, and types of hosts being 
protected. This information is useful for many purposes 
including configuring network-based intrusion detection 
systems and maintaining a site security policy. 

Configuring network-based intrusion detection systems 
using operating system (OS) information makes it possible 
to prioritize the large numbers of extraneous alerts caused 
by failed attacks and normal background traffic. A re-
analysis of the data presented in [10] demonstrates that 
simply knowing whether the OS of each web server on a 
class B network is a version of Microsoft Windows, 
Solaris, or any type of UNIX makes it possible to assign a 
low-priority to from 33% to 87% of remote-to-local alerts 
produced by the snort [12] intrusion detection system. 
Filtering is performed by dismissing an alert when the 
vulnerability associated with the alert cannot occur for the 
OS of that host. A prior analysis [5] also demonstrated that 
knowledge of the OS of monitored hosts on a few small 

networks could assign roughly 30% of all remote-to-local 
alerts to a lower priority.  This approach is best used to 
perform a preliminary analysis of recently-connected hosts 
or of hosts that can not be actively scanned. Much greater 
alert filtering eliminating as many as 95% of all remote-to-
local alerts can be achieved through knowledge of the 
exact OS version, server software types and versions, and 
the patch status of hosts [10]. 

Detecting recently installed hosts and identifying 
operating systems is also useful for maintaining a site 
security policy.  A site policy may specify the types of 
hosts that are allowed and it may specifically disallow old 
OS versions or those that are not supported by the network 
infrastructure. Detecting newly installed hosts as soon as 
possible using passive approaches is particularly important 
because these hosts are often most likely to be running old 
or insecure operating systems or to be configured 
incorrectly and be most vulnerable to remote attacks. They 
also may represent a new host attached by inside attackers 
to capture traffic or passwords. Knowing the OS may help 
a system administrator gauge the threat posed by a recently 
installed host. For example, it may be more urgent to 
investigate a new host running Linux on a primarily 
Window’s network than to investigate a new Window’s 
OS on the same network. 

Operating systems can be determined using two 
complimentary approaches. Active scanning provides 
detailed information episodically by actively sending 
queries to hosts while passive analysis of captured network 
traffic provides instantaneous real-time, but less detailed, 
information. Active scanning includes the use of 
automated and often expensive network management 
systems (e.g. see [1]), semi-automated use of more limited 
open-source tools such as nmap [7], and manual analysis 
via direct logins to each host. Active scanning provides the 
most information about each host, but its use is often 
limited. Because scanning consumes bandwidth and host 
resources and may reveal security weaknesses it is often 
performed infrequently. Scanning durations can also be 
long on enterprise networks, security analysts responsible  
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for maintaining network intrusion detection systems are 
often not permitted to scan parts of enterprise networks, 
SNMP host clients required to support network 
management systems may not be allowed because they 
open up potential vulnerabilities in hosts that can be 
exploited by attackers, and scanning using such tools as 
nmap [7] is often not allowed because it can cause some 
devices to halt. Passive traffic analysis has none of these 
limitations because no extra network traffic is generated. It 
can either provide a continuous update to the last active 
scan or be used when active scanning is not allowed. 

A major goal of the work described in this paper is to 
determine how accurate the OSes of hosts can be 
determined using passive OS analysis of TCP/IP packet 
header information. Other goals are to evaluate existing 
open-source tools that perform OS identification and to 
develop and evaluate an improved classifier using data 
mining/pattern-classification techniques.  

2. Passive OS “Fingerprinting” 

The first paper we are aware of that described 
approaches to passive OS identification and provided a 
small database of examples was published in May 2000 
[15]. This paper, and open-source tools that have been 

developed since then rely heavily on the concept of 
“passive OS fingerprinting”. Passive fingerprinting is an 
extension of “active OS fingerprinting” described in [6] 
and included in the nmap scanner [7].  

Active fingerprinting relies on the observation that the 
TCP/IP protocol specification does not clearly describe 
how to handle unusual situations and has left certain 
header field values and behaviors unspecified. 
Programmers implementing TCP/IP have made different 
decisions that have lead to a variety of behaviors and 
default field values in different OSes. In addition, some 
programmers have not followed the specifications 
correctly and some OSes have not incorporated more 
recent optional advanced features. This has led to 
“idiosyncrasies” that can be revealed by actively probing a 
host with both malformed and normal packets and 
observing the responses. Features extracted from responses 
can be used for OS classification. These features include 
default values in the TCP/IP header, flags that indicate 
whether advanced features are supported, flags that 
indicate different response behaviors including “no 
response” and data content in the reply message.  All 
features for an unknown OS form a feature vector that is 
compared to a database of exemplars containing stored  

Table 1. TCP/IP features used in open-source tools. 

Feature Name Range Description 
TCP Window Size 
(WS) 

0-65,535 Data bytes a sender can transmit without receiving an acknowledgement equal 
to buffer size available on the receiver. 

IP Time to Live 
(TTL) 

0-255 Number of routing hops allowed before the packet is dropped, decremented 
by one by each router (prevents accidental routing loops).  

IP Don’t Fragment 
(DF) 

0-1 Instructs routers not to fragment this IP packet, but to drop it if it is too large 
for the next network segment. 

TCP Max Segment 
Size Option* (MSS) 

0-65,535 Maximum size of data component of packet that a receiver can accept. 

TCP Window Scaling 
Option Flag* (WSO) 

 0-1 Flag that indicates the TCP scaling option is being used to obtain bigger WS 
windows. 

TCP Selective 
Acknowledgments 
Options Flag* (SOK) 

0-1 Flag that indicates when the TCP selective acknowledgements option was set. 

TCP NOP Option 
Flag* (NOP) 

0-1 Flag that indicates one or more NOP’s were added to align other options on a 
word boundary. 

Packet Size (PS) 0-255 Length of packet in bytes. 
TCP Timestamp 
Option Flag* (TS) 

0-1 Flag that indicates one of the TCP timestamp options was included. 

SYN vs SYN-ACK 
Packet Flag (SYN) 

0-1 Flag set to one for SYN-ACK packets and zero for SYN packets. 
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feature vectors from known OSes. If a stored exemplar 
exactly matches the responses of an unknown host, then 
that exemplar represents the “fingerprint” of the unknown 
host and the name of the host that originated the exemplar 
is reported. Nmap currently performs nine different types 
of tests on a host and extracts a core set of 17 features 
from the responses to queries in these tests. As many as 55 
features are available when an OS responds to all queries. 
In addition, Nmap has a database containing 989 
exemplars, each with feature values and an OS name. 
Although the performance of active OS fingerprinting has 
never been carefully evaluated, this approach is in 
widespread use and many system administrators believe 
that the results are accurate. 

Passive OS fingerprinting doesn’t send probes to 
the unknown host, but instead examines values of fields in 
the TCP/IP packet header. In contrast to active 
fingerprinting, passive OS fingerprinting relies only on 
default packet-header field values and not on other 
idiosyncrasies elicited by unusual packets. Packet-header 
field values represent less than a third of the core features 
used by nmap for active fingerprinting.  Passive 
fingerprinting may thus not be as accurate as active 
fingerprinting and the concept of “fingerprinting” as used 
in nmap may not be appropriate. In particular, requiring an 
exact match to stored exemplars, creating a new class for 
every new OS, adding any new feature that might seem 
useful, and storing only exemplars that differ from those 
currently in a database, may not provide best performance. 

3. Passive Open-Source Tools  

Three open-source tools have been developed for 
passive OS classification. All use values of fields in 
TCP/IP packet headers to identify OSes. Using these 
values is attractive because header information can be 
obtained even when popular encrypted protocols such as 
SSH and HTTPS are used, header fields are well defined, 
and values are easily extracted. The first three features 
shown in Table 1 were recommended in [15] because they 
appeared to vary more with the source host than with 
characteristics of the transmission channel and they occur 
in every TCP/IP packet. All three features depend on the 
host configuration. The Time to Live (TTL) is normally 
equal to a power of two for most hosts. Because TTL 

values are decremented by one by every router in the path 
to the packet capture location, these values cannot be 
compared directly to those in stored exemplars. Instead, 
TTL values in captured packets are rounded up to the 
nearest power of two before the comparison. 

A proof-of-concept tool named siphon [13] was 
developed that implemented suggestions presented in [15]. 
It extracted the first three features in Table 1 from TCP 
SYN or ACK packets sent from the source of TCP 
connections and compared these to stored values recorded 
previously for known operating systems. The database 
provided with this tool contains only 47 exemplars holding 
values of these three features along with corresponding OS 
names. Classification involves extracting features from 
new packets and finding the first exact match to a stored 
exemplar. If there is no match, then no OS is reported and 
the packet is “rejected”. 

Following the release of siphon, two other open-source 
tools were released. Characteristics of these tools and of 
siphon are shown in Table 2. To the best of our 
knowledge, none of these tools has been carefully 
evaluated. Table 2 shows the number of packet-header 
features extracted for each tool, the number of exemplars 
provided, the number of OS classes that contain three or 
more exemplars, and the types of packets that are 
analyzed. The numbers in this table exclude exemplars 
with ambiguous OS names or with names that are for 
scanning tools such as nmap [7] and not for operating 
systems. 

Before any tool evaluations could be performed, it was 
necessary to map OS names to classes. This task was 
complicated because OS names were not entered 
uniformly. Names were normalized initially using the 
following steps: (1) Map all names to lower case and 
eliminate spaces and dashes; (2) Whenever a Linux kernel 
version is provided, use linux and the version as the class; 
(3) Whenever a Cisco IOS version is provided, use cisco 
and the version as the class; (4) Identify exemplars that list 
multiple versions of OSes and keep only the first entry in 
any list; (5) Keep only the first two decimal separated 
numbers found (e.g. 2.12 instead of 2.12.34); and (6) 
Unify different names that refer to the same OS (e.g. 
“sunos5.8/solaris8”, “redhatlinux/redhat”, “windows2k/ 
windows2000). Every normalized name that occurs three 
or more times forms a separate class. Such classes 

Table 2.  Characteristics of three open-source passive OS identification tools. 

Tool Features Exemplars Classes With Three 
or More Exemplars 

Packets 

siphon [13] 3 47 6 SYN, ACK 
p0f [14] 8 150 14 SYN 

ettercap [11] 10 1093 75 SYN, SYN-ACK 
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represent the more popular and frequently occurring OSes 
and make it possible to use cross-validation testing to 
estimate classification accuracy. Three exemplars were 
required to form a class because some ettercap exemplars 
appear to have been duplicated by setting the WSO feature 
to “missing” in an attempt to improve performance. When 
only two exemplars were available for a unique OS name, 
this practice would invalidate cross-validation testing 
results because the exemplars were not sampled 
independently. Exemplars for operating systems that 
occurred fewer than three times and that were clearly not 
members of the already labeled classes were placed in a 
class named “other”. These are primarily network devices 
and rare OSes. 

The last column in Table 2 shows the types of packets 
that are analyzed by each tool. Siphon analyzes the 
initiating SYN packet or following ACK packets from the 
originating source of a TCP connection, p0f analyzes only 
initiating SYN packets, and ettercap analyzes both the 
initiating SYN packet from the connection source and the 
initial SYN-ACK response from the destination. These 
choices affect the utility of these tools. Siphon and p0f can 
only analyze connections from the originating source of 
TCP connections. These include web, mail, ftp and other 
clients. Ettercap, however, can analyze both packets from 
client programs and responses from servers. 

The three tools in Table 2 use different features. Siphon 
uses the first three features in Table 1, p0f uses the first 
eight features, and ettercap uses all features. The 
additional features used by p0f and ettercap are primarily 
related to TCP options set only on the initiating SYN and 
the SYN-ACK response that starts a TCP connection. 
Features that occur only in these packets are marked using 
asterisks in the first column of Table 1. The use of these 
options limits the application of these tools to initiating 
SYN and SYN-ACK packets, but also adds new features 
that can potentially help discriminate between different 
classifiers.  Two other features are the packet size and a 
flag for ettercap to indicate whether the packet analyzed 
was a SYN or SYN-ACK packet. This flag doesn’t 
indicate OS type, but would be useful if options were used 
differently for the two packet types. 

All three open-source tools report an OS with 
confidence only if a perfect match is found between 
features extracted from packets and features in a stored 
exemplar. Although the more recent tools will find inexact 
matches, they deprecate the OS reported in this situation 
and indicate that these names are not to be trusted. In 
addition, although there may be multiple exemplars in a 
database that match perfectly, all tools report only the OS 
of the first exemplar found in the database with an exact 
match. This behavior is used as a benchmark to represent 
these tools in the remainder of this paper. 

4. Assumptions and Caveats 

Results presented in the remainder of this paper are 
purposefully limited in scope and need to be interpreted 
with some important caveats in mind. The most important 
is that, as noted in [15], many features used to classify 
OSes are default values in packet headers. Some of these 
default values such as TTL can easily be changed to allow 
one OS to masquerade as another. Although this is 
currently uncommon, it is possible and sometimes 
recommended to defeat both active and passive OS 
identification. In the remainder of this paper it is assumed 
that default header values have not been altered.  

Another concern is that network devices such as proxy 
firewalls and the types of traffic normalization suggested 
in [8] modify some packet header values used for OS 
identification. Again, it will be assumed that packets 
captured to form exemplars for OS identification have not 
been modified (except for the normal decrement in TTL at 
each router) by network devices. It will also be assumed 
that the OS labels and feature vectors that make up 
exemplars in ettercap are correct. These assumptions will 
be explored using new unseen test data with carefully 
captured packets and direct confirmation of OS names. 

Finally, this work focuses solely on features extracted 
from single packet headers. Other information that could 
potentially be used for passive OS identification is not 
considered. Some of this other information is not always 
available and can only be used opportunistically. For 
example, the network interface card manufacturer 
indicated by the ethernet MAC address is only available on 
a host’s local network and the content of FTP, Web, and 
SNMP server banners is only available from servers and if 
another host happens to query the server. In addition, 
statistical multi-packet features such as those used in [3] 
that require observing from 10 to 100 consecutive TCP 
connections per host are not considered because the initial 
focus is on single-packet performance.  

 
Table 3.  Numbers of SYN and SYN-ACK 
exemplars in ettercap and LL-test data. 

Database SYN  SYN- 
ACK  

TOTAL 

Ettercap 355 738 1093 

LL-test 95 104 199 

 

5. Evaluation Approach 

All evaluations used the two databases shown in Table 
3. Ettercap data contains 355 exemplars extracted from 
SYN packets and 738 exemplars extracted from SYN-
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ACK packets. P0f and siphon data is not used because few 
exemplars are provided and some appear to be already 
included in ettercap data. The LL-test database (labeled 
LL for Lincoln Laboratory) was created for this study. 
SYN packets were received by a mail and SSH server on a 
local class-C network over two days. SYN-ACK packets 
were received in response to an nmap port scan performed 
on the same network. Features were extracted using a 
modified version of ettercap. Operating systems in the LL 
database were determined by logging directly into each 
host on this network because nmap active scanning was 
found to be inaccurate for some hosts. All unique 
exemplars were kept for each of 83 hosts. Care was taken 
to make sure OS names were correct by verifying the 
MAC address for hosts that use the DHCP protocol to 
obtain IP addresses and by verifying the status of dual-
boot hosts and portable laptops when packets were 
captured. Ettercap exemplars were used for training 
classifiers and for cross-validation testing. LL-test 
exemplars were never used to train or tune classifiers. 
They were only used to estimate generalization error on 
previously unseen data. 

All evaluations used all features listed in Table 1 or 
subsets of these features. Features were pre-processed to 
make it possible to explore alternate classifiers using 
LNKnet pattern classification software [9]. As noted 
above, if the TTL was not a power of two, it was rounded 
up to the next power of two. This feature, WS, MSS, and 
PS all are large numbers that typically vary by powers of 
two across different OSes. Instead of using these numbers 
directly as inputs to classifiers, the log base 2 of these 
numbers was used to make the typical changes observed in 
these features similar to those of binary features. All other 
features were binary. They indicated the presence or 
absence of a TCP option (DF, WSO, SOK, NOP, TS) or 
whether the packet analyzed to produce the exemplar was 
a SYN or SYN-ACK packet (SYN). The value used for 

the window scaling option (WSO) was not used as a 
feature because values were present infrequently and they 
appear to depend more on the channel than the host. Only 
a binary WSO feature was used that specified the presence 
of this option. The features WSO, PS, and MSS were 
sometimes missing in ettercap exemplars. Missing features 
were replaced with the most common value of that feature. 

6. Baseline 75-Class Experiments 

Initial 10-fold cross-validation experiments were 
performed using the 1093 ettercap exemplars grouped into 
75 classes including the “other” class as described above. 
In this analysis, all ettercap exemplars are divided into 10 
splits with roughly equal numbers of exemplars in each 
split. Ten evaluations are performed using exemplars from 
9 of the 10 splits as training data and exemplars from the 
remaining split for testing. Errors from the 10 evaluations 
are then combined. This can be thought of as a 
retrospective analysis of the performance of ettercap. 
Since exemplars are being added to ettercap over time, its 
performance changes and cross-validation performance 
can be thought of as the performance expected for new 
exemplars not seen before.  

After combining OS names into classes, it was found 
that the top 20 classes with the most exemplars contain 
roughly 50% of the exemplars not in the “other” class. 
Labels for these classes are bsdi, freebsd2.2, bsdi, 
freebsd2.2, linux, linux2.0, linux2.1, linux2.2, macosx, 
solaris2.62, solaris7, solaris8, windows, windows2000, 
windows2000pro, windows2000server, windows98, 
windowsme, windowsnt, windowsnt4, windowsxp, and 
windowsxppro. Note that ettercap attempts to separately 
identify operating systems that are very similar to each 
other such as windowsxp and windowsxppro. In addition, 
ettercap allows generic OS names such as linux even when 
versions of the same OS are included with specific version 
numbers. It was also found that the “other” class contains 
224 exemplars from 191 different operating systems.  
Examples of OS names placed in the “other” class are: 
3com812adslrouter, acornriscos3.6, amigaos3.1, beos5.0, 
crayunicos9.0, debian3.0, gauntlet4.0, 
hplaserjet2100series, hpux11.00, novellnetware4.0, 
scounixware7.0, suse8.0, ultrixv4.5, and vms.  These 
include rare operating systems with only one or two 
exemplars, printers, and network devices. 

Performance of the baseline ettercap classification 
approach is poor. This classifier rejects patterns that don’t 
match exemplars exactly and reports the class of the first 
exemplar that matches exactly as the classification result. 
The baseline classifier rejected 84% (796/948) of the test 
exemplars and the error rate for the accepted patterns was 
44% (67/152). Two problems contribute to this poor  

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 1. Baseline 75-class error rates for exact-
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performance. First, substitution errors occur because 
exemplars in different classes (e.g. windowsxp and 
windows2000) have exactly the same feature values. Such 
errors can only be eliminated by combining classes. This is 
illustrated by the first three exemplars in Table 4. These 
three exemplars for the windows2k and the windowsXP 
class are identical. This table shows log base 2 of the WS, 
TTL, MSS, and PS features. A second reason for poor 
performance is the high rejection rate caused by 
differences between feature values within an OS class. The 
bottom part of Table 4 shows feature values for the first 
five exemplars of the windows2k class ordered by the 
value of the WS feature. All the five exemplars in this 
table differ in at least one feature.  

These examples of exemplars suggest that performance 
of the baseline classifier could be improved by using a k-
nearest-neighbor (KNN) classifier where small differences 
in feature values would not lead to rejected patterns as in 
an exact-match classifier.  Figure 1 compares the overall 
error rate for an exact match and a KNN classifier for 10-
fold cross-validation testing on all ettercap exemplars and 
for testing on LL test data. These and following results use 
a KNN classifier with k=3 instead of 1 to prevent a 
nearest-neighbor classifier from selecting classes randomly 
when multiple classes share identical exemplars. Two 
binomial standard deviations in Figure 1 are roughly 3 
percentage points on the left half and 7 on the right. These 
results demonstrate large reductions in the overall error 
rate with a KNN classifier for both cross-validation testing 
and testing on unseen LL test data. They also show the 
predicted overall error rate for the exact-match baseline 
classifier using LL test data is roughly 72%. The rejection 
rate is 60% (107/177) and the substitution error rate is 
30% (21/70). The overall error drops to roughly 50% with 
no rejections using a KNN classifier. These error rates are 
all too high to create a useful passive OS identification 
system. 

These results suggest that the “fingerprint” concept 
does not apply to the large numbers of OSes that ettercap 
attempts to resolve. Even with more than 1000 training 
exemplars, more than 60% of new unseen exemplars do 

not match any training exemplar. Confusions for cross-
validation testing of the baseline knn classifier, however, 
suggest that combining OS names into fewer classes could 
reduce the error rate and still provide useful OS 
identification. 

7. Grouping OS Names into Fewer Classes 

Fewer classes were created by combining or eliminating 
the original 75 classes using the results of a series of eight 
10-fold KNN cross-validation experiments and all ettercap 
exemplars. At each stage after the first, from one to five 
classes with the highest overall error rate were eliminated 
or combined with another class. An OS was combined with 
another if it was confused often with the other OS at that 
stage (e.g freebsd and macosx; win9x and winnt) or if 
domain knowledge suggests that the OSes are related (e.g. 
win95, win98, and win98secondedition). If the error rate 
was high and could not be reduced by combining classes, 
then the OS was eliminated and exemplars from that OS 
were not used in the following experiments. 

The first stage of the analysis reduced the number of 
classes from 75 to 24. This was accomplished by grouping 
the following into single classes: (1) All versions of HP 
Laser Jet printers; (2) All devices using any Cisco IOS; (3) 
All versions of FreeBSD UNIX; (4) All versions of IRIX; 
(5) Linux 2.2 and 2.3; (5) All versions of MacOS9; (6) 
Solaris 2.3 through 2.5; (7) All versions of Windows2000; 
(8) All versions of Windows9; (9) All versions of 
WindowsNT; (10) All versions of WindowsXP; (11) All 
versions of Novell Netware; and (12) All versions of SCO 
UNIX. In addition Redhat, Slackware, Suse, Mandrake, 
and yellowdog versions of Linux were mapped into the 
underlying common Linux kernel version 2.2 or 2.4 
because this kernel determines how the OS responds to 
TCP connections. Finally, all classes where no exemplars 
were identified correctly were eliminated. These class 
names included aix, hpux, macos7, macos8, openbsd, 
netbsd, solaris8, and vms. 

Figure 2 shows the class names for the seven 
experiments where the number of classes was reduced 

Table 4. Examples of feature values for ettercap exemplars. 

CLASS WS TTL DF MSS WSO SOK NOP PS TS SYN 
windowsxp 1 4 . 0 7 . 0 1 15.49 0 1 1 5 .5 8 0 0 
windowsxp 1 4 . 0 7 . 0 1 15.49 0 1 1 5 .5 8 0 0 
windows2k 1 4 . 0 7 . 0 1 15.49 0 1 1 5 .5 8 0 0 
windows2k 9 . 9 6 . 0 1 10.40 1 1 1 5 .5 8 1 0 
windows2k 1 0 . 0 5 . 0 0 10.00 0 0 0 5 .4 5 0 1 
windows2k 1 0 . 4 7 . 0 1 10.43 0 1 1 5 .5 8 0 1 
windows2k 1 2 . 5 7 . 0 1 9 . 0 6 0 1 1 5 .5 8 0 1 
windows2k 1 3 . 0 5 . 0 1 15.49 0 0 0 5 .5 8 0 0 
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from 24 to 9. Bold names indicate when classes were 
combined or eliminated and brackets indicate where 
classes were combined. As can be seen, it was not possible 
to accurately differentiate between all versions of 
Windows. The number of classes for the Windows OS  
collapses from four on the left to only one on the right. It 
was also not possible to differentiate between Solaris 2.6 
and Solaris 7 or between MacOSX and FreeBSD.  The 
MacOSX and FreeBSD confusion might be expected 
because MaxOSX is based on various versions of BSD 
UNIX including FreeBSD.  Confusions between 
successive versions of different OSes is also expected 
because kernel code that handles TCP interactions is often 
not changed between versions. 

Figure 3 shows that the cross-validation error rate 

measured on ettercap exemplars drops slowly from 68% to 
33% wrong as the number of classes is reduced from 75 to 
9. It also shows that the generalization error, measured on 
LL test data, drops from roughly 49% to 10% wrong.  The 
error rate on LL test data is roughly 10% and two binomial 
standard deviations are roughly 4 percentage points for 
from 9 to 12 classes.  This low error rate is acceptable for 
many applications of passive OS identification. 

A number of factors suggest that the low LL test data 
error rate might be more representative of the 
generalization error of this classifier than the ettercap 
exemplar cross-validation results. Table 5 shows the per-
class error rates for the KNN classifier using 10-fold cross 
validation testing on ettercap exemplars and using the LL 
test data. 

This table shows that with nine classes, the overall 
cross-validation error rate is 33.4% with cross-validation 
testing and 9.8% when testing on the LL data. The high 
cross-validation error rate is not caused by any one class. 
Per-class error rates on the LL data are much lower than 
cross-validation error rates except for the “other” class that 
contained only 9 examples (a disk server and Tektronix 
printers). For example, the error rate for the win-all class is 
25.2% with cross-validation testing and only 9.8% with LL 
data. The error rate for the solaris6-7 class is 37.3% with 
cross-validation testing and only 4% with LL data. Both of 
these differences are well beyond two binomial standard 
deviations of these per-class error rates. 

8. The Effect of Eliminating Ettercap Outliers  

The high cross-validation error rates appear to be 
caused by the method used to collect ettercap exemplars. 
Documentation on the ettercap web site states “If a 
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Figure 3. KNN 10-fold cross-validation and on LL 

test data error for from 75 to 9 classes 
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Figure 2. Class names for experiments with from 24 to 9 classes.  
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fingerprint is not found in the current database it is shown 
as UNKNOWN and you can contribute to the database by 
adding the new fingerprint and the respective OS.” This 
suggests that the relative frequency of ettercap exemplars 
across classes does not represent the true prior distribution 
of OSes and that the distribution of individual exemplars 
within a class also is not representative of the underlying 
prior distribution. In fact, the data collection method might 
be more prone to collecting misleading outlier exemplars 
than to collecting representative exemplars. Reasons for 
outliers could include incorrect labeling of the true OS, 
network devices between the OS and the network traffic 
collection site that change packet header contents, or OSes 
where packet header default values have been changed for 
security purposes.  

Table 5. Nine-class KNN error rate. 

 CROSS- 
VALIDATION 

LL TEST  
DATA 

CLASS Exemplars % Err Exemplars % Err 
bsdi 13 23.1% 0 - 
linux2.0 22 63.6% 11 27.3% 
linux2.1 20 35% 0 - 
linux2.2 57 45.6% 0 - 
linux2.4 76 46.1% 12 16.7% 
mac-bsd 95 28.4% 12 0% 
solaris6-7 51 37.3% 99 4.0% 
win-all 270 25.2% 41 9.8% 
other 153 35.3% 9 55.6% 
TOTAL 757 33.4% 184 9.8% 
 
To partially assess the effect of outliers in ettercap 

exemplars, outliers were detected by comparing only the 
first three features which prior analysis [15] suggests are 
important for OS identification. Outliers were eliminated 
for each class by keeping only exemplars where the first 
three feature values occurred in at least 1,2, or 3 other 
exemplars for the same class. This eliminates exemplars 
where the first three feature values are rare, that are 
presumably outliers. All features were used to assess 
performance of a KNN classifier with 9 classes as above. 
Table 6 shows the results. 

Table 6 shows that more than half of the “outlier” 
ettercap exemplars can be eliminated with no statistically 
significant increase in the error rate measured on LL data. 
In addition, as more outlier exemplars are eliminated, the 
cross-validation error rate drops and comes closer to the 
error rate measured on LL data. These results suggest that 
more data should be collected to develop a training set 
where exemplars are labeled correctly and also where they 
span a wide range of OSes. They also suggest that ettercap 
data should be used with caution. The good KNN 

performance provided with ettercap exemplars despite the 
inclusion of outliers might be due to: (1) The addition of a 
new signature for a new OS name, even for only minor 
differences in names and (2) The addition of a new 
signature when any feature value in the signature value 
differs. 

Table 6. Nine-class KNN error rates after 
eliminating different numbers of outlying ettercap 

exemplars. 

Duplicate  
Matches 
to Keep 

Training  
Exemplars 

Cross- 
Validation 
Error 

LL-Test 
Data  
Error 

0 (Normal) 757 33.4% 9.8% 
1 560 30.5% 12.5% 
2 420 19.1% 10.9% 
3 297 8.8% 10.3% 

9. Other Classifiers and Rejections 

Cross-validation experiments with the 9-class ettercap 
data were performed to set parameters for other types of 
classifiers followed by tests with LL test data to measure 
generalization error. Good performance similar to that 
obtained with the KNN classifier could be obtained using 
binary tree classifiers similar to those described in [2], 
Gaussian kernel support vector machine classifiers [4], and 
multi-layer perceptron classifiers [9]. All classifiers were 
versions included in the current version of LNKnet [9]. 
The binary tree classifier with 40 nodes provided good 
cross-validation performance that was no more than two 
standard deviations worse than the error provided by larger 
trees. A multi-layer-perceptron classifier with 10 inputs, 40 
hidden nodes, and 9 output nodes provided good cross-
validation performance when trained with stochastic 
gradient descent training and 50 epochs. It performed 
better than similar classifiers with from 10 to 60 nodes and 
with 25 or 75 epochs of training. Finally, a Gaussian 
kernel support vector machine classifier with a Gaussian 
sigma of 2.0 and an upper bound on Lagrange multipliers 
of 5.0 provided better cross-validation performance than 
linear or quadratic support vector machine classifiers. It 
also performed better than Gaussian kernel support vector 
machine classifiers with a sigma of 1.0 or 4.0 or with 
different upper bounds of 1 or 10. Generalization error 
rates on LL-data for all classifiers including the KNN 
classifier (k=3) are shown in Table 7.  

Table 7 shows that all four classifiers provide good 
performance on the LL-data patterns with an error rate of 
roughly 10%. With the 184 test patterns, two binomial 
standard deviations is roughly 4.4 percentage points and 
the spread of error rates without rejection across patterns is 
less than this range. Cross-validation error rates were much 
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higher, as with the KNN classifier, and ranged from 27.1% 
(binary tree) to 35.4% (support vector machine classifier).  

Table 7. Nine-class error rate on LL test data for four 
classifiers. 

No Rejections Reject 10% of 
Input Patterns 

Classifier 

# Errors % Error # Errors % Error 
KNN 18 9.8% 12 7.0% 
Binary Tree 16 8.7% 1 0.9% 
MLP 23 12.5% 13 8.2% 
SVM 20 10.9% 8 5.2% 

 
Table 7 also shows the error rate after 10% of the input 

test patterns are rejected. Each classifier provides an 
estimate of the posterior probability for every class. 
Patterns are rejected when the estimate for the selected 
class is below a threshold and the threshold is adjusted to 
reject 10% of the input patterns. As can be seen, the error 
rate for all classifiers improves when patterns are rejected. 
Best performance with rejection was provided by the 
binary tree classifier. It misclassified only 1 out of 165 test 
patterns. For comparison, the exact-match algorithm used 
in ettercap has a low substitution error rate of 3% (4/128) 
but rejects 30% (56/184) of the test patterns. 

10. The Effect Of Feature Selection And 
Using Only SYN Or SYN-ACK Packets 

The earliest proposed passive OSID system [13] used 
only the first three features shown in Table 1 (WS, TTL, 
DF) and other systems added the remaining features. No 
experiments, however, analyzed the benefits provided by 
different feature combinations. Forward-backward feature 
selection was performed using cross-validation 
experiments on the 9-class KNN and binary tree classifiers 
described above. These experiments found the smallest set 
of features that provided performance no more than two 
binomial standard deviations worse than the best 
performance found with any feature subset. With the KNN 
classifier, five features (WS, TTL, DF, SOK, PS) were 
selected. With the binary tree classifier only three features 
(WS, TTL, MSS) were selected. Error rates with the LL 
test data were then measured after this feature selection 
was performed. It was found that these error rates were 
statistically identical (within 1.2 percentage points) to 
error rates obtained using all features. These result 
demonstrate that all the features shown in Table 1 are not 
required for good performance. They show that WS and 
TTL, which are often suggested as good features, are 
important, but that other features such as one that indicates 

whether the input packet was a SYN or SYN-ACK packet 
are not required. 

Some OSID systems such as p0f [14] only analyze SYN 
packets while others such as ettercap use both SYN and 
SYN-ACK packets. These two approaches were compared 
using the 9-class error rate for the KNN classifier. In a new 
condition, only ettercap SYN packets were used for 
training and only LL SYN packets were used for testing. 
This was compared to the normal classifier where both 
SYN and SYN-ACK packets were used for training and 
testing.  The error rate on LL test data was 6.9% (7/102) 
for the new condition and 9.85 (18/184) for the normal 
condition. Both error rates are similar and low. Two 
binomial standard deviations for these error rates are 
roughly five percentage points and the difference between 
these error rates is thus not statistically significant. A 
second new condition was created where only SYN-ACK 
packets were used for training and testing. The error rate 
under this condition was 12.2% (10/82). This error rate is 
also low. Although it is 5.3 percentage points above the 
error rate with SYN packets alone, this difference is again 
not statistically significant and is primarily cause by fewer 
patterns in the more difficult “other” class with SYN 
packets. These results suggest that SYN and SYN-ACK 
packet headers are equally effective when performing 
passive OS identification. 

11. Discussion and Summary 

Passive operating system (OS) identification from 
packet header information is possible, but low error rates 
can only be obtained using a small number of classes that 
is much less than the more than 100 different OS names 
found in the most recent open-source tool. Machine 
learning evaluations demonstrated that many of the rules-
of-thumb used to develop open-source tools may not be 
valid. For example, best performance is not provided using 
WS, TTL, and DF features. Other feature combinations 
provide best performance, especially for the binary tree 
classifier. Best performance is also not provided using 
only SYN packets. Similar low error rates are provided 
with SYN packets, with SYN-ACK packets or with both 
types of packets. In addition, best performance is not 
obtained by adding exemplars to a training data only when 
they differ from existing exemplars. This may lead to the 
inclusion of many outlier patterns in training data. Better 
performance would be provided by sampling packet 
headers generated at many sites from a wide range of OSes 
and correctly identifying each OS. Finally, the concept of 
OS “fingerprints” is misleading. Each OS does not have a 
unique “fingerprint”. Instead, feature values extracted from 
packet headers vary within and between classes and 
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machine-learning classifiers can account for this 
variability. 

Experiments led to new nearest neighbor and binary 
tree classifiers that provide nine-class error rates of 
roughly 10% without rejection. Other classifiers including 
multi-layer perceptron and support vector machine 
classifiers provide similar low error rates. When 10% of 
the patterns are rejected, the error rate is lowest and near 
zero with the binary tree classifier. The binary tree 
classifier requires only three features to provide the lowest 
error rate (WS, TTL, MSS). The KNN classifier requires 
five features (WS, TTL, DF, SOK, PS). Nine-class OS 
identification is accurate and similar for SYN packets 
alone, for SYN-ACK packets alone, or for both packet 
types combined in one classifier. 

Further work could improve passive OS identification 
performance by collecting more accurately labeled patterns 
for classifier development. The frequency of occurrence of 
OS names in these patterns should reflect the prior 
distribution of OS names and the frequency of occurrence 
of patterns in each class should reflect the true distribution 
of patterns.  In addition, information concerning protocols, 
contents of server banners, email headers, and other 
content could be extracted to improve passive OS 
identification in some situations. Finally, when multiple 
TCP connections are observed for a host, statistical multi-
packet features might improve OS identification accuracy. 
These could include features used in [3] such as averages 
of features in Table 1 and statistics on how source ports 
are incremented and TCP sequence numbers are changed 
between TCP connections.  Use of these additional 
features may make it possible to detect OS masquerading 
when some feature values are changed to make one OS 
appear to be another. 
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Abstract 
 

Most of the current anomaly detection methods for 
network traffic rely on the packet header for studying 
network traffic behavior. We believe that significant 
information lies in the payload of the packet and 
hence it is important to model the payload as well. 
Since many protocols exist and new protocols are 
frequently introduced, parsing the payload based on 
the protocol specification is time-consuming.  Instead 
of relying on the specification, we propose four 
different characteristics of streams of bytes, which 
can help us to develop algorithms for parsing the 
payload into tokens. We feed the extracted tokens 
from the payload to an anomaly detection algorithm.  
Our empirical results indicated that our parsing 
techniques can extract tokens that can improve the 
detection rate. 

 

1. Introduction 
 
Motivation:  Traditional intrusion detection systems 
use misuse/signature detection, which models known 
attacks, and generally cannot detect novel attacks.   
Anomaly detection models normalcy and identifies 
deviations, which potentially can be novel attacks.  
During training, network anomaly detection models 
the normal patterns of network traffic. During 
detection, scores are assigned to anomalous events 
and significant anomalies cause alerts indicating 
possible attacks. Existing anomaly detection 
techniques usually rely on information derived only 
from the packet headers; however, this is not 
sufficient since more sophisticated attacks involve the 
application payload.  Parsing packet headers is 
relatively simple as there are few commonly used 

protocols such as IP, TCP, UDP, and ICMP.  
However, for application payloads, parsing is more 
challenging due to the large number of application 
protocols available and relatively frequent 
introduction of new protocols.  Hard coding the 
parser for each application protocol could be time 
consuming, particularly when the protocols are 
complicated.  Furthermore, updates to existing 
protocols or introduction of new protocols will 
require additional efforts.  
 

Problem statement: We desire to parse application 
payload into tokens without explicit knowledge of the 
application protocols.  Given a set of exemplar 
payloads, an algorithm learns a model that can parse 
the payloads into “meaningful” tokens.  Furthermore, 
the algorithm needs to be independent of the 
protocols.  The extracted tokens can then be used as 
attributes for modeling normal traffic for anomaly 
detection (the same techniques can also be used to 
identify tokens for misuse detection as well, but 
anomaly detection is the focus of this paper).  

 

Approach: We propose four characteristics of 
relevant tokens in a continuous stream of bytes, and 
based on them, design algorithms that propose 
possible boundaries for tokens.  We use these 
characteristics individually and in combination to 
estimated boundaries. The sequence of bytes between 
the two successive boundaries is considered a token 
which can be used to model the behavior of the 
payload. The characteristics are based on Boundary 
Entropy, Frequency, Augmented Expected Mutual 
Information, and Minimum Description Length. 
These characteristics do not depend on any particular 
property of a protocol. 
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Contributions:  

• We describe four algorithms based on the 
characteristics mentioned above, and apply them to 
parse the payload to extract tokens from network 
traffic.  
• We also explore techniques using more than one 
such characteristic in combination.  
• We discuss four evaluation techniques to 
evaluate such tokens.  
• We demonstrate that the tokens found by our 

algorithm can improve the detection rate of the 
LERAD anomaly detection algorithm. 

• Our algorithms would work on encrypted data as 
well, since they are domain independent. 

 

Organization: The next section, Section 2, discusses 
the related work. Section 3 details the four 
characteristics and the associated algorithms. In 
section 4 we discuss results obtained from our 
experimental evaluation, and finally we conclude in 
Section 5. 

 

2. Related work 
 

A variety of approaches have been adopted for the 
boundary detection problem. Some of them are 
unique and achieve interesting results. 

One of the early studies include that described in 
Forrest et al. [1] They used fixed length patterns to 
represent the process model and used it for intrusion 
detection purpose. However, a main limitation of this 
approach is that there is no rationale for selecting the 
optimal pattern length, which has a major influence on 
the detection capabilities of the intrusion detection 
system. In addition, it uses fixed length patterns, 
which makes it a difficult task to select the optimal 
pattern length. Long patterns are expected to be more 
process specific than short patterns. Our approach is 
independent of such a parameter like length and hence 
overcomes this problem. 

Wespi et al. [14] use Teiresias algorithm [12] in 
combination with a pattern reduction algorithm to 
construct patterns. All maximal variable length 
patterns contained in the set of training sequences are 
determined and a reduction algorithm is applied to 
prune the entries in the pattern table. Their pattern-
matching algorithm returns the groups of consecutive 
uncovered events and the length of each of these 
groups. The greater the length, the more likely it is 
that an intrusion is observed. 

Liao et al. [6] use a k-Nearest Neighbor classifier to 
characterize program behavior as normal or intrusive 
depending on the short sequences of system calls. 
Even though the computation required for this 
technique is reduced, it is unable to detect attacks that 
consist of abuse of a legal attack, e.g. Process table 
attack. Some text categorization work is also done by 
Dumais et. al [3]. 

 
Jiang et al. [5] consider both Intra pattern and Inter 
pattern anomalies. They provide a pattern extraction 
algorithm to identify maximal patterns. Then they use 
a Pattern overlap relationship module where 
adjacency lists are formed from patterns in which 
overlap relationship between patterns is stored.  
Pattern adjacency lists are then traversed at real time 
to identify both intra pattern and inter pattern 
mismatches. Significant deviations from the normal 
behavior cause the module to raise alerts.  

 
Valdes [13] proposes a system that maintains a library 
of patterns that may be initially empty. When a pattern 
is observed, its similarity with respect to other patterns 
in the library is observed. If it matches one or more 
stored patterns above a configurable threshold, then 
the new pattern is considered to belong to the class of 
the best matching. However, their approach works 
only with a alphabet size and small number of actual 
observed patterns. 
 
Michael [11] uses suffix trees of a fixed height to find 
frequent occurring sequences of system calls.  Very 
frequent sequences are replaced with meta-symbols, 
resulting in a more compact representation of the 
system calls.  Based on the revised vocabulary, a 
regular language is learned to represent the normal 
behavior of system call traces. One of the algorithms, 
SEQUITUR proposed by Manning and Witten [10] 
provides a technique for parsing the text, which is our 
first step. It is based on the principle that phrases, 
which appear more than once, can be replaced by a 
grammatical rule that generates that phrase. The rule 
generated is different from conventional grammar 
since the rules are not generalized and they generate 
only one token. 
 

Another algorithm proposed by Cohen et al. [2], 
called VOTING EXPERTS consists of experts that 
evaluate the features of the episodes, namely 
Boundary Entropy and Frequency, and votes for 
boundaries in the corpus based on these features. A 
window is passed through the corpus and each 
location garners 0 or 1 vote from each expert. The 
location with the least boundary entropy and highest 
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frequency receive votes from the two experts 
respectively. The drawback of their technique is that 
their votes are binary; the confidence in a particular 
boundary cannot be indicated. 

 

3. Approach 
 
Our approach consists of parsing the payload and 
extracting tokens providing some information about 
the payload, and using these tokens to model the 
network behavior for anomaly detection. This 
approach demands a good algorithm to parse the 
payload. There are characteristics that can categorize 
bytes belonging to some relevant token.  Hence, these 
characteristics can be exploited to detect boundaries in 
a continuous stream of characters. By extracting the 
token between two boundaries, we can derive a set of 
bytes belonging to the same token. 

 

Our approach is inspired by VOTING EXPERTS [3] 
as in features are used to detect boundaries. However, 
there are many differences in the details of the 
approaches. Not only have we created more experts 
for casting votes and combined those experts, we also 
intend to make a system that allows certain feature to 
cast multiple votes, depending on how strongly that 
feature believes that a boundary exists at that location. 
In VOTING EXPERTS, each feature was independent 
and could cast only binary votes, whether the feature 
strongly suggested a boundary or there was just a 
slight indication of the same. Since the features we use 
to assess potential boundaries are statistical, our 
approach is independent of the language or in our 
case, independent of the protocol of the application 
layer. Hence, our technique is domain independent. 
Two sample records from port #21 are: 
  
^@USER anonymous^M^ ^JPASS chiaraa@delta.peach.mil^M^ ^JSYST^M^ ^JPORT 
194,7,248,153,4,241^M^ ^JLIST^M^ ^JCWD mailing_list^M^ ^JPORT 
194,7,248,153,4,242^M^ ^JLIST^M^ ^JCWD archive^M^ ^JPORT 
194,7,248,153,4,243^M^ ^JLIST^M^ ^JCWD music^M^ ^JPORT 
194,7,248,153,4,244^M^ ^JLIST^M^ ^JTYPE I^M^ ^JPORT 194,7,248,153,4,245^M^ 
^JRETR 0016.html^M^ ^JQUIT^M^ ^J 

 

^@GET anonymous^M^ ^JPASS pablot@delta.peach.mil^M^ ^JSYST^M^ ^JPORT 
194,7,248,153,4,255^M^ ^JLIST^M^ ^JCWD man^M^ ^JPORT 194,7,248,153,5,0^M^ 
^JLIST^M^ ^JCWD man3^M^ ^JPORT 194,7,248,153,5,1^M^ ^JLIST^M^ ^JTYPE 
I^M^ ^JPORT 194,7,248,153,5,2^M^ ^JRETR cpp.1^M^ ^JQUIT^M^ ^J 
 

The first record shows a normal connection record for 
port #21. However, the second connection record 
shows an anomaly. The first keyword in a FTP 
connection record is usually “USER”. The keyword 
“GET” is inappropriate and suggests malicious data. 

 

The general working of the algorithm includes a 
window of arbitrary size (given as an input), say w, 
which is slid through the corpus to be segmented. At 
each instant, w bytes from the corpus are observed. 
Each feature evaluates the value for each possible 
boundary within the window, and decides whether the 
value is good enough for a boundary or not. If yes, a 
vote is cast, otherwise the window simply slides one 
character forward, examining again the token of length 
w, differing in one byte from the previous token. Two 
parses are required for this approach on the corpus, 
first to evaluate the feature value for each possible 
token, second to compare the various possible 
boundary locations based on the evaluated feature 
value and to assign votes. 

 

There are four features used to cast votes in our 
model. Two of them are similar to the ones in 
VOTING EXPERTS: Boundary Entropy and 
Frequency. The other two are Augmented Expected 
Mutual Information (AEMI) and Minimum 
Description length. Finally, we propose techniques by 
combining some or all of them. Each one is discussed 
in some detail below. We note again that we adopt 
weighted voting according to the confidence of each 
expert, which is different from the original VOTING 
EXPERTS. 

 
3.1  Boundary Entropy 
 
The entropy in patterns exhibits a trend that is 
exploited in this technique. It starts with a relatively 
high value, then drops as we go further, and peaks at 
the end of a valid word. This is because entropy gives 
us the uncertainty or degree of randomness in a 
system. When we see the first few characters of a 
word, it is difficult to predict what the word is. E.g., 
given the character ‘W’, it is difficult to say what the 
word is. It could be ‘What’, ‘Where’ or any other such 
word. Hence, the entropy after ‘W’ is relatively high. 
However, as we move further, the uncertainty drops. 
E.g., if we have the token ‘Wha’ then we know that 
the word probably is ‘What’. At the end of the 
meaningful token, the entropy peaks. This is because 
it becomes very uncertain what the following word is 
going to be, and hence what the next character should 
be. In our example, any word could follow ‘What’, so 
it is difficult to say what the next character will be. 

 

We exploit this property to create an expert to detect 
boundaries. The entropy at each possible location is 
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calculated using the formula, similar to voting experts, 
i.e. 

�− )(log)( xPxP                                (1) 

 

P(x) is the probability of the byte x following the 
current window. (More precisely, P(x) is actually P 
(x|s), where s is the sequence of bytes in the window 
of size w.) The entire expression gives us the 
uncertainty of the byte following the token in the 
window.  During the first parse, the window is moved 
across the file and the byte following the window is 
noted and P(x) is estimated. In the second parse, the 
window is moved again and Boundary entropy at the 
end of each window is calculated using the formula in 
Equation (1).      

 

The positions that have the maximum entropy get a 
vote from the expert. However, since we desire to 
signal only boundaries with reasonable confidence, we 
introduce a threshold that suppresses votes from 
boundaries with low entropy values.   We use the 
average boundary entropy of the corpus as the 
threshold. To allow fair voting among experts, the 
boundary entropies are normalized before votes are 
cast. The votes cast are proportional to the number of 
standard deviations away from the mean value. 

 

3.2 Frequency 
 
The second method computes the frequency of each 
token that occurs in the corpus. The most frequent set 
of tokens are assumed to be valid tokens and 
boundaries are assigned at the ends of such tokens. As 
the window moves forward, the frequency of each 
possible token of length 1 to the window size, within 
the window, is calculated. E.g. if the window consists 
of  “examsare”, then the frequency of ‘e’, ‘ex’, ‘exa’ 
and so on is calculated. Boundary is voted at the end 
of the most frequent token.  The votes given are 
proportional to the number of standard deviations that 
the frequency of the token is away from the mean. 

 

The window is moved through the corpus and each 
token formed is counted. Hence, at the end of the 
parse, we have a list of all possible words, which the 
window may consist of, and their frequency. 
Generally, in most domains, there is a relationship 
between the length and frequency of patterns. Short 
patterns tend to be more common than the long ones.  
E.g.,‘t’ would be more common than ‘the’ even 

though ‘the’ is a valid word and ‘t’ is not. We want to 
compare how unusual a pattern is, not just how 
frequent it is. Therefore, comparing the frequencies of 
short patterns with that of long patterns would not be 
appropriate. To accommodate this, we normalize the 
frequencies of the tokens for tokens of the same 
length. We subtract the sample mean from the value 
and divide by the sample standard deviation. 

  

3.3 Augmented Expected Mutual 
Information (AEMI) 
 
A lot of information can be gathered about a character 
based on the context it appears in.  Generally, the 
concept of mutual information is used to evaluate the 
relationship between two events. Mutual Information 
can estimate the likelihood of the occurrence of a 
token given some other token. E.g. talking about food, 
given that we have seen ‘POP’ it is very likely that the 
next word would be ‘CORN’. Hence, this approach is 
based on co-occurrence of tokens: if two tokens 
appear together frequently, they are probably part of 
the same word. Mutual information is given by: 

 

))]()(/(),(lg[),( bPaPbaPbaMI =                 (2)                   

 
In other words, MI gives us the reduction of 
uncertainty in presence of ‘b’ in the window if 
presence of ‘a’ is known (or vice versa). However, this 
metric only considers the presence of both the words 
but not the absence of either of them. That is, it does 
not consider what the probability of seeing one token 
in the absence of the other. This leads to 
misinterpretations if the token whose occurrence is 
being measured is highly frequent. E.g., we would 
expect that ‘pop-corn’ is more correlated than ‘is in’, 
however since ‘is’ is relatively more common. This 
would lead to a high MI value. The presence of one 
token without the other one counts for adverse 
correlation and proves to be counter evidence. 
Augmented Expected Mutual Information [1] 
incorporates the idea of independent existence of 'a' 
and 'b' as well, which appropriately incorporates the 
counter evidence. It is defined as: 
 

),(),(),(),(
),(),(),(

baMIbaPbaMIbaP

baMIbaPBAAEMI

¬¬−¬¬
−=

   (3) 

  

Equation 3 sums the supporting evidence and 
subtracts the counter evidence. a is defined as the 
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event of the first token, and b is the event of the token 
following the first one. Higher values of AEMI 
indicate that a and b are probably part of the same 
word. We only consider three cases with each pair of 
tokens, occurrences when both the tokens appear 
together, when token a appears without token b, and 
token b appears without token a. The case when 
neither a nor b appears is disregarded since it does not 
really present much information about whether a and 
b co-occur or not. The window is again moved across 
for each possible boundary, the left and right sub 
tokens are considered. E.g. If a window contains 
“abcdef” we consider left and right sub tokens ‘a’ and 
‘bcdef’, then ‘ab’ and ‘cdef’, then ‘abc’ and ‘def’ and 
so on. Then for each set of left and right sub tokens 
within a window, AEMI value is computed and 
compared. For each window, the location with the 
minimum AEMI value suggests a boundary, and the 
expert gives votes proportional to the standard 
deviations from the average AEMI. 

 

3.4 Minimum Description Length 
 
In coding theory, tokens that are more frequent are 
assigned a shorter code so that the overall coding 
length is minimized for a message with multiple 
tokens.  Minimum Description Length (MDL) 
assumes a perfect encoding and measures the fewest 
number of bits necessary to encode a message. We 
calculate the description length per byte of a token by: 

                                         

||/)(lg
},{

i
rightlefti

i ttPMDL �
∈

−=                            (4)                                       

 

Where ti denotes the two tokens on the left and right 
of the possible boundaries, P (ti) is the probability of ti 
and | ti | is the length of ti in bytes. The assumption is 
that if we were to compress the file, we would assign 
minimum number of bits to the most frequently 
occurring token; hence, it would have the minimum 
length. –lg [P (ti)] which gives us the number of bits 
used for ti, dividing it by the length of ti, | ti |, which, 
gives us the number of bits per byte of the token or its 
description length.  

 

The preprocessing is similar to that in AEMI. The first 
parse is used to look at all the left and right sub tokens 
and compute the probability of seeing those two 
tokens. This probability is then used in the second 
phase, which computes the sum of the description 
lengths of left and right sub tokens. As the window 

slides over the data, the boundary that yields the 
shortest coding length is voted as the boundary and 
the number of votes is again proportional to the 
number of standard deviations from the average 
coding length. 

 
3.5 Combined Approach with Weighted 
Voting 

 
All the approaches discussed so far use a single expert 
to suggest boundaries. We desire to design a model 
that combines the opinions from all the experts and 
then decides upon the boundary. In this method, we 
allow each expert to run a scan on the file and decide 
where to vote, and how much to vote. Votes from each 
expert are normalized, as some approaches may tend 
to assign more votes than the others do. These votes 
are then combined to locate positions most strongly 
suggested as the boundary after consideration by all 
the experts. A list of votes from all the experts is 
gathered. This list is normalized so that the votes from 
each expert indicate the confidence of the expert and 
are on the same scale. In order to normalize the list, 
the standard deviation of the votes is computed and 
each value in the list is divided by the standard 
deviation. This scales the value with respect to the 
other values in the list. In order to give more weight to 
a particular expert, the votes from this expert can be 
increased by a certain factor. For each boundary, the 
final votes from each expert, after normalization, are 
summed. A threshold is set computed depending on 
the final set of votes. Once again, it is the average of 
the votes assigned to each boundary. A boundary is 
placed at a certain position if and only if the votes at 
that position exceed the threshold. 

 

We tried combining all the algorithms and then 
combining the strongest algorithms, frequency and 
minimum description length. 

 

3.6 Anomaly Detection 
 
Once we have placed the boundaries according to our 
experts, we can easily extract the meaningful tokens 
from the file. Our anomaly detection system, LERAD 
[9], forms rules based on attributes picked from the 
network data (including header and payload). 
Currently, it uses tokens from the payload that are 
“space” separated. Instead, we modify it to use tokens 
that are separated by boundaries identified by the 
algorithms discussed above. 
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4. Experimental Evaluation 
 

4.1 Evaluation Criteria 
 
We present four different types of evaluations 
depending on various attributes that would indicate 
the “meaningfulness” of the tokens retrieved in the 
output file. 

 

The first evaluation, Evaluation A, is based on how 
many words, present in the input file, were we able to 
retrieve in the output file with the boundaries placed at 
positions suggested by the expert. All space or 
punctuation separated tokens are assumed to be 
“meaningful” tokens. This evaluation works for text-
based protocols only. It doesn’t work for non-text 
based protocols because bytes that represent “spaces” 
usually do not exist. Moreover, Evaluation A only 
approximates how "tokens" are defined. E.g. a file 
name could consist of ‘/’ to denote the path of the file. 
The entire path should be considered as one token, 
however since our evaluation would consider ‘/’ as 
space, it will consider each directory a unique token. 
Also, for hyphenated words, even though they would 
logically be the same token, this evaluation would 
evaluate them as being separate tokens. Based on the 
space-separated words, we report the percentage of 
words recovered by our methods. 

 

The second evaluation, Evaluation B, is similar to the 
first evaluation except that it looks for certain 
keywords that are characteristic of the particular 
application protocol. These keywords are collected 
from the specification of each protocol (Request for 
Comments or RFC). However, this evaluation is 
limited to text-based protocols for the reasons 
mentioned above and is an approximation since tokens 
between two keywords are not specified.  Based on 
the known keywords, we report the percentage of 
keywords recovered by our methods. 

  

The third evaluation, Evaluation C, calculates the 
entropies of the output files. The motivation for this 
evaluation is that if the expert was successful and it 
found most of meaningful tokens, then the tokens 
should be repeated often in the output file, leading to 
less randomness in the output file and therefore to 
lower entropy values for the file. Thus, in our 
evaluation, the lower the entropy value of the output 
file, the better is the feature or expert. This evaluation 
is independent of any text-based assumptions and 

hence can be used for all kinds of ports. It gives a 
good estimate of the output file. It can be used to 
compare the performance of an approach on any kind 
of protocol.  

 

The fourth evaluation, Evaluation D, is the detection 
rate evaluation, which is the most important 
evaluation, while Evaluations A and C are 
intermediate approximations. We measure the number 
of detections at various false alarm rates and compare 
the performance of the original LERAD with LERAD 
using tokens extracted by our proposed methods.  
 

 
4.2 Evaluation Data and Procedures  

 
The proposed methods were evaluated using the 1999 
DARPA Intrusion Detection Evaluation Data Set [7]. 
The test bed involved a simulation of an air force base 
that has machines that are under frequent attack. 
These machines comprise of Linux, SunOS, Sun 
Solaris and Windows NT. Various intrusion detection 
systems have been evaluated using this test bed. It 
comprises of three weeks of training data obtained 
from network sniffers, audit logs, nightly file system 
dumps and BSM logs from Solaris machine that trace 
system calls and two weeks of testing data. Weeks 1 
and 3 of the data are attack free while various attacks 
are present in Weeks 4 and 5 of the data.  
 
To our knowledge, the DARPA 99 data set is the 
most comprehensive publicly available data set for 
evaluation of intrusion detection. We are aware of the 
simulation artifacts in the data set as discussed in 
[8].The focus of this paper is comparing tokenization 
techniques for extracting features to enrich the 
representation of the training dataset for anomaly 
detection algorithms.  We are not comparing anomaly 
detection algorithms and fixed the algorithm to be 
LERAD.  We plan to extend our investigation to 
datasets that contain collected traffic from real-life 
networks. 
 
For our first three evaluations, where we compute the 
number of words retrieved, number of keywords 
retrieved, and the entropy of the output file, we use 
only the data from Week 3. The reason for using week 
3 for evaluations A, B, and C is that Weeks 4 and 5 
are for testing only and we do not want to have the 
advance knowledge of which tokenization methods 
work better in Weeks 4 and 5. Weeks 4 and 5 contain 
an evidence of 146 simulated attacks. However these 
attacks are across all the ports. We have tested only 

fritz
55



some of the ports from the entire data.  We used the 
first four days of Week 3 for training and the last three 
days for testing. This gives us an estimate of how 
predictive the approaches are, and how well they 
would perform on unseen data in the network traffic. 
We studied the ports with the most traffic and results 
from these ports are reported. The window size was a 
parameter set to six, which was experimentally 
observed to be the best value. 
 
The anomaly detection system LERAD [9] works in 
three phases. In the first phase, it samples training 
pairs to suggest rules. In the second and third phases, 
it removes redundant rules and rules that generate 
alarms on attack free traffic respectively. LERAD 
learns rules based on 23 attributes taken from the TCP 
header and the payload. First 15 attributes are picked 
from the packet header and the remaining eight are 
picked from the payload. LERAD, originally picks the 
first eight space separated tokens from the payload--
space as boundary is not applicable to non-text 
protocols.  We replace these eight space separated 
tokens with the more intelligently found boundary 
separated words from our approaches.  For Evaluation 
D, we use Week 3 for training and Weeks 4 and 5 for 
testing. 

 
4.3 Experimental Results and analysis 
 

For each evaluation criterion, we compare results from 
six different approaches, four approaches being the 
results of the four algorithms independently, fifth 
being the combination of all the algorithms and sixth 
being the combination of two of the strongest 
algorithms, Frequency and MDL. The reason for 
combining Frequency and MDL is that, from our 
experience with this data set, they provide maximum 
coverage and complement each other. 

 

4.3.1  Evaluation A: Space Separated 
Tokens 
 
Table 4.3.1 reports the results of all the approaches on 
popular ports with text-based protocols, SMTP (25), 
HTTP (80), FTP (21) and Finger (79), based on 
Evaluation A. For all these ports, Boundary Entropy 
gives the poorest results. Frequency performs the best 
for SMTP and Finger, however Freq + MDL performs 
best for HTTP and FTP. On qualitative analysis, Freq 
+ MDL seems to give a more consistent output with 
long relevant tokens. Hence, we suggest that 
Freq+MDL together give the best results followed by 

the single approach of Frequency. The model of all 
the algorithms combined follows these two 
techniques. MDL performs better than Frequency 
when trained and tested on the same set; however it is 
not very predictive. Frequency on the other hand, is 
highly predictive. Hence, these two algorithms tend to 
find different kinds of words. When combined they 
give maximum coverage and hence best results.  

 
Table 4.3.1 Evaluation A: % of Space-Separated 

Tokens Recovered 

 
 

4.3.2 Evaluation B: Keywords in RFCs 
 

Table 4.3.2 Evaluation B: % of Keywords in RFCs 
Recovered 

Method Port #25 Port #80 Port #21 

Frequency 31 28 40 

Min Desc. 
Length 

7 6 1 

AEMI 9 5 2 

Boundary 
Entropy 

3 2 2 

All 4 
experts 

12 13 21 

Freq + 
MDL 

40 36 59 

 

Table 4.3.2 reports the results for all the methods 
based on Evaluation B. Results for port #79 are absent 
since no keywords were available for port #79. Here 
again Frequency + MDL performs the best for ports 
#80 and #21. The ranking of the algorithms remains 

Method Port #25 

 

Port #80 

 

Port #21 

 

Port #79 

 Frequency 15 16 13 99 

Min Desc. 
Length 

6 7 3 25 

AEMI 5 9 4 32 

Boundary 
Entropy 

3 3 1 9 

All 4 experts 21 14 5 12 

Freq + MDL 52 26 21 81 
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the same and reinforces our conclusions from the 
previous evaluation. 

 

4.3.3 Evaluation C: Entropy 
 

Table 4.3.3 Evaluation C: Entropy of Output 

Method Port 

#25 

Port 

#80 

Port 

#21 

Port 

#79 

Port 

#1023 

Port 

#22 

Frequency 9.19 5.11 5.17 3.78 0.86 5.79 

Min Desc. 
Length 

8.61 5.26 5.50 1.43 0.77 8.61 

AEMI 8.66 5.74 9.23 6.27 1.10 7.32 

Boundary 
Entropy 

7.89 5.36 6.79 2.63 0.96 7.75 

All 4 
experts 

9.52 5.07 5.36 6.32 1.39 5.74 

Freq + 
MDL 

7.94 4.98 9.04 4.31 1.91 8.32 

 

Table 4.3.3 reports the results of all the approaches 
based on Evaluation C on four text based and two non 
text based ports, Smtp (25), Http (80), Ftp (21), 
Finger (79), SSH (22), and TCP Reserved (1023). 
This evaluation compares the schemes on both text 
based as well as non-text based ports and allows us to 
compare the techniques without any bias. The relative 
values vary for different ports. For port #25 Boundary 
Entropy gives the best results, however for ports #79 
and #1023, Minimum Description Length gives lowest 
entropy. Frequency gives lowest entropy values for 
port #21, Freq + MDL and the combination of all four 
methods achieve the lowest entropy for #80 and #22 
respectively.  Since all techniques are very close in 
this evaluation, it is difficult to say which technique is 
best for all ports based on this evaluation only. 
However we can make port specific conclusions like 
for port #80, Freq + MDL is the best technique. 

 
4.3.4 Evaluations on Combined models 
 
Since Frequency + MDL and the model combined of 
all algorithms have the potential of giving better 
boundaries indicated by evaluations A-B and 
evaluation C respectively, we performed experiments 
on the remaining ports with these two techniques. 

 

Table 4.3.4 Results from Additional Ports for Freq + 
MDL and ALL 

Port # Evaluation A 

% Words 
Found 

Evaluation B 

% Keywords 
Found 

Evaluation C 

Entropy 

 Frq + 
MDL 

ALL Frq + 
MDL 

ALL Frq + 
MDL 

ALL 

23 13 7 5 3 7.88 8.08 

113 43 20 -- -- 4.45 5.18 

515 38 14 -- -- 7.66 7.27 

 

Table 4.3.4 reports results of the two models, 
Frequency + MDL and the combination of all 
algorithms on additional ports, for all three 
evaluations. Based on these results, it is evident that 
Frq+MDL performs better than the model combining 
all four approaches. Even though Frq+MDL performs 
very well, the inclusion of the other two techniques 
weakens the model. This could be attributed to the 
probability that with the inclusion of AEMI and BE 
the model gets confused and results deteriorate. 
Boundary Entropy in particular attempts to vote at too 
many positions and lowers the performance. 

 

4.3.4 Evaluation D: Detection Rate 
 

Table 4.3.5 Detection Rate for Space Separated 
LERAD and Boundary Separated LERAD using Freq 

+ MDL tokenization 

 

 

PORT# 10 FP/day 100 FP/day 

 Space-
Separated 

Boundary-
Separated 

Space-
Separated 

Boundary-
Separated 

20 2 2 4 5 

21 14 16 14 17 

22 3 3 3 3 

23 13 14 13 14 

25 15 16 16 16 

79 3 3 3 3 

80 10 10 11 13 

113 2 2 2 2 

Overall 59 62 63 68 
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Based on our first three evaluations, we picked the 
most promising technique for our fourth and most 
important evaluation. From the previous evaluations, 
it was obvious that certain techniques may be better 
depending on the port. However, the model consisting 
of Frequency and Minimum Description Length gave 
a good performance consistently. Thus, we decided to 
perform our final evaluation on this technique. 

 
LERAD forms conditional rules that are used to test 
tuples from test data. The alarms generated were 
evaluated for two different allowed false alarm rates – 
10 and 100 per day respectively.  The results, reported 
in Table 4.3.5, indicate some improvements in the 
total number of detections for both text based and 
non-text based protocols. Port #20 shows an 
improvement of one detection when the false alarm 
rate is set to 100 per day. Considerable improvement 
for port #s 21, 23 is observed for both false alarm 
rates. Port #25 and #80 also show an improvement of 
one attack each at false alarm rates of 10 per day and 
100 per day respectively. For other ports where the 
results are comparable, we suggest two possible 
reasons. Firstly, the training data for these ports was 
not sufficient for the experts to cast vote during the 
testing phase. In addition, for certain ports, it never 
generated any rules based on the tokens from the 
payload—LERAD did not find the payload tokens to 
be indicative of normal behavior. In such cases, even 
if tokens that are more meaningful were extracted by 
our algorithms, the results would not be affected. 

 

 We also present a set of “Overall” results which 
indicate the total number of attacks detected over all 
the ports, excluding the duplicate detections. This 
means that there are several attacks which occur 
across ports, multiple detections of the same attack in 
different ports are discarded. Even the overall 
detection shows an improvement of 3 attacks when 
false alarm rate is set to 10; and an improvement of 5 
when the false alarm rate is set to 100. That is an 
improvement of 5% and 8% respectively.  

 

We also performed experiments using a combined 
model of all the ports instead of using port specific 
data. Even then LERAD with space-separated tokens 
finds 36 attacks in week 4 data as compared to 38 
attacks detected if boundary separated tokens are 
considered. The false alarm rate was 10 per day for 
this result. On increasing this rate to 100 per day, the 
former still detects 36 attacks while the latter detects 
39. Data for week 5 was not used for these results and 

experiments are still being conducted to evaluate this 
technique on week 5 data of the DARPA data set. 

 
5. Concluding Remarks 
 
In this paper, we present the four algorithms based on 
characteristics mentioned above, and apply them to 
parse the payload to extract more information about 
the traffic. The results of each of those techniques 
applied independently and then applied in various 
combinations based on these evaluations are given. 
According to the experimental results obtained from 
the DARPA 99 dataset, we observed that Frequency 
and MDL are two strong experts individually and 
achieve good results. MDL works even better when 
training and testing sets are more similar. Frequency is 
highly predictive and does well on different training 
and testing sets. When combined, the model formed 
by combining Frequency and MDL is found to be the 
strongest.  Combining all four methods does not do as 
well as Frequency + MDL. This payload parsing 
method, when applied to the LERAD anomaly 
detection algorithm, leads to an increase in the 
detection rate in two configurations: individual 
LERAD model per port or single LERAD model for 
all ports.  The overall detection rate also showed a 
significant improvement of 5% and 8% at the rate of 
10 and 100 False-alarms/day respectively. One 
significant contribution we would like to bring forth is 
that we have made use of information from the 
payload while most IDS concentrate on the header 
information. Also our payload parsing technique is 
such that it can be applied to any protocol. Our 
parsing techniques also use weighted voting, which is 
different from the original VOTING EXPERTS. 

 
Our goal is to use these approaches to improve the 
features used by the anomaly detection algorithm 
LERAD [7]. One may also point that payloads may be 
encrypted. However, the payload has to be decrypted 
somewhere; that is, the detection algorithm can be 
placed after the payload is decrypted. 
  
Our algorithm is offline. Adapting to protocol 
changes would require retraining, but retraining is far 
less labor intensive than changing hand-coded parser.  
Furthermore, our offline algorithm can be applied in a 
semi-online manner.  For example, learn a model 
using data from one day, and then learn a model using 
data from two days and so on. That is, the model is 
updated each day. 
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The algorithms do show improvement over the 
original LERAD. Moreover, the techniques are 
subject to further investigation that can improve the 
results further. Another improvement can be made by 
using the tokens which are likely to give maximum 
information instead of the first eight boundary 
separated tokens. This property of the tokens can be 
measured by again looking at features like frequency, 
AEMI and so on. Of the words that are retrieved in the 
output, the ones with maximum feature value are 
likely to give us maximum information. We will also 
try to integrate our technique, i.e. incorporating 
information from the payload, to more intrusion 
detection systems.  We will also be apply the 
technique to real data in the near future. 
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Abstract1

 The Lincoln Laboratory Malicious Code Detector
(LIMACODE) is a system for statically detecting
privilege-escalating exploits in data streams, such as files
and network traffic. LIMACODE operates as follows: it
scans data streams, identifies the language of the stream,
then extracts language-specific features for input to a
feed-forward neural network classifier which labels the
stream as either malicious or benign.  LIMACODE is
designed to be a relatively lightweight system that can
classify a large number of streams quickly so as to be
deployed at sites where new data streams (e.g., software)
appear frequently. This paper describes a part of
LIMACODE that detects privilege-escalating exploits
embedded in UNIX Executable and Linking Format (ELF)
files; the detectors for C and shell code exploits were
described earlier elsewhere.

1. Introduction

There are many routes an attacker may take when
attempting to compromise a computer system, including
employing social engineering, exploiting a vulnerability
in a network or local service, or tampering with a
physically accessible computer system. However, the
damage caused, information gained, resources obtained,
etc. is limited by the privileges held by the attacker.  On
UNIX-based systems, such privileges allow a user to
access only those resources that have been specifically
granted to the user, to the user’s groups, or to the
programs that the user is allowed to use [1].

Often attackers attempt to increase the privileges that
they hold in order to obtain access to resources that are
otherwise unavailable to them.  In order to increase their
privileges, attackers must either cause the operating
system to grant them unauthorized privileges or cause a

                                                            
1 This research was sponsored by the Defense Advanced

Research Project Agency (DARPA) under Air Force Contract
F19628-00-C-0002. Opinions, interpretations, conclusions, and
recommendations are those of the authors and are not
necessarily endorsed by the United States Government.

process with a different set of privileges to perform
unauthorized actions on their behalf.  Unauthorized
privileges can be granted if a system is configured in an
insecure manner or if users select weak passwords;
attacks against these vulnerability classes are not the
focus of this paper.  Unauthorized actions can be
performed if an attacker can inject code and cause the
privileged process to run it.  Our focus is this latter case.
Specifically, we wish to detect exploits used to perform
code injection via out-of-bounds writes, also known as
buffer overflows.  Buffer overflow vulnerabilities have
been and remain one of the most common:  between July
2002 and July 2003, 231 out of 712 (approximately 32%)
of high severity vulnerabilities published by NIST were
from buffer overflows [2].

This paper describes The Lincoln Laboratory
Malicious Code Detector (LIMACODE). LIMACODE
can detect privilege-escalating C, shell, and executable
code. Detectors for source code analysis of attacks that
exploit buffer overflows and time-of-check-to-time-of-use
errors [3] in privilege escalating C and Shell code are
described elsewhere [4]. This paper describes a detector
for attacks that exploit buffer overflows in privilege
escalating code appearing in Executable and Linking
Format (ELF) files compiled for the x86 architecture.
ELF is the most common binary executable format used
in Linux and Solaris OSs, and x86 processors are the most
prevalent.  However, there is nothing inherent in our
approach that would prevent it from being used on other
file system formats, operating systems, or architectures.

2. Background and Related Work

Buffer overflow attacks can be detected using dynamic
or static analysis.  Dynamic analysis monitors software
that is executing, and therefore requires an appropriate
environment for running the exploit and vulnerable
software, and obtaining information about their
interactions. The requisite environment includes the
correct operating system, libraries and external programs
and an audit system to report on the executing software.
In contrast, static techniques examine code without
running it. Such techniques are useful in a network in
which the ingress of all software is to be monitored, but
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the software is arriving through various methods (e.g.
downloaded in a web browser or pulled from the local ftp
server to which outside users upload files) for different
operating environments.  While the software can be
examined as it arrives, the host on which it is arriving or
passing through may not be able to run the software for
various reasons (e.g. wrong operating system,
architecture, or available libraries). Static analysis is also
useful for forensic analysis. It is important for our system
to be able to detect old attacks, variations on old attacks,
and novel attacks.  There are several different static
analysis approaches that we considered pursuing to meet
these requirements.  A signature scanner [5] is fast, but
does not reliably handle variations on old attacks even
when the signature language is highly expressive.  Some
commercial virus detection systems using this approach
are unable to handle even modest code obfuscation [6].
Neither a policy enforcement approach [7] nor an
emulation approach were selected because of the
computational overhead [8].

Instead, we pursued a machine learning approach to
achieve accurate detection, initially examining source
code because it was easier to perform feature extraction
[9]. Others have pursued similar strategies with binary
data, although most examined detection of viruses on
DOS and Windows systems. Feature extraction must be
performed to achieve fast, accurate classification of
malicious software. The amount of intelligence built into
the preprocessing step ranges from none, where software
is treated as byte sequences with different likelihoods of
being in malicious software [10], to some, where a feature
is either a byte sequence, a string or a dynamically linked
library [11], to substantial, where software is converted
into an abstraction pattern prior to matching [6]. In our
approach, a few instructions are interpreted and machine
learning combines these to create an accurate system that
is moderately robust to obfuscating transformations, but
which can quickly process new files.

3. System Overview

LIMACODE is a static analysis system that detects old
attacks, variations on old attacks, and novel attacks. It
uses a language-specific static feature extractor with a
feed-forward neural network classifier since this type of
system is able to define general classes of privilege
escalating attacks and is therefore more robust in
determining both novel attacks and variations on old
attacks.

The remainder of this section provides a system
overview to LIMACODE.  A high level flow diagram of
the detection process appears in Figure 1.

Figure 1. LIMACODE flow chart
The diagram depicts a byte stream (e.g. from a file or
network packets) being fed into a language identifier. The
language identifier determines which detector (language-
specific feature extractor and attack classifier), if any,
should be used to analyze the byte stream.  The chosen
feature extractor examines the byte stream for interesting
features and reports them in the form of a vector of
integers and real numbers; the vector is then fed into the
attack classifier.  The output of the attack classifier is the
posterior probability that the byte stream does or does not
contain privilege-escalating code.

Using this approach, our system is easily extensible to
new attack vectors, such as those that employ scripting
language formats, by adding more feature extractors and
attack classifiers, and then updating the language
identifier to include the new byte stream type.

The ELF Attack Detector discussed in this paper
operates on ELF files; hence, in the remainder of the
paper the byte stream source is assumed to be a file.

3.1. Language Identification

The first step in processing a given file is to identify its
language type so that the appropriate feature extractor and
attack classifier are used. The language classifier allows
each file to only be processed by one detector, thereby
speeding the overall detection process at the possible cost
of a missed detection. LIMACODE uses a rule-based
system that exploits a language’s defined structure and
syntax to determine a file’s type. For ELF files, the
language identifier looks for the presence of the ELF
magic number at a fixed offset into the file.  This simple
approach has correctly identifying every ELF file we have
encountered. For C and shell source code, the language
identifier parses the contents of the file; however, this was
not required for ELF files [4].
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3.2. Attack Feature Extraction

In order to understand the privilege-escalating attack
features and the extraction process, some background on
ELF binaries is necessary.  ELF binaries consist of a
required header section and one or more optional sections
[12].  The header section contains information such as the
version, target architecture, and the virtual memory
address at which the ELF file is loaded.  The remaining
sections are optional although there are some, such as the
.text and .data sections, that are almost always present.
The .text section contains the actual executable code, the
.data section contains initialized data, and the .rodata
section contains the read-only data.

The ELF feature extractor parses an ELF file into its
.text and .(ro)data sections, analyzes these sections, and
produces statistics that could identify a given file as
malicious.  Attack feature statistics represent the steps
necessary for injecting code into one or more buffer
overflow vulnerabilities. To achieve the best performance
on the widest variety of attack code, each feature should
encode all possible ways to accomplish a particular part
of the attack.

We started with a large number of features in various
groups, some inspired from the best features in the
LIMACODE C and shell classifiers and some based on
our knowledge of how privilege-escalating attacks work.
We then used a forward-and-backward, leave-one-out
selection process [13] to select those sets of features that
best divided the sample space. The selected features can
be categorized as a kernel call, instructions in data, or
other, and are shown in Table 1.

Table 1: Features used to classify privilege-
escalating code.

Group Name Count
Type

Description

Exec N Exec family of functions

K
er

ne
l

C
al

l

System N System family of functions

In
st

ru
ct

io
ns

in
 D

at
a

Payload M
Instruction sequences or
combinations typically
found in injectable buffers

Code in
Strings

P
C or shell source code
present in strings in the
.data sections

O
th

er

Size
Data

M
Size of the largest .data
section

Count Legend: (P)resent, (N)ormalized, (M)aximum.

There are several ways the features statistics are
measured: Present, Normalized, and Maximum.  Present
indicates if a sample does or does not have a feature.
Normalized is the number of times a feature appears in a
sample normalized by an appropriate divisor to obtain a
notion of the density of the feature.  Maximum records the
value of the window with the highest score.  All possible
combinations were considered during feature selection
and the best method for counting a feature is presented in
the Count column in Table 1.

The remainder of this section describes the
observations that led to creating these features and the
specifics of our implementations.

Kernel Calls
Observation: Privilege escalating code needs to pass

information to a higher privilege process in order to
exploit it.  Sometimes this is done by starting a vulnerable
program with carefully selected arguments. Empirical
tests indicate that most benign binaries have a low density
of calls to the program initiating services exec and system.
Shorter exploit programs that launch a vulnerable, higher
privilege application have a higher density of these calls.
We imagine the same is true for inter-process
communication calls as well, although we were unable to
gather enough training and test samples to verify this.

Implementation: Independently decode and count the
occurrences of process creation using the exec family of
functions1 that fully specify program path and input, and
also the system call that uses the shell to specify the
environment and determine the absolute program path.

E x t e n s i o n :  I n t e r p r o c e s s  c o m m u n i c a t i o n
(pipe/signal/shmat/connect) should also be
counted.

Instructions in Data
Observation: Certain types of executable actions rarely

appear in localized parts of non-exploit data sections
unless constructed specifically for injection and execution
in a higher privilege process.  Among these are software
that isolates code location, zeros out registers, and
includes control flow.

Implementation: The feature extractor examines a
fixed-size sliding window of decoded instructions looking
for particular instructions and instruction sequences that
accomplish actions that are commonly performed by
injected code, adding one point for each type found. Each
action is counted only once, even if multiple examples of
the action occur within the sliding window. The count
thus encodes the number of diverse actions present in a
window. The window is used to require locality of
actions; window sizes of 20, 30, 40…100 were used with
the training data and a window size of 50 consecutive

                                                            
1 execl, execle, execlp, execv and execvp
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instructions was found to give the best discrimination.
Large non-attack binaries may also contain many of these
actions in the .data section, but they are distributed over
the entire section, whereas dedicated exploit code has
tended to have more densely packed features.  The
following paragraphs detail what each action does and
why it is important to look for it.

The first action determines the location of code so that
once the exploit has occurred and the buffer is executing,
it can pass the address of local data as arguments both to
functions provided by standard libraries and to the kernel.
This is necessary because the exact location where the
payload is injected can depend on the version of the
victim application and late-bound library load order,
among other factors.  An example instruction sequence
that will accomplish this is a relative call to a p o p
instruction.  In this sequence, the call instruction causes
the address of the next function to be placed on the stack.
The immediate pop will place that address into a register,
which can then be used as a reference point for its local
data. If there is a jmp instruction that redirects control
flow to the initial call instruction in this sequence, then
two points are added to the total score for this window
since this sequence is prevalent in our training data and is
more indicative of an injectable buffer.

The next action looks for instructions that cause
control flow changes, since injected code makes decisions
based on return codes, and often loops to perform various
actions (e.g. file scanning or denying access to some
service). LIMACODE looks for local calls and jumps that
direct control flow to somewhere within the instruction
window. One point is awarded if one or more control flow
actions are found.

Another common action is setting a register to zero.
Empirical tests indicate that instructions and instruction
sequences that zero registers are common in the part of
the .data sections of malicious ELF files that contain an
injectable buffer.  There are many ways to do this; for this
system, we only include common, single-instruction
instructions that accomplish this: Xor register register;
mov register, 0; a n d  imul register, 0. One point is
awarded if one or more instructions are found that set a
register to zero, regardless of the register used.

The final code-in-data action identifies the presence of
one or more kernel calls since injected code frequently
needs to interact with the operating system.  On x86 based
Linux operating systems, this instruction is INT 0x80
(interrupt 0x80).  This instruction causes a transition into
the kernel from where the call is handled.

   In regards to the Payload feature as a whole, we
found that such a heuristic was necessary since simpler
schemes, such as looking for runs of valid instructions,
did not work because the IA-32 instruction set is very
dense and a random sequence of bytes has a high
probability of being a valid sequence of instructions.  One

of the features that was eliminated as a result of feature
selection involved the detection of a payload by
identifying valid sequences of instructions in the .data
section.

Extensions: Other instructions that should also be
counted include multiple-instruction sequences that zero
registers as well as instructions that reference
environment string memory locations.

Other
This final group of features also indicates that the

sample attempts to increase privileges, but did not fit into
the other two classes.

Observation: It is rare for non-exploit code to embed C
or shell code in the .data section of an executable; in
contrast, exploit code often includes shell code as part of
its launching or exploitation process.  Also, sometimes C
source of an exploit is included in attack software so that
it can be compiled differently based on the exact details of
the victim application (e.g. version or configuration).

Implementation: In order to detect both C and shell
code appearing in strings, all strings appearing in the
.data section are used as byte stream inputs to a modified
versions of the C and shell classifiers respectively  [9].

Observation: The vast majority of our training samples
had small .data sections.  This is due to the fact that the
exploit code we used for training contained an injectable
buffer, the name of the vulnerable program, and little else.
Compiler options may dramatically affect the size of the
.text sections (e.g. static versus dynamically linked), but
not the .data sections.  While not a good indicator on its
own, when combined with the other features it
significantly improves the ability of the classifier.

Implementation:  During the ELF parsing process, the
size of the largest .data section is recorded and included
as part of the feature vector.

3.3. Attack Classification

The attack classifier’s neural network is a multi-layer
perceptron classifier with a single hidden layer trained
using back-propagation of errors [14].  A gradient descent
method with a squared error cost function is used for
training in which the new weights propagating backward
through the network. Training time is negligible using
these techniques on the feature vectors and sample sizes
used here. Other machine learning techniques were
informally explored, but this approach gave the best
results for the cases considered.

Prior probabilities of the attack and training classes
were equalized to maximize detection rate at the cost of
an increased error rate, since more files are benign than
malicious. LIMACODE is therefore more likely to
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misclassify a benign file as malicious than to misclassify
a malicious file as benign.

4. Data Sources

Benign and privilege escalating samples were collected
at two different times in order to test the ability of the
system to detect new, unseen attacks.

For the malicious samples, C source code was obtained
from various websites.  Only code that had privilege
escalating intent was collected.  There are 221 training
samples that were collected between July 2001 and
January 2002 and included attacks that were released
from before that time period.  The 68 testing samples
were collected between January 2002 and September
2002 and only included samples released in that time
period.  Test samples were verified as distinct from
training samples by performing a byte level comparison
of each compiled test sample against the existing
compiled training samples.  The malicious C files were
compiled in as similar a method as possible to the benign
samples so as not to leave compilation artifacts that could
easily identify the malicious samples.

The benign samples were taken from the /usr/bin
directory of a default Red Hat 7.1 installation.  The 1280
total benign files were portioned into training and test
sets: 979 were randomly chosen to be in the training set
and the remaining 301 were used in the test set, to match
the ratio of the training and test set of the malicious data.

5. Evaluation

This section presents the ability of LIMACODE to
detect new, unseen privilege-escalating ELF binaries and
its data processing speed.

5.1. Detection

Figure 2 displays the accuracy of LIMACODE in the
form of a detection error tradeoff (DET) curve [15].  In
the figure, the false alarm percentage is plotted against the
miss percentage for various operating points (i.e.
thresholds applied to the output of the classifier).  The
axes are scaled by normal probability deviates to magnify
the target zone.

Unlike fixed-heuristic or signature-based systems,
LIMACODE can be operated over a range of operating
values, with the operating point selected by a user who
specifies the relative value of misses and false alarms.
Three points are of particular interest for different uses:
the point where the false alarm rate approaches zero, the
equal error rate, and the point where the miss rate
approaches zero.  The first point is interesting for virus
detection-like applications where the user wants some

protection but mostly does not want other applications to
be erroneously labeled. Here, the false alarm rate
approaches zero when the miss rate is approximately
30%.  Next, the equal error rate describes the point at
which miss and false alarm rates are equally important;
for LIMACODE’s Malicious ELF detector the rate is
4.65%.  The final point of interest is one which might be
used to scan a captured disk, and for which missing an
exploit is much worse then spending the time to examine
a false alarm.  The miss rate approaches zero when the
false alarm rate is about 35%.

Figure 2: LIMACODE Performance
The results of training and testing the classifier on

three different single features are also presented alongside
the primary result, since it is conceivable that single
features dominate the output.  As is clear from the figure,
combining multiple features significantly improves the
accuracy of the system over most of its operating range.
The curves for the accuracy of the isolated System and
Code in Strings features do not appear on the graph as
they lie outside the region in view. Although individually
inaccurate, the integrated system accuracy improves when
these features are included.

For false alarm rates less than about 0.6%, the single
payload feature is a better discriminator than the classifier
that uses all the features. At these low rates, features other
than the payload feature introduce a significant amount of
noise.
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5.2. Throughput

In evaluating the throughput of the system,
LIMACODE was used to classify the contents of the
/usr/bin directory on a RedHat 9.0 installation.  On an
Intel Pentium III running at 800 MHz it classified 2,336
files with a total size of 170 MB in 142 seconds or 1.17
MB/s.  During execution, LIMACODE spends the vast
majority of its time in the feature extraction phase.

6. Discussion

The LIMACODE system does not use signature
matching, and is therefore able to detect attacks that it has
not seen before. Instead of looking for specific sequences
of instructions, features representing actions that are
required to exploit a vulnerability in another process
encode the fact that there are multiple ways to accomplish
the same goal. Our implementation requires locality of
multiple required actions. For an attacker to hide from the
system, he must obfuscate multiple actions.  This is
harder to do than to change an isolated signature.

Our approach is resilient to many common obfuscation
techniques [6]. It is not affected by code transposition (in
which instruction order of an attack is altered), because
there is no explicit model of instruction sequences. It is
not affected by register reassignment (in which the
specific registers used by an attack is changed), because
there is no explicit model of a given register for a given
attack. It is relatively insensitive to instruction
substitution, because in the case where instruction classes
are used, all equivalent single-instruction cases are
included. (It remains possible to use multi-instruction
code to accomplish similar ends, and this is not yet
addressed.)  Finally, the system is insensitive to dead-
code insertion, provided the amount of dead code injected
does not cause the exploit to become longer than the
scanning window.

There are a number of features that could be added to
LIMACODE to increase its accuracy.  First, the Payload
feature could be extended to include more injected buffer
actions such as identifying references to environment
variable locations, decryptor blocks for obfuscated
payloads, and typical API usage sequences. Also, the C
source feature set identified calls to link as part of the
System Call group.  This feature helped detect exploits of
race conditions.  However, due to an insufficient number
of samples in this newer data set, it was not included in
the executable feature set.  Collecting a sufficient number
of such samples with which to train and test would allow
LIMACODE to be tuned to detect this class of privilege
escalating attacks.

It is, however, possible to bypass LIMACODE, by
causing the counts of the features to change. An attacker
could increase the feature count by adding unexecuted

dead code to an exploit. Other techniques will work
equally well. To respond to this, our system would need
to either remove dead code or, equivalently, increase the
window size in the presence of dead code. Alternatively,
an attacker can decrease the feature count, perhaps by
encrypting or obfuscating actions, encoding an action
using an instruction or instruction sequence that we don’t
count, or by spreading out the actions in the .data section
so that they fall outside of the code window.

Finally, an attacker can avoid the system altogether.
Most modern UNIX-like operating systems have
compatibility modes, and can execute the older a.out file
format (as well as several others). While there is nothing
to prevent us from adding support for these file formats,
we have not done so.

7. Summary of Results

The most important result from this paper is that it is
possible to build an accurate detector of unobfuscated
ELF attack code by identifying the specific actions that
privilege-escalating code must take in order to accomplish
its goal and then detecting code which accomplishes these
actions.

LIMACODE raises the skill level required for creating
and transmitting an exploit into an enclave.  We found
that much of the easily obtainable privilege escalating
code does not attempt to hide its intent.  Therefore, in
order to compromise a system protected by LIMACODE,
an attacker would have to find or develop intentionally
obfuscated attack code.
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Abstract 
 

Human comprehension of the overall security of large 
and complex networks of machines is currently limited 
since security staff use multiple applications, each with 
limited scope, most without visual output.  We have 
developed a new tool called NVisionIP for allowing an 
operator to interactively assess the security situational 
awareness of an entire network using visualizations 
derived from NetFlow log data that is continuously 
collected.   This tool is a novel contribution because for 
the first time it shows the macro/micro relationships 
between individual machine events, subnet events, and 
network-wide events on a single screen, specifically a 
color-coded grid with drill-down views representing an 
entire Class B IP address. We provide examples of 
experimental output results showcasing tool utility for 
managing security on large and complex networks, 
concluding with plans for deployment in production 
environments. 
 
1. Introduction 
 

The current state of computer security on most 
networked systems is dangerous and by most metrics 
getting worse.  There are many unpatched software 
vulnerabilities as well as point-and-click software that 
will exploit these vulnerabilities allowing intrusions and 
disruptive attacks. While the Internet has enabled 
impressive productivity gains due to connectivity, this 
same connectivity also allows malicious attackers 
worldwide direct access to your network perimeter.  In 
addition, corporate security incident surveys report that 
insider attacks, staff with privileged access and 
knowledge, are an even greater threat. 

We propose that the solution for security begins with 
human awareness and subsequent understanding of 
exactly what is occurring on a network – Know thy 
network!  Ignorance is bliss, but it is also very risky; 
unfortunately this is still where most organizations find 
themselves due to the lack of satisfactory tools. While 

situational awareness of computational security has 
evolved from “Is there a problem?” to “Where is the 
problem?” to “What is the problem?” - state-of-the-art 
tools still do not facilitate assessing entire networks as a 
whole. Identifying and disabling individual compromised 
machines, scanning for known vulnerabilities that are 
unpatched, and filtering specific perimeter traffic may 
produce short-term gains, however, the ability of a human 
operator to efficiently, clearly, and continuously assess 
the security posture of an entire network at any instant in 
time are long-term requirements currently not being 
addressed. 

We would like to briefly highlight two of the stated 
requirements: (1) monitoring an entire network and (2) 
monitoring continuously.  Monitoring an entire network 
as a holistic system is important because a malicious 
software foothold (no matter how small) anywhere inside 
the perimeter will endanger all machines [13].  It is vital 
to be able to assess the security posture of a network at 
both the macro and micro scales simultaneously in order 
to comprehend the relationship between individual events 
(an intrusion on an individual machine) and network-wide 
events (disruptions and/or attacks on multiple machines 
across the network). We will show how the macro/micro 
views has enabled detection of attacks that otherwise 
would not have been detected.  Monitoring continuously 
is important because there is a need for vigilance over 
time – technology changes over time will necessitate 
adaptation by both offense and defense that should be 
considered and attackers are both intelligent and 
persistent, they will circumvent static protection unless 
monitoring can dynamically track and be poised to react 
to new attacks (so called “zero-day” exploits).  We are 
not expecting a human to sit at a screen 24X7 but will 
also show how animated visualizations can leverage 
human cognitive abilities to understand events in the time 
domain efficiently and effectively. 

We have developed a visual data mining software tool 
that meets these requirements. Our unique tool, 
NVisionIP, allows an operator to interactively monitor the 
security status of an entire network on one screen using a 
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visualization derived from processing audit log data that 
is continuously collected.  NVisionIP is novel because no 
other tool allows an operator to visually assess situational 
awareness of an entire network in one screen (actually a 
Class B IP address space of 65K hosts with each host 
having 130K (TCP/UDP ports) based on time-series 
events.  Typically security staff can view only small, 
highly aggregated portions of the network and are forced 
to use multiple applications because each individual 
application only provides limited information (signature 
matches, network/machine performance status, traffic 
filter statistics, worm/virus detection).   

Since clear interpretation by a human operator is 
another requirement, we intentionally made the output of 
NVisionIP visual for reasons of human cognitive 
processing: (1) it is estimated that humans can process 
visual information at 150Mb/s [11], (2) human vision is 
especially tuned for discriminating tiny but high contrast 
visual effects (referred to in psychology as the just-
noticeable-difference), and (3) humans perform well at 
recognizing visual patterns especially when intuition can 
be used (ecological design).    

The remainder of this paper is organized as follows: 
Section 2 provides background on network visualizations 
and the NetFlow application (NetFlow is our efficient data 
source satisfying our last requirement). Section 3 presents 
the architecture of NVisionIP and output results from 
different experiments.  Section 4 discusses both the 
significance and limitations of this new tool.  In Section 5 
we close with a summary, conclusions, and directions for 
future work. 
 
2. Background 
 

To put our research in context, we summarize 
previous work in visualizing networks and security, as 
well as introducing the application we utilize for source 
data.  This background highlights the unique contribution 
of our new tool to current capabilities since previous 
work is primarily focused on network overlays to 
geographical maps or logical network configurations, 
both of which convey few insights about security.   
 
2.1. Visualizing Networks and Security 
 

[3] provides a comprehensive overview of network 
visualizations.  Low-dimension visualizations include 
networks mapped onto geography, logical diagrams of 
equipment (including network management tools based 
on SNMP), traffic level representations in x-y 
diagrams/pie charts/histograms, connectivity diagrams 
with links sized/colored corresponding to bandwidth 
capacity, and packet-level animation of network 

simulations (as best exemplified in OPNET1 and 
Nam)[4].   High-dimension visualizations include the 
peacock diagrams of Lumeta2 which show the Internet in 
its own space independent of geography and the 
SKITTER diagrams of CAIDA3 which show peer 
interconnections projected on a polar-projected longitude 
graph. 

There has been a small amount of work combining 
network visualization and security that we now describe 
(in chronological order).  [5] presents a prototype design 
tool from the Harris Corporation named the Network 
Vulnerability Tool (NVT) which visually depicts the 
network topology under study (using HP’s Openview 
SNMP product) and generates a vulnerability assessment 
window with results from proactive scans and a 
vulnerability database.  [6] proposes visual symbols to 
better communicate security events to users. [12] states 
visualization should be the next focus of intrusion 
detection systems (IDSs) since it can convert the 
essentially serial IDS alarm process to the parallel 
process of visual perception.  [10] presented a 
visualization of network routing information that can 
detect inter-domain routing attacks and routing 
misconfigurations. The most relevant work is a rapid 
visual feedback system originally developed by the 
NASA Jet Propulsion Laboratory for tracking the status 
of spacecraft components that has now been adapted for 
network security as a commercial tool called TowerView 
Security [7].   To our knowledge, [7] and [10] are the 
only working examples of computer network security 
visualizations and they are both significantly different 
that what we present in this paper. 
 
2.2. Source Data: NetFlow Audit Logs 
 

We utilize NetFlow audit logs as the data source for 
our tool.  Although there are a number of tools that 
process NetFlow data4, the only NetFlow visualization 
tool we are aware of is FlowScan that produces near real-
time x-y utilization diagrams of network traffic levels 
geared toward bandwidth management [9].  NetFlow data 
is derived from routers caching recent flows for lookup 
efficiency. For the NetFlow application, a distinct flow is 
defined as either a unidirectional TCP connection (where 
a sequence of packets take the same path) or individual 
unidirectional UDP datagrams.  As shown in Table 1, an 
individual record within a NetFlow log file consists of 
some or all of the following: IP address pairs 
(source/destination), port pairs (source/destination), 
protocol (TCP/UDP), packets per second, timestamps 
(start/end and/or time duration), and byte counts.  While 

                                                 
1 http://www.opnet.com/ 
2 http://www.lumeta.com/ 
3 http://www.caida.org/ 
4 http://www.splintered.net/sw/flow-tools/ 
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                                                    Table 1. NetFlow Record Contents 
 

 
 
                                                    

NetFlow logs can grow large over time, depending on 
the size of the network, amount of data transferred, and 
duration of analysis, NetFlow logs are efficient since they 
are typically much smaller in size than logs that capture 
raw packets. NetFlow was initially introduced in Cisco 
routers as a proprietary tool but has since become a 
defacto feature across the majority of router vendors, with 
the IETF Realtime Flow Management (RTFM) working 
group preparing to standardize its implementation.5 

NetFlow data is difficult to spoof and has been used 
to identify security compromises based on suspicious 
traffic patterns between source/destination IP addresses 
and/or ports. NetFlow also exhibits a strong multiplicative 
effect in that once a single clue is found, an operator can 
subsequently use NetFlow to monitor traffic to specific IP 
addresses and ports leading to other compromised 
machines.  Examples of the use of NetFlow for 
computational security include identifying the source and 
destination of denial-of-service attacks as well as 
identifying compromised machines involved in: 

 
• uploading/downloading unapproved software 

(high traffic levels from a non-server machine) 
• hosting Internet relay chat (IRC) servers (a 

large number of unexpected flows from 
multiple source IP addresses to a single 
destination IP address which is a non-server 
machine) 

• worm/virus propagation (a large number of 
flows from a single source IP address to 
multiple destination IP addresses or ports) 

• network and host probing6 - small scale 
preattack reconnaissance to identify machine 
platforms and port services that may be 
vulnerable    

• network and host scanning7 - large scale 

                                                 
5 The RFTM IETF Working Group home page can be found here: 
<http://www2.auckland.ac.nz/net//Internet/rtfm/>.  RTFM concerns itself with 
current issues in traffic flow measurement including security issues relating to 
both traffic measuring devices and the data they produce and existing work in 
traffic flow measurement. 
6 a host probe is a single connection request from a single source IP address to a 
single destination IP address, a port probe is a single connection request from a 
single source IP address to a single destination port on a single IP address, in the 
same category as operating system fingerprinting 
7 exhaustive one-dimensional host range scans – connection requests from a single 
source IP address to a sequential range of multiple destination IP addresses, 
exhaustive one-dimensional port range scans – connection requests from a single 
source IP address to a sequential range of multiple destination ports on a single 
destination IP address, exhaustive two-dimensional host/port range scans – 
connection requests from a single source IP address to a sequential range of 
multiple destination ports on a sequential range of multiple destination IP 

preattack reconnaissance to identify machine 
platforms and port services that may be 
vulnerable, also used to virtually map a 
network for malicious navigation, a host scan 
can be detected as a source IP “touching” more 
than a preset threshold number or ports on a 
single machine while a network scan can be 
detected as a source IP “touching” more than a 
preset threshold number of destination IPs.   

• hosting remotely installed “bots” that are 
remote controlled (traffic patterns on unusual 
ports) 

 
While NetFlow logs efficiently provide a rich set of 

network data, its size over time and streaming nature 
makes finding useful security information difficult (such 
as identifying the security situations just listed).  Thus the 
original scope of our investigation was to transform 
unmanageable network data, from a source like NetFlow, 
into something manageable for security purposes without 
losing information.   While our border router operating at 
Gigabit/second second speeds represents a challenge for 
NetFlow I/O interfaces for data management that can only 
be solved using sampling techniques (with current 
technology), we have been able to merge NetFlows from 
multiple internal routers operating at slower speeds 
without losing any information. 
 
3. NVisionIP 
 

NVisionIP is designed to meet three objectives. The 
first objective is to accurately and concisely visualize 
status information of an entire IP address space on one 
screen.  The second objective is to provide more detailed 
information about specific machines.  The third objective 
is the ability to process different sources of input data. 
NVisionIP achieves all three of these objectives, the first 
by representing an entire class B IP address space as a 
255X255 grid, the second by allowing an operator 
multiple views of traffic activity to/from specific 
machines within this address space, and the third by 
making the architecture independent of source data.    

                                                                               
addresses, distributed scans – connection requests from multiple source IP 
addresses to multiple/single destination IP addresses or multiple/single destination 
ports on multiple/single destination IP addresses, temporal scans – connection 
requests from multiple/single source IP addresses to multiple/single destination IP 
addresses and/or multiple/single destination ports on multiple/single destination 
addresses over a period of time 
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Figure 1. The NVisionIP Architecture 
 

The NetFlow logs that serve as our initial input to 
NVisionIP are created by multiple routers and stored by a 
“collector” data server in one unified file every five 
minutes. These unified files can then be cumulatively 
loaded (automatically or manually) to analyze a specific 
time period.  Once the NetFlow data is loaded, NVisionIP 
generates the following statistics for each machine 
corresponding to an IP address (note not all IP addresses 
have a corresponding physical machine): 

 
• Count of all connection flows to and from 
• Count of external source IP flows  
• Count of external destination IP flows  
• Byte count of all traffic to/from  
• Byte count of all outbound source traffic binned by 

port number 
• Byte count of all inbound destination traffic binned 

by port number  
 

We are developing animations of events over time by 
incorporating two save features: (1) an applet that 
contains current visualization environment variables with 
file information for further query ability and (2) a single 
frame .jpg visualization file that can grouped with other 
single frames in an application like MacromediaMX Flash 
to create a multi-frame animation. 

 
3.1. System Architecture 
 

Figure 1 highlights the organization of NVisionIP and 
its relationship to the Data-to-Knowledge (D2K) data 
mining software package.  D2K is a rapid, flexible 
machine learning system that effectively integrates 
different data mining methods.  It offers a visual 
programming environment that allows users to connect 
software components using drag-and-drop.  D2K also 
supplies a standard set of software modules and 
application templates with a standard API for component 

development.  Other advantages of building within the 
D2K environment are: fast file I/O, efficient internal data 
representation, and multiple visualization options [1]. 

Integrating information from heterogeneous sources is 
an overarching goal of this research. The use of D2K to 
create an internal representation of the data creates a layer 
of abstraction between NVisionIP and the input such that 
new audit log sources can be incorporated.  Leveraging 
the D2K framework to split NVisionIP into two 
independent parts, the first to compute statistics and the 
second to display visualizations makes NVisionIP easily 
extensible. 
 
3.2. Experimental Results 
 

Before reporting our experimental results that are in 
the form of visual output, we would first like to give an 
example of our statistic generation capability and its 
relevance to security.  Given that the instrumented 
network has approximately two thousand machines, Table 
2 shows a concentration of flow connections into a 
relatively small number of machines. This concentration 
is indicative of a scale-free network where connectivity is 
unevenly distributed such that a focused attack on hub 
machines can have devastating consequences [2].8  This 
statistic provides a way to identify and thus focus 
protection on hub machines running approved services, 
however some hubs may turn out to be unexpected 
machines with suspicious traffic. This statistic can be 
generated for each of many different services (e.g., http, 
ftp, telnet) since different machines will generally be hubs 
                                                 
8 In a random network, the distribution of the number of links from one node to 
other nodes is a normal (Bell Curve) distribution. Scale-Free networks are 
characterized as having an uneven distribution of connectedness with “very 
connected” hub nodes that shape the way the network operates (including security 
and survivability).  The term scale-free refers to the ratio of the number of hub 
nodes to the number of nodes in the rest of the network remaining constant as the 
network changes in size (scale). Particularly devastating attacks on a hub include 
denial-of-service attacks for disruption and targeted worm/virus infections for 
speeding propagation via cascading outbreaks. 
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for different services. 
 

                                                          Table 2. Flow Connection Statistics 
 

Concentrated          
IP Addresses 

Sum Count All Flow 
Connections 

Flow Count - Internal IP listed as 
Destination Address (Ingress) 

Flow Count - Internal IP listed 
as Source Address (Egress) 

Top 5 IP addresses 28.8% 27.7% 32.4% 

Top 10 IP addresses 37.3% 35.6% 40.6% 
Top 15 IP addresses 44.6% 42.6% 48.1% 
Top 20 IP addresses 50.3% 47.7% 54.4% 

 
Figure 2 shows the visual input/output GUI of 

NVisionIP as it displays an entire network as a color-
coded grid allowing users to search for patterns that 
provide knowledge about the state of the computational 
security. The instrumented Class B network being 
investigated is represented as a grid of 255 X 255 boxes 
(each box is a 2 pixel by 2 pixel) in order to provide 
65,025 possible IP addresses.9  According to Tufte, 
humans are able to distinguish up to 625 points in one 
square inch, a density higher than we have created (please 
note figures in this paper are reduced, the actual screen 
images are larger) [11].  Each 2 X 2 pixel box in the grid 
represents one IP address.   The subnets within the 
instrumented network are listed on the X-axis and the 
hosts within the subnet are listed on the Y-axis. Each 
pixel box within the grid represents an attribute of the 
corresponding IP address classified by colors with a 
legend shown in the output window.  For the purposes of 
this black and white publication, the color range has been 
mapped to a gray scale for later figures.  In practice, the 
use of contrasting colors (green, yellow, red) greatly 
enhances discrimination.     

Although a grid provides assessment of the overall 
state of security for an entire address space, it is still 
necessary to “drill-down” to specific IP addresses for 
more information.  NVisionIP allows two levels of 
interactive zoom capabilities: (1) to a subset of the 
network and (2) to the port activity within a specific IP 
address.  At each stage of magnification, the user can 
select which attribute to view such as flow connection or 
byte counts. 

The GUI provides a 2-level interactive filtering ability 
for all possible query combinations: (1) IP addresses 
(all/source/destination/subset); (2) ports 
(all/source/destination/subset); (3) protocols (all/subset); 
and (4) activity type (flow connections/byte count).  The 
motivation behind this comprehensive capability is that it 
is hard to anticipate which information may be useful in 
discovering future security events.     

In Figure 3 we show a visualization of flow 

                                                 
9 Note one minor detail about the mapping of all possible IP addresses to actual 
machines:  not all possible IP address within an address space are valid to map to 
actual machines, some IP addresses are reserved for other purposes (the same also 
holds for port numbers).      

connection counts for a network highlighting these zoom 
capabilities.   Figure 3A shows the Galaxy View of an 
entire Class B IP address space where the color of each 
grid point maps to user-specified bins corresponding to 
count ranges and represents the number of times a 
specific machine has appeared as a source or destination 
IP address in the flow file.  Figure 3A clearly shows the 
high-traffic subnets as vertical line patterns corresponding 
to the instrumented network.  After using a mouse to 
select a subset of machines to investigate further, an 
operator can view more detailed information.  Figure 3B 
shows an inset displaying port traffic histograms of a 
subset of IP addresses (the Small Multiple View).    Figure 
3C shows  an  inset of information about one specific 
machine selected by the mouse input, in this case port 
byte traffic information (the Machine View). 

The NVisionIP GUI, shown most clearly in Figures 2 
and 3A, is split into three sections: (1) the top left 
contains statistical information about the corresponding 
flow file; (2) the bottom allows operators to dynamically 
select which statistic to visualize; and (3) the right-hand 
side (60% of the GUI) contains the main content - a 
Galaxy View of a Class B IP address space.   In addition 
to a mouse-over event-handler that displays a small pop-
up IP address adjacent to each dot under the pointer, we 
have implemented a linear magnification widget that can 
be dragged across the screen to highlight areas of interest.  
Under development is a fisheye capability that will 
provide a third dimension to further highlight areas of 
interest by user-controllable distortion.  

Figure 4 is a Galaxy View of byte counts (to and from 
aggregate) for all active machines found in a particular 
flow file.  An unusually large traffic volume may indicate 
a compromised machine subverted as a server of non-
approved software.  As a real example, we recently had 
an intrusion on the instrumented network where large 
files were subdivided into smaller files (all with the exact 
same byte count) for transfer to and from compromised 
machines.  In this case we are able to add a new attribute 
to NVisionIP that highlights the machines with this 
particular byte count signature. 

Figures 5 and 6 are Galaxy View of ingress (inbound) 
and egress (outbound) IP flow connections for all active 
hosts within a NetFlow file respectively.  For each 
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machine within the internal instrumented network, we 
measured the number of times it appeared as a 
destination/ingress (source/egress) IP address in a flow 
connection with external IP address. While such traffic 
may be normal, it can also indicate a compromised 
machine that has been widely advertised in the 
underground for downloading unapproved software.  

Figure 7 shows the difference in the number of 
aggregate (ingress and egress) flow connections on the 
instrumented network between two points in time.  This 
comparison output can be used to further pinpoint 
suspicious machines we alluded to in Figures 5 and 6 
(machines that have been compromised in the interim 
period of time and are now exhibiting different flow 
connection patterns as a result).  To enhance human 
cognitive abilities for discovery, we use color processing 
to emphasize.  It should be noted that this Galaxy View 
has a reversed color scheme (not a gray scale) to indicate 
a difference-file with darker colors (black, green) 
indicating little or no change and contrasting colors (red, 
yellow) indicating large change.  More detailed change 
information can be found by zooming to either the Small 
Multiple View or the Machine View.     
 
4. Discussion 
 

It has become more difficult to characterize 
application activity on a network due to: (1) increases in 
the number of different applications, (2) applications 
(malicious and otherwise) whose underlying protocol 
does not depend on registered well-known port numbers, 
and (3) dynamic changes in application mix over time [8].  
This has made it challenging to profile normal network 
traffic activity in order to distinguish suspiciously 
abnormal network traffic activity as a sign of potential 
security events (anomaly detection).   

NVisionIP based on NetFlow data facilitates 
characterization of network traffic since it provides: (1) 
an overall view of an entire IP address space for selected 
traffic dimensions (bytes, flow connections) at a specific 
instant in time; (2) an interactive specific view for 
selected port traffic dimensions (bytes, flow connections) 
on individual machines at specific instants in time; and 
(3) the ability to interactively contrast views from 
different instances in time or between different machines.  
Changes in the IP address space as represented in the 
Galaxy View using visual cues of spot location, color, 
and geometric patterns have the capacity to transmit on 
the order of Mbytes of information to a user when 
considering all the possible permutations of these cues.   
For example, we have used the Galaxy View and Small 
Multiple View to visually determine patterns of fast and 
slow network scans (over time) and small-scale DoS 
attacks that otherwise would not have been detected using 

multiple IDS alerts.  
In the Machine View, comparing histograms of the 

traffic byte counts or flow connection counts to/from 
different ports on different hosts or on the same host over 
time also has the capacity to transmit on the order of 
Mbytes of information to a user when considering the 
number of potential ports per host and all the possible 
count levels.  For example, we have used the Machine 
View to visually determine patterns of fast and slow host 
scans (over time) and single machine sources of network-
wide events that otherwise would not have been detected.   

The primary limitation we faced with NetFlow data is 
generating statistics.  For the instrumented network under 
investigation, NetFlow generated on the order of 500 
Mbytes daily which makes generating statistics a lengthy 
process.  Although the time to generate statistics cannot 
be significantly reduced, we found caching statistics such 
that calculations do not need to be repeated can reduce 
time processing.  
 
5. Summary 
 

We present a visual data mining tool, NVisionIP, 
which allows a human operator to interactively visualize 
the security status of an entire IP address space of 
networked machines in one screen.  We report results 
from experiments based on NetFlow source data that 
convey how NVisionIP can be used to assess the 
situational awareness of a network for security.  
NVisionIP has been designed to accept multiple data 
sources so our initial success with NetFlow source data is 
especially encouraging since the NetFlow application is 
not specifically designed for security analysis. We are in 
the process of creating a website for distribution of 
NVisionIP including installation instructions, version 
announcements, hot fixes, and licensing restrictions (it is 
hoped we can pursue open source). 

NVisionIP is a novel advance for managing security 
because it is the only extensible tool that currently 
provides a simultaneous view of events on individual 
machines, subnets, and across an entire IP address space 
(in the case of NCSA a Class B IP address space of 65K 
hosts with each host having 65K ports).  The unique 
contribution of this tool is that it provides a new 
visualization capability to detect attacks with 
macro/micro relationships that otherwise would not be 
identified.  Future work is focused on gaining experience 
with NVisionIP in different production environments.  
We plan to consider usability feedback from security 
experts; test different input data sources, develop GUI 
enhancements and automated pattern recognition 
algorithms, and last, but not least, evaluate impact on 
actual security incident detection, prediction, and 
response.    
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Figure 2. The NVisionIP GUI 
 
 
 

                  
                        (A)                                               (B)                                                   (C)         

 
Figure 3. NVisionIP Connection Count Output - (A ) “Galaxy View”; (B) “Small Multiple View” inset within 

the Galaxy View  (C) “Machine View” inset within the Small Multiple View inset within the Galaxy View 
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Figure 4: NVisionIP Byte Count Output 
 
 
 
 
 
 
 
 
 
 
 
 
 

          
 
       Figure 5: Ingress Flow Count            Figure 6: Egress Flow Count           Figure 7: Flow Count Difference 
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