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Abstract

In the current paper we present a powerful technique of obtaining natural
deduction proof systems for first-order fixpoint logics. The term fizpoint logics
refers collectively to a class of logics consisting of modal logics with modalities
definable at meta-level by fixpoint equations on formulas. The class was found
very interesting as it contains most logics of programs with e.g. dynamic logic,
temporal logic and the p-calculus among them.

In this paper we present a technique that allows us to derive automatically
natural deduction systems for modal logics from fixpoint equations defining the
modalities.

1 Introduction

A great deal of attention has been devoted to formalisms dealing with fixpoints. Deno-
tational semantics, domain theory, complexity theory, specification languages - these are
just a few computer science examples of such formalisms. As logic was widely applied
in various areas of computer science, those formalisms have their natural counterparts
in calculus, which we call fixpoint calculus, or fixpoint logics.

The current paper is devoted to axiomatizing a large class of multimodal logics
with modalities definable by least fixpoints of equations on formulas. The approach we
consider is discussed in [10,11], where both complete and relatively complete Hilbert-
like proof systems for the logics are given. The approach we investigate is close to
that of p-calculus (cf. e.g. [6]). The differences between those approaches are precisely
discussed in [11]. Let us only recall that the most important differences are:

e we require a stronger assumptionon functionals defining the meaning of formulas,
than the monotonicity that is required in the p-calculus. Moreover, we do not deal
with greatest fixpoints, but the least ones only (see, however, discussion provided
in section 6)
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e we do not assume any particular language of considered logics, while the usual
modal versions of the p-calculus inherit the whole background of the underlying
logic. We find this feature a disadvantage of those approaches.

As mentioned earlier, Hilbert-like proof systems for considered logics are presented
in [10,11]. On the other hand, there is also another important method of defining proof
systems, so called natural deduction method for the first time proposed independently
by G. Gentzen and S. Jaskowski. It is worth emphasizing here that Hilbert style of
presentation of proof systems is more suitable for humans, while natural deduction can
be much easier automated (cf. e.g. [3]). In what follows we shall present both complete
and relatively complete natural deduction systems for fixpoint logics. As the logics
we consider are usually totally undecidable, they cannot be completely axiomatized by
effective proof systems. However, the systems we present can be implemented directly,
or at least suggest possible implementations. The non-effective parts of the systems can
be replaced by finite formal systems of arithmetics (cf. e.g. [12]). The obtained imple-
mentations are not as strong as the initial proof systems. However, taking sufficiently
strong finitistic formal systems of the second-order arithmetics, one can obtain quite
powerful systems. The techniques of measuring the strength of such implementations
can be found in the literature (cf. e.g. [1]).

2 Preliminary notions

Let us first establish a logical framework assumed in this paper. The logics we consider
are extensions of classical first-order logic. By M we shall denote an enumerable set of
nonclassical connectives (or, in other words, modalities). For the sake of simplicity we
assume that the connectives are unary. The presented approach can easily be extended
to nonclassical connectives that have more than one argument (cf. [10] and also example
2.3). In the sequel we shall always assume that a first-order signature is fixed. By L
we shall then denote the set of many-sorted classical first-order formulas.

Definition 2.1 Let M be an enumerable set of nonclassical connectives. We form an
M -extension of classical first-order logic, M-logic in short, as triple £ = (L(M),C, |=),
where:

1. L(M) is the set of formulas obtained from L augmented with the following syntax
rule:

o for any m € M and A € L(M), m(A) € L(M)

2. Cis a class of admissible interpretations (we assume that C is a subclass of classical
first-order interpretations in relational structures)

3. | is a satisfiability relation that agrees with the classical one for classical first-
order formulas (for M € C, A € L(M) and valuation v of free variables, M,v = A
means that A is satisfied by interpretation M and valuation v). a

In what follows we shall define the notion of fixpoint logics, as understood in this
paper. First, however, let us consider two examples that illustrate the main idea (cf.

also [10,11]).



Example 2.2 Let (P*)A be a modality of dynamic logic (cf. e.g. [4]) meaning that
there is a nondeterministic iteration of program P, with results satisfying the formula

A, le.
M, v =pr (P*)A iff there is i € w such that M, v =py, (P) A,

where by (P)" we mean (P) repeated i-times and |=p;, denotes the satisfiability relation
of the dynamic logic. Then for all M and v,
o M,v=pL (PHA & AV (P){(P*A
o M,v =pp (P*)A iff there is ¢ € w such that M, v |=py, Gép*m(false),
where G/prya(z) = AV (P)x.

Observe that the first of the above propositions can be reformulated as follows:

] M,U |:DL <P*>A A4 G(p*>A(<P*>A) O

In the following example we consider atnext operator of temporal logic. The original
operator is a two-argument one. Since we deal with unary modalities only, we introduce
infinitely many operators atnextg, where B’s are temporal formulas.

Example 2.3 Let Aatnextp be a modality of linear time temporal logic (cf. e.g. [7])
meaning that there is a future time point satisfying formula B and in the first such a
point formula A is satisfied, i.e.

M, v =7, Aatnextp iff there is i € w—{0} such that M,v =7, OY(AAB),
and for all 0 < j < i, M,v =7 O/ (=B),

where by (O we mean () repeated k-times, and =71 denotes the satisfiability relation
of temporal logic. Then for all M and v,

o M,v =y Aatnexty < O(AA B)V O(—B A Aatnextp)

o M, v |=r Aatnextp iff there is i € w such that M, v Err GYyagnexs , (false),
where G aatnext(2) = O(AANB)V O(=B A x).

Note that the first of the above propositions can be reformulated as follows:

o M, v =7 Aatnexty ¢ G iatnext,(Aatnextp). a

The above examples show the most essential characterization of nonclassical connec-
tives in considered logics. Namely, equivalences given above have the following common
form:

z < G(z).
Moreover, each of the defined modalities is characterized as least upper bound of the
set {G'(false) : i € w} of formulas.

Let us now provide a more precise definition of definability of nonclassical connec-
tives by means of fixpoint equations (where equality on formulas is interpreted as usual



equivalence). Note that in the below definition we require some additional well-founded
relation on nonclassical connectives. That is a bit technical point in the definition. How-
ever, the required relation can usually be found in a natural way. In what follows we
shall then assume that the set of nonclassical connectives, M, is always supplemented
by a well-founded relation <j,.

Definition 2.4 We say that set of formulas G(M) = {Ga) @+ m € M, A € L(M)}
defines set M of nonclassical connectives of M-logic £ provided that the following
conditions hold:

1. for any interpretation M of £ and valuation v of free variables,

(a) M,v=m(A) & Guay(m(A))
(b) M, v |=m(A) iff there is ¢ € w such that M, v | Gjn(A)(false)
2. there is a well-founded relation <j; on M such that righthand sides of equiv-

alences defining functionals G4y contain (syntactically) only connectives less
(w.r.t. <pr) than m.t O

For examples of functionals defining various logics see [11]. Let us now define a
notion of monotonicity that plays a key role in this paper. It is worth mentioning here
that we use two kinds of arrows, = and —. The first one separates the two parts of a
sequent and the second one stands for the usual implication.

Definition 2.5

1. Given an M-logic, we shall say that set M of nonclassical connectives is monotone
iff for any interpretation M, nonclassical connective m € M, and formulas A, B:

M E A — Bimplies M = m(A) — m(B)

2. Given an M-logic, we shall say that a functional (G is monotone iff for any inter-
pretation M and formulas A, B:

ME A — Bimplies M = G(A) —» G(B)

3. We say that an M-logic is monotone iff M is monotone and there is a set of
monotone functionals defining connectives of M.

To indicate the fact that set of nonclassical connectives of monotone M-logic is de-
finable by a set G(M) of monotone functionals we shall write (M, G)-logic instead of
M-logic. O

Observe that the condition 1(b) of definition 2.4 holds whenever we deal with the
continuous functionals. It is also implied by monotonicity and partial computability of
functionals (cf. [5]).

What now remains to define is the natural deduction method.

! As observed by the referee, it suffices to assume that in G';m(a) can appear only smaller connectives
or arbitrary connectives, but with smaller formulas



Definition 2.6 Let £ be an M-logic.

1. By a sequent of logic £ we shall mean any expression of the form I' = A, where
both I' and A are finite sequences? of formulas of L.

2. By M,v =T = A we shall mean that M,v = Ajyer A = Vaea A.
3. By a natural deduction proof system we shall mean any pair (Ax, R) such that

a) Ax, called the set of azioms, is any set of sequents of L
) ) Yy q

(b) R is any set of derivation rules of the form ¥ F 5, where ¥ is a set of sequents
of £, and 5 is a sequent of L.

4. We say that sequent S is indecomposable in a given natural deduction proof sys-
tem iff it is an axiom or no rule of the system is applicable to S. A sequent is
decomposable iff it is not indecomposable. a

Definition 2.7 Let P = (Ax, R) be a natural deduction system for logic L.

1. By a decomposition tree of a sequent S in proof system P we shall mean a rooted
tree with nodes labelled by sequents, such that

(a) the root of the tree is labelled by S
(b) all leaves of the tree are labelled by indecomposable sequents

(c¢) any node n in the tree is either labelled by an element of Az, or by sequent
S for which there is a derivation rule S = S in R such that

i. S={t:tis alabel of a son of n in the tree}

ii. the first decomposable formula (counting from left to right) of sequent
labelling n is decomposed.

2. By a proof of sequent S in P we shall mean a decomposition tree of S satisfying
the following additional conditions

(a) the height of the tree is finite
(b) all leaves are labelled by axioms of Ax. O

Note that proofs are carried out top down and afterwards read bottom up. Note
also that, according to notational conventions used in the literature, by I') A, II, ¥ we
shall denote finite sets of formulas. Similarly, by I', A, A we shall mean set 'U{A}UA.
Thus colon corresponds to set-theoretical union. Semicolon is used to separate sequents
from each other.

It is worth emphasizing here that both proof systems we present are cut-free. This
means that the cut rule is not included in those proof system. This, of course, consid-
erably simplifies both the search for proofs and possible implementations of the proof
systems. (In fact, a weak form of cut rule appears in definition 4.1 (rule 5(a)). This,
however, as we shall see, causes no further implementation problems.)

2Tt is sometimes convenient to consider sets instead of sequences. We shall sometimes use this
convention, too.



3 An infinitary proof system

Let us now define an infinitary proof systems for fixpoint logics. For the sake of sim-
plicity, in the classical part of the proof system we introduce rules for =, A and V only.
Other boolean connectives and the existential quantifier 3 can be defined by the above
ones as usually. The corresponding rules can easily be derived.

Observe that a natural deduction proof system for L, that could be used here is
given in [8]. The one we define is adapted to the formalism we deal with.

In what follows we shall always assume that an enumeration of the set of terms is
given. By t;, where i € w, we shall then denote the i-th term (w.r.t. the enumeration).
For a sequent S labelling node, say n, in a decomposition tree T', by I'J (or A%) we
shall mean ey It (or Ujeny Ai, respectively), where N is the set of all nodes on the
path from n to the root of the tree (including n) and I';, A; denote respective parts of
sequent labelling node /. In what follows we often write I and A® instead of I'” and

AS.

Definition 3.1 Let £ be an (M, G)-logic. By IP; we shall mean the following proof
system

I. axioms:

FT = A, when INA#(
II. rules:

. (a) AAT=XA F I'= X -AA

(b) ¥, ' = AA F ¥, -AT=A

2. (a) 3, A,B,T=A F S AANBT=A
b)) I'=X AN T'=YBAFI=YAANBA
(a) ¥, Az 1), ' = A, ~Va(A(x)) F X, Va(A(x)), [ = A,
where t is the first term (w.r.t. given enumeration) for which A(x < t)
does not appear in [Z¥AENT=4"and A(zx < ¢) denotes the formula
obtained from A by replacing = by ¢ with renaming the free variables of
t which are bound in A, if necessary

(b) I' = ¥, A(x),A F ' = X Va(A(x)), A,
where variable  does not appear neither in I, nor in A
4. for all m € M and formula A such that Gm(A)(:L') is a constant functional

(syntactically, i.e. functional containing no occurrences of ) we assume the
following rules:
(a) X,Gp)(false), I = A F X m(A),I'= A
(b) I' = X, Gya(false), A = ' = ¥, m(A),A
5. for all m € M other than those above we assume the following rules:
(a) I'= X%, Gjn(A)(false),A,m(A) FT'= Y m(A),A,
where ¢ is the smallest natural number for which Gfm(A) (false) does not
appear in Al=Em(4).4
(b) {%, G;H(A)(false), I'= Alieo B E,m(A), I = AL O



Note that the rules 4(a) and 4(b) are special cases of rules 5(a) and 5(b). We
introduced them in order to simplify the obtained proof systems. Constant functionals
appear in considered logic rather frequently but, on the other hand, need no infinitary
characterization.

One can find some context conditions, referring to the path in decomposition tree
(cf. rules 3(a) and 5(a)), somewhat unusual. We introduced them to be closer to
implementation of given proof systems. On can, however, reformulate them into the
form of "pure” natural deduction method as follows:

3(a) Ty A(z = ti41), 2 = A, =Va(A(z)), Az < o), ..., 7 Az + 4;), 7 A(x + ti11)
F ToWVa(A(x)), Y = A=Az < to), ..., Az < t;),
5(a) I' = A,G;(A)(false),Z,m(A),Gi (y(false) F I'= A m(A), X,

m

where ¢ is the smallest natural number for which Gin(A) (false) does not appear in

AU Y.

Observe that both A(x + ¢;11) and Gin(A) (false) appear in the premises twice, for the
second time artificially, in a context where they can never be decomposed, since we
only allow the first decomposable formula to be decomposed (cf. definition 2.7). In our
case, always ~Va(A(x)) or m(A) is then to be decomposed before the latter occurrence
of “A(x 1) or Gin(A) (false), respectively. That is a technical trick, due to which all
suitable formulas remain all the time inside of sequents so that, in a sense, a sequent
remembers which formulas were used during its proof. This makes it possible to check
context conditions which are directly related to a sequent (but indirectly, of course,
again to the whole path which is now stored inside of the sequent).

Note also, that formula =Va(A(x)) appears at righthand sides of sequent in the
premises of both 3(a) and 3(a). This is again a technical trick, due to which sequents
remember that formula Va(A(x)) can still be decomposed, but after the decomposition
of formulas in A. (That is, of course, not necessary in case of rules 5(a) and 5(a), as

respective formulas already appear at the rightmost sides of sequents.)

Definition 3.2 Let P be a proof system for the logic £ = (F,C, ). Then

1. we shall say that proof system P is sound iff for any sequent I' = A provable in
P, ET = A

2. we shall say that proof system P is complete iff any sequent I' = A such that
I = A is provable in P. 0

The following theorem provides us with a characterization of proof system [P;.
Observe that the proof follows from that given by Lopez-Escobar [8] for L.

Theorem 3.3 For any (M, G)-logic L, proof system [P is sound and complete. O

4 A relatively complete proof system

In this section we define proof systems RFP; which are obtained from the previous one
by replacing infinitary proof rules. In what follows we shall always assume, that the



first-order signature contains (at least) constant symbols 0 and 1, two binary function
symbols 4+ and %, and a binary relation symbol <.

Definition 4.1 Let £ be an (M, G)-logic. By RP; we shall mean the proof system
obtained from the infinitary system I P; (cf. definition 3.1) by replacing the proof rule
5 by the following ones:

5. (a) Guy(C) = O3 1,08 = A F T,m(A),S = A
(b) C(n+n+1)= Guu(Cn)); Cln+0)=0; I'= X, In(C(n)),A
F T = %, m(A), A,

where n does not appear in m(A). O

Note that the presence of formula C' in rules 5'(a) and 5'(b) seems to complicate the
search for proofs or even make it impossible to automatize. However, as it will follow
from the proof of theorem 4.5, the search for a suitable formula can also in this case
be automated. The formula obtained from the proof, as a general one, is usually not
the simplest one. Some heuristics are then necessary to make the process of proving
theorems more efficient.

Let us now discuss the notion of relative completeness. It was for the first time con-
sidered by Cook (cf. [2]) in context of Hoare logics. Cook separated the reasoning about
programs from reasoning about properties of data structures. He then restricted the
class of admissible interpretations to so called expressive interpretations only. Later it
turned out, that one has to restrict himself to arithmetical interpretations when consid-
ering logics more expressive than that of Hoare. Arithmetical completeness, reflecting
this restriction, has then been derived from relative completeness by Harel in [4], in
context of dynamic logic. Harel gave finitary proof rules for first-order dynamic logic
that allow us to eliminate programs from formulas of the logic. As first-order dynamic
logic is totally undecidable, there was of course price to pay, namely the set of axioms
forms now a totally undecidable set. On the other hand, those axioms, as classical
first-order properties of data structures are supposed to be known by a programmer,
who should never write programs based on unknown properties of data. Yet another
restriction of class of interpretations was considered in [10], where the only admissible
interpretations are strictly arithmetical interpretations. Such a class of interpretations
is a proper subclass of arithmetical interpretation. It is, however, still large and worth
interest. For instance, domains of finite stacks, queues, trees, arrays, symbols etc. with
usual operations on them are all strictly arithmetical. More precise definition follows.

Definition 4.2 Let £ = (F.C,|E) be an M-logic. Interpretation M € C is called
strictly arithmetical (s-arithmetical, in short) provided that:

1. M contains sort w of natural numbers together with constants 0, 1, functions +,
« and relation < (interpreted as usual)

2. for each sort s of M there is an effective binary relation e; encoding elements of
sort s, i.e. such that for each x of sort s there is exactly one ¢ € w with eg(x,1)
true in M. O

We are now ready to define notions of relative and strictly arithmetical soundness
and completeness.



Definition 4.3 Let P be a proof system for the logic £ = (F,C, ). Then

1. we say that P is sound (complete) for L relative to class T C C provided that for
any interpretation M € 7 and any sequent I' = A of L,

Frn,, I = Aimplies (is implied by) M =1 = A,

where T'hag denotes the first-order theory of interpretation M, i.e. the set {A €
L : M = A}, and b7, denotes the syntactic consequence relation of proof
system P augmented with the following set of axioms:

{Hj Zl,A,ZQ . AE ThM}

2. we say that P is s-arithmetically sound (complete) provided that it is sound (com-
plete) for £ relative to the class of s-arithmetical interpretations. a

In order to simplify our considerations, in what follows we shall consider one-sorted
s-arithmetical interpretations with sort w, operations 0, 1, 4, * and additional functions
of signature w — w. In the presence of encoding relations this can be done without loss
of generality. Namely, functions and relations on sorts other than w can be represented
by functions with signature w — w or w — {0, 1}, respectively.

Let us now briefly discuss the notion of partial recursive functional, as it is needed
in the proof of s-arithmetical completeness of proof system RFP;. Namely, by a partial
recursive functional we shall mean any functional that, interpreted in s-arithmetical
interpretation, is partial recursive (perhaps relative to some oracle). That is, to say, a
functional G is partial recursive whenever for each formula A and vector of variables x,
given an oracle answering whether A(x) is true, the question whether G/(A)(x) is true,
is partial recursive. This notion of partial recursiveness is well known and its precise
definition need not be quoted here. The definition of partial recursive functionals that
perhaps best serves our purposes is to be found in the book [5].

Now we are ready to prove the main results of this section.

Theorem 4.4 For any (M, G)-logic L, proof system RP. is s-arithmetically sound.
Proof

Soundness of rules 1 — 4 easily follows from their soundness in proof system [Fp.
Let us then first prove soundness of rule 5 (a).

Assume that the premises are true in some interpretation M. We shall then show
that for all ¢ € w, '
MET, G, (false), X = A

Let us first show that for all 7 € w,
M | G, ) (false) = C.

We proceed by induction on i:. The case of 1 = 0 is trivial, for ng(A) applied to any
formula, is, by convention, false. Assume that our claim is true for some ¢ € w. We shall
show that it then remains true also for ¢ + 1. Note that, by inductive assumption and
monotonicity of G (cf. definition 2.5), we have that M |= Gin(A) (false) = C implies



M E G(G;(A)(false)) = Gn)(C). Since the first of premises, G 4)(C) = C,
is assumed valid in M, we also have that M |= (Gin( J(false)) = C, ie. M |
GH'I (false) = (', which completes the proof of our claim.

By the second of premises of the rule we now have that for all 7 € w,
MET, GZ 4 (false), X = A.

Now the rest of the proof of soundness of rule 5(a) can be carried out just like in the
case of rule 5(b) of proof system IP;.

What now remains to prove is the soundness of rule 5'(b). Assume that all premises
of rule 5(b) are true in interpretation M. We shall show that for all ¢ € w,

M = C(i) = G}, 4)(false).

We proceed by induction on ¢. The case of ¢ = 0. is trivial for formula C(0) =
ng(A) (false) is just the second of premises. Assume M = C(1) = GZ (false) Then,
by monotonicity of G4y, M = Gpa)(C(1)) = Gm(A)(Gjn(A) (false)). From the first
premise of our rule we have M | C(i + 1) = G (C(z)) Thus M E C(i+1) =
Gm(A)(Gjn(A)(false)), e MECI+1)= GH'I (false)

Now note that, by the third premise of our rule, MET = X 3In(C(n)),A. Thus,
by the above and definition 2.4, M |=T' = ¥, m(A), A, which proves the result. a

Theorem 4.5 For any (M, G)-logic L, if all functionals of G are partial recursive then
proof system RP. is s-arithmetically complete.

Proof

The proof of s-arithmetical completeness can easily be reduced to the proof of similar
theorem shown in [10] for Hilbert-like proof systems. One can use lemma 4.4 of [10],
where the reasoning about fixpoint formulas is reduced to reasoning about classical
first-order ones. Namely, formula C' required in rule 5’ is constructed there and appears
to be a classical first-order one. Formula C' that satisfies premises of rules 5'(a) and
5(b) can defined inductively as follows:

C(n < 0) <> false

C(n —n+ 1) > Gm(A)(C(n)).
(Note that M |= m(A) « In(C(n))).

The only (and, in fact, most difficult) problem to be solved is that we still have
to eliminate the inductive definition of ' and find a formula that explicitly defines C'.
There is, however, a theorem in recursion theory (cf. e.g. theorem 3.5 in [5], p. 92)

that guarantees that such an elimination is indeed possible (cf. also [10]). Moreover,
the required formula can be constructed automatically.

Having a procedure of finding suitable formula C' one can step by step eliminate
nonclassical operators from sequents. As there can be only finitely many such operators,
and Gm(A)(C) can contain only new operators that are less than m (w.r.t. ordering <y,
required in definition 2.4), such an elimination terminates after finitely many steps.
Those steps are reflected by application of suitable parts of rule 5.

This completes the proof of s-arithmetical completeness of RP;. O

10



The above theorems give us the following important characterization of proof system
RP;, where L is an (M, G)-logic with all functionals of G partial recursive:

if interpretation M is strictly arithmetical, then the set of sequents provable
in RP; augmented with set {Il = ¥, A, %, : A € Thp} of axioms is equal
to the set of all sequents I' = A for which M =1 = A. In particular, the
set of all formulas A, for which sequent () = A is provable in RP; augmented
with {Il = X1, A,3; : A € Thpt is equal to the set of all formulas valid

in interpretation M.

5 Examples of applications

Let us now show two examples of application of the theorems given in the previous
section.

Example 5.1 Consider modality (P*)A of dynamic logic (cf. example 2.2). The fol-
lowing axioms and proof rules (together with some other ones for other modalities of
dynamic logic, that can be easily derived from equations given e.g. in [10]) give sound
and complete characterization of (P*)A.

e axioms and rules 1 — 3 given in definition 3.1

o =X, GépﬂA(false),A, (PYA F I'= X (PHAA,
where 7 is the smallest natural number for which Gép*m(false) does not appear
in
AT=T,(P*)4,4

o {X, Gép*m(false), I'= Alico B XS (PHA T = A

After applying Gép*>A and making minor cosmetics, one can formulate the last two rules
as follows:

o =X (PYAA(PHYA F T =X (P)A A,
where 7 is the smallest natural number for which Gép*m(false) does not appear

1mn
AT=T,(P*)4,A

o (N (PYAT = Alie, F I, (PHAT = A.
After replacing the last two rules by
e AV(P)C=C;, INC,¥=A F I'(PHA Y = A

e C(n+n+1)=AV(P)C(n); Cn+0)=0; I' = X, In(C(n)),A
- T = 5, (PYALA,

where n does not appear in (P*)A

one obtains s-arithmetically sound and complete characterization of (P*)A.

Both classical and s-arithmetical soundness and completeness follow, of course, from
theorems 3.3, and 4.4, 4.5, respectively. O

11



Example 5.2 Consider modality Aatnextg of temporal logic (cf. example 2.3). The
following axioms and proof rules (together with some other ones for the nexttime op-
erator (), that can be easily derived from equations given e.g. in [10]) give sound and
complete characterization of Aatnextg.

e axioms and rules 1 — 3 given in definition 3.1
o I' = X, GYatnext ,(false), A, Aatnexty = I' = X, Aatnextp, A,

where 1 is the smallest natural number for which GQatneXtB(false) does not appear
in AFiE,AatnextB,A

o {3, Gatnext,(false), ' = A}, F X, Aatnexts,I' = A.

After applying GilatnextB and making minor cosmetics, one can formulate the last two
rules as follows:

o I'= Y Aoejci O/ (=B) A (AN B),A, Aatnextg - [' = X, Aatnextg, A,

where 1 is the smallest natural number for which GQatneXtB(false) does not appear
in AFiE,AatnextB,A

o {3 Aocjci O'(=B)A QAN B),T' = Alic, b 3, Aatnexty, [ = A,
The last rule, after applying rule for conjunction, can be formulated as follows:

e (X, 0B),... 0" Y=B),0'B,O0'A,T = A}ic, F X, Aatnexty, ' = A.
After replacing the last two rules by

e O(ANB)VO(-BV(C)=C; INC, ¥ = A F T, Aatnextp, X = A

e C(n+n+1)= OQ(AAB)VO(=BVC(n)); C(n <« 0)=0; I' = X, In(C(n)),A
F T'= X, Aatnextg, A,
where n does not appear in Aatnextpg

one obtains s-arithmetically sound and complete characterization of Aatnextg.

Both classical and s-arithmetical soundness and completeness again follow from the-
orems 3.3 and 4.4, 4.5, respectively. O

6 Final remarks

As mentioned in the introduction, our axiomatizations do not deal with the greatest
fixpoints. Observe, however, that one can add axioms and proof rules that, in some
cases, deal with greatest fixpoints, too. Namely, assume that some (,,(4) is downward

continuous (i.e. for all M and v, M, v = w(A) iff for all i € w, M,v |= G;(A)(true)).
One can then add the following rules to our infinitary proof systems (cf. definition

3.1):

6. for all w defined as above,
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(a) T, G;(A)(true), Y,w(A)= A F INw(A4), X = A,
where ¢ is the smallest natural number for which GiU(A) (true) does not appear
in FF,w(A),E:>A

(b) {I'= £, G, (true), Aie, F I'= S w(A), A,

The proofs of soundness and completeness of the obtained calculus can now be carried
out as in the case of theorem 3.3.

Similarly, one can easily add suitable proof rules to proof systems defined in defini-
tion 4.1 in order to obtain s-arithmetically sound and complete proof systems:

6. (a) C = Guu)(C); I'=> X, C,A F I's S w(A),A

(b) 0= C(n + 0); Gu)(C(n)) = C(n+n+1); I''Vn(C(n)),X= A
FT w(A),Y = A,

where n does not appear in w(A).

Observe also that the technique of infinitary proof systems we presented is appli-
cable to the case of propositional fixpoint logics, too. In order to obtain sound and
complete infinitary axiomatizations of those logics one simply has to assume axioms
and rules 1,2,4 and 5 of proof systems [P; defined in definition 3.1. This also ap-
plies to propositional g-calculus, as that has the finite model property (cf. e.g. [6]).
Thus, when considering validity of p formulas, one can restrict the class of models to
finite ones only. Then all monotone functionals become both continuous and backward
continuous and can thus be captured by our approach.
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