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Abstract—This paper studies methods of quantitatively mea-
suring semantic information in communication. We review exist-
ing work on quantifying semantic information, then investigate
a model-theoretical approach for semantic data compression and
reliable semantic communication. We relate our approach to
the statistical measurement of information by Shannon, and
show that Shannon’s source and channel coding theorems have
semantic counterparts.

I. BACKGROUND

It has long been recognized that the broad subject of
communication goes beyond what Shannon’s theory [18] and
many of its extensions cover. Weaver [21], just one year
after Shannon introduced his information theory, proposed that
communication involves problems at three levels as follows:

“LEVEL A. How accurately can the symbols of
communication be transmitted? (The technical prob-
lem.)
LEVEL B. How precisely do the transmitted sym-
bols convey the desired meaning? (The semantic
problem.)
LEVEL C. How effectively does the received mean-
ing affect conduct in the desired way? (The effec-
tiveness problem.)”

Shannon’s Classical Information Theory (CIT) is deliber-
ately focused on only Level A (technical level), thus, “se-
mantic aspects of communication are irrelevant to the en-
gineering problem” [18]. As a metaphor, Weaver said that
“an engineering communication theory is just like a very
proper and discreet girl accepting your telegram. She pays
no attention to the meaning, whether it be sad, or joyous,
or embarrassing”. On the other hand, Weaver argued that
Shannon’s information theory is general enough to be extended

Research was sponsored by the Army Research Laboratory and was
accomplished under Cooperative Agreement Number W911NF-09-2-0053.
The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation here
on.

to consider communication on levels B and C, for instance,
by adding “semantic transmitter”, “semantic receiver” and
“semantic noise” to Shannon’s communication model. This
vision is illustrated in Figure 11.

Fig. 1. A 3-Level Communication Model

The assumption that “semantics is not relevant” is no
longer true in many forms of modern communications, such
as in database queries, distributed systems, human-computer
interactions, and the Web (particularly the Semantic Web [3]).
There is now a strong need for an extension of the classical
communication model to characterize not only sequences of
bits, but also the meanings behinds these bits. For this goal,
various researchers have studied theories of “semantic infor-
mation” (details discussed in Section II). Notable examples
include the pioneering work of Carnap and Bar-Hillel [4],
Floridi [8, 9], Barwise and Seligman [2, 17], among others.

However, a generic model of semantic communication, as
suggested by Weaver, has still largely remained unexplored
after six decades. Existing works on semantic information
are limited in addressing some fundamental questions in

1Local knowledge and shared knowledge in the diagram are not mentioned
by Weaver.
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communication when the semantics of exchanged contents
is no longer negligible. Some of these problems include:
How can semantics help in data compression and reliable
communication? How are semantic coding/decoding related to
the engineering coding/decoding problems? What is semantic
noise? Are there achievable bounds in semantic coding, ana-
logues to the bounds established by Shannon in engineering
communication? What factors should we consider to improve
efficiency and reliability in semantic communication?

This paper summarizes some of our initial work in realizing
Weaver’s vision, by extending Shannon’s theory of (technical)
communication to a theory of Level B (semantic) communi-
cation. Our work is influenced by Carnap and Bar-Hillel [4],
with new contributions in the following areas:

• We show that the work of Carnap and Bar-Hillel is
a special case of a model-theoretical characterization
of semantic information sources, and present a generic
model of semantic communication;

• We discuss the role of semantics in reducing source
redundancy, and establish theoretical bounds in lossless
semantic data compression;

• We define the notions of semantic noise and semantic
channel. By extending the Shannon’s channel coding
theorem, we obtain the semantic capacity of a channel.

The model developed in the paper is crude, and many
non-trivial simplifications are made. Most importantly, the
modeling of Level C (utility or effectiveness) communication
is beyond the scope of this paper. We also note that the logic-
based approaches we adopted may not be adequate to capture
semantics in human communications. However, we believe
that these simplifications are necessary for us to focus on the
“core” issues of semantic communication, and that even this
crude model readily yields some interesting results. We believe
this model, after some of the suggested extensions, may form
a foundation for a general theory of semantic communication.

This paper has an accompanying technical report which
contains additional discussions and more detailed proofs:
http://www.cs.rpi.edu/∼baojie/pub/2011-03-28 nsw tr.pdf

II. RELATED WORK

Efforts to extend CIT to capture semantic aspects of
communication started shortly after Shannon published his
paper. Carnap and Bar-Hillel (1952) [4] were among the first
to introduce a “semantic information theory” (SIT), which
is henceforth referred to as Classical Semantic Information
Theory (CSIT).

They distinguish the concepts of information and the
amount of information, and measure the amount of information
in a sentence in a given language based on logical probabilities
(as opposed to the statistical probabilities used in CIT) ranging
over the contents. Intuitively, “A and B” has more information
than “A” because it is less likely to be true: whenever “A and
B” is true, “A” is true, but not vice versa. Similarly, “A” has
more information than “A or B”, and a tautology (which is
trivially true) provides no information.

The logical probability of a sentence, therefore, is measured
by the likelihood that the sentence is true in all possible
situations. For instance, suppose “A” and “B” are independent
of each other, and both are true or false as a result of the
flip of a fair coin. There are 4 possible situations with equal
possibilities (i.e., 0.25): A is false/true, B is false/true.

Therefore, “A and B” is true in one situation and its logical
probability is 0.25. Similarly, the logical probability of “A or
B” is 0.75. These can be denoted using a function m as:

m(A ∧B) = 0.25,m(A ∨B) = 0.75

The amount of semantic information in a sentence A is
defined as the negative logarithmic value of m(A), i.e.,2

Hs(A) = − log2(m(A))

Thus, Hs(A ∧ B) = 2 and Hs(A ∨ B) = 0.415, while
Hs(A) = Hs(B) = 1, matching the intuitions given above.

It has been shown that logical inference does not provide
additional semantic information, that is:

A ⊢ B ⇒ Hs(A) ≥ Hs(B)

where ⊢ is the logical entailment relation.
Essentially, CSIT can be regarded as a model-theoretical

approach to assign probabilistic values to logical sentences.
Since paper [4] is limited to propositional logic, Carnap and
Bar-Hillel use truth tables (with each row called a “state
description”), which can be seen as the universe of all possible
models of a propositional sentence, to find the chance that a
sentence is true. In CSIT, there is a close relationship between
the quantity of information in a sentence and the set of its
models. If a consistent sentence has fewer models, it is more
“surprising” and contains more information. This is similar to
the probabilistic logics of Nilsson [16] and Bacchus [1], which
can be extended to first-order languages.

In [8, 9], Floridi developed a Theory of Strongly Seman-
tic Information (TSSI). One of his major motivations is to
solve the so-called Bar-Hillel-Carnap Paradox (BCP) in CSIT,
which states that contradictions have an infinite amount of
information, i.e., m(⊥) = 0, thus Hs(⊥) = ∞, where ⊥
is shorthand for A ∧ ¬A for arbitrary A. The basic idea is
that the informativeness of a statement is measured by the
positive or negative degree of semantic distance or deviation
from “truth”. This is quite different from CSIT, which defines
informativeness as a function over all situations, not over a
particular situation that is chosen to be true.

However, it has been noted that TSSI is incomplete with
regard to quantifying all possible statements [6]. There exist
propositional sentences that cannot be evaluated using the
approach described in [8]. For these reasons, D’Alfonso ([6]
section 4) proposed the “value aggregate” method that captures
both inaccuracy and vacuity, based on formal models of
truthlikeness. This method aggregates the differences of all
models of a sentence to those of the “true” state.

2Carnap and Bar-Hillel used inf instead of Hs.
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Both Floridi and D’Alfonso’s approaches measure the rel-
ative information or misinformation of a statement against
another “true” reference statement. Thus, the information value
is always a value between 0 and 1. This approach is rooted
in the semantic information framework using information flow
and situation theory by Seligman and Barwise [2, 17] and that
of Devlin [7]. However, Floridi and D’Alfonso’s approaches
cannot determine the objective amount of information when
there is no reference statement. Essentially, their work offered
a semantic similarity (or divergence) measurement between
two sentences, not a measurement of uncertainty as Shannon,
Carnap and Bar-Hillel proposed.

Several authors have investigated other approaches of mod-
eling semantic information, e.g., algebraic information theories
[12, 13], universal semantic communication [10, 11] and
semantic coding [22]. Some recent work has been collected in
two proceedings [15, 20]. However, these works do not offer
a quantitative measure of semantic information in inference-
capable sources, nor the study of the role of semantics in
coding, which are our main foci.

III. SEMANTIC COMMUNICATION: A GENERAL MODEL

Before we can investigate the measurement of semantic in-
formation, we need to clearly define semantic information and
semantic communication. The concept of semantic information
is certainly not new. Here we will restrict ourselves to the
engineering description of this notion. For more information
about the philosophical account of semantic information, see
the excellent survey in [9].

A. Goal of Semantic Communication

Note that there is a fundamental difference between the
goal of engineering communication and that of semantic
communication. Shannon stated in his paper [18] that

The fundamental problem of communication is that
of reproducing at one point either exactly or approx-
imately a message selected at another point.

Weaver [21] stated that
The semantic problems are concerned with the inter-
pretation of meaning by the receiver, as compared
with the intended meaning of the sender.

Comparing the two statements, we can state that the goal
of semantic communication is not to reproduce, exactly or
approximately, the messages transmitted, but their interpreta-
tions. For example, consider the conversation:

Alice: “Are you free this weekend?”
Bob: “No, I’m busy on both Saturday and Sunday.”

Alice is a semantic source (sender) and Bob is a semantic
destination (receiver). Bob is able to interpret the meanings
of the received message and relates it to the meanings of
the vocabulary he already knows. He knows that “free” is an
antonym of “busy” and that “weekend” means “Saturday” or
“Sunday”. He is able to infer that “free this weekend” is the
same as “not busy on both Saturday and Sunday”, even if the
two statements are syntactically different.

For a classical information source, a message is a sequence
of symbols. In a semantic information source, a message,
which may still be syntactically viewed as a sequence of
symbols, is in fact an expression composed using the symbols
in the language of the source. What we want to achieve is
the faithful transmission of meanings of these expressions,
not their syntactic representations, which is the concern of
engineering communication.

Now consider a conversation between three persons:
Alice: “Bob, is Charlie free this weekend?”
Bob: “Charlie, if you are available this weekend?”
Charlie: “No, I’m not available on both Saturday and
Sunday.”

Here Bob serves as a semantic channel between Alice
and Charlie. Bob does not faithfully convey the original
message from Alice, however, he is still able to preserve
the original meaning of the message of the sender. There
may be an engineering failure if we measure the success of
communication “literally”, but there is no semantic failure.

Even if there is no engineering communication failure, there
may still be semantic communication failure. Considering a
conversation about a “Lecturer” in universities, a US person
who is not familiar with UK academic ranks may interpret it
to be similar to a non-tenure-track position in US, whereas
“Lecturer” in the UK is roughly equivalent to “Assistant
Professor” in the US system.

B. Semantic Sources

A real world semantic source may be a complicated system
which can make statements with subtle semantic distinctions.
In this paper, we will not try to model every form of semantic
source, but a very basic type that can make factual statements
in propositional logic. This simplification will help us focus on
the key modeling problem, and we will discuss its extensions
later.

For a hypothetical example, suppose a child asks her father
what is “Tweety”. The father, as an information source, may
do the following:

• (Observing World) He searches the Web and finds a
webpage about Tweety. There are many such pages. Most
of them are about Tweety the bird, but a few are about a
Twitter client, or a basketball player.

• (Inferring) Depending on which page the father visits and
trusts, the father may use his knowledge to come up
with an appropriate answer for his child. For instance,
the webpage may tell him that “Tweety is a canary”, but
since the child may not understand “canary” yet, and the
father knows that canaries are birds, he may infer that
“Tweety is a bird”.

• (Transmitting) The father most likely answers his child in
English that “Tweety is a bird”, but there is some positive
probability that he instead answers “Tweety is software”
or “Tweety is a man”.

For the message “Tweety is a bird”, the unit of symbols is
English words. Thus, from a non-semantic (syntactic) point of
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Fig. 2. Semantic Information Source and Destination

view, the message is a sequence of 4 symbols. Its classic in-
formation can be approximately determined by the frequencies
of English words. Now, we regard this message as a semantic
message, e.g., a human friendly coding of the proposition
birdTweety . The source states it because the source believes
that it is “true” w.r.t. its observations about the world3. On the
other hand, whether a message is true or not is irrelevant in
classical information theory.

Informally, we say a semantic source is an entity that can
emit messages using a given syntax, such that these messages
are “true” in the source, according to its state and inference
capabilities.

C. A Semantic Communication Model

What, then, is semantic communication? When a semantic
information source (e.g., the father in the example above)
sends a message, the source expects the destination (e.g.,
the child) to “understand” the message to some degree. The
destination, thus, rather than mechanically decoding the syntax
of the message, will be able to draw conclusions from the
received message, as well as from its current local knowledge.
In the above example, the child, after learning that “Tweety is
a bird”, may infer that “Tweety is an animal”, if her knowledge
base tells her that “birds are animals”.

Figure 2 characterizes a model of semantic communication
we will use in this paper. Formally, a semantic information
source is a tuple (Ws,Ks, Is,Ms), where

• Ws is the model of worlds potentially observable by the
source;

• Ks is the background knowledge base of the source;
• Is is the inference procedure used by the source;
• Ms is the message generator used by the source to encode

a message.
In this model, the source builds its own world model by

observing the outside world. In the “Tweety” example, the
world is observable using a search engine. In this generic
model, we do not specify how the world is represented, and

3It’s possible that a source intentionally sends out wrong messages to
deceive the destination. However, we believe that such situations should be
studied as Level C communication, not as Level B (semantic).

the kind of semantic relations between the world model and
the messages. There are several different ways this may be
done, e.g., by using model-theoretic semantics, operational
semantics, lexical semantics, or by many forms of cognitive
models of semantics [5].

The message generator (or semantic encoder) generates
messages according to defined strategies. Since usually there
are many different but semantically valid ways to describe one
situation, the message generator has great freedom in picking
a “good” code. For instance, the generator may send messages
that are most accurate, or that are easy to generate (according
to some cost function), or that the destination is most interested
in. Also, similar to the engineering transmitter, the message
generator may deal with both how to reduce redundancy in
messages (source coding), and how to improve the reliability
of the transmission (channel coding).

Possible outputs of the message generator can be seen as
an interface language for the source. For instance, regarding a
graph, one interface language may be the reachability between
nodes; another may be minimal distances between nodes.

The generated message will be transmitted over a conven-
tional (i.e., non-semantic) channel, in which a conventional
transmitter and a conventional receiver will take care of the
engineering coding/decoding tasks.

Analogous to the source, a semantic information destination
(receiver) is a tuple (Wr,Kr, Ir,Mr), where

• Wr is the world model of the receiver;
• Kr is the background knowledge base of the receiver;
• Ir is the inference procedure used by the receiver;
• Mr is the message interpreter (semantic decoder).

A semantic communication error occurs if the message to
be sent is “true” at the source (w.r.t. Ws, Ks and Is), but the
received message is “false” at the destination (w.r.t. Wr, Kr

and Ir). The error may be due to losses in source coding, noise
in the channel, losses in decoding, or their combinations.

Note that background knowledge and inference procedures
may be fully or partially shared by the source and the desti-
nation in semantic communication. It is possible for them to
use different background knowledge or inference rules, which
may lead to different truth evaluations and, hence, semantic
mismatches. There may also be feedback channels from the
destination to the source. The source, channel and destination
all may have memories (e.g., a Markov source), or may be
continuous. To simplify discussion, we leave these extensions
for future work.

IV. MEASURING SEMANTIC INFORMATION AND
SEMANTIC DATA COMPRESSION

Now we discuss the general principles of measuring the
amount of semantic information of sources, and the role of
semantics in data compression (source coding). A model-
theoretic semantics is studied in this and the next section, but
we note that this is not the only possible approach in realizing
our generic semantic communication model.
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A. Entropy of Semantic Messages

In CIT, the entropy of a message is determined by the
statistical probability of the symbols appearing it. In CSIT, the
entropy of a statement is determined by its logical probability,
i.e., the likelihood of observing a possible world (model)
in which this statement is true. To see the difference, for
instance, the message “Rex is not a tyrannosaurus” (M1) is
less “surprising” than “Rex is not a dog” (M2), not because
the word “tyrannosaurus” is more common than “dog”, but
because the individuals represented by “tyrannosaurus” (now
considered extinct) are less common than the individuals
represented by “dog”. Thus, M1 has less semantic information
than M2, even if it may have more Shannon information based
on the statistical distribution of English words.

Below, we define semantic entropy, following and extending
the CSIT approach. For simplicity, as in [4], we restrict our
discussion to propositional logic.

We assume that the source has the following properties:
• The world model Ws is a set of interpretations with

a probability distribution µ. For propositional logic, an
interpretation is a set of positive propositions.

• The inference procedure Is is a satisfiability reasoner for
propositional logic.

• The message generator Ms generates messages by some
fixed coding strategy, such that if the observed value of
the world model is w and it generates a message x, it
must be the case that w � x (verified by Is), where � is
the usual propositional satisfaction relation.

We will omit the subscript s when there is no confusion.
Let H(W ) be the Shannon entropy of W , i.e.,

H(W ) = −
∑
w∈W

µ(w) log2 µ(w)

If the source is a classical source with W as the symbol set,
H(W ) will be precisely the entropy of the source. We call
H(W ) the model entropy of the semantic source.

For a message (sentence) x, let Wx be the set of its models,
i.e., worlds in which x is “true”, Wx = {w ∈ W |w � x}.
Note that, unlike CSIT, which relies on counting models of
a sentence, when interpretations have different probabilities,
what matters is the total probability of models of the sentence,
not the cardinality of the set of models. Then, the logical
probability of a message (sentence) x is

m(x) =
µ(Wx)

µ(W )
=

∑
w∈W,w�x

µ(w)∑
w∈W

µ(w)

Since µ is a probability measure, when W is not constrained
by the background knowledge,

∑
w∈W

µ(w) = 1.

As in CSIT, we define the semantic entropy of x as

Hs(x) = − log2(m(x))

Carnap and Bar-Hillel [4] gave some justifications for using
logarithm in their definition. The measurement satisfies some

common-sense requirements for measuring semantics. For
propositional logic, we observe:

• Hs(A ∧B) ≥ Hs(A)
• Hs(A ∨B) ≤ Hs(A)
• Hs(A ⊢ B) ⇒ Hs(A) ≥ Hs(B)
• Hs(A ∨ ¬A) = 0

B. Conditional Entropy and Background KB

CSIT is concerned with inferring logical probability (thus,
semantic information) of a propositional expression when

• There is no background knowledge
• These propositions are independent of each other
In this subsection, we relax these two assumptions. When

there is a background knowledge base K, the set of possible
worlds will be restricted to the set compatible with K. The
semantic entropy of a sentence is represented as a conditional
logical probability:

m(x|K) =

∑
w∈W,w�K,x

µ(w)∑
w∈W,w�K

µ(w)

Hs(x|K) = log2 m(x|K)

For a simple example, suppose4p(A) = p(B) = 0.5, A,B
independent and we have the background knowledge K =
{A → B}. The truth table is

# A B A → B probability
1 0 0 1 0.25
2 0 1 1 0.25
3 1 0 0 0.25
4 1 1 1 0.25

Then the universe of possible worlds “shrinks” to the set of
truth assignments in which A → B is true, i.e., cases 1, 2 and
4. Therefore, we now have conditional logical probabilities

m(A|K) = 1/3

m(B|K) = 2/3

m(A ∧B|K) = 1/3

Logical probabilities are different from a priori statistical
probabilities due to the presence of background knowledge.
In the new distribution, A and B are no longer logically
independent (as m(A|K)m(B|K) ̸= m(A ∧B|K)).

Let µ′ be the new distribution of the set of models when K
is present, that is,

µ′(w) =
µ(w)∑

v∈W,v�K µ(v)

H(W |K) = −
∑

w∈W,w�K
µ′(w) log2(µ

′(w))

4We always use p to represent statistical probabilities, and m for logical
probabilities.
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The model entropies of the source in the example without
and with the background knowledge are

H(W ) = −4 ∗ 0.25 log2(0.25) = 2

H(W |K) = −3 ∗ 1/3 log2(1/3) = 1.585

It seems that the presence of background knowledge reduces
the informativeness of the source. This is true when the source
does not share background knowledge with the destination.
However, if the background knowledge is shared, the reduction
in semantic entropy means that we can compress the source
without losing information. In general, with the help of shared
background knowledge, we will be able to communicate with
shorter messages to achieve the maximal informativeness of
the source. In the example above, this means that state descrip-
tions (the most informative messages) need only 1.585 rather
than 2 bits to describe. The 21% saving is the contribution of
the shared background knowledge in compressing the source.

C. Semantic Source Coding

For a propositional logic with finite n propositions, the
size of all possible interpretations (worlds) is finite (2n).
The number of all possible messages (syntactically valid
propositional expressions), however, may be infinite if the
length of messages is not restricted. Since an interpretation
in general cannot uniquely determine messages, a semantic
coding strategy is necessary.

For an information source of engineering interest, the num-
ber of all possible messages is in general only finite, or
is restricted in other ways. The interface language of the
source thus only allows a subset of all possible messages. For
example, a Twitter post is limited to 140 characters, and a G-
rated movie cannot contain scenes unsuitable for children. For
a given interface language, a semantic coding strategy needs
to achieve two potentially conflicting goals:

• Maximizing expected faithfulness in representing ob-
served worlds;

• Minimizing expected coding length.
Let X be a finite set of allowed messages. A seman-

tic coding strategy is a conditional probabilistic distribution
P (X|W ). A deterministic coding is a special case of coding,
where each w ∈ W has at most one possible coded message.
Given µ(W ) and P (X|W ), the distribution of expressed
messages P (X) can be determined using

P (x) =
∑
w

µ(w)P (x|w)

Let us define H(X) as the Shannon entropy of messages
X with the distribution P (X), i.e.,

H(X) = −
∑
x∈X

P (x) log2 P (x)

The following theorem establishes the relation between the
model (semantic) entropy and the message (syntactic) entropy
of a source:

Theorem 1: H(X) = H(W ) +H(X|W )−H(W |X).

Proof sketch: By definitions of entropy and conditional
entropy.

Intuitively, H(X|W ) measures semantic redundancy of the
coding, and H(W |X) measures semantic ambiguity of the
coding. The theorem states that message entropy can be
larger or smaller than model entropy, depending on whether
redundancy or ambiguity is larger.

When H(X) < H(W ), there is an information loss
(H(W ) − H(X)). Sometimes, the loss in coding is an in-
tentional and desired compression of the source. For instance,
textual description of an image gives only a semantic abstract
of the image. A temperature report about a city usually
gives only an average value, hiding detailed reports from
participating temperature monitoring stations.

We can also view the model entropy of a semantic infor-
mation source as the maximal expected (message) entropy
per message without redundancy. Such maximality is reached
when the messages are descriptions of the models themselves.
In the case of CSIT, this means that a most informative coding
will always give the full state description.

D. Use Semantics for Data Compression

Some extensions of CIT exploit side information, i.e., re-
ceiver’s prior knowledge about the sender, to reduce the length
of the code. Classical results in this area [19] describe how to
achieve optimal coding with respect to the joint entropy of the
source and the side information. In semantic communication,
shared knowledge and inference procedures may act as a
special kind of side information to improve coding efficiency
(i.e., compression). On the other hand, unlike in CIT, semantic
side information is not represented as distributions, but as
logical statements and inference procedures.

With the presence of semantics, some messages may be
semantically equivalent to other messages, and if the equiv-
alency is captured by shared knowledge, this can be used to
compress the source. For example a → (a ∧ b) ∨ (b ∧ c) can
be reformulated as a → b. If a message has many equivalent
forms, we can pick a subset of the forms, hence reducing the
entropy of the source without a “real” (semantic) loss.

To what extent is semantic compression possible? For a
source with a message interface language X and message
distribution P (X), let X be the smallest subset of X such
that

∀x ∈ X, ∃x ∈ X s.t. x ↔ x

and
P ′(x) =

∑
x s.t. x↔x

P (x)

For a message x in X , x is its unique semantic normal form
in X . The next theorem states the bound for lossless semantic
compression.

Theorem 2: For a semantic source with interface language
X , there exists a coding strategy to generate a semantical-
ly equivalent interface language X ′ with message entropy
H(X ′) ≥ H(X). No such X ′ exists with message entropy
H(X ′) < H(X).
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Proof sketch: The existence part is trivial. The non-existence
part is shown by the uniqueness of semantic equivalent normal
forms.

The difference H(X) − H(X) can be a large reduction
if the redundancy in semantically equivalent messages is
large. For example, a formula in full disjunctive normal form
with j different clauses and k different propositions has at
least k!j! semantically equivalent forms. For propositional
logic with n propositions, 22

n

semantic equivalence classes
of messages exist. If 22

n

< |X| (|X| is the cardinality of
the set of messages), the reduction can be significant. For
example, suppose our vocabulary allows only connectives ∨,∧
and n proposition names. A propositional message can be
represented with a grammar tree with internal nodes labeled
with connectives and leaves being propositions. A grammar
tree of depth d (thus, with message length O(2d

2

)) may have
2d(d+1)/2n2d possible variations. Thus, for

d ≥
√

(1/2 + 2 log n)2 + 2n+1

22
n

< |X| is true. This translates into a message length limit
of O(22

n+1

) or larger.
Other semantic data compression strategies may be ex-

plored. One possible approach is to reduce the model en-
tropy of a source, e.g., instead of measuring all models,
measure only minimal models [14]. When some semantic
infidelity is allowed, lossy semantic coding strategies may be
used based on semantic similarity between messages (e.g.,
“black”→“dark”).

V. SEMANTIC NOISE AND CHANNEL CODING

A. Semantic Noise

For communication over a noisy channel, the received
message may contain errors. The noise may be added either
at the engineering level or at the semantic level. Below are
some examples of semantic infidelity in communication:

• The meaning of a message is changed due to transmission
errors, e.g., from “copy machine” to “coffee machine”.

• Translation of one natural language into another language
where some concepts in the two languages have no
precise match;

• The source uses English units, while the receiver under-
stands it using metric units (e.g., during the loss of the
Mars Climate Orbiter5);

A key difference between engineering communication and
semantic communication is how infidelity is handled. Let
X be the input of the channel and Y be the output of
the channel. In engineering communication, the goal is to
minimize the expected difference between X and Y , and a
particular mapping x → y (x is a value of X and y is a value
of Y ) is either a match or not. In semantic communication,
we are concerned with, instead of syntactic preservation of the
message, the semantic similarity between the input and output
messages. Also note that not all syntactic errors will lead to

5http://en.wikipedia.org/wiki/Mars Climate Orbiter

semantic errors. Suppose that the input message is x1 → x2

and the received message is x2 ∨ ¬x1, there is no semantic
loss. Thus, the semantic effect of noise may be lower than its
impact on syntax transmission due to the presence of semantic
redundancy.

For a source state (interpretation) w, an input message x and
an output message y, there are two kinds of semantic errors6:

• Unsoundness: the sent message is true but the received
message is false, i.e., w � x but w ̸� y

• Incompleteness: the sent message is false but the received
message is true, i.e., w � y but w ̸� x

Some communication tasks may tolerate one kind of error
(e.g., incompleteness) more than the other. In this paper, since
we do not consider lossy source coding, i.e., w � x is always
true, our goal is to reduce unsoundness, formally stated as:

max
∑
w�y

p(w, x, y)

where p(w, x, y) is the joint distribution of w, x, y. For a
semantic source, p(w, x, y) = p(y|w, x)p(w, x) where

p(y|w, x) = p(y|x)

since transmission of the message is independent of source
coding. Note that p(y|x) is the semantic channel transition
distribution.

p(w, x) = p(x|w)µ(w)

where p(x|w) is determined by the semantic encoder (message
generator), and µ(w) is the logical distribution of interpreta-
tions. Thus, our goal is

max
∑
w�y

p(y|x)p(x|w)µ(w)

Since p(y|x) is determined by the semantic channel, and
µ(w) is determined by the source, the goal of semantic channel
coding thus is to optimize the coding scheme p(x|w), i.e.,
given an observed world, choose the strategy that can best
tolerate noise. For instance, if a voice channel has a high
possibility of confusing “p” and “ff”, “copy machine” may
be received as “coffee machine”. Alternatively, assuming that
both sides use “Xerox” as a synonym of “copy machine”,
“Xerox” may reduce the chance of misunderstanding.

Another way to overcome noise is to introduce semantic
redundancy into a message. For example, in HTML, an ‘img’
object (image) may have an ‘alt’ attribute which gives a textual
description of the image and will be shown instead if the image
itself is not transmitted. Note that semantic redundancy may
not necessarily lead to syntactical redundancy. For example,
suppose the topic of communication is weekdays, then the
message “Mon∨Tue∨Wed∨Thu∨Fri” can be reformulated as
a shorter message “¬Sat∧¬Sun”. The two parts of the refor-
mulated message contain semantic redundancy such that if one
part is lost in transmission, the received message is still sound
(although not semantically equivalent to the original message).

6Note that here we implicitly adopted a global semantics assumption, that
is, the sender and the receiver share the same universe of interpretations.
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B. Semantic Channel Capacity

Analogous to CIT, a noisy semantic channel has a capacity
limit such that a transmission rate can be achieved with
arbitrarily small semantic errors within the limit. First, we
explain some notations to be used in the theorem.

• I(X;Y ) = H(X)−H(X|Y ) is the mutual information
between X and Y . It represents syntactical channel
equivocation, which may be a result of technical noise
or non-literal semantic transmission.

• HKs,Is(W |X) is the equivocation of the semantic en-
coder, given the sender’s local knowledge Ks and in-
ference procedure Is. Intuitively, a higher HKs,Is(W |X)
means higher semantic ambiguity in semantic coding.

• Hs;Kr,Ir (Y ) = −Σyp(y)Hs(y) is the average logical
information of received messages, given the receiver’s
local knowledge Ks and inference procedure Is. A higher
Hs;Kr,Ir (Y ) means stronger ability of the receiver to
interpret received messages.

For a simplified model, we assume Ks = Kr and Is = Ir
and omit the subscript. The limit is given in the theorem below:

Theorem 3 (Semantic Channel Coding Theorem): For ev-
ery discrete memoryless channel, the channel capacity

Cs = sup
P (X|W )

{I(X;Y )−H(W |X) +Hs(Y )}

has the following property: For any ϵ > 0 and R < Cs, there
is a block coding strategy such that the maximal probability
of semantic error is < ϵ.

The argument of sup is the semantic coding strategy. A
proof sketch is given in the accompanying technical report.
The proof uses a strategy similar to that used by Shannon [18]
in deriving engineering channel capacity, using the Asymptotic
Equipartition Property (AEP).

Semantic channel capacity may be higher or lower than
the engineering channel capacity (sup{I(X;Y )}), depending
on whether Hs(Y ) or H(W |X) is larger. This implies that
using a semantic encoder with low semantic ambiguity and a
semantic decoder with strong inference ability and/or a large
shared knowledge base, we may achieve high-rate semantic
communication using a low-rate engineering channel.

VI. CONCLUSION

In this paper, we presented some initial results of our
investigation into measuring semantic information and seman-
tic coding. We proposed a model-theoretical framework for
measuring semantic information in information sources and
communication channels.

An interesting result is that the fundamental theorems
of classical information theory have semantic counterparts.
These theorems reveal the existence of some semantic coding
algorithms for data compression and reliable communication.
However, as in Shannon’s paper [18], these theorems do not
tell us how to develop optimal coding algorithms. We note that
for both source coding and channel coding, bound-achieving
algorithms could be computationally difficult. Efficient seman-
tic coding algorithms deserve further investigation.

This paper is intentionally focused on an abstract basic
model of semantic communication so that we can focus on the
“core” issues. We will extend the framework in future work,
e.g., for supporting more expressive languages, lossy data
compression, handling semantic mismatches, typical semantic
noise patterns, and measuring semantic misinformation.
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