
The TCP SACK-Aware Snoop Protocol for TCP
over Wireless Networks

Sarma Vangala and Miguel A. Labrador
Department of Computer Science and Engineering

University of South Florida
Tampa, Florida 33620

Email: �vangala,labrador�@csee.usf.edu

Abstract— TCP continues to be the most important transport
layer communication protocol. Several solutions have been pro-
posed to address the known problems that TCP faces when
running over wireless networks. Of these solutions, the Snoop
protocol, a link layer retransmission strategy, has been shown to
be the most effective. However, not all TCP versions have been
analyzed using the Snoop protocol. In fact, we recently showed
that TCP Vegas and TCP SACK exhibit opposite performance
results when utilized with and without the Snoop protocol. In this
paper we analyze this behavior and introduce the TCP SACK-
Aware Snoop protocol for wired cum wireless networks. We show
how to make the Snoop protocol TCP SACK-Aware and why
using the Snoop protocol is in fact worse than not using any
mechanism at all. The TCP SACK-Aware protocol improves the
performance of TCP SACK by around 30% compared to the
plain Snoop protocol and by about 8% in an environment where
no TCP enhancing mechanism is in place.

I. INTRODUCTION

Since its inception 30 years ago, the Transmission Control
Protocol (TCP) has grown to be the most important commu-
nication protocol and the responsible for the stability of the
Internet [15]. Over the years, TCP has been modified several
times to improve its performance and as a result, several im-
portant TCP versions have emerged, such as TCP Tahoe [15],
TCP Reno [15], TCP Newreno [13], TCP SACK [18] and TCP
Vegas [8]. However, all these new mechanisms and versions
don’t work the same when called to work on the diverse
environments TCP has been called to work on, such as satellite
networks, wireless, and wireless ad hoc networks. All these
environments have peculiarities that make TCP’s performance
to be not as good as in wired networks.

When TCP works over wireless environments several well-
known problems affect its performance. In wireless networks
packets are lost due to high Bit Error Rates (BERs), signal
fading, user mobility, hand-off procedures, channel asymme-
tries, and others, and not due to network congestion. As a
result, TCP misinterprets these losses to be due to congestion
and applies its congestion control algorithms unnecessarily,
yielding low throughputs.

Several performance enhancing solutions have been pro-
posed to help TCP differentiate congestion related losses from
wireless losses. These solutions have been proposed at various
layers of the protocol stack and can be mainly classified
as link layer mechanisms, transport layer mechanisms, and
also newer versions of TCP. Snoop [3], Delayed Duplicate

Acknowledgments [23] and TULIP [19] are examples of
link layer mechanisms. I-TCP [9] and M-TCP [4], Explicit
Loss Notification [6], Explicit Bad State Notification [5] and
Explicit Congestion Notification [22] are examples of trans-
port layer mechanisms. Although newer TCP versions have
been proposed to address specific issues related to wireless
problems [20], [2], the main interest is in improving the
performance of widely used TCP versions, such as TCP
Newreno and SACK.

Of the above mechanisms, the Snoop protocol has been
shown to be the best performing solution [7] [10]. In our
earlier paper [24], we investigated the performance of the
most important TCP versions with the Snoop protocol and
found that surprisingly, TCP Vegas and TCP SACK presented
opposite behaviors when run over a wired cum wireless
scenario with and without the Snoop protocol. We found that
the Snoop protocol improved the performance of TCP Vegas
considerably but in the case of TCP SACK, the effect of
using the Snoop protocol was actually negative. TCP SACK
which was the best performing version and TCP Vegas which
was the worst performing version without the Snoop protocol
showed completely opposite behaviors when Snoop was used.
In this paper this interesting behavior of TCP SACK and TCP
Vegas is analyzed and the TCP SACK-Aware Snoop protocol
is proposed and compared with existing solutions.

The remaining of the paper is organized as follows. Sec-
tion II reviews past work in this area. Section III describes
our simulation environment and the model utilized to generate
the errors in the wireless channel. Section IV describes the
problem that TCP SACK faces in the presence of Snoop
and introduces the TCP SACK-Aware Snoop protocol. Finally,
Section V concludes the paper.

II. RELATED WORK

In this section, the most important solutions at the transport
and data link layer are outlined along with their main advan-
tages and disadvantages. Transport layer approaches include
split connection mechanisms, such as I-TCP [4] and M-
TCP [9], and end-to-end explicit notification mechanisms,
such as Explicit Loss Notification (ELN) [3], Explicit Bad
State Notification (EBSN) [5], and Explicit Congestion Noti-
fication (ECN) [22]. In general, split connection mechanisms



0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120 140 160

P
ac

ke
t S

eq
ue

nc
e 

N
um

be
r

Time(Seconds)

Tahoe

Reno

Newreno

Sack

Vegas

Fig. 1. TCP Performance over Wireless Networks

have not been used because they break the end-to-end seman-
tics of TCP. In addition, the generation of independent acks
can lead to cases where the acks from the base station reach the
wired sender but the packet never being delivered to the mobile
receiver [9]. Explicit notification mechanisms have been shown
to improve TCP’s performance because they let TCP know
whether the packet has been lost due to errors or congestion.
These mechanisms don’t improve TCP’s performance as much
as link layer mechanisms because of the longer round trip
delays (we demonstrate this later).

Another approach to improve the performance of TCP over
wireless networks is to modify the actual protocol itself.
Different versions of TCP behave differently when used over
error prone wireless channels. Earlier comparison studies have
shown that among TCP Tahoe, Reno and Newreno, TCP Reno
performs the worst due to its inability to deal with multiple
loss of packets in a window of data [16]. Tahoe usually
performs worse than Newreno but in some cases it can obtain
similar performance values [25], [12]. Vegas and SACK were
included in the comparison in [24] where we showed that
Vegas performs the worst and SACK the best. TCP SACK
on the other hand, is the best performing of all the TCP
versions due to its ability to recover multiple losses efficiently.
Figures 1 and 2 show performance results of all these TCP
versions over a wired cum wireless environment with and
without the Snoop protocol. These results, taken from [24]
clearly show the improvements related to the use of the Snoop
protocol and also the strange reverse behavior experienced by
TCP Vegas and SACK.

Link layer schemes retransmit lost packets at the data link
layer of the wireless hop. Since the propagation delay of the
wireless last hop is considerably shorter compared to the end-
to-end delay, link layer solutions have immediate knowledge
of the packets dropped and can thus respond faster than
higher layers. However, link layer retransmission mechanisms
can sometimes adversely affect the operation of other layers
leading to excessive retransmissions, as suggested in [10]. The
most important link layer solutions include Snoop [3], the TCP
Unaware Approach [23], and TULIP (Transport Unaware Link
Improvement Protocol) [19]. TULIP is a link layer solution

0 50 100 150
0

0.5

1

1.5

2

2.5

x 10
4

 Tahoe with Snoop −−>

 Reno with Snoop −−>

 Newreno with Snoop −−>

 SACK with Snoop −−>

 Vegas with Snoop −−>

 Simulation Time

 P
ac

ke
t S

eq
ue

nc
e 

Nu
m

be
r

Fig. 2. TCP Performance over Wireless Networks with Snoop

for half duplex links. This protocol is still in its infancy
and undeveloped [19]. The TCP Unaware Approach relies on
delaying duplicate acknowledgments and it has been shown
that in cases of low mobility and fixed wireless, similar to that
of ours, Snoop works better [21]. In the following subsections,
we provide more details about the Snoop protocol and TCP
SACK since they are the main mechanisms analyzed in this
paper.

A. The Snoop Protocol

The Snoop Protocol [3] provides a reliable solution while
maintaining the end-to-end semantics of the transport layer
connection. It performs local recovery using link level buffers
at the base station where passing packets across the wired-
wireless link are stored. Snoop uses these cached packets
to retransmit unacknowledged packets and also suppresses
duplicate acknowledgments (dupacks) from the receiver to
avoid unnecessary timeouts at the sender. Snoop works using
two important functions, snoop data() and snoop ack(). The
snoop data() function processes and caches the packets going
to the mobile host. It takes care of retransmitted packets as
well as out-of-sequence packets. When a packet arrives in
sequence and has a sequence number greater than the previous
packet, Snoop caches it at the base station and forwards
the packet to the mobile host. The round-trip time for this
packet is also calculated by using a local clock. If an out-
of-sequence packet with sequence number less than the one
already acknowledged is obtained, this means a retransmitted
packet form the sender has reached the base station. If this
packet has already been sent to the mobile host, Snoop sends
an ack back to the sender so that the sender does not timeout,
otherwise, it forwards the packet to the mobile host and
caches this packet as being retransmitted by the sender. The
snoop ack() function processes the acknowledgments received
from the mobile host and performs retransmissions. Whenever
an ack is received from the mobile host, Snoop distinguishes
it as either genuine, spurious or dupack. If it is a genuine
ack, i.e. an ack that is in order, it clears the local buffers,
estimates the RTT, and forwards the ack to the source. If it is
an ack with a sequence number smaller than the one previously
received, it is a spurious ack and is discarded. If a dupack is



0 50 100 150
0

10

20

30

40

50

60

70

80

 <−− Tahoe Congestion Window with Snoop

 <−− Tahoe Congestion Window without Snoop

 Simulation Time

 C
on

ge
st

io
n 

W
in

do
w

Fig. 3. Variation of Tahoe Congestion Window with and without Snoop

received for a packet not in the snoop cache or as marked
for retransmission for the sender, then it is routed to the fixed
host. If a dupack for a packet in the snoop cache is obtained,
it retransmits the packet to the mobile host. If a dupack
for a missing packet (know to snoop as missing because of
a sender retransmission) is obtained, it is discarded, thus,
stopping unnecessary retransmissions. Comparing Figures 1
and 2 we show that the Snoop protocol in fact, improves
TCP’s performance in agreement with conclusions found in
other papers. The figures also show that this is true for all
TCP versions except TCP SACK, which had not been analyzed
before. Figure 3 also shows the positive effect of the Snoop
protocol in TCP Tahoe’s performance in a different way. It
can be easily seen that the Snoop protocol avoids time outs
considerably and maintains a larger value of TCP’s congestion
window at all times. These two factors are the responsible for
the better throughputs obtained.

B. TCP SACK

TCP SACK was developed by Floyd and Fall [11] to take
care of the inefficiency of TCP Reno in handling multiple
losses in a window of data. As indicated in RFC 2018 [18]
a SACK receiver is able to exactly indicate the sender using
Selective Acknowledgments which packets in a sequence of
data have been received correctly and which have been not.
This is done using a special type of Selective Acknowledgment
segment called SACK block. A SACK block provides the
sender with all the necessary information needed to retransmit
the exact packets that are missing. It is able to thus efficiently
cope with packet losses in the wireless channel and retransmit
all the missing packets in one RTT, hence reducing TCP
timeouts.

The establishment of a SACK connection is done at the
connection establishment phase when SYN packets are ex-
changed with the kind bit of the options field set to 4 (SACK
enabled option). The receiver in turn acknowledges the sender
of its SACK capabilities setting the kind bit to 5. Once the
connection is established, the receiver sends SACK blocks in
case of multiple losses in a window of data. Each SACK
block reports the most recently received segments and the next
acknowledgment expected in a series of data. A SACK block

Sender Node
(Wired) Base Station Receiver Node

(Wireless)
10 Mbps

20ms

Two State
Markov Model

2 Mbps
64 us

Fig. 4. Simulation Topology

can indicate this information for up to three non-contiguous
sequences of missing data. When received by the sender, it is
able to exactly know the series of data missing and retransmits
only those packets based on the availability of the congestion
window.

both the sender and the receiver need to agree in imple-
menting SACK.

III. THE SIMULATION ENVIRONMENT

A simulation approach is taken to study the performance of
TCP over wireless networks. We used the ns-2 simulator [17]
and the wired-wireless topology shown in Figure 4. The wired
node is connected to a base station using a 10 Mbps 20 msec
delay link. The wireless channel is of 2 Mbps capacity with
negligible delay. The packet size is fixed at 1000 bytes and
the intermediate queues are assumed to be large enough so
that no losses due to congestion take place and losses only
occur due to the wireless errors. It is widely known that errors
in wireless channels occur in bursts unlike those in wired
channels where they are more random in nature. These errors
can be modeled as a continuous time two-state Markov model
consisting of a good state and a bad state as analyzed in [25],
[26]. In our simulations, we use the error model developed
in [1] which generates a slow and moderate fading channel
suitable for the work done here. When the chain is in the
good state packets are transmitted completely and whenever
it is in the bad state they are dropped. The chain stays in
each state for certain period of time transmitting many good
packets and also dropping several packets together. For our
study, we used an error model where the chain stays in the
good state for an average of 97 msec and in the bad state for 3
msec. This model generates packet errors of up to 5% and an
average burst size of about 5 packets which is reasonable for
a realistic scenario. These have been common assumptions in
several papers and were actually corroborated in a real wireless
environment in [14]. A single TCP connection from the wired
node to the wireless node is assumed. The results collected
include packet sequence numbers and throughputs.

IV. THE PROBLEM WITH TCP SACK AND THE TCP
SACK-AWARE SNOOP PROTOCOL

Figure 2 is an excellent example of a link layer mechanism
affecting the performance of a transport layer protocol and
points out the importance of establishing these mechanisms
very carefully. Figure 5 explains this problem much more
elaborately. Assume that packets up to sequence number
(seqno)10 have been transmitted successfully and that packets



Snoop ReceiverSender

10

11

12

13

14

15

16

17

12,
13, 14

13, 14

14

11

11D

12 SACK

12D

13 SACK

13D

14 SACK

Sender duplicates
dropped by Snoop

 

Dupacks
dropped by

Snoop

Fig. 5. The problem with TCP SACK

11, 12, 13 and 14 have been dropped due to a burst error. When
packet 15 is received the receiver sends a dupack for packet 11.
This dupack, when received by the Snoop protocol makes it
retransmit packet 11 from its cache and drop the duplicate ack
for 11. In the meantime packet 16 generates another duplicate
ack for packet 11 and this also is dropped by Snoop. When
packet 11 is received by the receiver it generates ack 12. These
are all actually SACK blocks asking the sender to retransmit
packets 11, 12, 13 and 14 in one RTT. In case where no Snoop
is present a TCP SACK source would have retransmitted all
those packets at once. Due to Snoop’s interference only packet
11 is retransmitted and the duplicate acks (SACK acks) are
dropped. The SACK sender is thus not able to retransmit all
the packets in one RTT and the basic SACK mechanism is
thus disrupted. If a SACK block such as that having seqno 12
reaches the SACK source a retransmission of all the packets
12, 13 and 14 is made. These upon reaching the Snoop agent
are dropped as Snoop already has them in its cache. This once
again leads to unnecessary retransmissions by the transport
layer mechanism, this time reducing the network utilization in
the wired portion of the network. TCP SACK is therefore the
worst performing version with Snoop.

In order to rectify the problem of unnecessary retrans-
missions of SACK and enable Snoop to retransmit all the
packets in one RTT, we propose the TCP SACK-Aware Snoop
protocol. As the name suggests, this algorithm helps Snoop
differentiate between an ordinary ack and a SACK block. In
the case of an ordinary ack the TCP SACK-Aware Snoop
protocol retransmits only the packet as suggested by the
dupack’s seqno. However, in the case of a SACK block the
protocol retransmits all the packets indicated by the SACK
block that are in the cache. The TCP SACK-Aware Snoop
protocol checks for the acknowledgment to be a SACK block
or not based on the kind bit set in its options field. Once it

SENDER RECEIVER
SACK AWARE

SNOOP

10

11

12

13

14

15

16

17

18

11

11 SACK

12
13

14

16

18

19

SACK Permitted bits turned off by
SACK AWARE SNOOP to stop

sender retransmissions

Fig. 6. The TCP SACK-Aware Snoop protocol

knows that the ack is a SACK block, it is able to determine the
packets that have been lost based on the left and right edges
of the 1st, 2nd or 3rd blocks. These packets, if present in
the cache, are immediately retransmitted. However, if some
of the packets are missing, the packets up to the highest
sequence number are retransmitted. This is further explained
in Figure 6 where it can be observed that after receiving
the first SACK block, the TCP SACK-Aware Snoop protocol
retransmits all missing packets locally at once, in a lot shorter
round trip time than if the sender had retransmitted them.
Following the same example, assume that packets 11, 12,
13 and 14 are lost. Assuming that all these packets are
present in the TCP SACK-Aware Snoop cache, a dupack
is generated for packet 11 on reception of packet 15. On
reception of this SACK block, the TCP SACK-Aware Snoop
retransmits the requested packets and drops the dupack after
reading the left and right edges of the SACK block. The
TCP SACK-Aware protocol also takes care of the unnecessary
retransmissions from the SACK sender by setting the SACK
permitted bit off in the SACK blocks so that the sender
just sees ordinary acknowledgments. With these modifications,
the TCP SACK-Aware protocol helps in reducing the sender
retransmissions of packets and also enables retransmission of
multiple packets in one local (and considerably shorter) RTT
thus maintaining a good flow of packets. The improvement
that can be achieved in the performance of TCP SACK by
using the TCP SACK-Aware Snoop protocol can be seen in
Figure 7. As a result, the original idea of Snoop can now also
be applied to TCP SACK, providing the best performance of
them all. Our results indicate that this combination achieves
a throughput of 1.9902 Mbps out of the available 2 Mbps,
concluding that the TCP SACK-Aware Snoop protocol hides
pretty much all errors from the transport layer, which now sees
a very clean channel. In Table I we summarize all our results



0 50 100 150
0

0.5

1

1.5

2

2.5

3
x 10

4

 <−− Vegas without Snoop

 <−− SACK with Snoop

 <−− SACK without Snoop

 Vegas with Snoop −−>

 Sack Aware Snoop −−−−>

 Simulation Time

 P
ac

ke
t S

eq
ue

nc
e 

N
o.

Fig. 7. Performance of TCP SACK and Vegas

TABLE I

SUMMARY OF PERFORMANCE RESULTS

TCP No Enhancing ELN Snoop TCP-Aware
Version Mechanism Snoop
Tahoe 1.5190 1.6892 1.8086 N/A
Reno 1.3734 1.5126 1.6255 N/A

Newreno 1.5259 1.3556 1.8765 N/A
Vegas 1.2735 1.2736 1.9835 N/A
SACK 1.8519 1.8823 1.5394 1.9902

including the performance results obtained using the Explicit
Loss Notification mechanism. It can be observed that TCP
SACK’s performance is improved around 30% over the normal
Snoop protocol and around 8% when compared without the
use of any enhancement mechanism.

V. CONCLUSIONS

In this paper we analyze the opposite behavior of TCP
SACK and TCP Vegas in the presence of the Snoop protocol,
one of the best known solutions for improving TCP’s perfor-
mance over wireless networks. In the case of TCP Vegas, the
Snoop protocol hides most wireless related losses allowing
TCP Vegas to see a clear channel and make good bandwidth
estimations. In the case of TCP SACK, the Snoop protocol
is not capable of interpreting SACK blocks and interferes
negatively in the functionality of the protocol. In order to
address this issue, the TCP SACK-Aware Snoop protocol is
introduced to help Snoop differentiate between SACK blocks
and ordinary acks. We show that this new mechanism improves
the performance of TCP SACK by about 30% compared with
the presence of the normal Snoop protocol and by about 8%
in the case where no performance improvement mechanism is
used. We also corroborate the fact that the ELN mechanism
improves TCP’s performance but not as much as link layer
solutions.

REFERENCES

[1] A. Abouzeid, S. Roy, and M. Azizoglu. Stochastic Modelling of TCP
over Lossy Links. In Proceedings of INFOCOM, pages 1724–1733,
2000.

[2] I.F. Akyildiz, G. Morabito, and S. Palazzo. TCP-Peach: A New
Congestion Control Scheme for Satellite IP Networks. ACM/IEEE
Transactions on Networking, 9:307–321, June, 2001.

[3] E. Amir, H. Balakrishnan, S. Seshan, and R. Katz. Efficient TCP over
Networks with Wireless Links. In Proceedings of 5th. Workshop on Hot
Topics in Operating Systems, pages 35–41, May 1995.

[4] A. Bakre and B.R. Badrinath. I-TCP: Indirect TCP for Mobile Hosts.
In Proceedings of ICDCS, pages 136–143, 1995.

[5] B. S. Bakshi, N. Vaidya, and D. K. Pradhan. Improving the Performance
of TCP over Wireless Networks. In Proceedings of 17th. International
Conference on DCS, pages 365–373, July 1997.

[6] H. Balakrishnan and R. Katz. Explicit Loss Notification and Wireless
Web Performance. In Proceedings of GLOBECOM, November 1998.

[7] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. Katz. A
Comparison of Mechanisms for Improving TCP Performance over
Wireless Links. ACM/IEEE Transactions on Networking, 5:756–769,
December, 1997.

[8] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: New
Techniques for Congestion Detection and Avoidance. In Proceedings of
SIGCOMM, pages 24–35, 1994.

[9] K. Brown and S. Singh. M-TCP: TCP for Mobile Cellular Networks.
ACM/SIGCOMM Computer Communications Review, 27 No.5:19–43,
October 1997.

[10] A. DeSimone, M. C. Chuah, and O. C. Yue. Throughput Performance
of Transport Layer Protocols over Wireless LANs . In Proceedings of
GLOBECOM, pages 36–46, 1993.

[11] S. Floyd and K. Fall. Simulation Based Comparisons of Tahoe, Reno
and Sack TCP. ACM Computer Communication Review, 26, No. 3:5–21,
1996.

[12] Sally Floyd and Tom Henderson. The Newreno Modification to TCP’s
Fast Recovery Algorithm. IETF RFC 2582, 1999.

[13] J. C. Hoe. Improving the Start-up Behavior of a Congestion Control
Scheme for TCP . In Proceedings of ACM SIGCOMM, volume Vol. 26,
No. 4, pages 270–280, 1996.

[14] P. Ikkurthy and M. A. Labrador. Characterization of MPEG-4 Traffic
over IEEE 802.11b Wireless LANs. In Proceedings of IEEE LCN, pages
421–427, Tampa, FL, November 2002.

[15] V. Jacobson. Congestion Avoidance and Control. In Proceedings of
ACM SIGCOMM, pages 314–329, 1988.

[16] A. Kumar. Comparative Performance Analysis of Versions of TCP
in a Local Network with a Lossy Link. IEEE/ACM Transactions on
Networking, 6, No.4:485–498, 1998.

[17] Lawrence Berkeley National Laboratory. Ns-2.
[18] M. Mathis, J. Mandavi, S. Floyd, and A. Romanov. TCP Selective

Acknowledgment Options. IETF RFC 2018, 1996.
[19] C. Parsa and J. J. Garcia-Luna-Aceves. Improving TCP Performance

over Wireless Networks at the Link Layer. Mobile Networks and
Applications, 5(1):57–71, 2000.

[20] Christina Parsa and J. J. Garcia-Luna-Aceves. Improving TCP Conges-
tion Control Over Internets with Heterogeneous Transmission Media.
In Proceedings of the 7th IEEE International Conference on Network
Protocols (ICNP), pages 213–221, Toronto, Canada, 1999.

[21] Kostas Pentikoussis. TCP in Wired-cum-Wireless Environments. IEEE
Communications Surveys, Vol. 3, No. 4:2–14, 2000.

[22] R. Ramani and A. Karandikar. Explicit Congestion Notification over
Wireless Networks. In Proceedings of ICPWC 2000, pages 495–499,
July 2000.

[23] N. Vaidya, M. Mehta, C. Perkins, and G. Montenegro. Delayed
Duplicate Acknowledgements: A TCP-Unaware Approach to Improve
Performance of TCP over Wireless. Technical Report, Computer Science
Dept., Texas A&M University (citeseer.nj.nec.com/289955.html), 1999.

[24] S. Vangala and Miguel A. Labrador. Performance of TCP over Wireless
Networks with the Snoop Protocol. In Proceedings of IEEE LCN, pages
600–601, Tampa, FL, November 2002.

[25] M. Zorzi, A. Chokalingam, and R. R. Rao. Throughput Analysis of
Channels with Memory. IEEE Journal on Selected Areas in Communi-
cations, 18:1289–1300, July 2000.

[26] M. Zorzi, R. R. Rao, and L. B. Milstein. On the Accuracy of a First
order Markov Model for Data Transmission on Fading Channels. In
Proceedings of IEEE ICUPC, pages 211–215, 1995.


