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Abstract
We developed a method to automatically detect and trace solar filaments in

Hα full-disk images. The program is able not only to recognize filaments and
determine their properties, such as the position, the area, the spine, and other
relevant parameters, but also to trace the daily evolution of the filaments. The
program consists of three steps: First, preprocessing is applied to correct the
original images; Second, the Canny edge-detection method is used to detect
filaments; Third, filament properties are recognized through the morphological
operators. To test the algorithm, we applied it to the observations from the
Mauna Loa Solar Observatory (MLSO), and the program is demonstrated to
be robust and efficient. Hα images obtained by MLSO from 1998 to 2009 are
analyzed, and a butterfly diagram of filaments is obtained. It shows that the
latitudinal migration of solar filaments has three trends in the Solar Cycle 23:
The drift velocity was fast from 1998 to the solar maximum; After the solar
maximum, it became relatively slow. After 2006, the migration became divergent,
signifying the solar minimum. About 60% filaments with the latitudes larger
than 50◦ migrate towards the polar regions with relatively high velocities, and
the latitudinal migrating speeds in the northern and the southern hemispheres
do not differ significantly in the Solar Cycle 23.

Keywords: Prominence, Formation and Evolution, Quiescent; Automatic De-
tection; Butterfly diagram

1. Introduction

Solar filaments, called prominences when they appear above the solar limb,
are important magnetized structures containing cool and dense plasma em-
bedded the hot solar corona. Typically, a filament is 100 times cooler and
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denser than its surrounding corona. They are particularly visible in Hα obser-
vations, where they often appear as elongated dark features with several barbs
(Tandberg-Hanssen, 1995; Labrosse et al., 2010). Filaments are always aligned
with photospheric magnetic-polarity inversion lines (Martin, 1998) and are lo-
cated at a wide range of heliocentric latitudes. This characteristic makes fila-
ments suitable for tracing and analyzing the solar magnetic fields (McIntosh, 1972;
Mouradian and Soru-Escaut, 1994; Minarovjech, Rybansky, and Rusin, 1998; Rusin, Rybansky, and Minarovjec
Moreover, filaments sometimes undergo large-scale instabilities, which break
their equilibria and lead to eruptions, so they are often associated with flares and
coronal mass ejections (CMEs) (Gilbert et al., 2000; Gopalswamy et al., 2003;
Jing et al., 2004; Chen, 2008; Chen, 2011; Zhang, Cheng, and Ding, 2012). There-
fore, both case study and statistical analysis of filaments are important and
significant.

With the rapid development of the telescopes, both time cadences and spa-
tial resolutions of the observations are becoming higher and higher. As a con-
sequence, we have to deal with a vast amount of data, and automated de-
tection is an efficient way to derive the features of interest in the observa-
tions. In terms of solar filaments, a number of automated filament detection
methods and algorithms have been developed in the past decade. For exam-
ple, Gao, Wang, and Zhou (2002) combined the intensity threshold and region
growing methods in order to develop an algorithm to automatically detect the
growth and the disappearance of filaments. Shih and Kowalski (2003) adopted
local and global thresholding and employed morphological closing operations to
identify filaments. Fuller, Aboudarham, and Bentley (2005) utilized morpholog-
ical “hit or miss” transformation and calculated Euclidean distance to get the
filament spines. Bernasconi, Rust, and Hakim (2005) developed an algorithm
based on a geometric method, which was recently updated by Martens et al.
(2012), to determine the filament chirality in addition to the locations, where
they confirmed the hemispheric rule of the filament chirality. Based on the Sobel
operator, Qu et al. (2005) applied an adaptive threshing method to detect and
derive various parameters of filaments. Wang et al. (2010) employed morpholog-
ical methods, while Labrosse, Dalla, and Marshall (2010) applied the Support
Vector Machine (SVM) method to detect EUVI 304 Å prominence above the
solar limb. Yuan et al. (2011) designed a cascading Hough circle to determine
the center location and the radius of the solar disk, and further to find the
filament spines based on graph theory.

In this paper, we present an efficient and versatile automated detecting and
tracing method for solar filaments. It is able not only to recognize filaments, de-
termine their features such as the position, the area, the spine, and other relevant
parameters, but also to trace the daily evolution of the filaments. In Section 2 we
describe image preprocessing before detecting filaments. The filament detection
algorithm based on the Canny edge-detection method and connected components
process are given in Section 3. A detailed description of the feature recognition
algorithm is given in Section 4. The tracing algorithm is explained in Section 5.
The performance of our program is described in Section 6. Finally, statistical
results about the filament latitudinal distribution based on the Hα archive of
Mauna Loa Solar Observatory (MLSO) are presented in Section 7 before the
conclusions are drawn in Section 8.
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2. Preprocessing

The raw image preprocessing consists of five steps, which are explained one by
one in the following subsections.

2.1. Hα data acquisition and analysis

The full-disk Hα images that we processed are mainly downloaded from the
MLSO website (http://mlso.hao.ucar.edu). Each image has a size of 1024×1024
pixels and is taken by the Polarimeter for Inner Coronal Studies (PICS). The
pixel size of the image is 2.9′′. The MLSO Hα data archive provides two types
of images: one has a limb-darkening correction applied along with contrast en-
hancement, the other is the raw data. Our program can process both the “FITS”
format and the web image formats such as “GIF” and “JPEG”.

2.2. Limb-Darkening Removal

The limb-darkening effect, i.e. the intensity drops towards the solar limb, may
cause false detections. We should remove it first. Some observatories such as
MLSO, also provide limb-darkening corrected images. A polynomial fitting method
of Keith Pierce (Cox, 2000) is adopted to remove the limb-darkening effect:

IcorHα(θ) = IrawHα (θ)/(1− u2 − v2 + u2 cos θ + v2 cos
2 θ) , (1)

where IcorHα(θ) is the corrected intensity and IrawHα (θ) is the intensity in the raw
images, θ is the angle between the local radial direction and the line of sight,
u2 = 0.88 and v2 = −0.23 are the fitted constants for the Hα wavelength at 6563
Å.

2.3. Solar Disk Extraction

Since the solar disk is only a part of the entire image, surrounded by a large part
of the sky background, we need to remove the background in order to process
the solar disk only, which can reduce the processing time and the storage space.
The method for the disk extraction is simple: we just find the left, the right,
the top, and the bottom ranges of the solar disk. Then we get the sub-image
according to these ranges. An example is shown in Figure 1(b).

2.4. Top-hat Filter for Enhancement

Morphological image processing is a type of processing in which the spatial forms
or the structures of the objects within an image are modified (Haralick and Shapiro, 1992;
Pratt, 2001). Erosion, dilation, opening (erosion followed by dilation), and clos-
ing (dilation followed by erosion) are the basic operators in the morphological
concepts that have been extended to work with gray-scale images for image seg-
mentation and enhancement. Sometimes we get the images where the boundaries
of filaments are not very clear. In order to make more accurate segmentation
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(a) (b)

(c) (d)

Figure 1. An example of the Hα image at 18:08:52 UT, 20 April 2001, obtained by Mauna
Loa Solar Observatory (MLSO). (a) The original corrected image downloaded from the MLSO
web site. (b) The sub-image extracted from panel (a). (c) The enhanced image after the top-hat
transformation. (d) The image after a threshold filtering.

of the filament structure, it is necessary to enhance the image to increase the

intensity contrast between the filament and non-filament structures. We use the

morphological top-hat transformation to enhance the images. The algorithm is

composed of three steps:

i) To compute the morphological opening of the image with the top-hat

filtering and then to subtract the result from the original image;

ii) To compute the morphological closing of the image with the bottom-hat

filtering and then to subtract the result from the original image;

iii) To add the top-hat filtered image to the original image, and then to

subtract the result from the bottom-hat filtered image.

As a result, we can get an enhanced image, as shown in Figure 1(c).
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2.5. Threshold Filter

On the solar disk in Hα, besides the dark features such as filaments and sunspots,
there are some other bright features such as plages and flares. Many authors
used local threshold method to filter out these non-interesting features. Actually,
after limb-darkening removal and top-hat filtering,we can easily distinguish the
filaments from these non-filament structures in the gray-scale images via the
global threshold method.We tested several hundred images to find the appropri-
ate global threshold value. For MLSO images, we found that the threshold value
is about 95–100. The algorithm is simple: if the pixel’s value is greater than the
threshold value, we assign it to be 255, which means white in the image. An
example is shown in Figure 1(d).

3. Filament Detection

3.1. Canny Edge Detection

Segmentation of an image entails the division or separation of the image into
regions of similar attributes (Pratt, 2001). The most basic attribute for seg-
mentation is the intensity level for a gray-scale image and color components
for a color image. In addition, the image edge is also a useful attribute for
segmenting.It is possible to segment an image into regions of common attribute
by detecting the boundary of each region across which there is a significant
change in intensity. We adopt the most powerful edge-detection method, i.e. the
Canny method (Canny, 1986), to identify filaments. The Canny method differs
from other edge-detection methods in that it uses two different thresholds: one
for detecting strong edges and the other for weak edges. The weak edges are
included in the output only if they are connected to strong edges. Compared to
others, this method is therefore less fooled by noise, and is more likely to detect
true weak edges (Lim, 1990). The Canny method works in a multi-step process:

Step 1: Noise reduction. Because the Canny edge detector is susceptible to
noise present in the image data, the image should be smoothed first. In our
method, each image after preprocessing is smoothed by Gaussian convolution as
follows,

G(x, y) =
1

2πσ2
e−

x
2+y

2

2σ2 , (2)

f ′(x, y) =
∑

x′

∑

y′

f(x, y)G(x − x′, y − y′) , (3)

where G(x, y) is the 2D Gaussian filter; f(x, y) is the input image and f ′(x, y)
is the output image which is convolved with the 2D Gaussian filter; (x, y) is the
position in the x–y plane of the image. We choose σ = 1 in our processing.

Step 2: Finding gradients. The edges usually can be found at those places
where the gray-scale intensity drastically changes. It means that we can find
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them by checking the gradient at each pixel in the image. The first is to get
the gradient in the x-direction gx(x, y) and y-direction gy(x, y), respectively, by
applying the derivative of a Gaussian filter:

gx(x, y) =
∑

x′

∑

y′

f(x, y)g1(x− x′, y − y′) , (4)

gy(x, y) =
∑

x′

∑

y′

f(x, y)g2(x− x′, y − y′) , (5)

where

g1(x, y) = −
1

πσ2
xe−

x
2+y

2

2σ2 , (6)

g2(x, y) = −
1

πσ2
ye−

x
2+y

2

2σ2 . (7)

Then we use the following two equations to determine the gradient magnitude
and the direction of the edge:

g(x, y) =
√

gx(x, y)2 + gy(x, y)2 , (8)

θ(x, y) = arctan
gy(x, y)

gx(x, y)
. (9)

Step 3: Non-maximum suppression. For an image array, the edge direction
angle is rounded to one of four angles representing vertical, horizontal and the
two diagonals (i.e. 0, 45, 90, 135, 180, 225, 270, 315 and 360 degrees), corre-
sponding to the use of an 8-connected neighbourhood. Then, for each pixel of
the gradient image, we compare the edge gradient magnitude of the current
pixel with the edge gradient magnitude of the pixel along the gradient direction.
For example, if the gradient direction is to the northeast, the pixel should be
compared with the pixels to the northeast and to the southwest. If the edge
gradient magnitude of the current pixel is the largest one, we mark it as one
part of the edge. If not, we suppress it, i.e. it is ignored.

Step 4: Edge tracing by hysteresis. After step 3, many of the remaining edge
pixels would probably be the true edges of filaments, but some may be caused
by noises. The Canny method uses thresholding with hysteresis to determine
whether the edges obtained in step 3 are true or not. The algorithm adopts two
thresholds, i.e. high and low thresholds: If the edge pixel’s gradient magnitude
is higher than the high threshold, the pixel is marked as a strong pixel; if the
edge pixel’s gradient magnitude is lower than the low threshold, the pixel will
be suppressed; if it is between the two thresholds, the pixel will be marked as a
weak one.

In order to find the thresholds, we use an automatic method: First, we should
provide a probability of the pixels that are not the edge points and calculate
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(a) (b)

Figure 2. Examples after filament detection processing. (a) After Canny edge detection, the
filaments were segmented, the result shows the edge of each filament or fragment. (b) The
image after sunspot removal. Compared with (a), small cycles (i.e. the edges of sunspots) were
removed. In order to obtain clear results, the foreground and background colors are exchanged,
i.e. the filament features become black and the background becomes white. The same is for
Figure 4.

the number of pixels that may not be the edge points in the entire image by
the probability; Then we increase the gradient threshold until the total number
of the pixels with the gradient smaller then the threshold is just greater than
the probability value, then the current gradient threshold is chosen as the high
threshold. The low threshold is about half of the high one. In our process the
probability is chosen to be about 0.98, and the low threshold is 0.4 times the
high threshold.

After tracing through the entire image we have strong and weak pixel arrays
which can be treated as a set of edge curves. The weak edges are included if and
only if they are connected to strong edges.We scan the entire binary image to find
the pixels where strong and weak edges overlap each other and finally get the edge
map. Then, the morphological thinning operation (Lam, Lee, and Suen, 1992) is
applied to minimize the connected lines in order to get accurate and fine edges.

After applying the Canny edge-detection method, we get the edge of each
filament, as shown in Figure 2(a).

3.2. Connected Component Process

After segmentation process, in the computer vision the image is still an ar-
ray of pixels. We are not interested in each pixel but the special region (i.e.
the filament) constituted by the pixels. These regions are called the connected
components of the binary images, which are more complex and have a rich
set of properties (i.e. shape, position, and area). We use a classical method
(Haralick and Shapiro, 1992) to realize the connected component labeling. It
means that the pixels in a connected component are given with the same iden-
tity label. After connected component labeling, the product we get is changed

SOLA: FaD.tex; 7 February 2014; 0:32; p. 7
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from pixels to regions that we are interested in. The input binary images are of
8-connectivity, and the algorithm consists of the following two steps:

In the first step, the algorithm goes through each pixel from left to right and
from top to bottom, as indicated by the arrows shown in Figure 3(a). It checks
the labels of four neighboring pixels that are north-east, north, north-west and
west of the current pixel. For example, suppose the current pixel is (i, j) as shown
in Figure 3(a), the code checks the labels of four pixels that are (i − 1, j + 1),
(i− 1, j), (i− 1, j − 1), and (i, j − 1) :

i) If all four neighbors are not assigned, a new label is assigned to the current
pixel. An example is shown in Figure 3(b): Supposing that the value of the
current pixel is 1 and the values of the four neighbors are 0 (0 means this pixel
is a background pixel, and 1 means the pixel is the foreground), it means a new
filament is encountered. If the previous label is “2”, we assign label “3” to the
new filament.

ii) If one of the four neighbors has been labeled before, we assign the neighbor’s
label to the current pixel. An example is shown in Figure 3(c): One of the four
neighbors has been labeled, i.e. the north neighbor has been labeled “3”, so we
assign the same label to the current pixel.

iii) If more than one of the neighbors have been labeled before, we assign the
smaller label to it. An example is shown in Figure 3(d): Two neighbors have been
labeled, i.e. the north-east and west neighbors. The label of north-east neighbor
is “3”, which is smaller than the west neighbor’s, so we use ”3” to assign the
current pixel.

After completing the scanning, the equivalent label pairs are sorted into
equivalence classes and a unique label is assigned to each class.

In the second step, the above algorithm goes through again, during which each
label is replaced by the label assigned to its equivalence class. After completing
the scanning, a unique label is assigned to each equivalence class. In other words,
we have assigned each filament a unique label.

3.3. Sunspot Filter

Actually, it is not easy to distinguish between sunspots and filaments by gray-
scale levels. The labeled “filaments” so far may include some sunspots. Thus, we
have to separate real filaments from sunspots by use of geometric structures: the
size and the long-to-short-axis ratio of the filament.A candidate with the size
(e.g. the perimeter) larger than the threshold is considered to be a filament. In
the case that the size of the labeled object is smaller than the size threshold, only
if the ratio of the long axis to short axis is larger than a given value, the candidate
is treated as a small filament; otherwise it would be removed. We have got the
edge of each filament whose length can be treated as the filament perimeter.
We set the perimeter threshold to be 25 pixels, and the long-to-short-axis ratio
threshold being 2 in our procedure. An example is shown in Figure 2(b). The
filament label should be updated after removing the sunspots. Then each filament
is labeled with a unique number. An example is shown later in Figure 7(a). This
method is used to filter out sunspots. With the same method, we can filter out
other features. In other words, we can adopt the method to automatically detect
sunspots, which will be implemented in our future work.
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i-1,j-1 i-1,j i-1,j+1

i,j-1 i,j

0 0 3

4 1

0 0 3

4 3

0 0 0

0 1

0 0 0

0 3

0 3 0

0 1

0 3 0

0 3

(a)
(b)

(c) (d)

Figure 3. Scanning sequence (panel a) and three examples for the connected components
label method (panels b, c, and d).

4. Filament Feature Recognition

4.1. Perimeter

As mentioned above, we have the filament edge, which can be easily used to
derive the filament perimeter after the connected component process. It is done
by the integration of the distance connecting neighboring pixels along the edge
of each filament.

4.2. Position

We choose the geometric center of each filament, i.e. the centroid, as the location
of the filament. First, we find the centroid of a filament (xc, yc), i.e. we calculate
the average of the abscissa and the ordinate of all the filament pixels. Since
filaments follow the solar rotation and the rotation axis wobbles with time, the
position of a certain filament has an elliptic orbit in the plane of the sky. In
order to get the longitude and the latitude of the filament in the heliographic
coordinates, we use the Solar SoftWare routine “xy2lonlat.pro”.

It is noted that the center of the solar disk we used here is not that provided
in the header of the “FITS” file. After the Canny edge detection, besides the
locations of the filaments, we also got the boundary of the solar disk, and it is
the biggest connected component after the connected component processing. We
fit the circle and calculate the geometric center of the fitted circle, which is the
exact center of the solar disk.

4.3. Area

In our process, the area of a filament is the integration of the pixel area divided
by the cosine of the heliocentric angle, where the integration is taken in the

SOLA: FaD.tex; 7 February 2014; 0:32; p. 9



Q. Hao, et al.

(a) (b)

Figure 4. Examples of filament feature recognition. (a) The image after morphological re-
construction processing, the edge curve is full filled with white pixels, from which we get the
filament area. (b) The filament spines after morphological skeletonization and barbs removal
processing.

 (a)  (b)

 (c)  (d)

Figure 5. An example of a filament feature recognition. (a) A filament extracted from the
original image (i.e. Figure 1(a)). (b) The filament edge (i.e. the perimeter). (c) The filament
edge was filled with white pixels, from which we got the filament area. (d) The filament skeleton
(i.e. spines).

area enclosed by the edge curve. We use the foreground color (white) to fill the

edge curve so that the pixels inside the curve become white, then the white

pixels constitute the filament area. The algorithm is based on morphological

reconstruction (Soille, 1999). The edge curve with holes is filled with white

pixels. The hole is a set of background pixels (i.e. black pixels) surrounded

by foreground pixels (white pixels). An example is given in Figure 4(a) and an

extracted filament example is shown in Figure 5(c).
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4.4. Spine

The morphological skeletonization method is adopted to get the filament spine,
which is a stick-like skeleton, spatially placed along the medial region of the
filament. The skeleton is a unit-wide set that contains only the pixels that can be
removed without changing its topology (Kong and Rosenfeld, 1996). Iterations
of the morphological-thinning operation are employed for the skeleton method
(Haralick and Shapiro, 1992). Assuming that the input binary image is I (i.e.
a matrix only has values of 0 and 1), the details of the method are described
below:

First, the thinning processing of I by structuring-element pair (J,K) is defined
as

I ⊘ (J,K) = I − I ⊗ (J,K) , (10)

where ⊘ is the morphological thinning operator, J andK must satisfy J∩K = ∅,
where the symbol ∅ represents the empty set. I ⊗ (J,K), i.e. the hit-and-miss
transformation of set I by (J,K), is defined by

I ⊗ (J,K) = (I ⊖ J) ∩ (Ic ⊖K) , (11)

where⊗ is the hit-and-miss transformation operator, ∩ the intersection operator,
Ic the complement of I and the symbol ⊖ denotes the morphological erosion
operator.

Then, using the sequence of eight structuring-element pairs as shown in
Figure 6 to iteratively process the thinning operation:

IN+1 = (. . . {[IN ⊘ (J1,K1)]⊘ (J2,K2)} ⊘ . . .⊘ (J8,K8)). (12)

We let I0 = I, which is firstly thinned by the structure-element pair (J1,K1),
and then by (J2,K2), . . . , (J8,K8), the thinned result is defined as I1. Such a
process is repeated in order to get I2, I3, . . . , IN .

Finally, the thinning process repeats until IN = IN+1, i.e. the filament skele-
ton is the final structure that can not be thinned any more. Actually, some of the
resulting filament skeletons still contain small barbs. We use the morphological
hit-and-miss transformation to find the endpoints that constitute the barbs, and
then remove the barbs. This process may iterate several times because some of
these points may not be removed in one go. In our process it is iterated four
times. The filament spines on the whole Sun are shown in Figure 4(b) and an
extracted filament example is shown in Figure 5(c).

4.5. Tilt Angle

The tilt angle is defined as the fitted filament spine orientation with respect to
the solar Equator. After we get the spine, we use a linear polynomial to fit it,
by which we calculate the slope A. The tilt angle is arctan(A).
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Figure 6. Structuring-element pair (Ji,Ki) used to determine the filament skeleton. Ji and
Ki must satisfy Ji ∩Ki = ∅.

4.6. Feature Update

A filament may consist of several fragments. Thus, the filaments we obtained
after the previous processing may not be the real individual filaments, with some
being fragments of one filament. We adopt a “distance criterion” in order to find
the fragments belonging to a single filament. The method is the same as the “la-
belling criterion” filament tracking method used by Joshi, Srivastava, and Mathew
(2010), which is explained as follows: For a certain filament or filament fragment,
we compare it with all other fragments. The fragments would be recognized to be-
long to a common filament if the two fragments lie within the distance threshold.
The process is iterated until all fragments are checked. The filaments in the new
image are compared with those in the previous image. The experiential distance
threshold in our processing is taken to be 60 pixels for the MLSO data. After
this process, the fragment labels will be updated; if several fragments belong to
a common filament, the label should be unified, as shown in Figure 7(b). For
example, filament fragments number 11 and 15 in Figure 7(a) are recognized
as one filament, thus they are updated with the same label number 7. For the
update of the area, perimeter, and the length of spine, we just calculate the sum
of each fragment with the same label, while the position and the tilt angle must
be reprocessed.

Another criterion for identifying a broken filament is to compare the tilt
angle of the fragments, i.e. if the neighboring candidates have similar tilt angles,
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Figure 7. An example of the detection results. (a) After filament detection, each filament or
fragment is labeled with a unique number. It shows there are in total 17 filaments or fragments,
and each of their centers is labeled with a unique number. (b) Each candidate filament that
we obtained after the filament detection processing may not be a true one but a filament
fragment. After the feature update processing, the fragments belonging to a single filament
are labeled with the same number. For example, filament fragments numbers 11 and 15 in (a)
were recognized as one filament, thus they are updated with the same label number 7 in panel
(b).

they could be considered as one big filament. This method works fine for the
magnetic inversion lines that are not strongly curved, and will be incorporated
in our future version.

5. Filament tracing

Tracing the evolution of the filament is important for understanding the physical
nature and the solar cyclic variation of the filaments. In this section we present
a tracing method. Here we use the filament label, position and area as the input
parameters, which have been obtained in Section 4, to trace the daily evolution
of the filaments.

We define two input images as Iold (i.e. the image observed at the old time)
and Inew (i.e. the image at the new time). The main steps of the tracing method
are as follows:

i) We obtain the observation time of the two images Iold and Inew, then
calculate the time interval Tinterval;

ii) Using the latitude from the position features of each filament in Iold (or
Inew) in order to calculate the rotation velocity at this latitude ωold (or ωnew),
then calculate the possible longitude PLOold (or PLOnew) with the time inter-
val Tinterval. Here the PLOnew is calculated by assuming that the Sun rotates
backward;

PLOold(i) = CLOold(i) + ωold(i) · Tinterval (i = 1, 2, . . . , n) , (13)
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Figure 8. An example of filament tracing method between two images at 18:41:38 UT, 17
February 2001 and at 18:41:40 UT, 18 February 2001 respectively obtained by MLSO. (a)
The detected result of the earlier image, each filament is labeled with a unique number. (b)the
detected filament fragments are shown individually; (c) the updated filaments where fragments
are labelled to be one filament. (d) Final result, where the labels of the traced filaments are
updated.

PLOnew(j) = CLOnew(j) − ωnew(j) · Tinterval (j = 1, 2, . . . , n) , (14)

where CLOold(i) (or CLOnew(j)) is the current longitude of i-th (or j-th) filament
in Iold (or Inew). Here, we adopt the solar rotation angular velocity formula
(Balthasar, Vazquez, and Wöehl, 1986) to determine ωold(i) and ωnew(j):

ω(θ) = (14.551± 0.006)− (2.87± 0.06) sin2 θ , (15)

where ω is the angular velocity (degrees per day) and θ the latitude;
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iii)We obtain the possible position [PPold : (PLAold, PLOold)] of the filament
after Tinterval via the differential rotation formula, then calculate the distance
Dold→new between PPold and real current position [CPnew : (CLAnew, CLOnew)]
of the filament in Inew. Because the drift velocity of the filament is much smaller
than the solar rotation velocity, we assume the filament latitude does not change
in Iold (i.e. PLAold = CLAold, PLAold is the possible latitude and CLAold is
the current latitude in Iold). The distance Dold→new between PPold and CPnew

is:

Dold→new =
√

(PLAold − CLAnew)2 + (PLOold − CLOnew)2 . (16)

iv)We assume that the Sun rotate backward, then obtain the possible position
of the filament [PPnew : (PLAnew, PLOnew)] after Tinterval. A processing which
is similar to 3) is processed, the distance Dnew→old between PPnew and CPold

is:

Dnew→old =
√

(PLAnew − CLAold)2 + (PLOnew − CLOold)2 . (17)

v) For each filament in Inew, we check all of the filaments in Iold. Only if one
meets the following three conditions, the filament in Iold would be considered to
be the same filament and marked with the same label as in Inew:

Condition 1: Dold→new ≤ ED1 · Tinterval;
Condition 2: Dnew→old ≤ ED2 · Tinterval;
Condition 3: Areaold(current)/Areanew(j) ≥ ratio, (j = 1, 2, . . . , n),

where ED1 ·Tinterval and ED2 ·Tinterval are the distance threshold. In our program
we take ED1 = ED2 = 100 pixels day−1. Areaold(current) and Areanew(j) are
the filament area at the old and new times, respectively. Condition 3 gives the
maximum proportion of the deformation, i.e. less than the specified ratio of the
size of the previous filament. Here we set ratio = 50% . If the three conditions
are not satisfied, the filament at the new time would be identified as a new
filament and given a new label. This step continues until all filaments in Inew
are treated. Finally, the filament labels in Inew are updated. Figure 8 gives an
example of our tracing method, where panel (a) shows the detected result of the
earlier image with each filament labeled a unique number, panel (b) depicts the
filament fragments after detection, penel (c) shows the updated filaments where
several fragments merged into one filament, and panel (d) shows the tracing
result based on the earlier image in panel (a). For example, the filament 2 in
the earlier image (panel a) is split into three fragments (labeled 2, 4, and 5 in
the later image (panel b). After using the tracing method, they were labeled
the same number in the earlier image (panel a). Filament 13 in the later image
(panel d) was not detected in the earlier image (panel a), so it was given a new
number.

6. Performance

Our code was developed by using MATLABr Desktop Tools and Development
Environment on a desktop computer (CPU: Intelr CoreTM Duo 3.00 GHz). After
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processing of each image file, the result (such as the label, the position, the area,

and other features) are written to a text file. The average processing speed is

1 second for the filament detection in a single image and 3.5 seconds for the

filament detection and tracing in two images. We randomly selected 100 images

from the MLSO Hα archive for testing, and compared the automated result

with the manual ones. For filaments and filament fragments, the two methods

are overlapping by 85±2% and 88±4%, respectively. The error includes two types

of false recognition: One is that there is a manually recognized filament, but the

automated method cannot detect it. The other is that the automated method

detects a filament, but it does not appear on the real solar disk. It is noted that

the latter is rarely seen in our method. If a filament splits into several small

fragments, and the criterion of the ratio of the long to short axes is not satisfied

(i.e. being recognized as a sunspot), our method may miss these fragments. The

accuracy of the filament fragment number is a little higher than that of the

filament, which is due to the prescribed “distance criterion”. Sometimes several

filaments or filament fragments in one active region are so close to each other

and within the “distance criterion”, they are recognized as one filament. This

kind of false recognition does appear in our filament fragment detection and

we have to improve the filament fragments merging method in the future. For

other features such as position, perimeter, area, and spine, there are no standard

criteria to test the accuracy of the results processed by our codes. However, we

defined two indices in order to test the performance of our method, i.e. the “edge

closed rate” and the “area fully filled rate”. The “edge closed rate” is defined as

the number of detected filaments with edge curve closed as a percentage of the

total number of detected filaments among the 100 test images. We found that

the rate is 91%. This rate mainly depends on the selection of the threshold in the

threshold filter processing and the two thresholds in the Canny edge-detection

method. If the filament edge curve is not closed, it leads to low detection accuracy

and affects the subsequent processing. The “area fully filled rate” is defined as

the number of the detected filaments with edge curve fully filled with foreground

pixels as a percentage of the total number of detected filaments among the 100

test images, and the rate is 75%. After the edge detection is finished, if the

edge curve is not closed, the morphological object filling method could not fully

fill in the area enclosed by the edge curve. This leads to the decrease in “area

fully filled rate” and the detection accuracy rate. The filament spine is also

affected by the area problem, i.e. if the area is not fully filled, our method may

get a wrong topology of the filament after the morphological skeletonization

processing. Furthermore, if the barbs are located near the end of the filament

spine or the filament size is relatively small, the recognized spine may be shorter

than the real length after the morphological barb removal processing. The shorter

the time interval is, the higher the tracing accuracy is. Here, we set the default

time interval to be about one day, the accuracy of the tracing method is about

80%. In addition, we also test images from Big Bear Solar Observatory (BBSO)

Hα archive (ftp://ftp.bbso.njit.edu/pub/archive) to validate the versatility of our

method. The results are similar and satisfactory.
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7. Statistical Results of the Filament Latitude

We use our automated method to analyze 3470 images obtained by MLSO from
January 1998 to December 2009. In this section, we present the statistical results
of the evolution of the filament latitudinal distribution because of its relatively
high accuracy. Furthermore, from a statistical point of view, such results can be
significant in understanding the cyclic migration of solar filaments.

7.1. Butterfly Diagrams

For the period from January 1998 to December 2009, we process one image per
day and have detected 13,832 filaments. The temporal evolution of the latitudinal
distribution of these filaments is depicted as the scatter plot in Figure 9 (each dot
represents a single observation), where we can clearly see a butterfly diagram,
similar to sunspots. Because of the lack of observations in some periods, there are
several white vertical gaps in the butterfly diagram. From the diagram we can
see the distribution and the migration of the filaments. This butterfly diagram
indicates that the formation of the filaments mainly migrates towards the equator
from the beginning to the end of the Solar Cycle 23.

7.2. Drifting Velocity

From the butterfly diagram we only get qualitative results, as mentioned by Li
(2010). In order to make a quantitative analysis, we adopt the monthly mean
latitude of the filaments in the northern and southern hemispheres, respectively.
The calculated results are plotted in Figure 10. It can be seen that the monthly
mean latitudinal distribution of the filaments has three drift trends: from 1998 to
the solar maximum (2001) the drift velocity is very fast. After the solar maximum
it becomes relatively slow. After 2006, the drift velocity becomes divergent. A
linear fitting is used to the data points in different periods, resulting in an average
drift velocity being 0.0138 degree day−1, or 1.86 m s−1, during 1998–2001, and
0.0017 degree day−1 or 0.23 m s−1 during 2002–2006 in the northern hemisphere.
It is 0.0134 degree day−1, or 1.80 m s−1 during 1998–2001 and 0.0029 degree
day−1, or 0.39 m s−1 during 2002–2006 in the southern hemisphere. Here, we did
not fit the monthly mean filament distribution after 2006, because it becomes
divergent near the solar minimum.

Since the normal solar activity is usually applied to the events with latitudes
lower than 50◦ (Sakurai, 1998; Li et al., 2008), we analyze the filaments with
latitudes lower than 50◦. The calculated result is plotted in Figure 11. It can
be seen that the monthly mean latitudinal distribution of these filaments again
has three drift trends: From 1998 to the solar maximum (2001) the drift velocity
is fast, i.e. 0.0123 degree day−1 or 1.66 m s−1 in the northern hemisphere and
0.086 degree day−1 or 1.16 m s−1 in the southern hemisphere. After the solar
maximum the drift velocity becomes relatively slow, i.e. 0.0022 degree day−1 or
0.29 m s−1 in the northern hemisphere and 0.0010 degree day−1 or 0.13 m s−1

in the southern hemisphere, respectively. After 2006 it becomes divergent. These
results are similar to those of the entire latitudinal distribution. The reason is
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Figure 9. Butterfly diagram of filaments from January 1998 to December 2009 in the Solar
Cycle 23. Each dot represents a single observation.

easy to understand: among the 13,832 filaments we detected, only 1,130 filaments
have latitudes higher than 50◦. In other words, the detected filaments are mainly
distributed in latitudes lower than 50◦. There is no obvious difference between
the northern and the southern hemispheres. These results are similar to the
statistical results of Li (2010). Similarly, we plot the monthly mean latitude of
the filaments with latitudes higher than 50◦ in Figure 12. However, no clear
trend is discernible.

In order to find the migration of the individual filaments above 50◦, we employ
our tracing method and set three additional conditions for tracing:

Condition 1: The filament positions are higher than 50◦ at the first detec-
tion;

Condition 2: The time interval is less than two days. In other words, in three
consecutive days, observations are available in at least two days. The purpose of
this condition is to improve the accuracy.

Condition 3: The total time lapse should be less than ten days, because
one specific filament observation can be clearly visible in less than a half-period
of the solar rotation. If the time lapse is greater, the accuracy of the tracing
method is lower.
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Figure 10. Temporal evolution of the monthly mean latitudinal distribution of filaments from
January 1998 to December 2009. Linear fittings are shown by solid-red lines.

We plot the tracing results of the latitude versus normalized time in Figure

13. Here the normalized time means that we put the dates of the first detection

of the filaments as the start time. The drift velocity distribution histograms in

the northern hemisphere and the southern hemisphere are shown in Figure 14.

In the northern hemisphere, there are 103 filaments (which occupy 57% of all

filaments satisfying the conditions and being traced with the latitude higher

than 50◦), which migrate towards the polar region. The average drift velocity

is 0.7126 degree day−1 (96.2 m s−1). In the southern hemisphere, there are 97

filaments (which occupy 61% of all filaments satisfying the conditions and being

traced with latitude higher than 50◦), which migrate towards the polar region.

The average drift velocity is 0.7771 degree day−1 (104.9 m s−1). From Figure 14,

we found that the drift velocities of the filaments with latitudes higher than 50◦

are divergent, while most of these filaments migrate towards the polar region

with relatively high velocities. Such a result is similar to that of Topka et al.

(1982). However, they found that the poleward drift velocity is about 10 m s−1,

which is much slower than ours.
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Figure 11. Temporal evolution of the monthly mean latitudinal distribution of filaments with
a latitude lower than 50◦ from January 1998 to December 2009. Linear fittings are shown by
solid-red lines.

8. Conclusions

We have developed a method to automatically detect and trace solar filaments
from Hα full-disk images. The program consists of three parts: First, a prepro-
cessing module is applied to correct the original images. Top-hat enhancement
enables us to clearly distinguish the filaments from non-filament features. Sec-
ond, we introduce the Canny edge-detection method to segment and detect
filaments. This method gives us a precise filament edge. Third, our program
routines recognize filament features through the morphological operators. We
randomly selected 100 images from MLSO observations to test our method,
which is demonstrated to be robust and efficient. For the filament detection,
the similarity between the machine recognition and human vision is 85 ± 2%.
The solar rotation, the filament position, and the deformation of the filament
have been considered in order to trace the filament evolution. The accuracy of
the tracing method is about 80% when the time interval is about one day. In
addition, our program can process images not only in different file formats, but
also from different observatories.
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Figure 12. Temporal evolution of the monthly mean latitudinal distribution of the filaments
with latitude higher than 50◦ from January 1998 to December 2009. The upper panel is for
the northern hemisphere and the bottom panel is for the southern hemisphere.
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Figure 13. Traced filament latitude variation versus normalized time. Here the normalized
time means that we put the dates of the first detection of the filaments as the start time.The left
and right panels are for the northern and southern hemisphere, respectively. The solid-black
line represents the temporal and spatial variation of the traced filament latitudes, and the red
dot indicates the filament where and when it was detected and traced. The dash-blue line is
the linear fitted average of all traced filament temporal and spatial variations.
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Figure 14. Histograms of the drift velocity distribution of the filament whose latitudes are
higher than 50◦. The left panel is for the northern hemisphere with 103 filaments in total and
the right panel for the southern hemisphere with 97 filaments in total.

We used our method to automatically process and analyze 3470 images ob-

tained by MLSO from January 1998 to December 2009 . A butterfly diagram

of filaments is obtained, where we can clearly see that filaments move mainly

towards the equator in both hemispheres. In order to obtain more quantitative

results, we calculated the monthly mean latitudes of the filaments whose lat-

itudes are within 0◦ − 50◦ or higher than 50◦ in both northern and southern

hemispheres, respectively. Furthermore, we use our tracing method to trace the

evolution of the individual filaments with a latitude higher than 50◦. Our main

conclusions are listed as follows:

• The latitudinal migration of solar filaments have three trends in the Solar

Cycle 23: from 1998 to 2001 (the solar maximum) the drift velocity is fast. From

the solar maximum to the year 2006 the drift velocity becomes relatively slow.

After 2006, i.e. near solar minimum, the migration becomes divergent.

• About 60% filaments with latitudes higher than 50◦ migrate towards the

polar region with relatively high velocities in both northern and southern hemi-

spheres.

• The difference of the latitude migration of the filaments between the north-

ern and southern hemispheres is not obvious in the Solar Cycle 23.

We will improve our method to be more reliable and efficient, and apply it to

the observational data from our Optical & Near Infrared Solar Eruption Tracer

(ONSET) in Nanjing University (Fang et al., 2012).
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