Geometric Continuity, Feb 08 2001
Jorg Peters @

2Dept C.1.S.E., CSE Bldg, University of Florida, GainessjlFL 32611-6120, USA, e-mail:
jorg@cise.ufl.edu, tel: US (352) 392-1226

This chapter covers geometric continuity with emphasis corsstructive definition for piece-
wise parametrized surfaces. The examples in Section 1 steneed for a notion of continuity
different from the direct matching of Taylor expansionsdige define the continuity of piece-
wise functions. Section 2 defines geometric continuity fgonetric curves, and for surfaces,
first along edges, then around points, and finally for a wholalex of patches which is called
aG* free-form surface spline. Her@* characterizes a relation between specific maps witfile
continuity is a property of the resulting surface. The cosipon constraint on reparametriza-
tions and the vertex-enclosure constraints are highlayh&ection 3 covers alternative defini-
tions based on geometric invariants, global and regiomenemetrization and briefly discusses
geometric continuity in the context of implicit represetidas and generalized subdivision. Sec-
tion 4 explains the generic construction@f free-form surface splines and points to some low
degree constructions. The chapter closes with a listinglditeonal literature.

1. Motivating Examples

This section points out the difference between geometmtigoity for curves and surfaces
and the continuity for functions. The examples are formadah the Bézier representation.

Two C* function pieces join smoothly at a boundary to form a jaitft function if, at all
common points, theikth derivatives agree fox = 0,1,...,k. Since ther, y andz com-
ponents of curves and surfaces are functions, it is tempbndeclare that curve or surface
pieces join smoothly if and only if the derivatives of the qmment functions agree. However,
as the following four examples illustrate, this criteriagneither sufficient nor necessary for
characterizing smooth curves or smooth surfaces motiydtia definitions in Section 2.

The first two examples illustrate the inadequacy of the stethahotion of smoothness for
functions when applied tourves In Figure 1 the V of VC is parametrized by the two quadratic
piecesu, v € [0, 1],

ai(u) = [T~ w)® +[§]12(1 — wu+ [§]u?
and

a:(v) = [§] (1 —v)* + [§]2(1 — v)v + [{]v".
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Figure 1. Matching derivatives of the component functiond geometric (visual) continuity

are not the same: the V of VC is parametrized by two parabots with equal derivatives at

the tip, but the V shape is not geometrically continuous;@hef VC is parametrized by two

parabolic arcs with unequal derivatives at their commompdiut the C shape is geometrically
continuous.

Evidently, at the common poin; (1) = [J] = q2(0) the derivatives agree:
(Dar)(1) = [5] = (Da2)(0).

However, even with suitably cushioned end points, the V khoat be handed over to boys or
girls under the age of 1 for fear of injury from the sharp carndatching derivatives clearly

do not always imply smoothness. Conversely, smoothnessrameémply matching derivatives.
The C of VC is parametrized by the two quadratic pieees, € [0, 1],

as(u) = [3] (1 —w)* + [3]2(1 — w)u + [§] v?
and
qi(v) = [§1(1 = 0)* + [ % ]2(1 —v)u +[ 3 ]0%

The C is visually (and geometrically) smooth at the commoimtpg; (1) = [J] since the two
pieces have the same vertical tangent line but the derestie not agree:

(Das)(1) = [ %] # [ %] = (Da4)(0).

Both examples could be made consistent with our notion ofiigoity for functions if we ruled
out parametrizations with zero derivative and substitutee> 2v in q4. In the case obur-
faces the distinction between higher-order continuity of thengpmnent functions and actual
(geometric) continuity of the surface is more subtle.

In two variables, we contrast the smoothness criteria fofases with the concept valid
for functions by looking at two examples involving polynahpieces in total degree Bézier
form, i.e. de Casteljau’s trianglé®?. A necessary and sufficient geometric criterion for two
polynomial pieces,,p, : R? — R to join C' along a common boundary, is the ‘coplanarity
condition’??, illustrated in Figure 3eft; the function pieces; andp, join C'' if all subtriangles



Figure 2. (eft) The 6-point control net of one degree 2 patch in Bézier f@mrawn inthick
lines. The two subtriangles in the control net that include the poitts of a boundary of the
patch define the derivative along that boundary. For two extfjacent patches these subtrian-
gles are mirror images and coplanar with their counterpgartse other patch. Still the surface
defined by the patches is not tangent continuous as the ereetbe surface demonstrate. (The
creases are visible in the silhouette and in the change facushadingiight).

of the control net that share two boundary points are copl&iace the coplanarity of the edge-
adjacent triangles of the control net is a geometric coteii is tempting to use it as a definition
of smoothness for surfaces consisting of the 3-sided patdHewever, the criterion is neither
sufficient nor necessary.

To see that coplanarity of the edge-adjacent trianglesettmntrol net does not imply tan-
gent continuity of the surface consider the eight degre@®dular polynomial patches whose
control nets are obtained by chopping off the eight cornéis cube down to the midpoint of
each edge (Figure 2). The edge midpoints and face centeleafube serve as the control
points of 8 quadratic 3-sided Bézier patches. For exantipéepatch in the positive octant (with
thick control lines in Figure 2gft) has the coefficients

]
H .

Figure 2,right shows that the patches join with a sharp crease at the middieio common
parabolic boundaries. Indeed, the normal at the midpE)Zifx]gt] of the equatorial boundary of
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the positive octant patch i%2/3 , but to match its counterpart in the lower hemisphere, by
1/3

symmetry, thez-component would have to be zero. Upper and lower hemisgherefore do
not meet with a continuous normal.
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Figure 3. (eft) Two function pieceg, andp, join C" if all subtriangles of the control net that
share two boundary pointsttiped are coplanar (Farin’€'' condition). ¢ight) Even though the
middle cross-boundary subtriangle pair (where the patbbltgp andq are placedright) are
not coplanar the two Bézier patchp$A) andq(A) join to form a tangent continuous surface.

Conversely, the geometric coplanarity criterion is notessary for a smooth join. The two
cubic piece®, q with coefficients (c.f. Figure 3)
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have the partial derivative3; p and D,q along andD,p, respectivelyD; q across the common
boundary:

(Dip)(1.0) = [ ¥ ] (1 0+ [F] 20— e+ [ F] 2 = (Daa)(0.1)
(D2p)(t,0) i

(D1a)(0,8) = | 6] (1 =02 + [ S| 20— 0y + | | 2
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With the help of Maple we can check that the partial derivegiare coplanar at every point of
the boundary, i.edet (Dip(t,0), Dop(t,0), Diq(0,t)) = 0, the zero polynomial irt. Since
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Figure 4. If the patches meet with tangent continuity, tes$wersal derivativé),.p of p

must be a linear combination of the versal derivative vedigg in the directione along the
preimagel of common boundary(E) and the transversal derivativg,. g in the directione*

perpendicularte: D,.p = aD.g + 6D, g.

the surface pieces neither form a cusp nor have vanishingatiges along the boundary, the
normal direction varies continuously across. Maple alsbdg
72 66 12
det(Loﬁ] , [309] , [3%3}) = 5832 £ 0
showing that, in contrast to@' match between two functions, edge-adjacent subtriangts pa
need not each be coplanar.

1.1. Differentiation and Evaluation

Even though derivatives of the component functions by thedwes do not yield a correct pic-
ture of curve and surface continuity, the definition of getmaeontinuity relies on derivatives.
And since we work with functions in several variables, somagfication of notation is in order.

First, it is at times clearer to denote evaluation at a p@ittty f |, rather thanf(@Q), evalu-
ation on points along a curve segménby f |, and to use the symbelfor composition, i.e.
gor = g(r). We use bold font for vector-valued functions but, somewhebdnsistently but
ink-saving, regular font for directions of differentiatie and points of evaluation, say or 0,
the zero vector irR”. The notationD" for the xth derivative in one variable is consistent with
the notation in two variables from [102]:

Definition 1.1 (differentiation) The differentialsD*p of a mapp : R? — R*® with z-, y- and
z-componentp®, p¥!, p*! and the domain spanned by the unit vectersL e, are defined
recursively as

2] te.) — plel De,pl”!
Dpp[ﬂ ‘Q = lim P (Q + ez> P (Q>, De1P = Deip[y] , Dp = [Delp De,p s
' £10 t D., pl*!

—1 2 De; Deyp DeyDeyp
D*:= DD*"', eg.D’p = DDp = | ) 20 peper |

If the JacobianDp is of full rank 2,p is calledregular We abbreviaté),p = D, p.



In one variable(see e.g. [17])
Z Z e ((D'g) o p) - (D'p)* .- (Dp)

This combination of the chaln rule and the product rule isecHFaa di Bruno’s Lawand the
bookkeeping is hidden in the index set

. . - = k!
K(7> = {k72071217 » K, Zkzz77 ZZ’%ZKJ}, CK()) = kl'(l')klkn'(ﬂl)kmj
i=1

In two variablesD*g (no subscript) is a-linear map acting of®*** (x terms). Its component
with index (iy, 4o, ... ,ix) € {1,2}*is D;, D;, - - - D;,g. The arguments ab*g are surrounded
by (-) and(a,a,... ,a,b,... ,b) with a € R? repeated times andb € R? repeated times is
abbreviated ag(a)’, (b)7). We can then write the bivariat@aa di Bruno’s Lawas

Di(gor) = ZZCK( r)<(D}r)k1,...,(Dfr)k~>.

7=0 K
For example

= o [ ] ]

= amme%f + (ambm + ambm)DlDQf + alllp D2f.

2. Geometric Continuity of Parametric Curves and Surfaces

This section defineth order geometric continuity, shoé* continuity, as agreement of
derivatives after suitable reparametrization, i.e. paraping [57], ‘geometric continuity is a
relaxation of parametrization, and not a relaxation of sthoness’. Section 3 will show th&t!
andG? are equivalent notions to tangent and curvature continuity

2.1. Joining Parametric Curve Pieces
Definition 2.1 (G* join) TwoC* curve segmenigandp join atp(0) with geometric continuity
G* viatheC* mapp : R — R if

Dﬁ(gop)‘ozDHp‘o HZOJ"'JI{;J DP|U>07DP‘07A0
The mayp is calledreparametrizationif p = id, the identity map, thep andg are said to join
parametricallyC*.

The contraintDp |, > 0 rules out cusps and other singularities.
With the abbreviatiof*p |o = [p |0, PP o, ... , D¥p |o]T € RE+Dxn for p € R* Faa di
Bruno’s law can be written as

1
D2p 2
. . D?p (Dp)
i*p lo = A(*g) [6(0) A= D3p o (Dp)? o, «=3DpD?p.

Dfp ... .. ... (Dp)*



R 9,
g1t g2
F’]+2IO 2 2
9y
P2

Figure 5. The averag®¢ld lines) of two curves whose piecpsandg; join G can be tangent
discontinuous, i.e. its pieces do not even j6ih

The matrix of derivatives of is calledG* connection matrix[13], [109] or 3-matrix [7] and
j¥p is thek-jetof p. In one variable, two regular mapsandq can both be reparametrized
so thatp(p,) andq(p,) have the preferredrclength parametrizatio??, i.e. unit increments
in the parameter correspond to unit increments in the leafithe curve. Theg*(p o p,) |o =
i*(a pq) lo

G* splines with different connection matrices do not form a owon vector space; in partic-
ular the average of two curves that jaiif is not necessarilg:* as illustrated in Figure 5: if;
andq; join G* via p; atp,(0) andp, andq, join G* via p, atp,(0) = p:(0) then, in general,
there does not exist a reparametrizaticso that(1 — o)p; + ops joins G* with (1 —0)g, +og,
atp,(0) = p1(0). That is, there does not generally exist a connection matisxch that

Al(1 - 0)j"g1 + Ayojtgs = A((1 — 0)j"g1 + 0j*g).

In the example shown in Figure §.p; = [§ 4], j'gr = [0 13], A1 = [§9], andj'g, =

j'pa = [01], butj' (pi + p2)/2 = [0 §] whilej! (g, +g)/2 = {8 fﬁ] and there does not exist

aG' connection matrixd = [§ 5,] such tha§' (p; + p2)/2 = Aj' (g1 + g2)/2.

However, if wefix a (k; + 1) x (k; + 1) connection matrix at théth breakpoint, we can
construct a space of degreeplines with prescribed*: joints and knots of order — ;. Such
a spline space can be analyzed as the affine image of a ‘valisgine’ whose control points
are in general position [109].

Conversely, any given polygon can be interpreted as thaagmblygon of aG* spline: by
interated linear interpolation the polygon is refined int@avhose vertices, when interpreted as
Bézier coefficients, define curve pieces that j6ih e.g. [11] fork = 2, [37] for Frénet frame
continuity ( see Section 3.1) and [109], [110], [111] for tieneral case.

There aredegree-optimal constructiorier this conversion, i.e. constructions that maximise
the smoothness of the spline for a given number of cornertbatistranslate into polynomial
degree. Via the notion of order of contact (see Section 3rigathness is closely related to
the ability to interpolate, say the data of a previous sptegment. Following the pioneering
paper [19] where it was observed that a cubic segment can ofterpolate position, tangent
and curvature at either end point (see also [63],[21]), Kact Hollig [60] conjectured that,



Figure 6. Reparametrizatian: R? — R? and geometry maps, g : R? — R®. For aG* join

viar the traversal derivativeB”, (g o r) andD*, p have to agree along the common boundary
p(E) fork =0,... k. The dashed lines indicate thd4tF') need not be a boundary edge of the
domain ofg.

under suitable assumptions, “splines of degfee can interpolate points on a smooth curve in
R™ with order of contack — 1 = n — 1+ |(n — 1)/(m — 1)] at everyn' knot. Moreover,
this geometric Hermite interpolant has the optimal appration ordert + 1”7 (see also [97]).
CHECK

2.2. Geometric Continuity of Edge-Adjacent Patches

We now turn to a constructive characterization of the smioegls osurfacesassembled from
standard pieces used in CAGD, such as 3- or 4-sided Béziehgms or tensor-product b-spline
patches.

Definition 2.2 (domain, reparametrization, geometry map, @tch)

e Adomainis a closed subsek of R?, bounded by a finite number efigest.

e LetA; and A, be domains. AC* reparametrizations a C* continuous invertible map
r : R? — R?, defined in a neighborhood of an edfjeof A, and mapping exterior points
of A, to interior points ofA.,.

e A C* geometry maps a mapg : A — R? such thatD*g. x = 0,... ,k is continuous
anddet(Dg) # 0; g(A) isaC* patch

The requirement that geometry map be regular,de¢(Dg) # 0, rules out geometric singu-
larities, such as cones, cusps or ridges, and avoids spasie$ — but it off-hand also rules out
singular maps that generate perfectly smooth surface$, ([&d], [15], [98]). These construc-
tions are shown to be smooth by a local change of variable¢nabves the singularity.



Defining the domain boundary to consist of a few edges is pégiCAGD usage: we could
have a fractal boundary separating two pieces of the sametbrsarface.

The mapg is called geometry map to emphasize that the local shapen(ftuhe extent) of
the surface is defined hy. The image og in R? is the patch.

The reparametrization is not defined to mag' to aboundary edgef A, but may map to
any non-selfintersecting curve segmef) in A,. This allows for constructions that include
trimmed geometry maps, as indicated by the restrictionetriangular domain of in Figure 6.
That is,r not only modifies the flow of parameter lines (images of stralges in the domain)
but it can also restrict the region of evaluatiorgofThe reparametrizationmaps outside points
to inside points to prevent the surface from folding bacloatgelf in a180°-turn. We now glue
two pieces together (c.f. Figure 6).

Definition 2.3 (G* join) TwoC* geometry mapp andg join alongp(E) with geometric con-
tinuity G* via theC* reparametrizatiom if

Dp|p=D"(gor)|g, k=0,... k.
If r = id, the identity map, thep andg are said to joinparametricallyC*.

Sincep, g andr are C* maps,G* continuity alongp(F) with C* reparametrization is
equivalent to jusk + 1 equalities corresponding to differentiation in the direote perpen-
dicular to the edgé”:

Dfplg=Df(gor)|p, k=0,.... k.

By Faa di Bruno’s Law we need only know the Taylor expansiprtakth order ofr andg
along the edgé-.

ExampleConsider twaC? geometry mapg andg, and aC? reparametrizatiom : r(¢,0) =
(0,t). As shown in Figure 6F = {(¢,0) : ¢t € [0,1]} andet = (0,—-1). A less common,
but permissible parametrization éfis {(¢2,0) : ¢ € [0, 1]}. Such a definition would make the
subtle point thatz° andC? can differ as well, since the reparametrizatign 0) = (0, /%) is
required to equate the derivatives along the boundaryp éhdg are polynomials of the same
least degree then can only be linear angp andg share the same parametrization along the
edge). We write the conditions fgr andg joining G? via r alongp(F) in several different
notatlons commonly used in the literature, e.g. the mixatigdalerivative may be written as

Suv = 3u37) = 312g D12g - D81,62g

|y |(t,0) =gor |(t,0),

D1p |10y = Dg |rit0) - (Derr) |(1,0)
= De,8 l(0,0)(Dext)" [10) + Dea (0,0 (Dex) J(10),  (Derr) >0,
= gu(0,1)a(t) +8.,(0.1)B(t), B> 0,

D2 o) = (D8 |rw0)) {(Derr) |e, 0), (Derx) |(1,0)) + Dg |rroyD2ir |(1,0)
= ...+ Dyg (D ir) |(1.0)
= 8ua(0, 1)’ () + 284, (0, )au(t) B(t) + 800 (0, 1) 5*(¢)

+8u(0,2)o(t) + g,(0,)7(t).
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Figure 7. Patches meeting at a corfler= g;(F;(0)), j = (« mod n) + 1; E;(0) = E; (1).

In particular forp andq defined on page 4 we compufe. q |0y = Dp |0 - [33{& } .

Fhe example illustrates that it is convenient and shortgite separate names,
«, (3, 0,1, to the partial derivatives af evaluated on the edge. We can in fact specify just the
partial derivatives rather than all of if we group the two components of each derivative into a
vector we can definein terms ofC*~7-vector fields along(E) (Lemma 3.2 of [52]). Provided
the derivatives are sufficiently differentiable in the diien e* perpendicular tdz we thereby
prescribe the Taylor expansion ofby the Whitney-Stein Theorem).

2.3. Geometric Continuity at a Vertex

We extend our new notion of geometric continuitynt@atches meeting at a common point,
e.g. at a point of the global boundary where the patches may without necessarily enclosing
the point (c.f. Figure 7).

Definition 2.4 (G* enclosure) TheC* geometry mapg; : A; — R3,i = 1,... ,n, meetG*
viar; ;1,4 =1,...,n— 1 with corner@ € R? if

e g;andg;,; join G* viar, ;. alongg;1(Ei;1),
e g;(E;(0) = Q,

e the normalized tangent vectors of eaglsweep out a sector of a disk and thésegent
sectordie in a common plane and do not overlap.

TheC* geometry maps form &* enclosure of the verte® if additionally g, andg; join G*
viar,, alongg;(E,).
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Figure 8. The derivative)" D} p; of a geometry map; at the central vertex is represented
symbolically as a, o, or ¢ placedm units into the direction of the first edge andnto the
second. Elements of the total-degree 2jfeare markeds, elements of the coordinate-degree
2-jet J? are markedk or o, elements of* are marked, o, or . The higher-order derivatives
HY appearing on the right hand side of the vertex-enclosurstcaint system are marked by
diamonds>.

The regularity of the”* geometry maps implies that each tangent sector is the 1 t@denof

a corner formed by the non-collinear edgés and £ of the domain. Moreover, the geometry
maps do not wrap around the corner more than once. The comtane eferred to above is
therefore the tangent plane and, by the implicit functicgotlem we can expand the geometry
maps at) as aC* functions.

Where a point ignclosedyy three or more patches, additional constraints @mdg arise
because patches join in a cycle. If one were to start with atehpand added one patch at
a time, the last patch would have to match pairwise smoothoesstraints across two of its
edges. More generally, if all patches are determined sanatiusly, a circular interdependence
among the smoothness constraints around the vertex re$uits circular dependence implies
composition constraintsn admissible: andvertex enclosure constraintsn theg;. The latter
imply for example the important practical fact that it is mbiays possible to interpolate a given
network ofC'!' curvesby a smooth, regularly parametrized tangent-plane coatistsurface
with one polynomial patch per mesh facet [82]. A charactgiin, of when a curve network
can be embedded into a curvature continuous surface carubd fio [53].

To discuss the details, thiejet notation (c.f. page 7) is helpful:

Definition 2.5 Thecoordinate-degrek-jet, J*p, is a vector of directional derivative®i D)p,
i,7 € {0,1,...,k} sorted first with key+ 7, then with key. Thetotal-degreé-jet, j*p, consists
of the first(%) entries of the coordinate-degrésjet.

For example, as illustrated in Figure 8 (see also [58], {&4]),

j2p = (pa Dlpa DQP, D%pa D]-DQpa D;p),
J?p := (p, D1p, D1p, Dip, D1 Dyp, Dip, DiDyp, Dy Dip, DI D3p).
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The composition of:-jets, j*g |.(r) o j*r |r = j*(g o r) |1, is associative and has the identity
map id as its neutral element. ksjet notation the conditions for geometric continuity are

jkP ‘E :jkg ‘r(E) Ojkr ‘E
2.3.1. Composition Constraint on Reparametrization Maps

Assume that;,;;1(0) = 0,0 € R. Sinceg; is regular, by the implicit function theoreig;
has a left inverse in the neighborhoodiodnd

jkgl |0 :jk(gn © I‘n,l) \0 =...= jk(ga 0r230...0 I‘n,l) \0

ij(g1 O0rypo0...0 I‘n,l) |0

implies that ab) the Taylor expansion up teth order of the composition of all reparametriza-
tions agrees with the identity, i.e. the Composition Caaistr

jk(rl’Q o...0 I'n71> |[) = jk|d |U-
ExampleFor k = 1 andn = 3 and withr; ;(0,¢) = (¢,0) we have

r'i20Ty30T3] \0 =0,
Dr1,2Dr273Dr371 ‘0 =D |d |0.

For scalars\ andy, the second equation is equivalent to the matrix product

{)\1 1] A2 1] [Ag 1}_[1 0]
1 Of |2 Of |z Of |0 1

which is in turn equivalent to

/,61/,62/,6‘;:—1, )\Jlj,qz 1, Z:1,2,3,7: (Z mod 3)+1

In general, theG' constraints at) imply []._, u; = (—1)*. Section 7.2 of [52] shows the
expansion of the nonlinear constraints fo£ 2. o

Lemma 2.1 A symmetricreparametrizatiorr;; = r that satisfies the Composition Constraint
for a givenn is defined by

2

r(0) =0, Dr:[%‘fl("‘)é], a:?ﬂ, Dfr =0,k > 1.

ProofThe eigenvalues dbr are then th unit rootse™v 1 and thereforédr, , Dry 5 . .. Dr,,; =
(Dr)* = Did. Since, by Faa di Bruno's law, at least one factor of the egmanofD*(r; s orgs30... 01, )
is a higher derivative of and hence”(r;sory30...0r,;) =0, forx > 1. D
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2.3.2. Vertex Enclosure Constraints

Once the reparametrizations satisfy the Composition Caimsta second set of constraints
governs admissible choices of geometry maps. Sinc&theonstraints of two edge-adjacent
patches have support on the fikdayers of derivatives counting from each edge, the congsai
across two consecutive edges of a geometry map share allearibe derivative®]” DI with
m < k andn < k at the vertex, i.e. overlap on the coordinate-dedrget of the geometry map
at the vertex (markere ando in Figure 8).

If n is the number of patches surrounding the vertex, then threre(a + 1)? overlapping
continuity constraints and an equal number of variablegénform of derivatives in the corre-
sponding coordinate degrégetsJ*p,. Can the constraints can always be enforced by choosing
J¥p, appropriately? Already fok = 1, the resultingin by 4n constraint matrixM is not in-
vertible ifn is even but it is invertible for odd. Fork > 1, more complex rank-deficiences arise
while the right hand side is in general not in the span of thestraint matrix: unlike the univari-
ate case, where we consider only the firsterivatives forG* joins, the G* vertex-enclosure
constraints involve derivatives of up to ordst!

Depending on the data and the construction scheme, some bigher derivatives are fixed.
For example, prescribing boundary curves pins dawrJp for all i. Even when the goal is
to just identify degrees of freedom of a free-form splinecgp86],[64], the underlying splines
must have consistent derivatives up to orgler There is one well-studied exceptional case: if
the cornen) is the intersection of two regul@* curves anch = 4 then the constraint system
becomes homogeneous, removing the linkage betweeh-jbts and the higher derivatives.
Since the constraint matrix is additionally rank deficid@nsipossible to interpolate the curve
data by low-degree, parametricallif surfaces [40], [39]. The corresponding free-form splines
form the space of tensor-product splines [18].

When the reparametrizations are linear as in Lemma 2.1 tegrmining the matrix rank is
similar to determining theimension of a spline spa¢2], however with the additional require-
ment that the ‘minimal determining seéb]" D p, be symmetric. The analysis of the dimension
of spline spaces allows choosing one geometry map comykatelthen finding extensions that
respect the continuity constraints. This misses the cruark deficiencies that depend on the
parity of £ andn.

The vertex-enclosure constraint is weaker than dompatibility constrainte.g. thetwist
compatibility constraint requires that the mixed derivatives be presdribonsistently since
D,D,p = D,D;p holds for a polynomial finite element (see e.g. [4]). Mixedidaives
at a vertex can be prescribed inconsistently if a patch ist&rpolate given transversal deriva-
tives along abutting edges. Incompatibility can be accamtexd by using poles or singular
parametrizations (see page 4,(2), 3rd and 4th item).

The main task ahead is to characterize the rank deficienfigea(k + 1)* x n(k + 1)?
matrix M of the G* constraint system

DDy (p;y —piory) |o=0 forn,me{0,... . k},i=1,...,n

in the variablesD"D3p; |o,n,m € {0,...,k},i = 1,... n. In terms ofk-jets andH} :=
(DS ™ DL m=1.... kio... x—m» the vector of higher derivatives qf;, for example, H? :=
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(D3p;, D3 Dsyp;, D{p;), the constraint system reads (all blank entries are zero)

I —M,
I —M;
. . ] _M
M |Tp;| = |NHEF], M= o
: : I M,
Mkkz
My O . T _. 10
M; =: [ . Mci:|7 M., =: * .. and N, =: |:Nci:|.
7 * My 7

As for connection matrices in the univariate case, pageeretttries of eachk + 1)% x (k+ 1)?
matrix M; and eachk + 1)? x k(k + 1)/2 matrix N; are derivatives of;. M, ; corresponds to
the (k + 2)(k + 1)/2 homogeneousonstraint§*p, | = M, ,;j*p; that involve only derivatives
of total degreé: or less ¢ in Figures 8 and 9) and that can always be enforced by choosiag
of the jets, say*p,, and extending it to the remaining patches; that is, thd-titgreek-jets
represent a single polynomial expansion up to total degratthe vertex, a characterization
that is also known as the + 1-Tangent Theorem [78], [55].

Each submatri¥/, ; corresponds to the remainikgk + 1) /2 constraints that involve deriva-
tives of total degree greater tharithe diamonds in Figure 8 and 9). By blockwise elimination,
the rank ofM equals/ — || M; and the solvability for arbitrary right hand side dependtera
removal of the homogeneous constraints, only on the radk-of [ . ;. Each submatrix/.
decomposes further into skew upper triangular matriegs ; of size/ x ¢ that are grouped
along the diagonal.

ExampleFor k = 1 we have the constraints @fc.f. Figure 9) and-,; := D¢Dbr |,

00 : D?Dgpi = D?DgpiH

01 : DYDyp; = DiDIpiy1

10 Dy Dyp; = ADy Dypis1 + Dy D,y

11: DiDyp; = rgll}D}Dgpi+1 + I‘?ﬂD?D;Pv:H + AD{Dpii1 + puDiDypiyy.

That is, dropping the subscripfor simplicity, each matrix-blockM N] of G' constraints has

the form
00 10 01 11 20

00 1

10 A i

01 1 0

R T

HereN is the last column, below ‘20’. The entriesn to the left of the matrix indicate that the
row corresponds to the constraib{” D7 (p; 1 — (p; or;)) = 0 while the entries on top indicate
the derivativesD{" DI p; that enter the constraint as variables. For example, thawol20’
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[o]
11
. 10
£ °© L

Figure 9. The total-degrekjet (o) represents the same linear function for all patches. The
n = 6 constraints involving thel'l’ derivatives D{ D} (o) in the coordinate-degrekjet but

not the total-degreé-jet give rise to & x 6 matrix M, that is rank deficient by 1, i.e. of rank
5. This (vertex-enclosure) constraint can only be solvatefright hand side, defined by the
(component normal to the tangent plane of th&) derivatives D? DY (o), lies in the span of
the constraint matrix. If all reparametrizations are thmeathis is the case exactly when the
alternating sum of the20’ derivatives is zero, i.e. if the average of the elementskedr-
equals the average of the elements marked

2,

corresponds to the variable?p,. The constraint rows labeled ‘00’,01’, and ‘10’ corresjbn
to the total-degree 1-jet and are solvable leavjhg free to determine the tangent plane by
its three variable! DIp, |¢ = p1(0), Dip:(0) and D,p,(0) with normaln = D;p,(0) A
D,p;(0). The (more interesting) constraint matr{, corresponds to the constraint row and
column ‘11’. Withp!! = n- D] Dlp; andp?® = n - D?p;

I —m pi' Aip7°
1T = p)' B Aap3°
— Hn 1 prlll )\npr210

By the Composition Constraint on page 12,_, 1, = (—1)". Therefore the rank of the matrix
isn— 1if nis even and if n is odd [107], [108], [27], [124], [81], [28]. Moreover, if we
assume symmetry, i.@;, = —1 and)\; = A fori =1,... ,n, and ifn is even then the vectar
with v(i) = (—1)" spans the null space af. and therefore thalternating Sum Constrairtas
to hold for the system to be solvable (c.f. Figure 9)A B« 0 then

n

0=> (-1)p}".

=1
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Fork = 2, [M N| has the form

00 10 01 20 11 02 21 12 22 30 31 40
00 1
10 A
01 1 0
20 r[;o] 1‘[220] A2 20p p?
11 rgll] r[lzl]
02
21 r[;]] 1‘[221]

12 rm] 1‘[122]

22 r[21] r[222]

7

B C 2xp p? A2
E u A
H I J K up?> L 22\ X

QAT ==

where
A:=AD+rl), B:=puD+AE+1y), C:=uE, D=2l E.=2
G:=D?/2+ 2 +2el Ho=DE+ 2l 4 onel 2l 1= E2/2 4 2%,
J=2uD+2\E, K :=2uE, L:=2\D+ra+2\u.

Fork = 2, [M N] decomposes into the upper léftx 6 block M, and, from columns ‘21’ ‘12’
and 22’,

e ] sl o [0 ]
o A R g (W

o

Remark:C, J andK above depend directly ob andE in the C? reparametrization matrix.
To define a weaker notion of continuity in the spirit of Fréframe continuity for curves of
Section 3.1 one would choogg J and K independently.

For the remainder of the discussion we assume that, alire linear and equal to, as in
Lemma 2.1 (see [83] for a more general analysis and [29] a2# [fbr a discussion of the case
k = 2 in terms of Bézier coefficients). Such equal reparamdianas the natural choice for
filling ‘ n-sided holes?? and does not force symmetry of the patches: the tangentreetto
example, need not span a reguagon. Ifn = 4 then rankl — (A4, ,)*) = 0. That s, in the
tensor-product case, sinéé. = 0 one full coordinate-jed*p, can be chosen freely addp.,
J¥ps; andJ*p, are determined uniquely by the continuity constraints. gemerah, the rank
deficiencies off — M? for k = 1,2, 3 are listed in the following table. The results for larder
are sumarized in a conjecture in [83].

3 0 2 2
4 1 3 6
6 1 2 4
even> 6 11 2

odd> 3 010

Since only the Taylor expansion is of interest, the vertesl@sure constraints are indepen-
dent of the particular representation of the surroundirangetry maps. In particular, the vertex
enclosure constraints apply to rational geometry maps enstime fashion as to polynomial
geometry maps unless the denominator vanishes. The fowrktechniques for enforcing the
vertex-enclosure constraints are listed in Section 4, 2dge
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Figure 10. A free-form spline surface.

2.4. Free-form Surface Splines

One interpretation of the two types of maps defining tHefree-form surface spline is that
the reparametrizations define an abstract manifold whose concreteimmersion into R3
is defined by the geometry maps, e.g. Figure 10. Free-forfaceiisplines have a bivariate
control net with possibly:-sided facets and:-valent nodes. Alternative names are G-splines
[61] and geometric continuous patch complexes [52]. Genmebntinuous patch complexes
differ in their characterization by requiring additionak connecting relatiorthat identifies
(glues together) domain edges [52], [49], [100]. This catimg relation is needed whe*
continuity is defined in terms of thexistenceof reparametrizations rather than by explicitly
identifying the (firstt + 1 Taylor terms of the) reparametrization.

Definition 2.6 A G* free-form surface spline is a collection 6f geometry maps and at most
one reparametrization,; for any pair of geometry mags, g;. The following constraints must
hold.

e If the reparametrizatiom;; exists therg; andg; join with geometric continuitg:* viar;;
alongg;(E), whereE an edge of the domaif, of g;, andr;; is C*.

e Any sequence af* geometry maps; : A; — R*,i = 1,...,n, such thatg; andg;. ,
join G* viar; ;,, alongg; .1 (E;,1), andg;(E;(0)) = Q, meetG* with corner@ € R®.

Free-form surface splines with different reparametrizasi do not form a vector space. This
follows directly from the same statement féf continuous curves. For example, we can replace
lines with planes in the example shown in Figure 5. HoweVallireparametrizations agree
then we can form average free-form surface splines and theage inherits the continuity by
linearity of differentiation. Section 4 outlines consttioos.

3. Equivalent and Alternative Definitions

3.1. Matching Intrinsic Curve Properties
In [13], Boehm argues that there are (only) two types of gddmeontinuity: contact of
orderk, a notion equivalent t6* continuity, and, secondly, continuity of geometric ineauis
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(but not necessarily of their derivatives).

Two abutting curve segments hasentact of order if they are each the limit of a sequence
of curves that intersect ih + 1 points, as these points coalesce. In particular, for a space
x : R — R?® with Frénet frame?? spanned by the tangent vectoy the normal vectom and
the binormalb and’ denoting the derivative with respectacc length

x" =t' = km, k = voly[x', x"],
x" — t/l — _K2t 4 K,m + k7b 7_/12 — VO|3 [XI7 XI/7 X/I/]7

contact of order 2 implies that = t andx” are continuous and therefore that tangent, normal
and curvature are continuous. Contact of order 3 impliedicoity of x’, x"” andx” and
therefore continuity of Frénet frame, curvature and tmmsi Moreover, thederivative of the
curvature must be continuotiging the entry labeled. in the connection matrix displayed on
page 7 in Section 2.1 to quantities already listed in the ima8imilarly, contact of ordek: in
R? requiress € C*~2 andr € C*~3 and therefore further dependencies among the entries [41].
By contrast, continuity of théth geometric invariant, also callédh order Frenet frame con-
tinuity [30], [37], and abbreviated™, does not require that the-entry (or, more generally, any
subdiagonal entry) depend on other entries in the conmeatiatrix. Frénet frame continuity
requires that the frame of the two curve pieces agrees arydnoakes sense iR, for d > k.
Boehm [13] shows that while geometric continuity is projeelly invariant, Frénet frame con-
tinuity is not. For surfaces, an analogous notion of contynim terms of fewer restrictions on
the connection matrix entries, is pointed out on page 16.

3.2. C* Manifolds

Differential geometry has a well-established notion of tamurity for a point set: to verify
kth order continuity, we must find, for every poift in the point set, an invertibl€* map
(chart) that maps an open surface-neighborhoo@ @fito an open set iiR?. If two surface-
neighborhoods, with chartg andq, respectively, overlap thetp, o q; ' : R*> — R2 must be a
C* function. This notion of continuity is not constructive: ikhit defines when a point set can
be given the structure of@* manifold, say aC* surface, it neither provides tools to build’#
surface nor a mechanism suitable for verification by commpute

However, geometric continuity and the continuity of maldfoare closely related: every
point in the union of the patches of@ free-form surface spline admits local parametrization
by C* charts if the surface does not self-intersect: the uniomigramersed”* surface with
piecewiseC* boundary. We face two types of obstacles in establishing fddt. First, the
geometry maps should not have geometric singularities @in tspective domains since these
would prevent invertibility of the charts, and the spline@slud not self-intersect so that we can
map a neighborhood of the point B to the plane in a 1-1 fashion. Establishing regularity
and non-self-intersection requires potentially expemsitersection testin@?. The second
apparent obstacle is that the patches that make up the sunfaclosed sets that join without
overlap Therefore the geometry maps cannot directly be used atscliowever, as illustrated
in Figure 11, we can think of the charts as piecewise maps osetpofn mapsq; =r; 'og; '
that map open neighborhoodsii (grey oval) to open neighborhoodsi (grey disk).

3.3. Tangent and Normal Continuity
A number of alternative characterizations exist to tesvamyi;* free-form spline complex for
tangent continuity or derivé’" free-form splines. The criteria consist of an equality ¢oaist
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Figure 11. In the neighborhood ¢f a free-form surface spline with reparametrizatians
riorj” can be viewed as a manifold with chart consisting of pieges r, 'og; ',i =1,... ,n.

establishing coplanarity of the first partial derivativégach point of the common boundary of
two patches (c.f. Figure 4), and an inequality constrainth@reparametrization that prevents
a 180°-flip of the normal for the regular geometry maps. In the fallog lemma,e is the
direction along the preimagg of the common boundany(E) and, as is appropriate for least
degree polynomial representations (seep@andg share have the same parametrization along

pP(F)

Lemma 3.1 (Tangent continuity) Let p andg be regular parametrizations ang | = g |-
The maps\, 1 andv are univariate scalar-valued function and

c:=D.p|p=Dcglg,
n:=cAD,g|g
n:=-cAD.p|g,
t:=nAc

are vector-valued functions maping R3 parametrized over the edgé. Then the following
characterizations ofs! continuity are equivalent.

(le) Doip = apt + fpc, Dorg = agt + fgc apag < 0, (14)
(2¢) A= puD,ig g +vD,.p g, puv >0, (2i)
(3e) det[c, D,1g |, Deip |zl =n-Doip |p =0, n-n>0, (3i)
() =

[l ]



20

With Dr | = [2£], (2) is the definition of &' join in Definition 2.3. Figure 4 illustrates the
geometric meaning of (2Rroof Regularity impliesa(t) # 0 for all £ on E.

(1) = (2): Adding the two equalities (1e) after multiplicationtiviv = —a, andy = oy
respectively (2e) holds in the form, D,. g — agD..p = (ap g — agf3p)cC.

(2) = (3): The inner product of both sides of (2e) withyields (3e). The cross produst
of (2e) withc followed by the inner productwith un yields0 = p?||n||? — gvn - n. Then (2i)
implies (3i).

(3) = (4): From (3e) we hava | D,.p and, by definitionn L c. By regularityn/||n|| =
+n/||n|| and (3i) decides the sign.

(4) = (1): Regularity and (4) imply (1e) that the partial derivas D, p andD,. g can be
expressed in the same (orthogonal) coordinate system epdayt andc. The cross product of
each equality witle yields —n = a,c At andn = agc A t and by sign comparison (1i). <

Formulation (4), comparison of normals, can be turned inpoagtical tool for quantifying
tangent discontinuity. While (1), (2) and (3) are uniqueyomp to scaling, and therefore-*
discontinuity’ measured as > ||apt + fpc — D,.p| Ore > ||uD, g + vD, p, —AD,g|| or
e > |n- D,.p|is not well-defined, thanglebetween the two normals is scale-invariant.

The symmetric characterization (1) asserts the existeh@ Taylor expansion along the
boundary that is matched lgyandp It has been used for constructions [16], [80], [101]. The
direct equivalence of (1) and (2) for polynomials is provari22] and [54] generalizes this
Taylor-expansion approach keh order.

If p andg arerational maps, i.e. quotients of polynomials, the continuity coiodié can be
discussed in terms of polynomials momogenous coordinatégeping in mind that we may
scale freely by a scalar-valued functiottu, v): D*p |p = D*(ogor) |g, & =0,... .,k
[123].

If p andg arepolynomialghen, up to a common factor, so are the scalar functidng,and
v in (1). In fact, after removal of common factors, the degrééhe functions is bounded by
the degree op andg. This comes in handy when looking for possible reparametionsr
between two geometry maps.

Lemma 3.2 If p and g are polynomials, then, up to a common factbr,; and v in (1) are
polynomials of degree no larger than respectively

degre¢D,.g) + degreéD,.p), degreéD.g)+ degreéD,.p) and
degreé€D.g) + degre¢D, . g).
Proof Due to regularity ofg along the boundary, the pre-image of the boundary is covered
by overlapping interval§’ such that for eacly there are two components; € {z,y, z} with
D.glil D, [4] . .
det M;; # 0, M;; = {De:m D::m } gVl the jth component of. Therefore we can apply
Cramer’s rule to

g
M;; [ 2] =v [gig[j]}

_Dei plil D,y gl
I DSLPU] Delg[j]

[ A ] - v D.gl] Delpm}

and obtain
— det

u det| ol p | plil
v det M;; | Deg”? D 1 p"

_DELgM D.gl!
| Delg[j] D.gli!

det
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I —

Figure 12. A global periodic parametrization.

The degree of, i andv is bounded by the degrees of the determinants since the corfatior

v/ det M;; can be eliminated in the constraints. Sidee 1/;; vanishes at most at isolated points

the degree bound extends frdmto the whole interval. D]
The characterizations of geometric continuity in termsedigetric invariants (tangents, cur-

vatures) are characterizations of continuity by covardartvatives [52].

Lemma 3.3 Two C* geometry mapp and g join with geometric continuityG* via the C*
reparametrizatiorr alongp(£) if there exist normal vector fields, andn, of p andg respec-
tively such that

Dﬁnp ‘E:Dﬁng ‘r(E),KZO,... k1.

In particular,Dn represents the shape operator [67], principal curvaturdsdaections [116],
[57] or the Dupin indicatrix [66]. [57] shows in particulageivalence ofG? continuity with
curvature continuity based on sharing surface normalcppal curvatures and principle curva-
ture directions inR3.

3.4. Global and Regional Reparametrization

Often we can view a free-form surface aliactionover a domain with the same topological
genus, e.g. an isosurface of the electric field surrondiag#rth may be computed as a function
over a sphere [1]. More generally, we can assemble an objdbecappropriate topological
genus by identifying edges of a planar domain and then defistaradard spline space over
the planar domain, mapping inR with additional periodic boundary conditions and creating
‘orbifolds’ [34], [119]. This approach circumvents the weor relating many individual
domains via reparametrizations, since there is only glebal domain (modulo periodicity).
Basis functions with local support in the domain yield locahtrol. For practical use one has
to consider three points. First, the genus of the objectdas fixed before the detailed design
process can begin — so one cannot smoothly attach an additiandle later on. Second,
the spline functions have to be placed with a density thatigates for example, an ornate
protrusion of the surface where more detail control is regplii Third, the ‘hairy ball theorem’:
you cannot smoothly comb the hair of a hairy ball without iegva bald spot or making a
parting, implies that the global mapping from subsets of glane to, say, the sphere has a
singularity. The theorem, a consequence of the Borsuk-Ulheorem, states more formally “If
f : 8% — S?%is a continuous map from the sphere to itself then there £gigtoint wherer
and f(x) are not orthogonal as vectors R¥” and in particular, withr a point on the sphere
S% and f(x) a corresponding unit tangent, “the tangent field on a spheR® ihas to have a
singularity”. The singularity is nicely illustrated in [56
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H(p,g(r))
p

P

Figure 13. [eft) Regional parametrization: ansided capg is Hermite-extended Vvi#l (p, gor)
to match a given spline complgx (right:) Gauss curvature at a higher-order saddle point: the
central point must have zero curvature.

Prautzsch [95], and co-workers [75],[96], and Reif [98]0(] developed the idea of fill-
ing n-sided holes by building gegional parametrization for a neighborhood of a poin®
wheren patches meet (see Figure 13). The regional parametrizataors in contrast to the
local reparametrizations along an edge used to define ére-$urface splines, and the global
parametrization discussed earlier. The regional parapa¢ion is composed with a single map
g, for example a quadratic polynomial. This approach conalolg simplifies reasoning about
the resulting surfaces. By separating issues of geométapesfrom valence and local topol-
ogy, verification of smoothness of the resulting surface3 awvhich could be a major effort of
symbolic computing) reduces to showing tlhas smooth since smoothness is preserved under
composition with an (infinitely smooth) polynomial geonyeimap. Reparametrization gives
g o r the structure of a collection of standard (tensor-produdbtal-degree) patches that can
then be connected to a surrounding ring of spline patphéa Hermite interpolatiorH (p, gor)
of degree (degree @ftimes degree af). By fixing the degred of the polynomial beforehand,
independent of the smoothnesso be achieved, and choosing thé parametrization in the
domain to be of bidegreg: + 1), the regional schemes were the first to claim a construction
of C* surfaces of a degree linear in namely of degred(k + 1). In particular, Prautzsch and
Reif proposed to choose polynomials of degiee 2 which yieldsG? free-form constructions
of degree bi-6.

Fixing the degree of comes at a cost. While quadratics come in a large number piesha
[89] they are not able to model, for example, higher-ordeidéapoints. Ahigher-order saddle
pointis a point on a’? surface with three or more extremal curvature directioside it has
zero curvature as illustrated in Figure I®jht. However, quadratics that have a point of zero
curvature must be linear and this yields flat patches ratiar & flat point. For the particular
example of a 3-fold saddle point, we could address this sboring by increasing the degree
of the polynomial to three and the overall degree to bi-9 [1@ut this does not address the
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Figure 14. [eft) Zero set ofz? + y* = 0 and fight) tangent sectors of two possibly smooth
patches whose relative position does not allow the redattiemoothness of a curve by cutting
with a transversal plane (dashed line).

underlying problem, namely the mismatch betwagatches meeting & and the fixed number
of coefficients of any single polynomial of fixed degrédn [86] it was therefore suggested to
replaceg by a (total-degree cubic) spline. This yields at leadiegrees of freedom.

3.5. Implicit Representation

Under suitable monotonicity and regularity constraintszbro set of a trivariate polynomials
in BB-form over a unit simplex definessangle-sheeted, singly connectgiéce of surface that
we can also call a patc@?. If p,¢q : R* — R are two trivariate polynomials in BB-form
that join C* as functions at a common poiit € R? or across a common curve ¢ R?
then generically (see caveat below) the correspondinghpatmin withcontact of orderk at
E: FEis the limit of £ + 1 intersection points (curvedy; of functionsp; andg¢; converging
respectivelyt; — E, p; — p andg; — ¢. Just as in the parametric case, we have to make
sure that the trivariate polynomials are regularzatas the following example demonstrates:
Letp(z,y,2) = 22 +y* 2 <0, q(z,y,2) = 22 +y*,x > 0. Bothp andq are polynomial
pieces, have single-sheeted, singly connected zero skfeiar’* for any k; but the zero set is
not smooth at the intersection (see Figurdefftifor a cross-section.)

Since we are only concerned with the zero set of the polyniowegado not actually need
that the polynomials join smoothly but can scale the joirpreges by scalar functionsandb
([121], [120], [71)):

Definition 3.1 Two trivariate polynomialg andq join with G* continuity at() if

ifp-a)lg =300 le, al@)#0,0(Q)#0.

Two trivariate polynomialg and ¢ join with G* continuity at an irreducible curvél = (¢ =
0)N(h=0)if

i*p = j"(aq + bhFY),  a(E) #0,b(E) £ 0.

One could intersecE with a transversal plane to avoid a separate definition fotinaity
along £’ by reducing it to the point intersection. (The analogou$imégue for parametric sur-
faces is called Linkage Curve Theorem [78], [55].) This ageh, however, runs into technical
problems, since implicipatcheshave corners and there may be just one point of intersection
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with a transversal plane. Similarly, the trivariatget j*p cannot just be replaced by#ajet
along a line [35] since the domains may lie in the same halés@ad thus there is no plane
that intersects botrestricteddomains in more than the common point (see Figureidi.)

3.6. Generalized Subdivision

Nearn-valent mesh nodes, uniform generalized subdivision sadaonsist of an infinite
sequence of ever smaller, concentric rings that are inligrparametricallyC*. The rings also
join one another parametrically*. Yet, by the Borsuk-Ulam theorem (Section 3.4) there cannot
be a parametrically’* mapping from the plane to objects of arbitrary genus withestngu-
larity. In a sense the (effect of the) necessary reparapagiton is therefore concentrated in the
n-valent mesh nodes. Correspondingly the analysis of smesthof generalized subdivision
surfaces has therefore focused on the limits ofitvalent mesh nodes (see e.g. [3] [90], [91]).
At present it appears that uniform generalized subdivisammot generate curvature continuous
surfaces unless the control net is in special position.

4. Constructions

An algorithm for constructing’* surfaces subject to data, such as a control net or a predcribe
network of curves, is a specification of tli& reparametrizations up to kth order and of the
geometry mapg (see alsa-sided hole filling??).

Thegeneric approaclof stitching together individual spline patches consists o

e choosing a consistent reparametrizati@t then-valent points and deriving a reparametriza-
tion for two edge-ajacent patches as a Hermite interpotaifitet reparametrizations at the
end points of the edge; and

e solving the vertex-enclosure problem at each point andvihgrithe geometry maps of
abbutting patches as a Hermite interpolant to the Tayloaegions at the vertices.

Thegeneric constructiois as follows.
(1) If ng patches join at one boundary endpoint, corresponding=+o0, ¢ = 0, andn; patches
join the other withs = 1,# = 0 then a Hermite interpolant (iR) to the linear symmetric
reparametrization of Lemma 2.1 at the endpoints, ufthoorder is given by

r(t,s) = (s + 2th(s), —t), h(s) = a(s) cos — — [(s) cos —,

wherea(s) andj3(s) areC* functions such that(s), 3(s) > 0,

a(0) = B(1) = La(1) = f(0) =0, Dra(i) = D*B(i) = 0,i € {0,1},x > 1.
The interpolant is minimal in that the Taylor expansionsha teparametrization at either end-
point do not interfere, i.eD5r(i) = 0 fori € {0,1}, x > 1 [46].
(2) The vertex-enclosure problem (for exampleddr, n even) can be solved by one the follow-
ing four techniques [81]:

1. ChoosingH} (e.g. the curve mesh) in the span of the constraint matfix
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2. Splitting patches whose boundaries are prescribed wboor more pieces so that the
boundary curves of the split patches can be freely choseherspan of the constraint
matrix (e.g. [31], [32], [92]);

3. Using rational patches to introduce second-order polieaertices (e.g. [42], [16] [53]);

4. Using a non-regular parametrization [81], [76], [98].

Thus, if we are not concerned about the degree, it is strfaigtdrd to createi* free-form
surface splines for ang. The focus over the past decade has been to reduce the déginee o
surface representation, and to obtain better surface si¥&pd-or example, while the degree
of curvature continuous surfaces prior to [95] and [98] whakeast bi-9 (100 coefficients per
patch) [127], [51] newest results achieve curvature catynwith at most 24 coefficients per
patch [87].

Some special the techniques (c.f. Lemma 3.1) are as follows.

e Given the common boundary with derivatiee= D.p |p = D.g |z, [16], [80], [22]
use asymmetricconstruction, picking as minimal Hermite interpolant to the transversal
derivative data at the endpoints and

D,1p = apt + By, D,1g = agt + B5c
witht A ¢ # 0 anday, # 0 # ag.

e Asillustrated in Figure 5 the average of twd joined curves or surfaces is generally not
G'. But if all transversal derivatives of a patch along a boumda(t) arecollinear with
avectorv, i.e.

D,pl|g=p(t)vandD,..q | = q(t)v

for scalar function® andq with ¢/p < 0 thenn = N/||N| whereN(t) := D.p |g A Vv
is a normal common to both patches along the boundary [99].

e Sabin [105] and [79] use formulation (2) of Lemma 3al) Dp = 0, to determine versal
and transversal derivatives pf— therebyisolatingthe construction of a patch from its
neighbor.

e [72] and [80] list a number of choices for reparametrizasiéor particular constructions.

4.1. Free-form Surface Splines of Low Degree

Goodman [36] introduced splines of degrebi-2 for special control meshes that consist of
guadrilateral facets and vertices of valence 3 or 4. Theogpype meshes, that can be modified
by quadrilateral refinement, the cube mesh and the dual aiube with lopped off corners, are
sphere-like shapes that, when symmetric, are curvaturenumus (see [88]). Splitting each
original quadrilateral facet 1-4, [99] derives a bi=2 free-form surface spline. Splitting each
guadrilateral facet into four triangles, [85] obtain&'a construction of total degree 3 that also
satisfies the local convex hull property, i.e. the surfadatsare guaranteed to be an average of
the local control mesh. All constructions with quadratiahdary curve, however, suffer from
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a shape defect when they are to model a higher-order sadufie: mue to the Alternating Sum
Constraint on page 2.3.2 the quadratic boundary curves lieust a straight line.

TheG* free-form spline constructions of Prautzsch [95] and Reé#f [are of degree(k + 1)
if flat regions at higher-order saddle points are acceptahbled of degree(k+1) if modeling of
the local geometry requires a polynomial of degrept8] shows that a degree bi-5 construction
should be possible and [87] models curvature continuowsfisem surfaces of unrestricted
patch layout from patches of maximal degree 2 x 3, d > 0 with the flexibility of degree,
C? splines at extraordinary points.

5. Additional Literature

Every paper on smooth surfacing defines some, possibly ajzsd, notion of geometric
continuity. Some of the early characterizations can bedaar{10] [9],[8] [23] [27] [31] [33]
[69] [72] [74] [77] [104,103] [106], [107], [108], [114], [12], [113], [45], , [82], [92], [117],
[115][116] [126] [116] [125] and characterizations for was in [6], [7], [50],[20], [30].

A number of publications specifically aim at clarifying thetion of geometric continuity.
Kahmann discusses curvature and the chain rule [66], DeR8$@econciles continuity after
reparametrization with the smoothness of manifolds (see[@5], [26]). Liu [73]characterizes
C'" constraints in the form (1) of Lemma 3.1. Particularly wililistrated is Boehm'’s treatment
of geometric and ‘visual’ continuity [11], [12] [14], [13Herron [57] shows directly the equiv-
alence of first and second order geometric continuity witigent and curvature continuity of
surfaces. Further characterizations can be found in [62]93],[22], [54], [24], [122], [118].

Hahn’s treatment of geometric continuity [52] (see alsd)4&rved as a blueprint for Section
2 but differs in that he defines@" join in terms of the existence of a reparametrization, nathe
than making the reparametrization part of the definition.

Warren’s thesis [121] looks at geometric continuity of imsfilrepresentations and [35] is a
tour de force of conversions of notions of geometric continbetween two patches.

| am indebted tofamas Hermanffor closely reading the article and making numerous sug-
gestions.
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