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jorg@cise.ufl.edu, tel: US (352) 392-1226

This chapter covers geometric continuity with emphasis on aconstructive definition for piece-
wise parametrized surfaces. The examples in Section 1 show the need for a notion of continuity
different from the direct matching of Taylor expansions used to define the continuity of piece-
wise functions. Section 2 defines geometric continuity for parametric curves, and for surfaces,
first along edges, then around points, and finally for a whole complex of patches which is called
aGk free-form surface spline. HereGk characterizes a relation between specific maps whileCk
continuity is a property of the resulting surface. The composition constraint on reparametriza-
tions and the vertex-enclosure constraints are highlighted. Section 3 covers alternative defini-
tions based on geometric invariants, global and regional reparametrization and briefly discusses
geometric continuity in the context of implicit representations and generalized subdivision. Sec-
tion 4 explains the generic construction ofGk free-form surface splines and points to some low
degree constructions. The chapter closes with a listing of additional literature.

1. Motivating Examples

This section points out the difference between geometric continuity for curves and surfaces
and the continuity for functions. The examples are formulated in the Bézier representation.

Two Ck function pieces join smoothly at a boundary to form a jointCk function if, at all
common points, their�th derivatives agree for� = 0; 1; : : : ; k. Since thex, y andz com-
ponents of curves and surfaces are functions, it is temptingto declare that curve or surface
pieces join smoothly if and only if the derivatives of the component functions agree. However,
as the following four examples illustrate, this criterion is neither sufficient nor necessary for
characterizing smooth curves or smooth surfaces motivating the definitions in Section 2.

The first two examples illustrate the inadequacy of the standard notion of smoothness for
functions when applied tocurves. In Figure 1 the V of VC is parametrized by the two quadratic
pieces,u; v 2 [0; 1℄, q1(u) = [ �11 ℄ (1� u)2 + [ 00 ℄ 2(1� u)u+ [ 00 ℄ u2
and q2(v) = [ 00 ℄ (1� v)2 + [ 00 ℄ 2(1� v)v + [ 11 ℄ v2:�NSF NYI CCR-9457806
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Figure 1. Matching derivatives of the component functions and geometric (visual) continuity
are not the same: the V of VC is parametrized by two parabolic arcs with equal derivatives at
the tip, but the V shape is not geometrically continuous; theC of VC is parametrized by two
parabolic arcs with unequal derivatives at their common point, but the C shape is geometrically
continuous.

Evidently, at the common pointq1(1) = [ 00 ℄ = q2(0) the derivatives agree:(Dq1)(1) = [ 00 ℄ = (Dq2)(0):
However, even with suitably cushioned end points, the V should not be handed over to boys or
girls under the age of 1 for fear of injury from the sharp corner. Matching derivatives clearly
do not always imply smoothness. Conversely, smoothness does not imply matching derivatives.
The C of VC is parametrized by the two quadratic pieces,u; v 2 [0; 1℄,q3(u) = [ 32 ℄ (1� u)2 + [ 02 ℄ 2(1� u)u+ [ 00 ℄u2
and q4(v) = [ 00 ℄ (1� v)2 + [ 0�1 ℄ 2(1� v)v + [ 3�1 ℄ v2:
The C is visually (and geometrically) smooth at the common point q3(1) = [ 00 ℄ since the two
pieces have the same vertical tangent line but the derivatives do not agree:(Dq3)(1) = [ 0�4 ℄ 6= [ 0�2 ℄ = (Dq4)(0):
Both examples could be made consistent with our notion of continuity for functions if we ruled
out parametrizations with zero derivative and substitutedv ! 2v in q4. In the case ofsur-
faces, the distinction between higher-order continuity of the component functions and actual
(geometric) continuity of the surface is more subtle.

In two variables, we contrast the smoothness criteria for surfaces with the concept valid
for functions by looking at two examples involving polynomial pieces in total degree Bézier
form, i.e. de Casteljau’s triangles??. A necessary and sufficient geometric criterion for two
polynomial piecesp1; p2 : R2 7! R to join C1 along a common boundary, is the ‘coplanarity
condition’??, illustrated in Figure 3,left; the function piecesp1 andp2 joinC1 if all subtriangles
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Figure 2. (left) The 6-point control net of one degree 2 patch in Bézier formis drawn inthick
lines. The two subtriangles in the control net that include the endpoints of a boundary of the
patch define the derivative along that boundary. For two edge-adjacent patches these subtrian-
gles are mirror images and coplanar with their counterpartsin the other patch. Still the surface
defined by the patches is not tangent continuous as the creases in the surface demonstrate. (The
creases are visible in the silhouette and in the change in surface shading,right).

of the control net that share two boundary points are coplanar. Since the coplanarity of the edge-
adjacent triangles of the control net is a geometric criterion it is tempting to use it as a definition
of smoothness for surfaces consisting of the 3-sided patches. However, the criterion is neither
sufficient nor necessary.

To see that coplanarity of the edge-adjacent triangles of the control net does not imply tan-
gent continuity of the surface consider the eight degree 2 triangular polynomial patches whose
control nets are obtained by chopping off the eight corners of a cube down to the midpoint of
each edge (Figure 2). The edge midpoints and face centers of the cube serve as the control
points of 8 quadratic 3-sided Bézier patches. For example,the patch in the positive octant (with
thick control lines in Figure 2,left) has the coefficientsh 001 ih 011 i h 101 ih 010 i h 110 i h 100 i
Figure 2,right shows that the patches join with a sharp crease at the middle of their common

parabolic boundaries. Indeed, the normal at the midpoint
h :75:750 i of the equatorial boundary of

the positive octant patch is

� 2=32=31=3 �, but to match its counterpart in the lower hemisphere, by

symmetry, thez-component would have to be zero. Upper and lower hemispheretherefore do
not meet with a continuous normal.
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Figure 3. (left) Two function piecesp1 andp2 join C1 if all subtriangles of the control net that
share two boundary points (striped) are coplanar (Farin’sC1 condition). (right) Even though the
middle cross-boundary subtriangle pair (where the patch labelsp andq are placed,right) are
not coplanar the two Bézier patchesp(�) andq(�) join to form a tangent continuous surface.

Conversely, the geometric coplanarity criterion is not necessary for a smooth join. The two
cubic piecesp;q with coefficients (c.f. Figure 3)h 72726 ih 36360 i h 723612 ip : h 12120 i h 46130 i h 721212 ih 000 i h 2400 i h 48012 i h 72012 ih 000 i h 2400 i h 48012 i h 72012 iq : h 12�120 i h 28�1112 i h 60�612 ih 18�180 i h 36�1812 ih 24�246 i
have the partial derivativesD1p andD2q along andD2p, respectivelyD1q across the common
boundary:(D1p)(t; 0) = h 7200 i (1� t)2 + h 72036 i 2(1� t)t+ h 7200 i t2 = (D2q)(0; t);(D2p)(t; 0) = h 36360 i (1� t)2 + h 66390 i 2(1� t)t+ h 72360 i t2;(D1q)(0; t) = h 36�360 i (1� t)2 + h 12�3336 i 2(1� t)t+ h 36�180 i t2:
With the help of Maple we can check that the partial derivatives are coplanar at every point of
the boundary, i.e.det �D1p(t; 0); D2p(t; 0); D1q(0; t)� = 0, the zero polynomial int. Since
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Figure 4. If the patches meet with tangent continuity, the transversal derivativeDe?p of p
must be a linear combination of the versal derivative vectorDeg in the directione along the
preimageE of common boundaryp(E) and the transversal derivativeDe?g in the directione?
perpendicular toe: De?p = �Deg + �De?g.

the surface pieces neither form a cusp nor have vanishing derivatives along the boundary, the
normal direction varies continuously across. Maple also yieldsdet(h 72036 i ; h 66390 i ; h 12�3336 i) = 5832 6= 0
showing that, in contrast to aC1 match between two functions, edge-adjacent subtriangle pairs
need not each be coplanar.

1.1. Differentiation and Evaluation
Even though derivatives of the component functions by themselves do not yield a correct pic-

ture of curve and surface continuity, the definition of geometric continuity relies on derivatives.
And since we work with functions in several variables, some clarification of notation is in order.

First, it is at times clearer to denote evaluation at a pointQ by f jQ rather thanf(Q), evalu-
ation on points along a curve segmentE by f jE and to use the symbolÆ for composition, i.e.g Æ r = g(r). We use bold font for vector-valued functions but, somewhatinconsistently but
ink-saving, regular font for directions of differentiation e and points of evaluation, sayQ or 0,
the zero vector inRn . The notationD� for the�th derivative in one variable is consistent with
the notation in two variables from [102]:

Definition 1.1 (differentiation) The differentialsD�p of a mapp : R2 7! R3 with x-, y- andz-componentsp[x℄, p[y℄, p[z℄ and the domain spanned by the unit vectorse1 ? e2 are defined
recursively asDeip[x℄ jQ := limt#0 p[x℄(Q+ tei)� p[x℄(Q)t ; De1p := "De1p[x℄De1p[y℄De1p[z℄ # ; Dp := [De1p De2p ℄ ;D� := DD��1; e.g.D2p = DDp = hDe1De1p De2De1pDe1De2p De2De2p i :
If the JacobianDp is of full rank 2,p is calledregular. We abbreviateDip = Deip.
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In one variable(see e.g. [17])D�(g Æ �) = �Xj=0 XK(j) 
K(j)�(Djg) Æ �� � (D1�)k1 � : : : � (D��)k� :
This combination of the chain rule and the product rule is called Faá di Bruno’s Lawand the
bookkeeping is hidden in the index setK(j) := fki � 0; i = 1; : : : ; �; �Xi=1 ki = j; �Xi=1 iki = �g; 
K(j) := �!k1!(1!)k1 � � �k�!(�!)k� ;

In two variablesD�g (no subscript) is a�-linear map acting onR2�� (� terms). Its component
with index(i1; i2; : : : ; i�) 2 f1; 2g� isDi1Di2 � � �Di�g. The arguments ofD�g are surrounded
by h�i andha; a; : : : ; a;b; : : : ;bi with a 2 R2 repeatedi times andb 2 R2 repeatedj times is
abbreviated ash(a)i; (b)ji. We can then write the bivariateFaá di Bruno’s LawasD�1 (g Æ r) = �Xj=0 XK(j) 
K(j)�(Djg) Æ r�h(D11r)k1 ; : : : ; (D�1r)k�i:
For exampleD2fha;bi = �a[1℄ a[2℄� � D21f D1D2fD1D2f D22f � �b[1℄b[2℄�= a[1℄b[1℄D21f + (a[1℄b[2℄ + a[2℄b[1℄)D1D2f + a[2℄b[2℄D22f:
2. Geometric Continuity of Parametric Curves and Surfaces

This section defineskth order geometric continuity, shortGk continuity, as agreement of
derivatives after suitable reparametrization, i.e. paraphrasing [57], ‘geometric continuity is a
relaxation of parametrization, and not a relaxation of smoothness’. Section 3 will show thatG1
andG2 are equivalent notions to tangent and curvature continuity.

2.1. Joining Parametric Curve Pieces
Definition 2.1 (Gk join) TwoCk curve segmentsq andp join atp(0) with geometric continuityGk via theCk map� : R 7! R ifD�(g Æ �) j0 = D�p j0 � = 0; : : : ; k; D� j0 > 0; Dp j0 6= 0:
The map� is calledreparametrization. If � = id, the identity map, thenp andg are said to join
parametricallyCk.
The contraintD� j0 > 0 rules out cusps and other singularities.

With the abbreviationjkp j0 = [p j0; Dp j0; : : : ; Dkp j0℄T 2 R(k+1)�n for p 2 Rn Fáa di
Bruno’s law can be written asjkp j0 = A(jkg) j�(0); A = 266666664

1 D�D2� (D�)2D3� � (D�)3
...

...
...

.. .Dk� : : : : : : : : : (D�)k
377777775 j0; � = 3D�D2�:
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Figure 5. The average (bold lines) of two curves whose piecespi andgi join G1 can be tangent
discontinuous, i.e. its pieces do not even joinG1.
The matrix of derivatives of� is calledGk connection matrix[13], [109] or�-matrix [7] andjkp is thek-jet of p. In one variable, two regular mapsp andq can both be reparametrized
so thatp(�p) andq(�q) have the preferredarclength parametrization?? , i.e. unit increments
in the parameter correspond to unit increments in the lengthof the curve. Thenjk(p Æ �p) j0 =jk(q Æ �q) j0:Gk splines with different connection matrices do not form a common vector space; in partic-
ular the average of two curves that joinGk is not necessarilyGk as illustrated in Figure 5: ifp1
andq1 join Gk via �1 atp1(0) andp2 andq2 join Gk via �2 atp2(0) = p1(0) then, in general,
there does not exist a reparametrization� so that(1��)p1+�p2 joinsGk with (1��)g1+�g2
atp2(0) = p1(0). That is, there does not generally exist a connection matrixA such thatA1(1� �)jkg1 + A2�jkg2 = A((1� �)jkg1 + �jkg2):
In the example shown in Figure 5,j1p1 = [ 0 10 �1 ℄, j1g1 = � 0 10 �1=3 �, A1 = [ 1 00 3 ℄, andj1g2 =j1p2 = [ 0 10 1 ℄, butj1(p1 + p2)=2 = [ 0 10 0 ℄ while j1(g1 + g2)=2 = h 0 2=30 1=3 i and there does not exist

aG1 connection matrixA = � 1 00 D� � such thatj1(p1 + p2)=2 = Aj1(g1 + g2)=2.
However, if wefix a (�i + 1) � (�i + 1) connection matrix at theith breakpoint, we can

construct a space of degreek splines with prescribedG�i joints and knots of orderk� �i. Such
a spline space can be analyzed as the affine image of a ‘universal spline’ whose control points
are in general position [109].

Conversely, any given polygon can be interpreted as the control polygon of aGk spline: by
interated linear interpolation the polygon is refined into one whose vertices, when interpreted as
Bézier coefficients, define curve pieces that joinGk, e.g. [11] fork = 2, [37] for Frénet frame
continuity ( see Section 3.1) and [109], [110], [111] for thegeneral case.

There aredegree-optimal constructionsfor this conversion, i.e. constructions that maximise
the smoothness of the spline for a given number of corner cutsthat translate into polynomial
degree. Via the notion of order of contact (see Section 3.1) smoothness is closely related to
the ability to interpolate, say the data of a previous splinesegment. Following the pioneering
paper [19] where it was observed that a cubic segment can often interpolate position, tangent
and curvature at either end point (see also [63],[21]), Kochand Höllig [60] conjectured that,
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Figure 6. Reparametrizationr : R2 7! R2 and geometry mapsp; g : R2 7! R3 . For aGk join
via r the traversal derivativesD�e?(g Æ r) andD�e?p have to agree along the common boundaryp(E) for � = 0; : : : ; k. The dashed lines indicate thatr(E) need not be a boundary edge of the
domain ofg.

under suitable assumptions, “splines of degree� n can interpolate points on a smooth curve inRm with order of contactk � 1 = n � 1 + b(n � 1)=(m � 1)
 at everynth knot. Moreover,
this geometric Hermite interpolant has the optimal approximation orderk + 1” (see also [97]).
CHECK

2.2. Geometric Continuity of Edge-Adjacent Patches
We now turn to a constructive characterization of the smoothness ofsurfacesassembled from

standard pieces used in CAGD, such as 3- or 4-sided Bézier patches, or tensor-product b-spline
patches.

Definition 2.2 (domain, reparametrization, geometry map, patch)� A domainis a closed subset� of R2 , bounded by a finite number ofedgesE.� Let �1 and�2 be domains. ACk reparametrizationis aCk continuous invertible mapr : R2 7! R2 , defined in a neighborhood of an edgeE of�1 and mapping exterior points
of �1 to interior points of�2.� A Ck geometry mapis a mapg : � 7! R3 such thatD�g; � = 0; : : : ; k is continuous
anddet(Dg) 6= 0; g(�) is aCk patch.

The requirement that geometry map be regular, i.e.det(Dg) 6= 0, rules out geometric singu-
larities, such as cones, cusps or ridges, and avoids specialcases – but it off-hand also rules out
singular maps that generate perfectly smooth surfaces ([81], [76], [15], [98]). These construc-
tions are shown to be smooth by a local change of variable thatremoves the singularity.
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Defining the domain boundary to consist of a few edges is specific to CAGD usage: we could
have a fractal boundary separating two pieces of the same smooth surface.

The mapg is called geometry map to emphasize that the local shape (butnot the extent) of
the surface is defined byg. The image ofg in R3 is the patch.

The reparametrizationr is not defined to mapE to aboundary edgeof �2 but may map to
any non-selfintersecting curve segmentr(E) in �2. This allows for constructions that include
trimmed geometry maps, as indicated by the restriction of the triangular domain ofg in Figure 6.
That is,r not only modifies the flow of parameter lines (images of straight lines in the domain)
but it can also restrict the region of evaluation ofg. The reparametrizationrmaps outside points
to inside points to prevent the surface from folding back onto itself in a180Æ-turn. We now glue
two pieces together (c.f. Figure 6).

Definition 2.3 (Gk join) TwoCk geometry mapsp andg join alongp(E) with geometric con-
tinuity Gk via theCk reparametrizationr ifD�p jE = D�(g Æ r) jE; � = 0; : : : ; k:
If r = id, the identity map, thenp andg are said to joinparametricallyCk.

Sincep, g and r areCk maps,Gk continuity alongp(E) with Ck reparametrizationr is
equivalent to justk + 1 equalities corresponding to differentiation in the direction e? perpen-
dicular to the edgeE: D�e?p jE = D�e?(g Æ r) jE; � = 0; : : : ; k:
By Faá di Bruno’s Law we need only know the Taylor expansion up to kth order ofr andg
along the edgeE.

ExampleConsider twoC2 geometry mapsp andg, and aC2 reparametrizationr : r(t; 0) =(0; t). As shown in Figure 6,E = f(t; 0) : t 2 [0; 1℄g ande? = (0;�1). A less common,
but permissible parametrization ofE is f(t2; 0) : t 2 [0; 1℄g. Such a definition would make the
subtle point thatG0 andC0 can differ as well, since the reparametrizationr(t; 0) = (0;pt) is
required to equate the derivatives along the boundary. (Ifp andg are polynomials of the same
least degree thenr can only be linear andp andg share the same parametrization along the
edge). We write the conditions forp andg joining G2 via r alongp(E) in several different
notations commonly used in the literature, e.g. the mixed partial derivative may be written asguv = �2g�u�v = �12g = D12g = De1;e2g:p j(t;0) = g Æ r j(t;0);De?p j(t;0) = Dg jr(t;0) � (De?r) j(t;0)= De1g j(0;t)(De?r)[1℄ j(t;0) +De2g j(0;t)(De?r)[2℄ j(t;0); (De?r)[2℄ > 0;= gu(0; t)�(t) + gv(0; t)�(t); � > 0;D2e?p j(t;0) = (D2g jr(t;0))h(De?r) j(t;0); (De?r) j(t;0)i+Dg jr(t;0)D2e?r j(t;0)= : : :+D2g j(0;t)(D2e?r)[2℄ j(t;0)= guu(0; t)�2(t) + 2guv(0; t)�(t)�(t) + gvv(0; t)�2(t)+ gu(0; t)�(t) + gv(0; t)�(t):
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Figure 7. Patches meeting at a cornerQ = gi(Ei(0)), j = (i mod n) + 1; Ei(0) = E�i (1).
In particular forp andq defined on page 4 we computeDe1q j(t;0) = Dp j(t;0) � h 13�2u3�u i :�The example illustrates that it is convenient and shorter togive separate names,�; �; �; � , to the partial derivatives ofr evaluated on the edgeE. We can in fact specify just the
partial derivatives rather than all ofr: if we group the two components of each derivative into a
vector we can definer in terms ofCk�j-vector fields alongr(E) (Lemma 3.2 of [52]). Provided
the derivatives are sufficiently differentiable in the direction e? perpendicular toE we thereby
prescribe the Taylor expansion ofr (by the Whitney-Stein Theorem).

2.3. Geometric Continuity at a Vertex
We extend our new notion of geometric continuity ton patches meeting at a common point,

e.g. at a point of the global boundary where the patches may meet without necessarily enclosing
the point (c.f. Figure 7).

Definition 2.4 (Gk enclosure) TheCk geometry mapsgi : �i 7! R3 ; i = 1; : : : ; n; meetGk
via ri;i+1; i = 1; : : : ; n� 1 with cornerQ 2 R3 if� gi andgi+1 join Gk via ri;i+1 alonggi+1(Ei+1),� gi(Ei(0)) = Q,� the normalized tangent vectors of eachgi sweep out a sector of a disk and thesetangent

sectorslie in a common plane and do not overlap.

TheCk geometry maps form aGk enclosure of the vertexQ if additionallygn andg1 join Gk
via rn;1 alongg1(E1).
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Figure 8. The derivativeDm1 Dn2pi of a geometry mappi at the central vertex is represented
symbolically as a�, Æ, or � placedm units into the direction of the first edge andn into the
second. Elements of the total-degree 2-jetj2 are marked�, elements of the coordinate-degree
2-jet J2 are marked� or Æ, elements ofj4 are marked�, Æ, or �. The higher-order derivativesHki appearing on the right hand side of the vertex-enclosure constraint system are marked by
diamonds�.

The regularity of theCk geometry maps implies that each tangent sector is the 1 to 1 image of
a corner formed by the non-collinear edgesE� andE of the domain. Moreover, the geometry
maps do not wrap around the corner more than once. The common plane referred to above is
therefore the tangent plane and, by the implicit function theorem we can expand the geometry
maps atQ as aCk functions.

Where a point isenclosedby three or more patches, additional constraints onr andg arise
because patches join in a cycle. If one were to start with one patch and added one patch at
a time, the last patch would have to match pairwise smoothness constraints across two of its
edges. More generally, if all patches are determined simultaneously, a circular interdependence
among the smoothness constraints around the vertex results. This circular dependence implies
composition constraintson admissibler andvertex enclosure constraints, on thegi. The latter
imply for example the important practical fact that it is notalways possible to interpolate a given
network ofC1 curvesby a smooth, regularly parametrized tangent-plane continuous surface
with one polynomial patch per mesh facet [82]. A characterization, of when a curve network
can be embedded into a curvature continuous surface can be found in [53].

To discuss the details, thek-jet notation (c.f. page 7) is helpful:

Definition 2.5 Thecoordinate-degreek-jet, Jkp, is a vector of directional derivativesDi1Dj2p,i; j 2 f0; 1; : : : ; kg sorted first with keyi+j, then with keyi.Thetotal-degreek-jet, jkp, consists
of the first

�k2� entries of the coordinate-degreek-jet.

For example, as illustrated in Figure 8 (see also [58], p.61,[52]),j2p := (p; D1p; D2p; D21p; D1D2p; D22p);J2p := (p; D1p; D2p; D21p; D1D2p; D22p; D21D2p; D1D22p; D21D22p):
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The composition ofk-jets,jkg jr(E) Æ jkr jE = jk(g Æ r) jE; is associative and has the identity
map id as its neutral element. Ink-jet notation the conditions for geometric continuity arejkp jE = jkg jr(E) Æ jkr jE:
2.3.1. Composition Constraint on Reparametrization Maps

Assume thatri;i+1(0) = 0, 0 2 R. Sinceg1 is regular, by the implicit function theoremDg1
has a left inverse in the neighborhood of0 andjkg1 j0 = jk(gn Æ rn;1) j0 = : : : = jk(g2 Æ r2;3 Æ : : : Æ rn;1) j0= jk(g1 Æ r1;2 Æ : : : Æ rn;1) j0
implies that at0 the Taylor expansion up tokth order of the composition of all reparametriza-
tions agrees with the identity, i.e. the Composition Constraintjk(r1;2 Æ : : : Æ rn;1) j0 = jkid j0:
ExampleFork = 1 andn = 3 and withri;j(0; t) = (t; 0) we haver1;2 Æ r2;3 Æ r3;1 j0 = 0;Dr1;2Dr2;3Dr3;1 j0 = D id j0:
For scalars� and�, the second equation is equivalent to the matrix product��1 1�1 0� ��2 1�2 0� ��3 1�3 0� = �1 00 1�
which is in turn equivalent to�1�2�3 = �1; �j�i = 1; i = 1; 2; 3; j = (i mod 3) + 1:
In general, theG1 constraints at0 imply

Qni=1 �i = (�1)n. Section 7.2 of [52] shows the
expansion of the nonlinear constraints fork = 2. �
Lemma 2.1 A symmetricreparametrizationrij = r that satisfies the Composition Constraint
for a givenn is defined byr(0) = 0; Dr = � 2 
os(�) 1�1 0 � ; � = 2�n ; D�r = 0; � > 1:

ProofThe eigenvalues ofDr are then th unit rootse�p�1� and thereforeDr1;2Dr2;3 : : :Drn;1 =(Dr)n = Did:Since, by Fáa di Bruno’s law, at least one factor of the expansion ofD�(r1;2 Æ r2;3 Æ : : : Æ rn;1)
is a higher derivative ofr and henceD�(r1;2 Æ r2;3 Æ : : : Æ rn;1) = 0; for � > 1: ./
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2.3.2. Vertex Enclosure Constraints
Once the reparametrizations satisfy the Composition Constraint a second set of constraints

governs admissible choices of geometry maps. Since theGk constraints of two edge-adjacent
patches have support on the firstk layers of derivatives counting from each edge, the constraints
across two consecutive edges of a geometry map share as variables the derivativesDm1 Dn2 withm � k andn � k at the vertex, i.e. overlap on the coordinate-degreek-jet of the geometry map
at the vertex (markers� andÆ in Figure 8).

If n is the number of patches surrounding the vertex, then there are n(k + 1)2 overlapping
continuity constraints and an equal number of variables in the form of derivatives in the corre-
sponding coordinate degreek-jetsJkpi. Can the constraints can always be enforced by choosingJkpi appropriately? Already fork = 1, the resulting4n by 4n constraint matrixM is not in-
vertible if n is even but it is invertible forn odd. Fork > 1, more complex rank-deficiences arise
while the right hand side is in general not in the span of the constraint matrix: unlike the univari-
ate case, where we consider only the firstk derivatives forGk joins, the Gk vertex-enclosure
constraints involve derivatives of up to order2k!

Depending on the data and the construction scheme, some of the higher derivatives are fixed.
For example, prescribing boundary curves pins downDi1D02p for all i. Even when the goal is
to just identify degrees of freedom of a free-form spline space [36],[64], the underlying splines
must have consistent derivatives up to order2k. There is one well-studied exceptional case: if
the cornerQ is the intersection of two regularCk curves andn = 4 then the constraint system
becomes homogeneous, removing the linkage between thek-jets and the higher derivatives.
Since the constraint matrix is additionally rank deficient it is possible to interpolate the curve
data by low-degree, parametricallyCk surfaces [40], [39]. The corresponding free-form splines
form the space of tensor-product splines [18].

When the reparametrizations are linear as in Lemma 2.1 then determining the matrix rank is
similar to determining thedimension of a spline space[2], however with the additional require-
ment that the ‘minimal determining set’Dm1 Dn2pi be symmetric. The analysis of the dimension
of spline spaces allows choosing one geometry map completely and then finding extensions that
respect the continuity constraints. This misses the crucial rank deficiencies that depend on the
parity ofk andn.

The vertex-enclosure constraint is weaker than thecompatibility constraint, e.g. thetwist
compatibility constraint requires that the mixed derivatives be prescribed consistently sinceD1D2p = D2D1p holds for a polynomial finite element (see e.g. [4]). Mixed derivatives
at a vertex can be prescribed inconsistently if a patch is to interpolate given transversal deriva-
tives along abutting edges. Incompatibility can be accomodated by using poles or singular
parametrizations (see page 4,(2), 3rd and 4th item).

The main task ahead is to characterize the rank deficiencies of the n(k + 1)2 � n(k + 1)2
matrixM of theGk constraint systemDm1 Dn2 (pi�1 � pi Æ ri) j0 = 0 for n;m 2 f0; : : : ; kg; i = 1; : : : ; n
in the variablesDm1 Dn2pi j0; n;m 2 f0; : : : ; kg; i = 1; : : : ; n: In terms ofk-jets andHki :=(Dk+m1 Dl2pi)m=1;::: ;k;l=0;::: ;k�m, the vector of higher derivatives ofpi, for example,H2i :=



14(D31pi; D31D2pi; D41pi), the constraint system reads (all blank entries are zero)

M264 ...Jkpi
...

375 = 264 ...NiHki
...

375 ; M := 266666664
I �M2I �M3I �M4

. . . . . .I �Mn�M1 I
377777775

Mi =: �Mt;i 0� M
;i� ; M
;i =: 264Mk;k;i� . . .� � Mk;1;i375 and Ni =: � 0N
;i� :
As for connection matrices in the univariate case, page 7, the entries of each(k+1)2� (k+1)2
matrixMi and each(k + 1)2 � k(k + 1)=2 matrixNi are derivatives ofri. Mt;i corresponds to
the(k + 2)(k + 1)=2 homogeneousconstraintsjkpi�1 = Mt;ijkpi that involve only derivatives
of total degreek or less (� in Figures 8 and 9) and that can always be enforced by choosingone
of the jets, sayjkp1, and extending it to the remaining patches; that is, the total-degreek-jets
represent a single polynomial expansion up to total degreek at the vertex, a characterization
that is also known as then+ 1-Tangent Theorem [78], [55].

Each submatrixM
;i corresponds to the remainingk(k+1)=2 constraints that involve deriva-
tives of total degree greater thank (the diamonds� in Figure 8 and 9). By blockwise elimination,
the rank ofM equalsI �QMi and the solvability for arbitrary right hand side depends, after
removal of the homogeneous constraints, only on the rank ofI �QM
;i. Each submatrixM
;i
decomposes further into skew upper triangular matricesMk;`;i of size` � ` that are grouped
along the diagonal.

ExampleFork = 1 we have the constraints at0 (c.f. Figure 9) andrab := Da1Db2r j000 : D01D02pi = D01D02pi+101 : D01D12pi = D11D02pi+110 : D11D02pi = �D11D02pi+1 + �D01D12pi+111 : D11D12pi = r[1℄11D11D02pi+1 + r[1℄11D01D12pi+1 + �D11D12pi+1 + �D21D02pi+1:
That is, dropping the subscripti for simplicity, each matrix-block[MN ℄ of G1 constraints has
the form 00 10 01 11 2000 110 � �01 1 011 r[1℄11 r[2℄11 � � :
HereN is the last column, below ‘20’. The entriesmn to the left of the matrix indicate that the
row corresponds to the constraintDm1 Dn2 (pi�1� (pi Æ ri)) = 0 while the entries on top indicate
the derivativesDm1 Dn2pi that enter the constraint as variables. For example, the column ‘20’
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Figure 9. The total-degree1-jet (�) represents the same linear function for all patches. Then = 6 constraints involving the ‘11’ derivativesD11D12 (Æ) in the coordinate-degree1-jet but
not the total-degree1-jet give rise to a6 � 6 matrixM
 that is rank deficient by 1, i.e. of rank
5. This (vertex-enclosure) constraint can only be solved ifthe right hand side, defined by the
(component normal to the tangent plane of the) ‘20’ derivativesD21D02 (�), lies in the span of
the constraint matrix. If all reparametrizations are the same, this is the case exactly when the
alternating sum of the ‘20’ derivatives is zero, i.e. if the average of the elements marked +
equals the average of the elements marked� .

corresponds to the variableD21pi. The constraint rows labeled ‘00’,‘01’, and ‘10’ correspond
to the total-degree 1-jet and are solvable leavingj1p1 free to determine the tangent plane by
its three variablesD01D02p1 j0 = p1(0), D1p1(0) andD2p1(0) with normaln = D1p1(0) ^D2p1(0). The (more interesting) constraint matrixM
 corresponds to the constraint row and
column ‘11’. Withp11i = n �D11D12pi andp20i = n �D21pi26664 1 ��11 ��2

. . . . . .��n 1 3777526664p111p112
...p11n
37775 = 26664�1p201�2p202

...�np20n
37775

By the Composition Constraint on page 12,
Qni=1 �i = (�1)n. Therefore the rank of the matrix

is n � 1 if n is even andn if n is odd [107], [108], [27], [124], [81], [28]. Moreover, if we
assume symmetry, i.e.�i = �1 and�i = � for i = 1; : : : ; n, and ifn is even then the vectorv
with v(i) = (�1)i spans the null space ofM
 and therefore theAlternating Sum Constrainthas
to hold for the system to be solvable (c.f. Figure 9): if� 6= 0 then0 = nXi=1 (�1)ip20i :



16

Fork = 2, [MN ℄ has the form00 10 01 20 11 02 21 12 22 30 31 4000 110 � �01 1 020 r[1℄20 r[2℄20 �2 2�� �211 r[1℄11 r[2℄11 � �02 121 r[1℄21 r[2℄21 A B C 2�� �2 �212 r[1℄12 r[2℄12 D E � �22 r[1℄22 r[2℄22 G H I J K �2 L 2�� �2
whereA := �D + r[1℄20; B := �D + �E + r[2℄20; C := �E;D := 2r[1℄11; E := 2r[2℄11;G := D2=2 + 2�r[1℄12 + 2r[1℄21; H := DE + 2�r[1℄12 + 2�r[2℄12 + 2r[2℄21 ; I := E2=2 + 2�r[2℄12;J := 2�D + 2�E; K := 2�E; L := 2�D + r[1℄20 + 2��:
Fork = 2, [MN ℄ decomposes into the upper left6� 6 blockMt and, from columns ‘21’, ‘12’
and ‘22’,M
 = 242�� �2�J K �235 ; M2;1 = �2; M2;2 = �2�� �2� � ; N
 = 24�2�L 2�� �235 : �

Remark:C, J andK above depend directly onD andE in theC2 reparametrization matrix.
To define a weaker notion of continuity in the spirit of Frénet-frame continuity for curves of
Section 3.1 one would chooseC, J andK independently.

For the remainder of the discussion we assume that allrij are linear and equal tor, as in
Lemma 2.1 (see [83] for a more general analysis and [29] and [122] for a discussion of the casek = 2 in terms of Bézier coefficients). Such equal reparametrization is the natural choice for
filling ‘ n-sided holes’?? and does not force symmetry of the patches: the tangent vectors, for
example, need not span a regularn-gon. If n = 4 then rank(I � (Mk;`)n) = 0. That is, in the
tensor-product case, sinceN
 = 0 one full coordinate-jetJkp1 can be chosen freely andJkp2,Jkp3 andJkp4 are determined uniquely by the continuity constraints. Forgeneraln, the rank
deficiencies ofI �Mn
 for k = 1; 2; 3 are listed in the following table. The results for largerk
are sumarized in a conjecture in [83].n k 1 2 33 0 2 24 1 3 66 1 2 4

even> 6 1 1 2
odd> 3 0 1 0

Since only the Taylor expansion is of interest, the vertex enclosure constraints are indepen-
dent of the particular representation of the surrounding geometry maps. In particular, the vertex
enclosure constraints apply to rational geometry maps in the same fashion as to polynomial
geometry maps unless the denominator vanishes. The four known techniques for enforcing the
vertex-enclosure constraints are listed in Section 4, page24.
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Figure 10. A free-form spline surface.

2.4. Free-form Surface Splines
One interpretation of the two types of maps defining theGk free-form surface spline is that

the reparametrizationsr define an abstract manifold whose concreteimmersion into R3
is defined by the geometry maps, e.g. Figure 10. Free-form surface splines have a bivariate
control net with possiblyn-sided facets andm-valent nodes. Alternative names are G-splines
[61] and geometric continuous patch complexes [52]. Geometric continuous patch complexes
differ in their characterization by requiring additionally a connecting relationthat identifies
(glues together) domain edges [52], [49], [100]. This connecting relation is needed whenGk
continuity is defined in terms of theexistenceof reparametrizations rather than by explicitly
identifying the (firstk + 1 Taylor terms of the) reparametrization.

Definition 2.6 A Gk free-form surface spline is a collection ofCk geometry maps and at most
one reparametrizationrij for any pair of geometry mapsgi, gj. The following constraints must
hold.� If the reparametrizationrij exists thengi andgj join with geometric continuityGk via rij

alonggi(E), whereE an edge of the domain�i of gi, andrij isCk.� Any sequence ofCk geometry mapsgi : �i 7! R3 ; i = 1; : : : ; n; such thatgi andgi+1
join Gk via ri;i+1 alonggi+1(Ei+1), andgi(Ei(0)) = Q, meetGk with cornerQ 2 R3 .

Free-form surface splines with different reparametrizations do not form a vector space. This
follows directly from the same statement forGk continuous curves. For example, we can replace
lines with planes in the example shown in Figure 5. However, if all reparametrizations agree
then we can form average free-form surface splines and the average inherits the continuity by
linearity of differentiation. Section 4 outlines constructions.

3. Equivalent and Alternative Definitions

3.1. Matching Intrinsic Curve Properties
In [13], Boehm argues that there are (only) two types of geometric continuity: contact of

orderk, a notion equivalent toGk continuity, and, secondly, continuity of geometric invariants
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(but not necessarily of their derivatives).
Two abutting curve segments havecontact of orderk if they are each the limit of a sequence

of curves that intersect ink + 1 points, as these points coalesce. In particular, for a spacecurvex : R 7! R3 with Frénet frame?? spanned by the tangent vectort, the normal vectorm and
the binormalb and0 denoting the derivative with respect toarc lengthx00 = t0 = �m; � = vol2[x0;x00℄;x000 = t00 = ��2t+ �0m+ ��b ��2 = vol3[x0;x00;x000℄;
contact of order 2 implies thatx0 = t andx00 are continuous and therefore that tangent, normal
and curvature are continuous. Contact of order 3 implies continuity of x0, x00 andx000 and
therefore continuity of Frénet frame, curvature and torsion. Moreover, thederivative of the
curvature must be continuoustying the entry labeled� in the connection matrix displayed on
page 7 in Section 2.1 to quantities already listed in the matrix. Similarly, contact of orderk inR3 requires� 2 Ck�2 and� 2 Ck�3 and therefore further dependencies among the entries [41].

By contrast, continuity of thekth geometric invariant, also calledkth order Fŕenet frame con-
tinuity [30], [37], and abbreviatedF k, does not require that the�-entry (or, more generally, any
subdiagonal entry) depend on other entries in the connection matrix. Frénet frame continuity
requires that the frame of the two curve pieces agrees and only makes sense inRd , for d � k.
Boehm [13] shows that while geometric continuity is projectively invariant, Frénet frame con-
tinuity is not. For surfaces, an analogous notion of continuity in terms of fewer restrictions on
the connection matrix entries, is pointed out on page 16.

3.2. Ck Manifolds
Differential geometry has a well-established notion of continuity for a point set: to verifykth order continuity, we must find, for every pointQ in the point set, an invertibleCk map

(chart) that maps an open surface-neighborhood ofQ into an open set inR2 . If two surface-
neighborhoods, with chartsq1 andq2 respectively, overlap thenq2 Æ q�11 : R2 7! R2 must be aCk function. This notion of continuity is not constructive: while it defines when a point set can
be given the structure of aCk manifold, say aCk surface, it neither provides tools to build aCk
surface nor a mechanism suitable for verification by computer.

However, geometric continuity and the continuity of manifolds are closely related: every
point in the union of the patches of aGk free-form surface spline admits local parametrization
by Ck charts if the surface does not self-intersect: the union is an immersedCk surface with
piecewiseCk boundary. We face two types of obstacles in establishing this fact. First, the
geometry maps should not have geometric singularities on their respective domains since these
would prevent invertibility of the charts, and the spline should not self-intersect so that we can
map a neighborhood of the point inR3 to the plane in a 1-1 fashion. Establishing regularity
and non-self-intersection requires potentially expensive intersection testing??. The second
apparent obstacle is that the patches that make up the surface areclosed sets that join without
overlap. Therefore the geometry maps cannot directly be used as charts. However, as illustrated
in Figure 11, we can think of the charts as piecewise maps composed ofn mapsqi = r�1i Æ g�1i
that map open neighborhoods inR3 (grey oval) to open neighborhoods inR2 (grey disk).

3.3. Tangent and Normal Continuity
A number of alternative characterizations exist to test a givenG1 free-form spline complex for

tangent continuity or deriveG1 free-form splines. The criteria consist of an equality constraint
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Figure 11. In the neighborhood ofQ a free-form surface spline with reparametrizationsr =riÆr�1j can be viewed as a manifold with chart consisting of piecesqi = r�1i Æg�1i , i = 1; : : : ; n.

establishing coplanarity of the first partial derivatives at each point of the common boundary of
two patches (c.f. Figure 4), and an inequality constraint onthe reparametrization that prevents
a 180Æ-flip of the normal for the regular geometry maps. In the following lemma,e is the
direction along the preimageE of the common boundaryp(E) and, as is appropriate for least
degree polynomial representations (see 9),p andg share have the same parametrization alongp(E)
Lemma 3.1 (Tangent continuity) Letp andg be regular parametrizations andp jE = g jE.
The maps�, � and� are univariate scalar-valued function and
 := Dep jE = Deg jE;n := 
 ^De?g jE�n := �
 ^De?p jE;t := n ^ 

are vector-valued functions maping toR3 parametrized over the edgeE. Then the following
characterizations ofG1 continuity are equivalent.(1e) De?p = �pt+ �p
; De?g = �gt+ �g
 �p�g < 0; (1i)(2e) �
 = �De?g jE + �De?p jE; �� > 0; (2i)(3e) det [
; De?g jE; De?p jE℄ = n �De?p jE = 0; n � �n > 0; (3i)(4e) �nk�nk = nknk ;
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With Dr jE = [�� �� ℄, (2) is the definition of aG1 join in Definition 2.3. Figure 4 illustrates the
geometric meaning of (2).ProofRegularity impliesn(t) 6= 0 for all t onE.
(1) =) (2): Adding the two equalities (1e) after multiplication with � = ��g and� = �p
respectively (2e) holds in the form�pDe?g � �gDe?p = (�p�g � �g�p)
:
(2) =) (3): The inner product of both sides of (2e) withn yields (3e). The cross product̂
of (2e) with
 followed by the inner product� with �n yields0 = �2knk2 � ��n � �n. Then (2i)
implies (3i).
(3) =) (4): From (3e) we haven ? De?p and, by definition,n ? 
. By regularityn=knk =��n=k�nk and (3i) decides the sign.
(4) =) (1): Regularity and (4) imply (1e) that the partial derivativesDe?p andDe?g can be
expressed in the same (orthogonal) coordinate system spanned byt and
. The cross product of
each equality with
 yields��n = �p
 ^ t andn = �g
 ^ t and by sign comparison (1i). ./

Formulation (4), comparison of normals, can be turned into apractical tool for quantifying
tangent discontinuity. While (1), (2) and (3) are unique only up to scaling, and therefore ‘�-
discontinuity’ measured as� > k�pt + �p
 �De?pk or � > k�De?g + �De?p;��Degk or� > jn �De?pj is not well-defined, theanglebetween the two normals is scale-invariant.

The symmetric characterization (1) asserts the existence of a Taylor expansion along the
boundary that is matched byg andp It has been used for constructions [16], [80], [101]. The
direct equivalence of (1) and (2) for polynomials is proven in [22] and [54] generalizes this
Taylor-expansion approach tokth order.

If p andg arerational maps, i.e. quotients of polynomials, the continuity conditions can be
discussed in terms of polynomials inhomogenous coordinateskeeping in mind that we may
scale freely by a scalar-valued function�(u; v): D�p jE = D�(�g Æ r) jE; � = 0; : : : ; k
[123].

If p andg arepolynomialsthen, up to a common factor, so are the scalar functions,�, � and� in (1). In fact, after removal of common factors, the degree of the functions is bounded by
the degree ofp andg. This comes in handy when looking for possible reparametrizationsr
between two geometry maps.

Lemma 3.2 If p andg are polynomials, then, up to a common factor,�, � and � in (1) are
polynomials of degree no larger than respectively

degree(De?g) + degree(De?p); degree(Deg) + degree(De?p) and

degree(Deg) + degree(De?g):
Proof Due to regularity ofg along the boundary, the pre-image of the boundary is covered

by overlapping intervalsU such that for eachU there are two componentsi; j 2 fx; y; zg withdetMij 6= 0, Mij := h Deg[i℄ De?g[i℄Deg[j℄ De?g[j℄ i, g[j℄ the jth component ofg. Therefore we can apply

Cramer’s rule to Mij � ��� � = � h De?p[i℄De?p[j℄ i
and obtain h ���� i = �detMij 266664 � det"De?p[i℄ De?g[i℄De?p[j℄ De?g[j℄ #det"Deg[i℄ De?p[i℄Deg[j℄ De?p[j℄ #det"De?g[i℄ Deg[i℄De?g[j℄ Deg[j℄ #

377775 :
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Figure 12. A global periodic parametrization.

The degree of�, � and� is bounded by the degrees of the determinants since the common factor�= detMij can be eliminated in the constraints. SincedetMij vanishes at most at isolated points
the degree bound extends fromU to the whole interval. ./

The characterizations of geometric continuity in terms of geometric invariants (tangents, cur-
vatures) are characterizations of continuity by covariantderivatives [52].

Lemma 3.3 TwoCk geometry mapsp and g join with geometric continuityGk via theCk
reparametrizationr alongp(E) if there exist normal vector fieldsnp andng ofp andg respec-
tively such that D�np jE = D�ng jr(E); � = 0; : : : ; k � 1:
In particular,Dn represents the shape operator [67], principal curvatures and directions [116],
[57] or the Dupin indicatrix [66]. [57] shows in particular equivalence ofG2 continuity with
curvature continuity based on sharing surface normal, principal curvatures and principle curva-
ture directions inR3 .

3.4. Global and Regional Reparametrization
Often we can view a free-form surface as afunctionover a domain with the same topological

genus, e.g. an isosurface of the electric field surronding the earth may be computed as a function
over a sphere [1]. More generally, we can assemble an object of the appropriate topological
genus by identifying edges of a planar domain and then define astandard spline space over
the planar domain, mapping intoR3 with additional periodic boundary conditions and creating
‘orbifolds’ [34], [119]. This approach circumvents the need for relating many individual
domains via reparametrizations, since there is only oneglobal domain (modulo periodicity).
Basis functions with local support in the domain yield localcontrol. For practical use one has
to consider three points. First, the genus of the object has to be fixed before the detailed design
process can begin – so one cannot smoothly attach an additional handle later on. Second,
the spline functions have to be placed with a density that anticipates for example, an ornate
protrusion of the surface where more detail control is required. Third, the ‘hairy ball theorem’:
you cannot smoothly comb the hair of a hairy ball without leaving a bald spot or making a
parting, implies that the global mapping from subsets of theplane to, say, the sphere has a
singularity. The theorem, a consequence of the Borsuk-Ulamtheorem, states more formally “Iff : S2 7! S2 is a continuous map from the sphere to itself then there exists a point wherex
andf(x) are not orthogonal as vectors inR3 ” and in particular, withx a point on the sphereS2 andf(x) a corresponding unit tangent, “the tangent field on a sphere in R3 has to have a
singularity”. The singularity is nicely illustrated in [56].



22

p
H(p,g(r))

R

R
2

3g

r

Figure 13. (left) Regional parametrization: ann-sided capg is Hermite-extended viaH(p; gÆr)
to match a given spline complexp. (right:) Gauss curvature at a higher-order saddle point: the
central point must have zero curvature.

Prautzsch [95], and co-workers [75],[96], and Reif [98], [100] developed the idea of fill-
ing n-sided holes by building aregional parametrizationr for a neighborhood of a pointQ
wheren patches meet (see Figure 13). The regional parametrizationstands in contrast to the
local reparametrizations along an edge used to define free-form surface splines, and the global
parametrization discussed earlier. The regional parametrization is composed with a single mapg, for example a quadratic polynomial. This approach considerably simplifies reasoning about
the resulting surfaces. By separating issues of geometric shape from valence and local topol-
ogy, verification of smoothness of the resulting surfaces atQ (which could be a major effort of
symbolic computing) reduces to showing thatr is smooth since smoothness is preserved under
composition with an (infinitely smooth) polynomial geometry map. Reparametrization givesg Æ r the structure of a collection of standard (tensor-product or total-degree) patches that can
then be connected to a surrounding ring of spline patchesp via Hermite interpolationH(p; gÆr)
of degree (degree ofg times degree ofr). By fixing the degreed of the polynomial beforehand,
independent of the smoothnessk to be achieved, and choosing theCk parametrization in the
domain to be of bidegree(k + 1), the regional schemes were the first to claim a construction
of Ck surfaces of a degree linear ink, namely of degreed(k + 1). In particular, Prautzsch and
Reif proposed to choose polynomials of degreed = 2 which yieldsG2 free-form constructions
of degree bi-6.

Fixing the degree ofg comes at a cost. While quadratics come in a large number of shapes
[89] they are not able to model, for example, higher-order saddle points. Ahigher-order saddle
point is a point on aC2 surface with three or more extremal curvature directions; hence it has
zero curvature as illustrated in Figure 13,right. However, quadratics that have a point of zero
curvature must be linear and this yields flat patches rather than a flat point. For the particular
example of a 3-fold saddle point, we could address this shortcoming by increasing the degree
of the polynomial to three and the overall degree to bi-9 [100]. But this does not address the
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Figure 14. (left) Zero set ofx2 + y3 = 0 and (right) tangent sectors of two possibly smooth
patches whose relative position does not allow the reduction to smoothness of a curve by cutting
with a transversal plane (dashed line).

underlying problem, namely the mismatch betweenn patches meeting atQ and the fixed number
of coefficients of any single polynomial of fixed degreed. In [86] it was therefore suggested to
replaceg by a (total-degree cubic) spline. This yields at leastn degrees of freedom.

3.5. Implicit Representation
Under suitable monotonicity and regularity constraints the zero set of a trivariate polynomials

in BB-form over a unit simplex defines asingle-sheeted, singly connectedpiece of surface that
we can also call a patch??. If p; q : R3 7! R are two trivariate polynomials in BB-form
that joinCk as functions at a common pointE 2 R3 or across a common curveE 2 R3
then generically (see caveat below) the corresponding patches join withcontact of orderk atE: E is the limit of k + 1 intersection points (curves)Ej of functionspj andqj converging
respectivelyEj 7! E, pj 7! p andqj 7! q. Just as in the parametric case, we have to make
sure that the trivariate polynomials are regular atE, as the following example demonstrates:
Let p(x; y; z) = x2 + y3; x � 0, q(x; y; z) = x2 + y3; x � 0. Both p andq are polynomial
pieces, have single-sheeted, singly connected zero sets and joinCk for anyk; but the zero set is
not smooth at the intersection (see Figure 14left for a cross-section.)

Since we are only concerned with the zero set of the polynomial we do not actually need
that the polynomials join smoothly but can scale the joiningpieces by scalar functionsa andb
([121], [120], [71]):

Definition 3.1 Two trivariate polynomialsp andq join withGk continuity atQ ifjk(p � a) jQ = jk(q � b) jQ; a(Q) 6= 0; b(Q) 6= 0:
Two trivariate polynomialsp andq join with Gk continuity at an irreducible curveE = (q =0) \ (h = 0) if jkp = jk(aq + bhk+1); a(E) 6= 0; b(E) 6= 0:

One could intersectE with a transversal plane to avoid a separate definition for continuity
alongE by reducing it to the point intersection. (The analogous technique for parametric sur-
faces is called Linkage Curve Theorem [78], [55].) This approach, however, runs into technical
problems, since implicitpatcheshave corners and there may be just one point of intersection
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with a transversal plane. Similarly, the trivariatek-jet jkp cannot just be replaced by ak-jet
along a line [35] since the domains may lie in the same half space and thus there is no plane
that intersects bothrestricteddomains in more than the common point (see Figure 14,right.)

3.6. Generalized Subdivision
Nearn-valent mesh nodes, uniform generalized subdivision surfaces consist of an infinite

sequence of ever smaller, concentric rings that are internally parametricallyCk. The rings also
join one another parametricallyCk. Yet, by the Borsuk-Ulam theorem (Section 3.4) there cannot
be a parametricallyCk mapping from the plane to objects of arbitrary genus withouta singu-
larity. In a sense the (effect of the) necessary reparametrization is therefore concentrated in then-valent mesh nodes. Correspondingly the analysis of smoothness of generalized subdivision
surfaces has therefore focused on the limits of then-valent mesh nodes (see e.g. [3] [90], [91]).
At present it appears that uniform generalized subdivisioncannot generate curvature continuous
surfaces unless the control net is in special position.

4. Constructions

An algorithm for constructingCk surfaces subject to data, such as a control net or a prescribed
network of curves, is a specification of theCk reparametrizationsr up tokth order and of the
geometry mapsg (see alson-sided hole filling??).

Thegeneric approachof stitching together individual spline patches consists of� choosing a consistent reparametrizationr at then-valent points and deriving a reparametriza-
tion for two edge-ajacent patches as a Hermite interpolant to the reparametrizations at the
end points of the edge; and� solving the vertex-enclosure problem at each point and deriving the geometry maps of
abbutting patches as a Hermite interpolant to the Taylor expansions at the vertices.

Thegeneric constructionis as follows.
(1) If n0 patches join at one boundary endpoint, corresponding tos = 0; t = 0, andn1 patches
join the other withs = 1; t = 0 then a Hermite interpolant (ins) to the linear symmetric
reparametrization of Lemma 2.1 at the endpoints, up tokth order is given byr(t; s) = (s+ 2th(s); �t); h(s) = �(s) 
os 2�n0 � �(s) 
os 2�n1 ;
where�(s) and�(s) areCk functions such that�(s); �(s) � 0,�(0) = �(1) = 1; �(1) = �(0) = 0; D��(i) = D��(i) = 0; i 2 f0; 1g; � > 1:
The interpolant is minimal in that the Taylor expansions of the reparametrization at either end-
point do not interfere, i.e.D�2r(i) = 0 for i 2 f0; 1g, � > 1 [46].
(2) The vertex-enclosure problem (for example forG1, n even) can be solved by one the follow-
ing four techniques [81]:

1. ChoosingHki (e.g. the curve mesh) in the span of the constraint matrixM;
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2. Splitting patches whose boundaries are prescribed into two or more pieces so that the
boundary curves of the split patches can be freely chosen in the span of the constraint
matrix (e.g. [31], [32], [92]);

3. Using rational patches to introduce second-order poles at the vertices (e.g. [42], [16] [53]);

4. Using a non-regular parametrization [81], [76], [98].

Thus, if we are not concerned about the degree, it is straightforward to createGk free-form
surface splines for anyk. The focus over the past decade has been to reduce the degree of the
surface representation, and to obtain better surface shapes ??. For example, while the degree
of curvature continuous surfaces prior to [95] and [98] was at least bi-9 (100 coefficients per
patch) [127], [51] newest results achieve curvature continuity with at most 24 coefficients per
patch [87].

Some special the techniques (c.f. Lemma 3.1) are as follows.� Given the common boundary with derivative
 = Dep jE = Deg jE, [16], [80], [22]
use asymmetricconstruction, pickingt as minimal Hermite interpolant to the transversal
derivative data at the endpoints andDe?p = �pt+ �p
; De?g = �gt+ �g

with t ^ 
 6= 0 and�p 6= 0 6= �g.� As illustrated in Figure 5 the average of twoG1 joined curves or surfaces is generally notG1. But if all transversal derivatives of a patch along a boundary E(t) arecollinear with
a vectorv, i.e. De?p jE = p(t)v andDe?q jE = q(t)v
for scalar functionsp andq with q=p < 0 thenn = N=kNk whereN(t) := Dep jE ^ v
is a normal common to both patches along the boundary [99].� Sabin [105] and [79] use formulation (2) of Lemma 3.1,n^Dp = 0, to determine versal
and transversal derivatives ofp – therebyisolating the construction of a patch from its
neighbor.� [72] and [80] list a number of choices for reparametrizations for particular constructions.

4.1. Free-form Surface Splines of Low Degree
Goodman [36] introducedG1 splines of degreebi-2 for special control meshes that consist of

quadrilateral facets and vertices of valence 3 or 4. The prototype meshes, that can be modified
by quadrilateral refinement, the cube mesh and the dual of thecube with lopped off corners, are
sphere-like shapes that, when symmetric, are curvature continuous (see [88]). Splitting each
original quadrilateral facet 1-4, [99] derives a bi-2G1 free-form surface spline. Splitting each
quadrilateral facet into four triangles, [85] obtains aG1 construction of total degree 3 that also
satisfies the local convex hull property, i.e. the surface points are guaranteed to be an average of
the local control mesh. All constructions with quadratic boundary curve, however, suffer from
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a shape defect when they are to model a higher-order saddle point : due to the Alternating Sum
Constraint on page 2.3.2 the quadratic boundary curves mustlie on a straight line.

TheGk free-form spline constructions of Prautzsch [95] and Reif [98] are of degree2(k+1)
if flat regions at higher-order saddle points are acceptable– and of degreer(k+1) if modeling of
the local geometry requires a polynomial of degreer. [48] shows that a degree bi-5 construction
should be possible and [87] models curvature continuous free-form surfaces of unrestricted
patch layout from patches of maximal degreed + 2� 3, d > 0 with the flexibility of degreed,C2 splines at extraordinary points.

5. Additional Literature

Every paper on smooth surfacing defines some, possibly specialized, notion of geometric
continuity. Some of the early characterizations can be found in [10] [9],[8] [23] [27] [31] [33]
[69] [72] [74] [77] [104,103] [106], [107], [108], [114], [112], [113], [45], , [82], [92], [117],
[115] [116] [126] [116] [125] and characterizations for curves in [6], [7], [50],[20], [30].

A number of publications specifically aim at clarifying the notion of geometric continuity.
Kahmann discusses curvature and the chain rule [66], DeRose[23] reconciles continuity after
reparametrization with the smoothness of manifolds (see also [25], [26]). Liu [73]characterizesC1 constraints in the form (1) of Lemma 3.1. Particularly well-illustrated is Boehm’s treatment
of geometric and ‘visual’ continuity [11], [12] [14], [13].Herron [57] shows directly the equiv-
alence of first and second order geometric continuity with tangent and curvature continuity of
surfaces. Further characterizations can be found in [62], [94,93],[22], [54], [24], [122], [118].

Hahn’s treatment of geometric continuity [52] (see also [41]) served as a blueprint for Section
2 but differs in that he defines aGk join in terms of the existence of a reparametrization, rather
than making the reparametrization part of the definition.

Warren’s thesis [121] looks at geometric continuity of implicit representations and [35] is a
tour de force of conversions of notions of geometric continuity between two patches.

I am indebted toTamas Hermannfor closely reading the article and making numerous sug-
gestions.
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59. K. Höllig and J. Koch. Geometric hermite interpolation. Computer Aided Geometric De-

sign, 12(6):567–580, 1995. ISSN 0167-8396.
60. K. Höllig and J. Koch. Geometric hermite interpolationwith maximal order and smooth-

ness.Computer Aided Geometric Design, 13(8):681–695, 1996. ISSN 0167-8396.
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