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A Comparative Study of Palmprint Recognition Algorithms
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Palmprint images contain rich unique features for reliable human identification, which makes it a very com-
petitive topic in biometric research. A great many different low resolution palmprint recognition algorithms
have been developed, which can be roughly grouped into three categories: holistic-based, feature-based,
and hybrid methods. The purpose of this article is to provide an updated survey of palmprint recognition
methods, and present a comparative study to evaluate the performance of the state-of-the-art palmprint
recognition methods. Using the Hong Kong Polytechnic University (HKPU) palmprint database (version
2), we compare the recognition performance of a number of holistic-based (Fisherpalms and DCT+LDA)
and local feature-based (competitive code, ordinal code, robust line orientation code, derivative of Gaussian
code, and wide line detector) methods, and then investigate the error correlation and score-level fusion
performance of different algorithms. After discussing the achievements and limitations of current palmprint
recognition algorithms, we conclude with providing several potential research directions for the future.
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1. INTRODUCTION

With the increasing demand of biometric solutions for security systems, palmprint
recognition, a relatively novel but promising biometric technology, has recently re-
ceived considerable interest [Duta et al. 2002; Jain et al. 2004; Shu and Zhang 1998;
Zhang 2004; Zhang and Shu 1999]. Palmprints (the inner surface of the palm) carry
several kinds of distinctive identification features for accurate and reliable personal
recognition. Like fingerprints, palmprints have permanent discriminative features,
including patterns of ridges and valleys, minutiae, and even pores in high resolution
(>1000dpi) images [Cummins and Midlo 1961; SWGFAST 2006]. Aside from these
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quasi fingerprint features, palmprints also carry other particular distinctive features,
including principal lines and wrinkles.

In Jain and Feng [2009], the discriminative palmprint features are grouped into two
subclasses: ridges and creases. In Jain et al. [2007], ridge features are further divided
into three levels: Level 1 (ridge pattern), Level 2 (minutia points), and Level 3 (pores
and ridge contours). Level 1 and Level 2 features can be extracted from fingerprint or
palmprint images with 500 or less dpi, while Level 3 features should be extracted from
1000 dpi images. For ridge-based palmprint recognition, various Level 1 and Level 2
feature extraction and matching techniques developed for fingerprint recognition can
be directly adopted. Minutiae extraction and descriptor are also proposed by taking
the characteristics of latent palmprint into account [Jain and Demirkus 2008; Jain
and Feng 2009]. Recently, the discriminative power of Level 3 features has been no-
ticed by the biometric and forensics communities. Jain et al. [2007] have developed a
hierarchical matching system to utilize Level 3 features for performance improvement
in fingerprint matching. Although the acquisition and processing time of the high reso-
lution palmprint images may restrict its applications in online personal authentication
systems, ridge features are crucial for latent palmprint recognition, which has shown
great potential in forensics and law enforcement.

Creases, also referred to as palm lines, include principal lines and wrinkles, which
are obvious structural human features adopted for use in palmprint identification.
The principal lines and some main wrinkles are formed several months after concep-
tion, and the other wrinkles are formed as the consequence of both genetic effects and
various postnatal factors. The complex patterns of creases carry rich information for
personal authentication. Most creases could be acquired with a low resolution scanner
(100 dpi). Subsequently, online capture devices were developed to collect low resolu-
tion palmprint images in real time. Nowadays, low resolution palmprint recognition
has gradually become a focus of research interest in the field of palmprint recognition
[Li et al. 2002; Zhang et al. 2003]. In order to develop effective feature representation
approaches, rather than explicitly extracting palm lines, low resolution palmprint im-
ages can also be treated as texture images, and texture descriptors are then used to
describe invariant palmprint features.

With the rapid progress in sensor techniques and increase of computational power,
except for low resolution palmprint recognition, several novel palmprint recognition
technologies have been recently developed.

(1) Multispectral palmprint recognition. Recent progress in multispectral imaging
makes it possible to develop effective palmprint recognition methods by utilizing
features obtained with different spectral wavelengths, such as visible, near in-
frared, infrared, and even single red, green, and blue channels [Han et al. 2008;
Rowe et al. 2007; Zhang et al. 2010a]. With infrared spectral imaging, palm vein
information would be captured to improve the capability of spoof detection and the
accuracy of palmprint recognition. Another interesting direction is to pursuit the
optimal illumination (or lighting combination) for palmprint recognition by com-
paring and combining the recognition performance using whole visible spectral
range light and light at several typical spectral bands. To date, several data-level,
feature-level, and score-level fusion methods have been developed for multispectral
palmprint recognition [Hao et al. 2007, 2008; Rowe et al. 2007].

(2) 3D palmprint recognition. 3D structural information on palm surface and lines
also carries distinct discriminative features for personal authentication. Using a
structured light vision technique, Zhang et al. [2010b] investigated 3D palmprint
recognition by using mean curvature, Gaussian curvature, and surface type fea-
tures. Compared with a 2D palmprint image, 3D depth information is difficult to
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be imitated or disclosed, and thus 3D palmprint recognition is more robust against
fake palmprint attack than 2D palmprint recognition [Zhang et al. 2009]. Since 2D
information can also be acquired during 3D reconstruction, a high accuracy and ro-
bust palmprint recognition system could be constructed by combining 2D and 3D
information.

(3) Latent palmprint recognition. Latent palmprint is a crucial crime scene mark
for suspect and victim identification in forensic applications. Different from low
resolution palmprint recognition, latent palmprint recognition is a latent-to-full
matching. Similar to fingerprint recognition, minutiae features and matching are
usually adopted in latent palmprint recognition. Based on the characteristics of
latent palmprints, Jain and Feng [2009] proposed a robust minutiae extraction
method and a fixed-length minutia descriptor. Several local feature descriptors,
e.g., the Scale Invariant Feature Transform (SIFT), have also been investigated in
latent palmprint recognition [Jain and Demirkus 2008]. Regarding its important
evidential value, latent palmprint recognition has shown great potential in foren-
sics and law enforcement, such as the FBI’s Next Generation Identification (NGI)
system [NIST 2008], the British national palm print database and searching tool
[CNET 2006].

In this article, we will concentrate on the survey of low resolution palmprint recog-
nition algorithms. Regarding recent great progress in novel palmprint recognition
techniques, in Section 2.2, we also provide an analysis and comparison of various local
features for low resolution, latent, 3D, and multispectral palmprint recognition.

Building a palmprint recognition system usually involves four modules: image
acquisition, preprocessing, feature extraction, and matching. In image acquisition,
research teams have independently developed several CCD-based palmprint capture
devices [Han 2004; Wong et al. 2005; Zhang et al. 2003, 2005]. Several public image
databases have recently been released to facilitate the development of palmprint
recognition technology.1,2,3 In preprocessing, the aim is to detect several key points
(usually two or more) to align different palmprint images and establish a reference
coordinate system. According to the reference coordinate system, the central parts
of palmprint images are segmented for subsequent feature extraction and matching
[Dai et al. 2004; Li et al. 2002; Poon et al. 2004a; Zhang et al. 2003]. Rather than
detecting the key points, some researchers suggested fitting an ellipse of the palmprint
region, and then establishing the reference coordinate system in accordance with the
orientation of the ellipse [Kumar et al. 2003].

In feature extraction and matching, a set of discriminative features is extracted
from a palmprint image, and then compared against the stored templates to generate
matching results. Feature extraction and matching are two of the most crucial
problems in palmprint recognition, and have attracted researchers with different
backgrounds, such as biometrics, pattern recognition, computer vision, and neural
networks. Due to this fact, feature extraction and matching methods are much more
diverse than preprocessing methods. In this article, palmprint feature extraction
and matching algorithms are roughly grouped into three categories: holistic-based,
feature-based, and hybrid methods. Holistic-based methods treat a palmprint image
as an image, a high-dimensional vector, or a second rank tensor, and feature extrac-
tion and classification techniques are then used for palmprint recognition [Lu et al.
2003; Wu et al. 2003; Zuo et al. 2006b]. Feature-based methods extract local salient

1HKPU Palmprint Database, http://www.comp.polyu.edu.hk/∼biometrics/.
2UST Hand Image Database, http://visgraph.cs.ust.hk/biometrics/Visgraph web/index.html.
3CASIA Palmprint Database, http://www.csbr.ia.ac.cn.
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features (such as edges, lines, and texture features) from palmprint images, and use a
matcher to compare these against stored templates [Kong et al. 2003; Wu et al. 2004a,
2004b]. Hybrid methods use both holistic and local features to improve the recognition
accuracy or facilitate identification speed [Kumar and Zhang 2005; Li et al. 2005a;
You et al. 2004].

In the biometrics community, performance evaluation has received increasing atten-
tion. In recent years, the US National Institute of Standards and Technology (NIST)
has conducted a number of excellent biometric evaluations in fingerprint, speaker,
face, gait, and iris recognition [Doddingtona et al. 2000; Garris et al. 2006; Phillips
2007; Phillips et al. 2000, 2003; Sarkar et al. 2005]. In fingerprint recognition, from
2000 onwards, Cappelli et al. [2006] organized a series of famous independent compe-
titions to evaluate state of the art fingerprint verification systems [Maio et al. 2002a,
2002b, 2004]. However, little work has been done on the comparative study of palm-
print recognition algorithms. In this article, we first provide an updated survey of
palmprint recognition methods, identify seven state of the art palmprint recognition
methods, and then carry out a comparative study to evaluate the performance of these
methods. More importantly, we intend to reveal the state of the art performance, iden-
tify the limitations of current palmprint recognition algorithms, and point out future
directions for recognition algorithm development.

The remainder of this article is organized as follows. Section 2 presents a survey of
current palmprint recognition algorithms. Section 3 briefly reviews several other top-
ics on palmprint recognition, including complexity, partial recognition, sensing tech-
niques, and antispoofing. Section 4 introduces seven palmprint recognition methods
as well as the data set and performance indicators. Section 5 provides the experi-
mental results, and discusses the memory and computational requirements. Section 6
studies the error correlation and score-level fusion performance of different methods.
Finally, Section 7 draws some conclusions and identifies directions for future research.

2. SURVEY OF PALMPRINT RECOGNITION APPROACHES

With increasing interest in low resolution palmprint recognition, researchers have pro-
posed a variety of palmprint feature extraction and matching approaches, which can
be grouped into three categories: holistic-based, feature-based, and hybrid methods. In
practice, sometimes it is difficult to distinguish feature extraction from matching, and
thus we use the term “palmprint recognition approach” as a generalized denotation of
a palmprint feature extraction and matching algorithm. In this section, we present a
survey of these three categories of palmprint recognition approaches.

2.1 Holistic-Based Approaches

In the holistic-based palmprint recognition approach, the original palmprint image is
used as the input of a holistic feature extractor or matcher (classifier), and thus there
are two main issues, holistic palmprint image representation and classifier design. A
summary of existing holistic palmprint recognition approaches is shown in Table I.
In this section, we first survey several palmprint image representation methods in
Section 2.1.1, and then summarize the classification methods in Section 2.1.2.

2.1.1 Palmprint Image Representation. Generally, palmprint images can be represented
either in a spatial or a transform domain. On one hand, holistic palmprint features
can be extracted from the spatial domain by treating a palmprint image as a vector,
two-dimensional matrix, or second order tensor. On the other hand, using image trans-
form techniques, holistic palmprint features can also be extracted from the transform
domain.
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Table I. Holistic-Based Palmprint Recognition Approaches

Approach Representative work
(1) Holistic feature extraction

(1.1) Subspace method
Unsupervised linear method Applications of PCA [Lu et al. 2003; Ribaric and

Fratric 2005], ICA [Connie et al. 2003], and other
unsupervised subspace methods [Yang et al. 2007]

Supervised linear method PCA+LDA on raw data [Wu et al. 2003]
Kernel method Applications of kernel PCA [Ekinci and Aykut 2007]

and kernel Fisher discriminant [Wang and Ruan
2006b]

Tensor subspace method Two-dimensional PCA [Zuo et al. 2006b],
two-dimensional LPP [Hu et al. 2007]

Transform domain subspace method Subspace methods in the transform domains
[Jing and Zhang 2004; Jing et al. 2005]

(1.2) Invariant moment Zernike moments [Li et al. 2005b] and Hu
invariant moments [Noh and Rhee 2005]

(1.3) Spectral representation
Wavelet signature Global statistical signatures in wavelet domain

[Zhang and Zhang 2004]

Correlation filter Advanced correlation filter [Hennings et al. 2005;
Hennings-Yeomans et al. 2007]

(2) Classifier design
(2.1) Nearest neighbor Extensively adopted in palmprint recognition [Hu

et al. 2007; Jing and Zhang 2004; Jing et al. 2005,
2007; Yang et al. 2007; Yao et al. 2007]

(2.2) SVM SVM with Gaussian kernel [Chen and Xie 2007]

(2.3) Neural network Backpropagation neural network [Han et al. 2003],
modular neural network [Zhao et al. 2007]

According to spatial palmprint representation, different holistic approaches are pro-
posed for palmprint recognition. By treating a palmprint image as a two-dimensional
image, several invariant image moments are extracted as the holistic palmprint fea-
ture [Li et al. 2005b]. By concatenating columns of a palmprint image into a high
dimensional vector, varieties of linear and nonlinear subspace analysis technologies
are applied to the palmprint feature extraction [Lu et al. 2003; Wu et al. 2003; Yang
et al. 2007]. Most recently, by treating a palmprint image as a second order tensor,
several tensor analysis approaches have been developed [Hu et al. 2007; Zuo et al.
2006b].

Different image transform techniques have been investigated for effective transform
domain palmprint representation. The Fourier transform, a classical image transform
technique, has been successfully applied to Fourier domain feature extraction and clas-
sifier design [Jing et al. 2005; Li et al. 2002]. Other image transform techniques, such
as 2D Gabor transform and discrete cosine transform (DCT), can be combined with the
subspace analysis method for efficient palmprint feature extraction [Jing and Zhang
2004; Jing et al. 2007; Pan et al. 2007a; Yao et al. 2007].

2.1.2 Holistic Palmprint Feature Extraction. The subspace method, invariant moments,
and spectral representation are three main subclasses of holistic palmprint feature
extraction approaches.
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2.1.2.1 Subspace Method. The dimension of palmprint images is usually much higher
than the number of available training samples, which is known as the small sample
size (SSS) problem. To address the SSS problem, various unsupervised/supervised,
vector/tensor, and linear/nonlinear subspace methods are proposed to map a palm-
print image from the original data space to a lower-dimensional feature space [Zhang
et al. 2006]. In the beginning, a linear unsupervised method—principal component
analysis (PCA)—was used to extract the holistic feature vectors [Lu et al. 2003; Pan
et al. 2007b; Ribaric and Fratric 2005]. Subsequently, other popular unsupervised
methods, such as independent component analysis (ICA) and locality preserving
projection (LPP), have been applied to palmprint recognition [Connie et al. 2003; Yang
et al. 2007].

However, unsupervised subspace methods do not utilize class label information in
the training stage, and supervised methods are thus generally expected to be more
effective in dealing with recognition problems. Hence, Fisher’s linear discriminant
analysis (LDA), which aims to find a set of the optimal discriminant vectors that map
the original data into a low-dimensional feature space, has received considerable re-
search interest. To address the SSS problem in supervised subspace methods, there
are two popular strategies: transform-based and algorithm-based. The transform-
based strategy, such as PCA+LDA, first transforms the original image data into a lower
dimensional subspace and then uses LDA for feature extraction [Wu et al. 2003]. The
algorithm-based strategy finds an alternative LDA formalization to circumvent the
SSS problem [Jing et al. 2007; Qin et al. 2006].

Palmprint representation and recognition usually cannot be regarded as a simple
linear problem. In the last few years, a class of nonlinear subspace methods—
kernel-based subspace methods—was investigated for palmprint recognition. In
the kernel-based method, data x are implicitly mapped into a higher dimensional
or infinite dimensional feature space F : x→�(x); the inner product in feature
space can be easily computed using the kernel function K(x, y)=<�(x), �(y)>.
For the kernel trick, Schölkopf et al. [1998] pointed out that “every (linear) al-
gorithm that only use scalar (inner) products can implicitly be executed in F by
using kernels, i.e. one can very elegantly construct a nonlinear version of a linear
algorithm.” Now a number of kernel subspace methods, such as kernel PCA (KPCA)
and kernel Fisher discriminant (KFD), have been applied for palmprint feature
extraction [Aykut and Ekinci 2007; Ekinci and Aykut 2007; Wang and Ruan 2006b].
Most recently, another class of nonlinear dimensionality reduction technologies—
manifold learning—with the corresponding linear and kernel formalizations, has also
shown great potential in palmprint recognition [Hu et al. 2007; Wang et al. 2008;
Yang et al. 2007].

A palmprint image can be treated as a tensor of order two, where tensor is a higher
order generalization of a vector or matrix. With this formalization, a number of tensor
subspace methods have been proposed. Most recently, motivated by two-dimensional
PCA [Yang et al. 2004] and multilinear generalization of singular vector decomposition
[Lathauwer et al. 2000], tensor analysis methods have been developed and applied to
palmprint feature extraction [Hu et al. 2007; Wang and Ruan 2006a; Zuo et al. 2006a,
2006b].

Image transform can be used to further improve the performance of subspace meth-
ods. After image transform, the transform coefficients may be more effective for palm-
print recognition and robust to within-class variation. Furthermore, using feature
selection techniques, transform coefficients that are less discriminative may be ex-
cluded from subsequent processing operations and thus, total data dimensionality is
efficiently reduced. Subspace methods have been successfully applied in the transform
domains of several image transform techniques, such as Fourier [Jing et al. 2005],
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Gabor [Ekinci and Aykut 2007], discrete cosine [Jing and Zhang 2004], and wavelet
transform [Connie et al. 2003].

2.1.2.2 Invariant Moments. Image moments are capable of capturing global informa-
tion of images, usually provide translation, rotation, or scale invariant properties, and
thus, have found extensive applications in the field of image recognition. Using Zernike
and Hu invariant moments, a number of feature descriptors have been developed for
palmprint feature representation [Kong et al. 2008; Li et al. 2005b; Noh and Rhee
2005; Pang et al. 2004].

2.1.2.3 Spectral Representation. Using image transform, we can transform a palmprint
image to its Fourier frequency transform domain, and then extract a set of frequency
features or design a correlation classifier in the frequency domain to characterize
palmprint discriminative features [Hennings et al. 2005; Ito et al. 2006; Li et al. 2002;
Zhang and Zhang 2004]. Li et al. [2002] proposed using angular and radial energy
information for palmprint representation. Zhang and Zhang [2004] first transformed
a palmprint image into the wavelet domain, and then a set of global statistical signa-
tures was extracted to characterize palmprint directional context features. Hennings
et al. [2005] proposed training an advanced correlation filter in the Fourier transform
domain for palmprint images from each palm. Furthermore, this group proposed using
multiple correlation filters per class to enhance the accuracy of palmprint recognition
[Hennings-Yeomans et al. 2007]. However, correlation filter is more likely to be a clas-
sification method rather than a feature extraction approach. Aside from correlation
filter, there is another type of correlation method, known as phase-only matching [Ito
et al. 2006].

2.1.3 Classifier Design. In palmprint recognition, a common characteristic is that the
number of classes (palms) is much higher than the number of available samples of
each class. In some cases, there is only one training image for each palm. Taking
these factors into account, it would be difficult to estimate the hyper-parameters of
sophisticated classifiers, and thus, the nearest neighbor classifier has been extensively
adopted [Hu et al. 2007; Jing and Zhang 2004; Jing et al. 2005, 2007; Yang et al. 2007;
Yao et al. 2007].

Other classification approaches, such as neural networks and support vector ma-
chine (SVM), have also been applied to palmprint recognition. In Chen and Xie [2007],
SVM with Gaussian kernel is adopted for palmprint classification using dual-tree com-
plex wavelet features. In Han et al. [2003], the backpropagation neural network is
first applied to palmprint authentication. However, palmprint recognition is a typi-
cal large-scale multiclass problem, which is very difficult for backpropagation neural
networks. In Li et al. [2005b; Zhao et al. 2007], the modular neural network is used
to decompose the palmprint recognition task into a series of smaller and simpler two-
class subproblems. In Jing et al. [2007] and Jing and Wong [2006], the RBF neural
network is suggested for palmprint recognition due to its computational simplicity
and favorable classification capability. Most recently, other neural networks, such as
hierarchical neural network and radial basis probabilistic neural network, have also
been proposed for palmprint authentication [Kong et al. 2008; Shang et al. 2006].

2.2 Local Feature-Based Approaches

There are two classes of local features for palmprint recognition—ridges and creases—
which can be extracted from high resolution and low resolution palmprint images,
respectively. For completeness, we also discuss the 3D structure features and multi-
spectral features of palm/palmprint. Table II lists the characteristics of local features

ACM Computing Surveys, Vol. 44, No. 1, Article 2, Publication date: January 2012.



2:8 D. Zhang et al.

Table II. Characteristics of Local Features in Palmprint Recognition

Feature Resolution Collectability Permanence Distinctiveness Circumvention Latent Recognition

Principal lines Low High High Low High No
Wrinkles Median High Median High High No

Multispectral Low Median High High Low No
3D Median Low Median Median Median No

Minutiae High Median High High Median Yes
Level 3 Very High Low Median High Low Yes

in terms of acquisition resolution, collectability, permanence, distinctiveness, circum-
vention, and application in latent recognition. In the following, we briefly introduce
the strength and restrictions of each kind of local palmprint features.

(1) Principal lines. Compared with wrinkles, principal lines usually are the conse-
quence of genetic effects, and thus have good permanence and are more significant
in the palmprint images. The principal lines of twins are similar, which makes the
distinctiveness of principal lines relatively low.

(2) Wrinkles. Several wrinkles may only be stable for months or years. Thus the per-
manence of wrinkles is not as high as minutiae. Principal lines and wrinkles are
difficult to be recovered from a crime scene, and almost no latent-to-full match-
ing techniques are developed for principal line and wrinkle features, which makes
principal lines and wrinkles less useful in latent recognition. A low resolution
palmprint image has rich wrinkle information. By combining principal line and
wrinkle features, we can establish a high performance online palmprint recogni-
tion system [Sun et al. 2005; Zhang et al. 2003].

(3) 3D structure. The acquisition of the 3D depth information of a palm surface is
much more difficult than the acquisition of a 2D palmprint image. 3D palmprint
recognition is robust against fake palmprint attack, and thus can be combined with
2D features to build a highly accurate and robust palmprint recognition system
[Zhang et al. 2009, 2010b].

(4) Multispectral features. Multispectral palmprint recognition utilizes features ob-
tained with different spectral wavelengths/resolution/sensors for personal authen-
tication [Rowe et al. 2007; Han et al. 2008; Hao et al. 2008]. Multispectral features
can be regarded as an ensemble of palmprint features. Principal lines and wrin-
kles can be acquired at visible wavelengths, while palm veins can be acquired at
infrared wavelengths. Since palm vein is difficult to be circumvented, multispec-
tral features can be used to build a high accuracy and robust palmprint recognition
system.

(5) Minutiae. The distinctiveness and permanence of minutiae have been investi-
gated in depth for fingerprint and palmprint recognition. Minutiae features can
be extracted from palmprint images with 500 or less dpi, and are crucial for latent
palmprint recognition. Recently, minutiae-based palmprint recognition has shown
great potential in forensics and law enforcement [Jain and Demirkus 2008; Jain
and Feng 2009].

(6) Level 3 features. Level 3 features include all dimensional permanent attributes
of the ridge, e.g., ridge path deviation, line shape, pores, edge contour, incipient
ridges, warts, and scars [Jain et al. 2007]. Level 3 features play an important role
in latent recognition, where 20 to 40 pores should be sufficient to determine the
identity of a person [Ashbaugh 1999]. Currently, most Level 3 feature acquisition,
extraction, and matching approaches are designed for fingerprint recognition.

In the remainder of this section, we will concentrate on the survey of local feature -
based method for low resolution palmprint recognition. We do not take minutiae and
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Table III. Local Feature-Based Palmprint Recognition Approaches

Approach Representative work
(1) Line-based

Derivatives of a Gaussian First- and second-order derivatives of a Gaussian with
different directions [Wu et al. 2006b]

Wide line detector Extraction of the location and width information of
palm line [Liu et al. 2007]

Line segment Hausdorff distance Application of line segment Hausdorff distance
[Gao and Leung 2002]

(2) Coding-based

PalmCode Coding of the phase of the 2D-Gabor filter responses
[Zhang et al. 2003]

FusionCode Coding of the phase of the 2D-Gabor filter responses
with the maximum magnitude [Kong et al. 2006a]

Orientation code Coding of the orientation information of palm lines
[Jia et al. 2008; Kong and Zhang 2004; Sun et al. 2005]

(3) Palmprint texture descriptor Local binary pattern [Wang et al. 2006], Coding of DCT
coefficients [Kumar and Zhang 2006]

Level 3 feature extraction methods into account because they can only be extracted
from high resolution palmprint images, and are usually used in latent recognition.
Besides, several of the local feature-based methods could be extended for multispectral
and 3D palmprint recognition [Rowe et al. 2007; Zhang et al. 2009].

Palm lines and texture are two kinds of local distinctive and stable features for
low resolution palmprint authentication. A number of line detection approaches have
been proposed to extract palm lines. However, several thin and weak palm lines, such
as wrinkles, might be too vague for detection by a line detector. To avoid this, tex-
ture analysis approaches, such as coding-based methods and texture descriptors, have
achieved great success in palmprint recognition. Thus, Table III summarizes the ex-
isting local feature-based approaches into three categories: line-based, coding-based,
and texture descriptor methods.

2.2.1 Line-Based Method. To extract palm lines, Wu et al. [2006b] used the second-
order derivatives of a Gaussian to represent the line magnitude, and the first-order
derivatives of a Gaussian to detect the location of the line. The final result is obtained
by combining all directional line detection results and then encoded using the chain
code. To simultaneously extract the location and width information of palm lines, Liu
et al. [2007] proposed a wide line detector using an isotropic nonlinear filter. Other
methods, such as two-stage filtering, have also been applied to palm line detection
[Wang and Ruan 2006c].

Another topic in the line-based method is local line matching, where a score is pro-
duced by matching two line images. An ordinary matching method is calculating the
number (or proportion) of the line pixels that are in the same location as the two
line images. However, the performance of this method would be unsatisfactory due to
several unavoidable factors, such as the translation, rotation, and deformation of the
palmprint images. To improve the line matching performance, Wu et al. [2006b] pro-
posed dilating the template line image before matching, and Leung et al. [2007] used
the line segment Hausdorff distance to denote the matching score of two line images
[Gao and Leung 2002; Li and Leung 2006].

2.2.2 Coding-Based Method. The coding-based method encodes the response of a bank
of filters into bitwise code. With the virtues of bitwise feature representation, a
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coding-based method usually has a lower memory requirement and a fast matching
speed, and thus has been very successful in palmprint representation and matching.
Motivated by Daugman’s IrisCode [Daugman 1993], Zhang and Kong developed a
PalmCode method, which first convolved the palmprint image with a 2D Gabor filter,
and then encoded the phase of the filter responses as bitwise features [Kong et al.
2003; Zhang et al. 2003]. However, the PalmCodes of different palms still have obvious
correlations, and thus, might cause performance degradation of PalmCode. To improve
the performance, Kong et al. [2006a] further introduced a FusionCode method, which
convolves a palmprint image with a bank of Gabor filters with different orientations,
and then encodes the phase of the filter response with the maximum magnitude.

Recent advances in coding-based methods indicate that the orientation information
of palm lines is one of the most promising features for personal identification [Kong
and Zhang 2004; Wu et al. 2006a]. Generally, there are three main topics in orien-
tation coding: filter design, coding scheme, and matching approaches. In 2004, Kong
and Zhang investigated the orientation coding problem, and proposed a competitive
code method, where a bank of Gabor filters was utilized to extract the orientation
information. A competitive coding scheme was used to generate a bitwise feature rep-
resentation, and the angular distance was used to match two competitive codes [Kong
and Zhang 2004]. Subsequently, other filters, such as elliptical Gaussian and Radon
[Jia et al. 2008; Sun et al. 2005], other coding schemes, such as ordinal code [Sun
et al. 2005] and integer coding [Jia et al. 2008; Wu et al. 2005], and other matching
approaches, such as pixel to area comparison [Huang et al. 2008; Jia et al. 2008], have
been developed for palmprint recognition.

2.2.3 Local Palmprint Texture Descriptors. A typical local palmprint texture descriptor
usually divides a palmprint image (or a transformed image) into several small blocks,
and then calculates the mean, variance, energy, or histogram of each block as local fea-
tures [Han et al. 2007; Kumar and Zhang 2006; Wang et al. 2006; Wu et al. 2002]. Local
binary pattern (LBP) [Ojala et al. 1996, 2002], a powerful texture analysis method, has
been successfully applied to face recognition [Ahonen et al. 2004, 2006], and recently
introduced to palmprint recognition through integration with AdaBoost [Wang et al.
2006]. Kumar and Zhang [2006] divided a palmprint image into overlapped blocks, cal-
culated the DCT coefficients of each block, and used its standard deviation to form a
feature vector. Other texture descriptors, such as directional element energy and local
direction histogram, have also been adopted in palmprint recognition [Han et al. 2007;
Wu et al. 2002].

2.2.4 Other Methods. With the exception of these three categories of local feature-
based methods, there are several other algorithms, which are difficult to classify. For
example, motivated by the success of the complex wavelet structural similarity index
(CW-SSIM) in image quality evaluation [Wang et al. 2004], Zhang et al. [2007] pro-
posed a modified CW-SSIM method for calculating the matching score of two palmprint
images.

2.3 Hybrid Approaches

It has been argued that the human vision system uses both holistic and local fea-
tures to recognize the object of interest, and hybrid approaches are thus expected to
be promising for palmprint recognition. Hybrid approaches have two main applica-
tions: high accuracy palmprint recognition and fast palmprint matching, as shown in
Table IV. Using both holistic and local feature-based methods to obtain a multiple
palmprint representation, several feature-level, score-level, and decision-level fusion
strategies can then be used to further improve recognition performance [Kittler et al.
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Table IV. Hybrid Palmprint Recognition Approaches

Approach Representative work.
Multiple palmprint representation
(high accuracy)

Fusion of three palmprint representations, Gabor, line,
and subspace features [Kumar and Zhang 2005]

Hierarchical matching scheme (fast
matching)

Coarse-to-fine matching of palmprint features
[Li et al. 2005a; You et al. 2004]

1998]. Following this criterion, a number of multiple palmprint representation ap-
proaches have been suggested [Kong et al. 2008; Kumar and Zhang 2005; Poon et al.
2004b]. For example, Kumar extracted three major palmprint representations: Ga-
bor, line, and subspace features, and proposed a product of sum rule to combine their
matching scores [Kumar and Zhang 2005].

Another important application of hybrid approaches is fast palmprint matching,
where a hierarchical scheme is used for coarse-to-fine matching [Li et al. 2004a; You
et al. 2002, 2005]. In You et al. [2004], the global geometry feature (Level-1), global
texture energy (Level-2), fuzzy line feature (Level-3), and local texture energy feature
(Level-4) are extracted to feed to a hierarchical classifier. During palmprint verifica-
tion or identification, You et al. proposed using a guided search scheme to facilitate
efficient palmprint matching. The scheme begins with matching of the simplest Level-
1 feature. If the Level-1 matching distance is smaller than the predefined threshold
T1, matching of the next feature level is then performed until the Level-i matching
distance is smaller than a predefined threshold Ti or the matching of Level-4 feature
is performed. Most hierarchical matching approaches are based on global geometry,
lines, and texture features [Li et al. 2002, 2005a; You et al. 2004]. Only a few pa-
pers reported the use of pure global or local line features for constructing hierarchical
classifiers [Li and Leung 2006].

3. OTHER TOPICS ON PALMPRINT RECOGNITION

In this section, we present a brief survey of several other palmprint recognition topics.
Based on the categorization introduced in Section 2, we first compare the complexity
and template size of different algorithms, then provide a survey of palmprint recog-
nition methods for partial recognition and different sensing techniques, and finally
review the antispoofing methods.

3.1 Complexity and Template Size

Using the categorization introduced in Section 2, Table V provides a brief comparison
of the palmprint recognition methods based on their complexity and template size. It
should be noted that we evaluate the complexity and template size according to the
state-of-the-art methods in each subclass, and do not take into account the methods
with less complexity and small template size but with poor performance. Based on the
characteristics of the methods, researchers may choose appropriate palmprint recogni-
tion methods to develop a system for a specific application and operation environment.
For example, for a palmprint identification system used in a large enterprise, a hierar-
chical matching scheme can be adopted for fast personal identification, while a coding-
based method would be appropriate for a real-time embedded verification system.

3.2 Partial Palmprint Recognition

A real palmprint recognition system should capture, detect, and recognize a palmprint
image automatically, making it inevitable that palmprint images will sometimes be
only partially acquired. Some accessories, e.g., bandages, will also cause the partial
occlusion of a palmprint image. Thus, the development of a palmprint authentication
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Table V. Comparison of Various Palmprint Recognition Methods Based on
Complexity and Template Size

Palmprint recognition methods Computational
complexity

Memory
complexity

Template
size

(1) Holistic methods

Subspace method Low Medium Medium
Invariant moment Medium Low Low
Spectral representation High High Medium

(2) Local feature-based methods
Line-based High Medium Medium

Coding-based Medium Low Low
Texture descriptor Medium Medium Medium

(3) Hybrid methods
Multiple palmprint representation High High High

Hierarchical matching scheme Low Medium High

system should always address the robust recognition problem on a partially occluded
or damaged palmprint image. If incorporated with palmprint quality evaluation meth-
ods, most coding-based methods, e.g., PalmCode [Zhang et al. 2003] and FusionCode
[Kong et al. 2006a], can achieve robust recognition performance against partial occlu-
sion or damage of palmprint images. Holistic methods, such as PCA and LDA, are
robust in the presence of low levels of occlusion [Zhao et al. 2003]. However, if the
degree of occlusion increases, the recognition performance would deteriorate severely.
To address this, several robust appearance-based methods and sparse representation
approaches have recently been developed for robust recognition against partially oc-
cluded or damaged images [Fidler et al. 2006; Wright et al. 2009; Zhang and Zuo 2007].

In latent palmprint recognition, the sample captured from crime scenes is always
partial and incomplete, and minutiae features are usually adopted for latent-to-full
matching based on the methodology used by latent experts. Conventional fingerprint
recognition methods can be directly used for latent palmprint matching, but they may
produce many spurious minutiae and fail in a palmprint area with dense thin creases.
Jain and Feng [2009] proposed a latent palmprint matching system by using robust
orientation field estimation, fixed-length minutia descriptor, and two-level minutiae
matching. Local descriptors used in computer vision, e.g., SIFT, have also been inves-
tigated to facilitate latent-to-full palmprint matching [Jain and Demirkus 2008].

3.3 Algorithms for Different Sensing Techniques

In the last decade, visible, infrared, and 3D information acquisition techniques have
been developed for online palmprint recognition. Based on the categorization intro-
duced in Section 2, we present a brief summary of the application of holistic, local
feature-based, and hybrid methods in visible, infrared, and 3D palmprint recognition,
as shown in Table VI. Compared with low-resolution visible palmprint recognition, in-
frared and 3D palmprint acquisition techniques were developed in the latest few years,
and to date only a small number of methods are reported for infrared and 3D palmprint
recognition. Thus, it would be promising to use the experiences of visible palmprint
recognition in future studies of palmprint recognition for other sensing techniques.

3.4 Antispoofing

A palmprint recognition system can be spoofed by fake palms, brute-force, replay,
and other attacks. Kong et al. [2006b] studied the probabilistic model of brute-force
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Table VI. Summary of the Application of Holistic-Based, Local Feature-Based and Hybrid Methods in
Visible, Infrared, and 3D Palmprint Recognition

Holistic method Local feature-based method Hybrid method

Visible [Hennings-Yeomans et al.
2007; Lu et al. 2003; Wu
et al. 2003]

[Kong and Zhang 2004; Liu
et al. 2007; Sun et al. 2005;
Zhang et al. 2003]

[Kumar and Zhang
2005; You et al. 2004]

Infrared [Wang et al. 2008] [Hao et al. 2007; Zhang et al.
2010a]

Not yet

3D Not yet [Zhang et al. 2010b] Not yet

break-ins with projected multinomial distribution. Zhang et al. [2010b] investigated
the performance degradation of 2D palmprint recognition caused by a faked palmprint
attack, and proposed to use both 2D and 3D features to address this problem. In
multispectral palmprint recognition, palm vein image captured with infrared spec-
tral imaging can be used to improve the capability of spoof detection [Rowe et al.
2007; Zhang et al. 2010a]. From the security and privacy viewpoint, Connie et al.
[2005] proposed a PalmHashing (also known as BioHashing) method by combining
user-specific pseudo-random numbers (token) and palmprint features to generate
cancelable palmprint representation, and reported zero equal error rates for face,
fingerprint, and palmprint biometrics [Teoh et al. 2004]. It has been recognized,
however, that the authentication performance of this method would be much poorer
if the token is stolen [Kong et al. 2006; Teoh et al. 2008]. Recently, Kong et al. [2008]
proposed a cancelable competitive code method to defend replay and database attacks.

4. DATA SET AND ALGORITHMS

4.1 Data Set

The HKPU palmprint database (version 2) is used to carry out a comprehensive
comparison on the performance of several state-of-the-art palmprint recognition ap-
proaches. Compared with the UST hand image database and the CASIA palmprint
database, the HKPU palmprint database is the largest that is publicly available
and most extensively used in palmprint recognition research. The HKPU palmprint
database consists of 7752 images captured from 386 palms of 193 individuals, where
131 people are male. The samples of each individual were collected in two sessions,
where the average interval between the first and the second sessions was around two
months. During each session, we captured about ten palmprint images each of the
left and the right palms. The volunteers are mainly from the students and staff at
the Hong Kong Polytechnic University, and the age distribution is: about 86 percent
individuals younger than 30 years old, about 3 percent older than 50, and about 11
percent aged between 30 and 50. In the first session, we use a LED ring array over
the spectral range from 380nm to 780nm and the focal length of the CCD camera is
8mm. To incorporate realistic intraclass variations, in the second session, we adjusted
the focal length to 6mm and changed the light source to a ring-like incandescent lamp
to approximate the CIE standard illuminant D65.

In our experiments, we first modified the preprocessing method described in Zhang
et al. [2003] by fixing some minor problems, and then used it to crop each original
palmprint image to a subimage to a size of 128×128. To ensure the credibility of
the results, all the palmprint recognition algorithms were tested based on the same
subimage set. Figure 1 shows two palmprint images and the corresponding cropped
images of one palm, where the former image of Figure 1(a) is captured in the first
session and the latter in the second session.
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Fig. 1. Two images of a palm in the HKPU palmprint database: (a) original images, and (b) cropped images.

4.2 Performance Indicators

Two groups of experiments were carried out to evaluate the verification and identifica-
tion performance of each palmprint recognition algorithm. In palmprint verification,
an input palmprint image is compared with a template to determine whether they are
from the same palm. In our experiments, each of the palmprint images is compared
with all remaining images. To evaluate the verification performance, the following
performance indicators are used.

— Genuine accept rate (GAR, %) vs. false acceptance rate (FAR, %) curve (GAR-FAR
curve). GAR-FAR curve, a variant form of the receiver operating characteristic
(ROC) curve, plots GAR against FAR for various decision thresholds, and has been
very popular for performance evaluation of biometric systems.

— Equal error rate (EER, %). The error rate at the specific threshold t for which
(1-GAR) and FAR are equal;

— GAR at a specific FRR (= 10−3%). GAR−3.

In palmprint identification, an input palmprint image is compared with all the tem-
plates from the entire template set to determine the identity. In our experiments, for
each palm, three palmprint images collected in the first session are used to construct a
template set that contains 1158 images. For each test palmprint image, the minimum
matching score generated by comparing the templates with the same palm is regarded
as a genuine matching, and the minimum matching score generated by comparing the
templates with a different palm is regarded as an imposter matching. We use the
repeated random subsampling validation method to evaluate the identification perfor-
mance and robustness of each algorithm. For each algorithm, in each run, we randomly
select three samples of each subject in the first session to construct a template set, and
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use the remaining samples in the first session as TestSet 1 (2731 samples) and all
the samples in the second session as TestSet 2 (3863 samples). We then evaluate the
identification rate of the algorithm on TestSet 1 and the identification rate on TestSet
2. We run this experiment 20 times and use the mean and standard deviation(std.)
to denote the identification performance and robustness of the algorithm. To evaluate
the identification performance, the following performance indicators are used.

— Identification rate (IR, %). the percentage of test images that are correctly recog-
nized by a palmprint recognition algorithm;

— GAR-FAR curve (ROC curve);
— EER;
— GAR at a specific FRR (= 10−2%): GAR−2.

Finally, to evaluate the memory and computational requirements of each algorithm,
the following performance indicators are used.

— Template size;
— Average feature extraction and matching time.

4.3 Palmprint Recognition Algorithms

We implemented seven palmprint recognition algorithms: competitive code, ordinal
code, robust line orientation code (RLOC), derivative of the Gaussian (DoG) code, wide
line detector, Fisherpalms, and DCT+LDA. In Cheung et al. [2006] and Kong [2007],
Kong et al. carried out a comparison of several palmprint recognition approaches de-
veloped by our group, and showed that the competitive code would achieve higher ver-
ification accuracy in comparison to PalmCode, FusionCode, Eigenpalms, Fisherpalms,
and so on.

4.3.1 Competitive Code. Competitive coding (CompCode) is an effective method for
the extraction and representation of palm line orientation information [Kong and
Zhang 2004]. The 2D Gabor function reformed by Lee [1996] is adopted for filtering
the palmprint images. Furthermore, since palm lines are negative, we only used the
negative real part of the 2D Gabor function.

�(x, y, x0, y0, ω, θ, κ) =
−ω√
2πκ

e− ω2

8κ2 (4x′2+y′2)
(
cos(ωx′) − e− κ2

2

)
, (1)

where x′ = (x − x0) cos θ + (y − y0) sin θ , y′ = −(x − x0) sin θ + (y − y0) cos θ , (x0, y0)
is the center of the function, ω is the radial frequency in radians per unit length,
and θ is the orientation of the Gabor functions in radians. The κ is defined by
κ =

√
2 ln 2

(
2δ+1
2δ−1

)
, where δ is the half-amplitude bandwidth of the frequency response.

When σ and δ are fixed, ω can be derived from ω = κ/σ .
Competitive code uses six 2D Gabor filters with orientations θp = pπ/6, p =

{0, 1, ..., 5}, to generate a bitwise palmprint representation. Let I(x, y) denote the
cropped subimage and Ψ (x, y, θ ) is the Gabor filter with orientation θ . The compet-
itive rule defined as.

j = arg min
θ

{I(x, y) ∗ Ψ (x, y, θ )} (2)

is adopted to calculate the winning index j, where ∗ denotes the convolution opera-
tor. After feature extraction, Kong and Zhang encoded each winning index into 3 bits
for efficient palmprint representation. Figure 2 shows the procedure of the feature
extraction and representation of competitive code.
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Fig. 2. Procedure of the competitive coding scheme.

In the matching stage, Kong and Zhang [2004] presented an angular distance based
on Boolean operators. The distance between two palmprints is then defined as the
summation of the angular distance of all sampling points. With the bitwise feature
representation and angular distance, the distance (dissimilarity) between two compet-
itive codes can be efficiently computed by employing Boolean operators.

4.3.2 Ordinal Code. Different from competitive code, ordinal code (OrdiCode) first
uses six 2D elliptical Gaussian filters for filtering the palmprint image, and then com-
pares each pair of filtering responses orthogonal in orientation to generate one bit
feature code, [Sun et al. 2005]. The 2D elliptical Gaussian filter used by ordinal code
is defined as

f (x, y, x0, y0, δx, δy, θ ) = exp

(
−
(

x′

δx

)2

−
(

y′

δy

)2
)

, (3)

where x′, y′, x0, y0, θ are the same as defined in Eq. (1), δx and δy are the horizontal
and vertical scale of the Gaussian filter, respectively. Since this method only concerns
the relative magnitude of the filtering responses orthogonal in orientation, Sun et al.
[2005] proposed the ordinal coding rule as.

OF(x, y, θ ) =
1 + sgn

(
I(x, y) ∗ ( f (x, y, θ ) − f (x, y, θ + π/2)

))
2

, (4)

where sgn(·) is the sign function. The procedure of the feature extraction and repre-
sentation of ordinal code is illustrated in Figure 3.

In terms of the code size, competitive code and ordinal code are the same. For each
sampling point, the code length is three bits. In terms of the feature extraction speed,
ordinal code scheme is much faster than competitive code. As shown in Eq. (4), the
ordinal code can perform filter level combination. Thus, the filtering operation can
be performed on only three orientations, which makes the ordinal code method save
roughly half of the time for feature extraction in comparison to the competitive coding
scheme.

4.3.3 RLOC. In the feature extraction stage, RLOC uses a modified finite Radon
transform (MFRAT) to extract the orientation features of palm lines, and encodes the
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Fig. 3. Procedure of the ordinal coding scheme.

Fig. 4. The 16 × 16 MFRAT templates [Jia et al. 2008].

winning orientation index [Jia et al. 2008]. Denoting Z p = {−p, . . . , 0, 1, . . . , p}, where
p is a positive integer, the MFRAT of an image I(i, j) on the finite grid Z 2

p is defined as

MFRATI(i0, j0, θ ) =
∑

(i, j)∈Lθ

I[i, j], (5)

where Lθ denotes the set of neighbor points of (i0, j0) that makes up a line with angle
θp = pπ/6 , p = {0, 1, ..., 5}, which means

Lθ = {(i, j) : i = l + i0, j = k(i − i0) + j0, l ∈ Zp}, (6)

where (i0, j0) denotes the center point, and k is the corresponding slope of Lθ . In fact,
the width of palm lines is usually larger than one pixel, and Lθ is further extended to
represent the set of points that make up a line with angle θ and line width d. Figure 4
shows six 16×16 MFRAT templates used in RLOC feature extraction. Since the palm
lines are negative, the orientation of center point I(i0, j0) is determined using the
winner-takes-all rule

w(i0, j0) = arg min
k

(
MFRATI(i0, j0, θk)

)
, k = 0, 1, . . . , 5, (7)

where w(i0, j0) is the winner index.
In the matching stage, the winner index 0∼5 can be encoded into corresponding 3-

bit bitwise representation 000, 001, 010, 011, 100, 101. Given two RLOC codes P and
Q, the distance

dRLOC =

∑N
x=1
∑N

y=1 (PM(x, y) ∩ QM(x, y))n{∪i∈{1,2,3}(Pi(x, y) ⊗ Qi(x, y))}∑N
x=1
∑N

y=1 (PM(x, y) ∩ QM(x, y))
(8)
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Fig. 5. The pixel-to-area comparison scheme [Jia et al. 2008].

is then used to enforce fast matching, where Pi and Qi are the ith bit planes (i = 1, 2, 3)
of P and Q, PM and QM are the masks of P and Q, ⊗ is a bitwise exclusive OR (XOR)
operator, ∩ is a bitwise AND operator, and ∪ is a bitwise OR operator. To improve
the fault toleration ability, RLOC adopts a pixel-to-area matching scheme, where each
pixel in P is compared with the neighborhood of the corresponding pixel in Q, as shown
in Figure 5.

Compared with competitive code and ordinal code, RLOC has a faster feature ex-
traction speed because the implementation of MFRAT only uses a summation opera-
tion. Since RLOC adopts the pixel-to-area comparison scheme, the matching speed of
RLOC would be much slower.

4.3.4 DoG Code. The DoG code uses the vertical and horizontal derivatives of Gaus-
sian filters for filtering the palmprint images, and then encodes the filtering responses
into bitwise codes [Wu et al. 2006]. The method first resizes the original palmprint im-
age to 32×32, then uses the horizontal and vertical derivatives of 2D Gaussian filters

Gx(x, y, σ ) =
−x

2πσ 4 exp
(

−x2 + y2

2σ 2

)
, (9)

Gy(x, y, σ ) =
−y

2πσ 4 exp
(

−x2 + y2

2σ 2

)
, (10)

to convolve with the 32×32 palmprint image, and obtains the filtering responses Ix
and Iy.

The palmprint image is then encoded into two 32×32 bitwise matrices according to
the sign of the filtering responses, Cx, Cy. C = (Cx, Cy) is the DoG code. In the matching
stage, the DoG code adopts the Hamming distance used by PalmCode [Wu et al. 2006].

4.3.5 Wide Line Detector. Given a palmprint image I(x, y), wide line detector first mea-
sures the similarity of brightness within a circular mask and the brightness at the
center of the mask in a weighted mask having similar brightness (WMSB) [Liu et al.
2007]

s(x, y, x0, y0, t) = sech
(

I(x, y) − I(x0, y0)
t

)5

, (11)

where sech(x) = 2/(ex+e−x), (x0, y0) denotes the center, and (x, y) denotes the coordinate
of any other pixel within the mask, and t is the brightness contrast threshold. Taking
into account the effect of the relative location to the center, a square weighting function
w(x, y, x0, y0, r) is introduced to weigh the circular mask with constant weighting or a
Gaussian profile. The weighting comparison is then determined by

c(x, y, x0, y0, t) = w(x, y, x0, y0, t) × s(x, y, x0, y0, t). (12)
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The WMSB mass of the center (x0,y0) is obtained by

m(x0, y0) =
∑

(x−x0)2+(y−y0)2≤r2

c(x, y, x0, y0). (13)

Finally, the line response L is defined as the inverse WMSB mass

L(x0, y0) =

{
g − m(x0, y0), if m(x0, y0) < g
0, else

, (14)

where g is the geometric threshold with g = πr2/2. In wide line detector, the contrast
threshold t is defined as the standard deviation of the image I, and the radius of the
circular mask is determined with the constraint

r ≥ 2.5w, (15)

where 2w is the width of the estimated palm line.
During the matching stage, the method adopts the matching score [Liu and Zhang

2005] defined by

s(P, Q) =
2

MP + MQ
×

MQ∑
i=1

P(xi, yi), (16)

where P and Q are two line images, MP and MQ are the number of line points in P
and Q, (xi, yi) (i = 1, . . . , MQ) is the coordinate of line points in palm-line image Q, and
P(xi, yi) denotes whether point (xi, yi) is a line pixel.

4.3.6 Fisherpalms. Let X = {x(1)
1 , x(1)

2 , . . . , x(1)
N1

, . . . , x(i)
j , . . . , x(C)

Nc
} be a training set with

Ni palmprint image vectors for class i. The number of the class is C, and x(i)
j denotes

the jth image of class i. The total covariance matrix St is defined as

St =
1
N

C∑
i=1

Ni∑
j=1

(x(i)
j − x)(x(i)

j − x)T, (17)

where x is the mean vector of all training images, and N is the total number of training
images. The PCA projector Tpca = [ϕ1, ϕ2, . . . , ϕdPCA ] can be obtained by calculating the
eigenvectors of the total scatter matrix St, and dPCA is the number of eigenvectors to
guarantee the nonsingularity of the within-class scatter matrix, dPCA = N − C.

The between-class scatter matrix Sb and the within-class scatter matrix Sw are
defined as

Sb =
1
N

C∑
i=1

Ni(x(i) − x)(x(i) − x)T, (18)

Sw =
1
N

C∑
i=1

Ni∑
j=1

(x(i)
j − x(i))(x(i)

j − x(i))T, (19)

where x(i) is the mean vector of class i. With the PCA projector Tpca, we map Sb and
Sw to the corresponding transformed matrices,

S̃b = TT
pcaSb Tpca, (20)
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and

S̃w = TT
pcaSwTpca. (21)

The standard Fisher’s linear discriminant is used to obtain the optimal discriminant
vectors

JF(u) =
uTS̃b u
uTS̃wu

=
uTTT

pcaSb Tpcau
uTTT

pcaSwTpcau
. (22)

Let WFLD = [u1, u2, . . . , udLDA ] , where dLD A is the number of discriminant vectors.
The discriminant vectors in the original space are obtained by

Wopt = TPCAW f ld = [w1, w2, . . . , wdLDA ], (23)

where each column of Wopt is called a Fisherpalm [Wu et al. 2003]. In Fisherpalms,
each sample is first transformed to the Fisherpalm space,

zs = WT
optx, (24)

and the nearest neighbor classifier is used for palmprint matching.

4.3.7 DCT+LDA. Let X = {X(1)
1 , X(1)

2 , . . . , X(1)
N1

, . . . , X(i)
j , . . . , X(C)

Nc
} be a training set with

Ni palmprint images for class i. The number of the class is C, and X(i)
j denotes the jth

M × N (M ≥ N) image of class i. DCT is performed on each image X(i)
j to obtain the

transformed image Y(i)
j . Jing and Zhang [2004] divided the transformed image Y(i)

j into
M frequency bands, where the kth frequency band is a half square ring Y(i)

j,k.
After defining the within- and between-class scatter matrices Sw and Sb for each

frequency band, the reparability of the frequency band is evaluated using the following
criterion

J(Yk) =
tr(Sb )
tr(Sw)

, (25)

where tr(·) denotes the trace of the matrix. For each image X, we choose the frequency
bands where J(Yk) is higher than a threshold T, and obtain a one-dimensional sample
vector z. Then, Fisherpalms are performed on the sample vectors and nearest neighbor
classifier is used for palmprint matching. The procedure of the feature extraction and
representation of DCT+LDA is shown in Figure 6 [Jing and Zhang 2004].

5. EXPERIMENTAL RESULTS

A palmprint recognition algorithm usually involves several parameters that should be
tuned to meet the real application environment. To determine the parameter values
of each algorithm, we construct an isolated training set of 2400 images captured from
100 individuals, of 200 palms. Not all the training samples are used in our verifica-
tion and identification experiments. The training images are captured using the same
device that was adopted to build the HKPU palmprint database. The samples of each
individual were also collected in two sessions, where the average interval between the
first and the second sessions was around one month. During each session, we captured
six palmprint images each of the left and the right palms.

For each algorithm, we tested a wide range of parameters to investigate its best
performance. The parameters that produce the minimum EER value on the training
set are regarded as the optimal parameters. All the experimental results listed in
the following are obtained using the HKPU palmprint database based on the optimal
parameters of each algorithm.
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Fig. 6. Schematic diagram of DCT+LDA [Jing and Zhang 2004].

5.1 Verification Performance

Since the HKPU database contains two sessions, three sets of experiments are carried
out to evaluate the verification performance of each algorithm.

(1) Set 1. Verification performance of each algorithm obtained by matching palmprints
from the first session.

(2) Set 2. Verification performance of each algorithm obtained by matching palmprints
from the second session.

(3) Set 3. Verification performance of each algorithm obtained by matching palmprints
from different sessions.

The first and the second sets of experiments are designed to evaluate the perfor-
mance of each method in comparing palmprints of the same session, and thus can
show the performance of within-session matching over a period of the time. The third
set of experiments is designed to evaluate the robustness of each method in comparing
palmprint from different sessions. Since in real applications, the template image and
the test image are usually captured from different time periods, the performance ob-
tained by the third set of experiments is more meaningful in an algorithm performance
comparison.

The EER and GAR−3 values of all the algorithms in the three sets of verification
experiments are listed in Table VII. In the first set of experiments, competitive code
and ordinal code are superior in terms of EER and GAR−3 values. In the second set
of experiments, competitive code and RLOC outperform the other recognition methods
in terms of both EER and GAR−3 values. In the third set of experiments, competitive
code achieves the lowest EER and the highest GAR−3. Figure 7 shows the ROC curves
of the algorithms for the three sets of experiments. From Table VII and Figure 7, it is
obvious to observe the following.
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Table VII. Results of Three Sets of Verification Experiments

CompCode OrdiCode DoG Code RLOC WLD Fisherpalms DCT + LDA

Set 1
EER(%) 0.006 0.005 0.023 0.022 0.220 3.510 2.716

G A R−3(%) 99.98 99.98 99.91 99.95 99.40 81.48 90.21

Set 2
EER(%) 0.011 0.051 0.061 0.027 0.086 3.112 2.372

G A R−3(%) 99.95 99.83 99.77 99.91 99.53 76.05 84.23

Set 3
EER(%) 0.058 0.138 0.216 0.131 0.511 9.137 7.204

G A R−3(%) 99.65 97.93 96.23 98.93 94.64 22.43 31.50

(1) For each algorithm, the error rates obtained on Set 3 are much lower than those
on Set 1 and Set 2. Since practical applications usually involve matching samples
acquired at different time-stages, we recommend using the verification accuracy
on Set 3 to evaluate palmprint recognition methods.

(2) Compared with local feature-based methods, holistic methods, i.e., Fisherpalms
and DCT+LDA, may perform well on Set 1 and Set 2, but their accuracy would
decrease dramatically on Set 3.

(3) Competitive code is consistently better than the other methods in terms of ver-
ification accuracy, and is more effective for matching palmprints from different
sessions.

To discuss the performance difference between palmprint recognition algorithms,
we could use several recently developed statistical methods to construct the confidence
intervals for error rates [Guyon et al. 1998; Dass et al. 2006]. Although the multiple
samples of the biometric entity may be not statistically independent, for simplicity, we
still use the method in Guyon et al. [1998] to evaluate the performance improvement
of the palmprint recognition method. Following Guyon et al. [1998], we discuss the
statistical significance in the performance difference between different algorithms. Let
α be the confidence interval, and e and ê be the error rate of a classifier C and the
estimated error rate using a test set with finite samples. In Guyon et al. [1998], at the
α-confidence level, if the number of trials N is larger than a threshold, the true error
rate would not exceed the error rate by an amount larger than ε(N, α) = βe . Assuming
that recognition errors are Bernoulli trials, given a typical value of α = 0.05 and a
typical value of β = 0.2, Guyon et al. proposed a simple equation to determine the
number of trials N ≈ 100/e to achieve (1 − α) confidence in the error rate estimation.

Because the performance indicators obtained in Set 3 are more valuable for reflect-
ing the verification performance of each algorithm, we discuss the statistical signifi-
cance of the performance difference of Set 3. In this set of experiments, the number of
genuine and imposter comparisons are 38,924 and 14,984,283, respectively. Thus the
statistical significance could be guaranteed with an empirical error rate up to 0.66 ×
10−3%. From Table VII, both the EER value and the (1-GAR−3) value of CompCode are
20% lower than those of the other methods, and are higher than 0.66 × 10−3%. Thus
one can say that CompCode achieves the highest verification performance among these
methods.

The verification experimental results show that, local feature-based methods gener-
ally achieve lower EER and higher GAR−3 values than the two holistic methods. This
may be explained as follows. First, Fisherpalms and DCT+LDA require estimating
scatter matrices, and the limited training set size would cause the poor estimation and
overfitting of the scatter matrices; second, the inter- and intra-subject variations of
palmprint images are complicated and nonlinear, and thus it is difficult to learn an
appropriate holistic model from only a limited training set and to generalize the model
to any palmprint population.
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Fig. 7. The ROC curves of all the algorithms in the three sets of verification experiments—(a) Set 1, (b)
Set 2, and (c) Set 3.
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Table VIII. Results of Identification Experiments

CompCode OrdiCode DoG Code RLOC WLD Fisherpalms DCT + LD A

TestSet 1
0 0 0.009 0.004 0.096 3.711 2.210

EER
(0) (0) (0.016) (0.011) (0.051) (0.166) (0.214)

(std,%) TestSet 2
0.133 0.962 0.940 0.313 1.373 20.007 15.375

(0.026) (0.136) (0.112) (0.059) (0.143) (0.498) (0.384)

TestSet 1
100 100 99.99 99.99 99.87 88.78 93.95

GAR−2
(0) (0) (0.02) (0.01) (0.07) (0.61) (0.41)

(std,%) TestSet 2
99.59 96.57 93.10 98.97 96.00 12.64 25.74
(0.17) (1.31) (2.79) (0.29) (0.57) (3.33) (2.59)

TestSet 1
100 100 100 100 99.97 99.54 99.77

IR
(0) (0) (0) (0) (0.0002) (0.0013) (0.0009)

(std,%) TestSet 2
99.99 99.98 99.96 99.98 99.82 91.40 94.99

(0.0001) (0.0003) (0.0003) (0.0003) (0.001) (0.0007) (0.004)

Local feature-based methods usually utilize prior knowledge of the palmprint to de-
rive effective and compact representation of local features, and thus would be more
robust for matching between different sessions than holistic methods [Kong 2007].
Among the five local feature-based methods, CompCode and RLOC encode the orien-
tation information, OrdiCode encodes the ordinal information, DoGCode encodes the
sign of the filter responses, and WLD encodes the position information of palm lines.
The superiority of CompCode over the other methods might be attributed to the fact
that, for palmprint recognition, appropriate representation of orientation information
would be more effective and robust than ordinal, filter response sign, and palm line lo-
cation information. In future research, it would be an interesting direction to develop
effective and compact representation of local features. Some recent developments also
verify the effectiveness of local feature representation [Chen et al. 2010; Guo et al.
2009; Yue et al. 2009].

As shown in Table VII, although the two holistic methods do not outperform local
feature-based methods, there is still the possibility of improving the palmprint veri-
fication performance by combining both holistic and local feature-based methods. In
Section 6, we will discuss this problem by investigating the error correlation and fusion
performance of the holistic and local feature-based methods.

Finally, we discuss the verification accuracy of palmprint traits with other com-
monly used biometric modalities. Jain et al. [2007] summarized the state-of-the-art
false accept and false reject rates associated with fingerprint, face, voice, and iris
modalities. Compared with these biometric modalities, palmprint can achieve compa-
rable or better verification accuracy. It should be noted that, the accuracy of biometric
systems depends on a number of noise factors and test conditions: the sensor, sub-
ject disposition, and habituation. Thus, more comprehensive independent three-party
tests should be conducted to obtain an objective evaluation on palmprint traits and the
other biometric modalities.

5.2 Identification Performance

Following the identification evaluation protocol described in Section 4.2, we evaluate
the identification performance of different algorithms. Table VIII lists the EER,
GAR−2, and identification rate (IR) of each algorithm on TestSet 1 and TestSet2.
Figure 8 shows the ROC curves of different algorithms using TestSet 1 and TestSet 2.
Experimental results show that, since the samples for TestSet 1 are captured from
the same session as the samples from the template set, most methods could achieve
high identification rate, low EER, and high GAR−2 values. For TestSet 2, compet-
itive code outperforms the other methods in terms of identification rate, EER, and
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Fig. 8. The ROC curves of all the algorithms in identification experiments on (a) TestSet 1, and (b) TestSet 2.

GAR−2 values. The results are consistent with the results in Section 5.1, which
indicate that competitive code is more robust for identifying palmprints from different
sessions.
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Table IX. Template Size (bytes) of All the Algorithms

CompCode OrdiCode DoG Code RLOC WLD Fisherpalms DCT+LDA
384 384 256 1024 512 1592 1448

Note: RLOC can also be stored in 384 bytes, but for fast matching, we prefer to store the
feature in 1024 bytes.

Table X. Computational Time (ms) of All the Algorithms

CompCode OrdiCode DoG Code RLOC WLD Fisherpalms DCT+LDA

Feature extraction 70 58 9.6 2.2 94 350 297
Matching 0.04 0.04 0.03 0.85 0.42 0.001 0.001

Experimental environment: Windows XP Professional, Pentium 4 2.66GHz, 512M RAM, VC 6.0.

5.3 Memory and Computational Requirements

Tables IX and X summarize the template size and computational time required by each
algorithm. In general, the template sizes of all the local feature-based algorithms are
below 1k bytes, which makes them very suitable for typical smart card applications.
The relatively small template size of the DoG code is due to a smaller number of fil-
ters used, while for the competitive and ordinal codes, each sample point is encoded
into 3-bit code by six filters. Furthermore, the computation time for feature extraction
and matching is far below 1 second, which suits them for online personal identification.
Note that the matching speed for the competitive, ordinal and DoG codes is sufficiently
fast. As for RLOC, its shortest feature extraction time is mainly due to the integer tem-
plate it adopted, while the pixel-to-area matching contributes to its longest matching
time.

Compared with the local feature-based algorithms, the two holistic methods use real
numbers to represent the feature vector, and thus have relatively larger template sizes.
Besides, as shown in Table X, since of their small feature dimensions (less than 200),
the two holistic methods have much faster matching speeds than the local feature-
based algorithms. The fast matching speed characteristic of holistic methods could
be used for efficient hierarchical palmprint identification, where the holistic meth-
ods are first used for coarse matching to identify most imposters before the final fine
matching.

6. CORRELATION ANALYSIS AND SCORE LEVEL FUSION

Previous research suggests that the fusion of different algorithms could lead to im-
proved accuracy. In this section, following Cappelli et al. [2006], we first investigate
the error correlation of difficulty values for different algorithms. Based on these corre-
lation values, we then study the fusion performance of different palmprint recognition
algorithms by using several score-level fusion methods that are frequently used in
biometric research.

6.1 Analysis of Error Correlation

In Cappelli et al. [2006], error correlation is used to measure the correlation of the dif-
ficulty values of two algorithms. Given an algorithm A, we can calculate the matching
score s of two palmprint images, I1 and I2. If this matching is an impostor compari-
son, we use the false rejection rate of the algorithm A with threshold s to denote the
genuine difficulty value DVG(A , I1, I2) of palmprint pair I1 and I2. Similarly, If this
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Table XI. Genuine Matching: Correlation Coefficient of the Corresponding Difficulty Values for all the Algorithms

CompCode OrdiCode DoG Code RLOC WLD Fisherpalms DCT + LD A
CompCode 1.0000 - - - - - -
OrdiCode 0.9189 1.0000 - - - - -
DoG Code 0.8598 0.8645 1.0000 - - - -

RLOC 0.7671 0.7806 0.8330 1.0000 - - -
WLD 0.7493 0.7759 0.7910 0.8128 1.0000 - -

Fisherpalms 0.4916 0.4789 0.6329 0.6537 0.6472 1.0000 -
DCT + LD A 0.4810 0.4879 0.6256 0.6335 0.6307 0.9569 1.0000

Table XII. Imposter Matching: Correlation Coefficient of the Corresponding Difficulty Values for all the Algorithms

CompCode OrdiCode DoG Code RLOC WLD Fisherpalms DCT + LD A

CompCode 1.0000 - - - - - -
OrdiCode 0.6798 1.0000 - - - - -
DoG Code 0.5945 0.6549 1.0000 - - - -

RLOC 0.4617 0.4614 0.4364 1.0000 - - -
WLD 0.2656 0.3424 0.2345 0.4655 1.0000 - -

Fisherpalms 0.1761 0.2071 0.2508 0.3359 0.1753 1.0000 -
DCT + LD A 0.2954 0.3200 0.3802 0.4729 0.2423 0.8763 1.0000

matching is an imposter comparison, we use the false accept rate of the algorithm A
with the threshold s to denote the imposter difficulty value DVI(A , I1, I2) of palmprint
pair I1 and I2. Using difficulty values, we further define the error correlation of the
genuine matching of two algorithms as the correlation coefficient of their genuine dif-
ficulty values. Analogously, we define the error correlation of the imposter matching.

Tables XI and XII report the correlation coefficients of the algorithms. It can be
observed that there are evident differences in correlation coefficients between genuine
and imposter matching. The correlation of imposter matching is much lower than
that of genuine matching. The reason for this result is that the difficulty of genuine
matching is mainly caused by several noise factors of samples (such as illumination
variance, distortion, etc.), whereas that of imposter matching is due to the different
feature extraction and matching methods that they adopt.

Another observation is the strong correlation on genuine matching of algorithms,
especially for CompCode and OrdiCode, which implies that the algorithms tend to
make similar errors. Generally, the correlation between holistic methods and local
feature-based methods is relatively small, while strong correlation is usually observed
within the two holistic methods and within the five local feature-based methods.

6.2 Score Level Fusion

Score normalization usually is necessary for many score level fusion methods. In our
fusion evaluation, we use four well known normalization methods and four score-level
fusion methods. For score normalization, we tested the four score normalization rules
presented in Snelick et al. [2005] and Jain et al. [2005].

(1) Min-Max (MM) normalization. Given the minimum (min(S)) and the maximum
(max(S)) of the matching scores, this rule normalized the raw score s to the [0,1]
range,

nMM =
s − min(S)

max(S) − min(S)
. (26)
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(2) Z-score (ZS) normalization. Given the mean (mean(S)) and the standard deviation
(std(S)) of the matching scores, this rule normalized the raw score s to follow a
zero-mean distribution with standard deviation of 1,

nZ S =
s − mean(S)

std(S)
. (27)

(3) Tanh (TH) normalization. Given the mean (mean(S)) and the standard deviation
(std(S)) of the matching scores, according to robust statistics, this rule normalized
the raw score s to the [0,1] range,

nT H =
1
2

[
tanh

(
0.01(s − mean(S))

std(S)

)
+ 1
]

. (28)

(4) Adaptive Quadric-Line-Quadric (QLQ) normalization. Given the minimum
(min(S)) and the maximum (max(S)) of the matching scores, this rule further maps
the MM normalization score using a piecewise function,

nT H =

⎧⎪⎪⎨
⎪⎪⎩

1
c− w

2
n2

MM, nMM ≤ c − w
2

nMM c − w
2 ≤ nMM ≤ c + w

2

(c + w
2 ) +

√
(1 − c − w

2 )(nMM − c − w
2 ) otherwise

, (29)

where the center c and the width w are two parameters of the QLQ normalization,
that should be determined using a training set.

In score level fusion, we evaluate the fusion performance by using the four score
level fusion methods, simple sum (SS), matcher weighting (MW), support vector ma-
chine (SVM), and likelihood ratio (LR) - based score fusion [Ben-Yacoub et al. 1999;
Nandakumar et al. 2008; Snelick et al. 2005]. The reason to choose SS and MW is
that they generally outperform several other simple fusion methods in Snelick et al.
[2005]. The reason to choose SVM is that it is a state-of-the-art classifier and thus is
representative in classifier-based score fusion. The reason to choose LR is that it is
a recently developed high performance score fusion method. Given M matchers, we
let nm denote the normalized matching score of the matcher m (m = 1, 2, . . . , M), the
fusion method aims to derive a fusion score with a fusion function nF = f (n1, . . . , nM).

(1) Simple Sum (SS). This method calculates the SS fusion score using nF =
∑M

m=1 nm.
(2) Matcher Weighting (MW). According to its EER, em, each matcher m is assigned to

a weight wm,

wm =
1/em∑M
k=1 1/ek

, (30)

and the MW fusion score is then derived as nF =
∑M

m=1 wmnm.
(3) Support Vector Machine (SVM). This method uses a feature vector to represent

the scores from multiple matchers, and then trains an SVM classifier for personal
identification. The OSU SVM toolbox 4 is used for SVM training and classification.
We considered two types of kernels: Gaussian RBF and polynomial. Hereafter we
call them RBF-SVM and Poly-SVM, respectively. The hyper-parameter C is chosen
from { 0.01, 0.1, 1, 10, 100, 1000, 10000 }. For RBF-SVM, the hyper-parameter σ
is chosen from { 0.01, 0.1, 1, 10, 100 }, and for Poly-SVM the hyper-parameter d is

4http://www.ece.osu.edu/∼maj/osu svm/
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Table XIII. The EER (%) Values of Different Fusion
Methods by Combining

CompCode+OrdiCode+RLOC

Sum MW LR SVM

MM 0.035 0.029 0.026 0.030
ZS 0.033 0.027 0.026 0.032
TH 0.033 0.027 0.027 0.028

QLQ 0.035 0.029 0.036 0.031
CompCode 0.036

Table XIV. The GAR−3 (%) Values of Different
Fusion Methods by Combining
CompCode+OrdiCode+RLOC

Sum MW LR SVM

MM 99.86 99.90 99.91 99.83
ZS 99.88 99.90 99.91 99.87
TH 99.88 99.90 99.91 99.90

QLQ 99.86 99.89 99.79 99.89

CompCode 99.81

Table XV. The EER (%) Values of Different Fusion
Methods by Combining CompCode+Fisherpalms

Sum MW LR SVM
MM 0.268 0.037 0.033 0.045
ZS 0.109 0.037 0.035 0.044
TH 0.109 0.037 0.034 0.044
QLQ 0.205 0.037 0.037 0.045

CompCode 0.036

chosen from { 1, 2, 3, 4, 5 }. In our experiments, we first use the 3-fold crossing-
validation test on the training set to determine the kernel type and the values of
the hyper-parameters, and then use all the samples in the training set to train a
SVM.

(4) Likelihood Ratio-based Fusion (LR). This method first utilizes a finite Gaussian
mixture model for modeling the genuine and imposter score densities, and then
adopts the likelihood ratio test to derive the fusion score [Nandakumar et al. 2008].

A training set and a test set are constructed for the training and evaluation of the
fusion method. Following the evaluation protocol adopted in Nandakumar et al. [2008],
in each experiment, half of the genuine and half of the imposter matching scores are
randomly selected to construct a training set, and the remaining are used for testing.
The training set is used to determine the parameters (e.g., min(S) and max(S)) and
hyper-parameters (e.g., C in SVM) of the normalization and fusion methods. To re-
duce the performance variations against training-test partitioning, we run the fusion
method 10 times and use the average GAR−3 values at a specific FAR value to denote
the fusion performance.

In our fusion experiments, we test the fusion of three combinations of palmprint
recognition algorithms, and evaluate the fusion performance according to the EER and
GAR−3 values. Using the normalization and fusion rules previously described, we first
evaluate the fusion performance by combining three top-performance palmprint recog-
nition methods, CompCode, OrdiCode, and RLOC. Tables XIII and XIVshow the EER
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Table XVI. The GAR−3 (%) Values of Different
Fusion Methods by Combining

CompCode+Fisherpalms

Sum MW LR SVM
MM 99.08 99.82 99.83 99.80
ZS 99.72 99.81 99.82 99.76
TH 99.72 99.81 99.83 99.85

QLQ 99.40 99.81 99.86 99.81

CompCode 99.81

Table XVII. The EER (%) Values of Different Fusion
Methods by Combining All the Seven Methods

Sum MW LR SVM

MM 0.081 0.032 0.028 0.042
ZS 0.062 0.031 0.030 0.035
TH 0.062 0.031 0.029 0.038
QLQ 0.079 0.032 0.035 0.045

CompCode 0.036

Table XVIII. The GAR−3 (%) Values of Different
Fusion Methods by Combining All the

Seven Methods

Sum MW LR SVM

MM 99.62 99.89 99.90 99.74
ZS 99.77 99.90 99.90 99.68

TH 99.77 99.90 99.90 99.88
QLQ 99.65 99.89 99.85 99.84

CompCode 99.81

and GAR−3 values of this combination form, respectively. The MM normalization +
LR fusion method obtains an EER of 0.026% and a GAR−3 of 99.91%, which are better
than the best individual method, CompCode.

We then evaluate the fusion performance by combining the two methods with less
correlation, CompCode and Fisherpalms. Tables XV and XVI show the EER and GAR−3
values of this combination form, respectively. Even CompCode significantly outper-
forms Fisherpalms. By choosing appropriate normalization and fusion rules, the fu-
sion method could achieve a lower EER value than CompCode. This result shows that
holistic methods have a lower correlation with local feature-based methods, and could
be used to further improve the palmprint recognition performance. Thus, it would be
valuable to develop effective holistic methods that are less correlated with the state-
of-the-art local feature-based methods, and to study powerful fusion methods for com-
bining holistic and local feature-based palmprint recognition methods.

Finally, we evaluate the fusion performance by combining all seven palmprint recog-
nition methods. Tables XVII and XVIII show the EER and GAR−3 values of this com-
bination form, respectively. The MM normalization + LR fusion method obtains an
EER of 0.028% and GAR−3 of 99.90%, which are better than those of any individual
method. The experimental results indicate that, even where methods have high er-
ror correlation or great performance differences, fusion could be used to improve the
recognition performance. Thus, it would be a promising direction to develop effective
normalization/fusion approaches for future palmprint recognition.
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From Tables XIII–XIV, it is observed that the MM normalization + LR fusion
method outperforms the other normalization/fusion schemes in almost all fusion ex-
periments. Following Snelick et al. [2005] and Nandakumar et al. [2008], we discuss
the reasons for the good performance of MM+LR. First, the performance of the likeli-
hood ratio test can be guaranteed by the Neyman-Pearson theorem. Second, the finite
Gaussian mixture model [Jain and Figueiredo 2002] provides a f lexible tool to esti-
mate arbitrary densities of matching scores. Third, the superiority of the MM normal-
ization has been demonstrated in Snelick et al. [2005]. Besides, the poor performance
of QLQ+LR can be attributed to the fact that QLQ is a nonlinear method, which might
make the distributions after QLQ normalization more difficult for Gaussian mixture
modeling.

Following Guyon et al. [1998], we discuss the statistical significance in performance
improvement of the fusion methods. Given a typical value of α = 0.05 and a typical
value of β = 0.2, the number of trials to achieve (1 − α) confidence in the error rate
estimate can be calculated by N ≈ 100/e. In our fusion experiments, the numbers of
genuine and imposter comparisons are 37,034 and 14,984,404, respectively. Thus the
statistical significance could be guaranteed with an empirical error rate up to 0.67 ×
10−3% and an improvement of error rate up to 20%. In the experimental results listed
in Table XIII, the highest performance improvement in EER is 9.33 × 10−3%, and the
highest performance improvement in GAR−3 is 9.65 × 10−2%. Since both the EER and
the (1-GAR−3) values of the fusion method are 20% lower than those of CompCode,
and all the empirical error rates are higher than 0.67 × 10−3%, we can regard score-
level fusion as effective in improving the verification performance. Thus, it would be
encouraging to develop more effective fusion methods for palmprint recognition.

7. DISCUSSION AND CONCLUSIONS

In this article, we first presented a survey of palmprint feature extraction and match-
ing methods. Then we chose five state-of-the-art local feature-based and two holistic
palmprint recognition algorithms, and carried out a comparative study to evaluate
the performance and error correlation of these approaches. In our survey, we grouped
current palmprint recognition methods into three categories: holistic-based, feature-
based, and hybrid methods. In feature-based methods, coding-based methods, which
usually encode the response of a bank of filters into bitwise codes, may be one class of
the most efficient palmprint recognition algorithms in terms of recognition accuracy,
computational, and memory requirements. Based on the categorization of palmprint
recognition methods, we also compared the complexity of different algorithms, pro-
vided a brief survey of the palmprint recognition methods for partial recognition and
different sensing techniques, and presented a review of the antispoofing methods.

In our comparative study, using the HKPU palmprint database (version 2), we com-
pared five local feature-based algorithms (competitive code, ordinal code, robust linear
orientation code, DoG code, and wide line detector) and two holistic methods (Fish-
erpalms and DCT+LDA). Results of the experiments show that local feature-based
methods outperform holistic methods in terms of several specified indicators, and it
is encouraging to develop effective and compact representation of local features for
effective palmprint recognition.

We further investigated the error correlation and score-level fusion of different al-
gorithms. We had observed less correlation between holistic and local feature-based
algorithms, and that score-level fusion is effective in improving the verification per-
formance. Therefore, it would be valuable to develop effective holistic methods that
are less correlated with the state-of-the-art local feature-based methods, and to study
powerful fusion methods for combining palmprint recognition methods.
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By far, current palmprint recognition methods have achieved satisfactory recogni-
tion accuracy, feature extraction, and matching speed with which build an online low
resolution palmprint recognition system. However, robust palmprint recognition is
still challenging. Several interesting directions, such as unconstrained acquisition,
efficient palmprint representation and matching, palmprint quality evaluation, and
recognition of palmprint images with poor quality, might be promising for future
research.

In this article, we concentrate on the survey of low resolution palmprint recognition
algorithms. With advances in sensor techniques and computational power, novel palm-
print recognition methods have recently been investigated, for example, multispectral,
latent, and 3D palmprint recognition. The experience with methods of low resolution
palmprint recognition will be valuable for the future studies on these novel palmprint
recognition technologies.
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