
Towards Achieving Reliable and
High-Performance Nanocomputing via
Dynamic Redundancy Allocation

Shuo Wang, Lei Wang, and Faquir Jain

Department of Electrical and Computer Engineering

University of Connecticut

371 Fairfield Way, U-2157

Storrs, CT 06269-2157, U.S.A.

Email: {shuo.wang, leiwang, fcj}@engr.uconn.edu

Phone: 860-486-3066, Fax: 860-486-2447

Nanoelectronic devices are considered to be the computational fabrics for the emerging nanocom-

puting systems due to their ultra-high speed and integration density. However, the imperfect
bottom-up self-assembly fabrication leads to excessive defects that have become a barrier for

achieving reliable computing. In addition, transient errors continue to be a problem. The massive

parallelism rendered by nanoscale integration opens up new opportunities but also poses chal-
lenges on how to manage such massive resources for reliable and high-performance computing.

In this paper, we propose a nanoarchitecture solution to address these emerging challenges. By

using dynamic redundancy allocation, the massive parallelism is exploited to jointly achieve fault
(defect/error) tolerance and high performance. Simulation results demonstrate the effectiveness

of the proposed technique under a range of fault rates and operating conditions.

Categories and Subject Descriptors: B.8.0 [PERFORMANCE AND RELIABILITY]: Gen-

eral

General Terms: Design, Performance, Reliability

Additional Key Words and Phrases: Nanoscale architecture, performance, hardware reliability,

redundant design, redundancy allocation

1. INTRODUCTION

Since the invention of CMOS-based integrated circuits (IC), computer system de-
sign has reaped a dramatic improvement in computational performance. The
key enabling technologies are a combination of advances in semiconductor pro-
cess and design methodology, and innovations in computer architecture. As con-

Some preliminary results of this work were reported in International Symposium on Nanoscale

Architectures (NANOARCH), 2007 [Wang, S. et al. 2007].
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM xxxx-xxxx/20YY/xxxx-0001 $5.00

Shuo
Type Writer
Note: The final version may be slightly different from this copy.

ventional CMOS technology quickly approaches the end of roadmap, many novel
nanoelectronic devices including carbon nanotubes [Martel et al. 2002], silicon
nanowires [Huang et al. 2001], quantum-dot cellular automata [Lent et al. 1993;
Ma et al. 2008] and resonant tunneling devices [Mazumder et al. 1998] have
emerged as the potential computational substrate for nanoscale integration. There
are already some work in the literature demonstrating new nanocomputing systems
such as programmable logic arrays [Dehon 2005] and application-specific integrated
circuits (NASIC) [Wang, T. et al. 2004]. However, the emerging nanoelectronic
technology is accompanied by some new challenges that may have a profound im-
pact on architecture-level design and optimization.

It is widely acknowledged that nanoscale integration will no longer enjoy high
reliability as the conventional CMOS technology. In comparison with conventional
CMOS technology, the defect rates in nanoelectronic devices are projected to be
several orders of magnitude higher due to the bottom-up stochastic assembly. In
addition, soft (transient) errors continue to be a problem, causing erroneous behav-
iors that are difficult to model and predict. Thus, building reliable nanocomputing
systems from unreliable nanoelectronic devices is becoming a challenging problem
that must be addressed at various levels of design hierarchy. At the device/circuit
level, defect mapping techniques [Mishra and Goldstein 2003; Tahoori 2005] are pro-
posed to identify defective devices and utilize spare defect-free devices as functional
units. However, these per-chip based test-then-reconfigure approaches may become
expensive and time-consuming for ultra high-density nanoscale integrated systems.
Furthermore, even if defects are detected and mapped out prior to runtime, new
defects may still sneak into the system over the life time and transient errors remain
unsolved. In another approach, error checking codes (ECC) are widely employed
to provide fault tolerance for nanoscale memories and interconnects [Jeffery and
Figueiredo 2006; Kuekes et al. 2005], while it might be difficult, if not impossi-
ble, for practical ways of implementing ECC in logic operations and instruction
processing. At the system level, redundancy based techniques, such as N-modular
redundancy and multiplexing logic, were proposed in the pioneering work of John
von Neumann [von Neumann 1956] using hardware redundancy to recover from
the faults. Recently, NAND multiplexing is extended to a rather low degree of
redundancy [Han and Jonker 2002] and new models are presented in [Bhaduri et
al. 2007; Roy and Beiu 2005] to study the multiplexing systems. Redundancy
based fault tolerance is considered very effective for nanocomputing systems due
to the abundant device resources offered by nanoscale integration. Most existing
work uses fixed modular redundancy, which lacks adaptivity to different reliability
requirements at runtime. An improved strategy [Rao et al. 2005; Rao et al. 2007]
was developed to frugally allocate redundancy so as to avoid the resource usage
from exponentially increasing.

In nanocomputing systems, the problem of fault tolerance is closely related
to high-performance parallel execution. Traditionally, architectural level research
for performance improvement has been directed toward exploiting various lev-
els of parallelism. This trend is clearly reflected in simultaneous multithreading
(SMT) [Tullsen et al. 1995; Lo et al. 1997] and chip multiprocessors (CMP) [Oluko-
tun et al. 1996; Hammond et al. 1997]. Nanocomputing systems show great

potential to support this trend of parallelism exploitation due to the ultra-high in-
tegration density. However, with high defect/error rates, the benefit of parallelism
may be limited by the redundant computation necessary for defect/error detection
and recovery. Massive parallelism does not necessarily lead to high performance un-
less the system can effectively recover from unpredictable upsets. Furthermore, the
unpredictable upsets also lead to performance unpredictability. This is especially
a problem for real-time applications that require stable and predictable execu-
tion performance, e.g., multimedia communications that have tight protocol timing
specifications. Thus, it is critical to balance the often conflicting requirements on
performance and reliability.

The interplay between performance and reliability gives rise to a challenging
problem on resource management that is critical to nanocomputing systems. This
compels us to explore nanoarchitecture solutions in order to unfold the full potential
of nanocomputing paradigm. In this paper, we propose a dynamic redundancy
allocation technique that enables reliable and scalable parallelism. The proposed
technique manages the parallelism at an optimal level so that both fault tolerance
and performance enhancement can be achieved in a coherent manner. Different from
the existing redundancy management strategies [Rao et al. 2005; Rao et al. 2007;
von Neumann 1956], the proposed technique explicitly considers the availability
of the computational resources and the varying requirements on reliability and
performance, and therefore is more flexible in redundancy allocation across the
instructions at runtime. As the proposed approach can be applied to address both
permanent defects and transient errors, we do not differentiate between them and
refer the general term fault to both.

Some preliminary results were reported in [Wang, S. et al. 2007]. In this paper,
we extend our past work by making the following contributions. First, the de-
tails of the nanoarchitecture model and localized control mechanism are provided.
Second, a systematic performance analysis and design methodology on dynamic re-
dundancy allocation is developed. Third, we conduct a comprehensive study on the
application of the proposed technique. Simulation results including the performance
predictability demonstrate the advantageous features of dynamic redundancy allo-
cation under a wide range of fault rates.

The rest of the paper is organized as follows. In section 2, we present the nanoar-
chitecture model and control mechanism as the platform for dynamic redundancy
allocation. In section 3, we provide the details of the proposed dynamic redundancy
allocation. Simulation results are discussed in section 4 to evaluate the effectiveness
of the proposed technique. In section 5, we give the conclusion.

2. NANOARCHITECTURE MODEL

Nanocomputing systems feature highly regular, locally connected, and data parallel
architectures that match well to the ultra-high speed and integration density offered
by nanoelectronics [Beckett and Jennings 2002; Fountain et al. 1998]. As shown
in Fig. 1, the underlying nanoarchitecture may be multiclustered [Franklin and
Sohi 1992; Farkas et al. 1997; Goldstein and Budiu 2001], where each cluster
consists of multiple functional units that can be tuned specifically for a certain
category of applications. The workload is dispatched to the individual clusters using

Fig. 1. A conceptual illustration of nanoarchitecture model: (a) top-level view and (b) cluster

configuration.

predefined metrics (e.g., slack [Zhu and Fleisch 2000], deadline [He et al. 2004],
and mean response time [Tang and Chanson 2001]) to achieve overall performance
optimization.

While specific nanocomputing systems may be constructed with various config-
urations, in this paper we consider a generic nanoarchitecture model where each
cluster contains a pool of three basic functional units: computation elements (CE),
memory units (MEM), and voters, as shown in Fig. 1(b). The CEs and voters
can be implemented by programmable nanoelectronic logic arrays (e.g., nanowire
crossbars) according to the defined functions, as shown in [Dehon 2005; Goldstein
and Budiu 2001]. Memory units can also be implemented in a similar way [Chen

et al. 2003]. As the computation is inherently fault-prone, it is necessary to exe-
cute multiple copies by exploiting the spatial and temporal redundancy in the CEs.
The results are then compared by the voters to detect and correct errors based on
majority voting. The voters also provide localized control within the cluster by
allocating and managing CEs and MEMs according to certain allocation strategies
such as the one proposed in section 3. As the control and redundancy allocation are
performed distributively, the implementation can be simplified to LUT, as shown
in section 3.4. Same as most redundancy-based architectures, the above nanoarchi-
tecture model relies upon the correct voter operation. A complete characterization
of reliability issues relevant to voter design needs to be done before the application
of the proposed technique. We assume the operation of voters to be correct by
using reliability enhancing design techniques. Thus, faults occurred in the voters
have a much lower rate than that in the CEs and hence are ignored in the following
discussion. In addition, other techniques, e.g., error correcting codes, are effective
to deal with faults in interconnect and memory.

To exploit parallel processing, pipelined architecture is implemented in the clus-
ters. For the purpose of demonstration, we consider a prototype pipeline including
four stages: issue, execute, compare, and complete. Note that we do not lose any
generality with this architecture as further split of stages into more complex pipeline
is possible depending on the requirement of specific implementations. In the issue
stage, voters will be invoked to manage the instruction processing. To facilitate
fault tolerance, each voter will initially allocate a number of CEs (spatial redun-
dancy) to perform redundant computation. In the execute stage, the selected CEs
execute the instruction and return the results to the voters. After the execution
is finished, the CEs will be released to standby. In the compare stage, the voters
evaluate the returned results and determine the correctness by majority voting.
If majority voting is unable to resolve the disputed results, the initially allocated
CEs fail to achieve fault tolerance. The voters will store the unconfirmed results
to MEMs and then allocate additional CEs to execute the same instruction (tem-
poral and spatial redundancy) until the results eventually get confirmed. In the
complete stage, incorrect results and related speculations are pruned leaving the
correct results for future use. Note that to avoid resources being depleted by redun-
dant computing, a dedicated resource management is needed to balance redundant
computing and parallel processing. We will elaborate this point in section 3.

Figure 2 shows an example of the localized control in the four-stage pipeline. In
the issue stage, a voter issues the instruction to its neighboring CEs. To provide
fault tolerance for instruction execution, the voter will first determine the amount
of redundancy (i.e., CEs) as denoted by R. Figure 2(a) shows two cases where
R = 3 and R = 4, respectively. The details of the redundancy allocation policy
will be discussed in section 3. To improve the efficiency, the voter will first try to
allocate redundancy using the nearest CEs, as shown in the first case of Fig. 2(a). If
failed, the voter will collaborate with other voters to collect enough CEs, as shown
in the second case of Fig. 2(a). The latency of voter bypass is considered as a timing
component in the issue stage. If more CEs need to be collected that might cause
long and nondeterministic latency, the voter will wait for the neighboring CEs to
become available after they finish the execute stage (which may take additional

(a) (b)

(c) (d)

Fig. 2. An example of localized pipeline control: (a) issue stage, (b) execute stage, (c) compare
stage, and (d) complete stage.

1–2 cycles). This is a type of structural hazard. In the execute stage, CEs finish
the execution and return the results to the voter in charge of this instruction (see
Fig. 2(b)). Next, in the compare stage, the comparison logic determines whether
the results are correct or not. Meanwhile, the results are stored temporarily in the
MEM for future reference. It is possible that the results cannot achieve agreement
due to the faults in the execution (as the second case shown in Fig. 2(c)). Thus,
the completion for this instruction has to be postponed and the voter will need to
allocate additional redundancy to recover the faults. Eventually, when the execu-
tion results are confirmed, the voter will process in the complete stage (as shown in
Fig. 2(d)). The incorrect results and the associated speculative execution paths are
nullified and pruned by the voter, while the correct results are propagated by the
voter. For other types of faults with relatively deterministic nature (e.g., the clus-
tered faults), the affected voters may be masked out to minimize the performance
degradation.

As the instruction execution is fault-prone, subsequent instructions are issued
using unconfirmed results of the precedent instructions to solve data dependencies
for high performance. Thus, the execution of instructions is inherently speculative.
As shown in Fig. 3, the unconfirmed results of the precedent instructions propagate
to provide the operands for speculative execution of the subsequent instructions
(Fig. 3(a)). Again, if the voter is unable to allocate enough redundancy using

(a)

(b)

Fig. 3. Speculative execution for high performance: (a) propagating speculative results and (b) a
tree formed after result confirmation.

the nearest CEs, it will cooperate with neighboring voters to issue speculative
executions to other CEs, as shown in the second case in Fig. 3(a). After these
results get confirmed, the wrong paths of the execution will be pruned while the
right paths remain, thereby forming a tree (Fig. 3(b)) to complete the instruction
execution.

3. DYNAMIC REDUNDANCY FOR RELIABLE AND SCALABLE PARALLELISM

In this section, we will apply the above nanoarchitecture model to investigate the
intrinsic relationship between redundant computation and massive parallelism in
nanocomputing systems. We will then develop a dynamic redundancy allocation
technique that enables reliable and scalable performance in a coherent manner.

3.1 The Underlying Problem

Nanocomputing systems feature massive parallelism that can be exploited for high
performance. However, massive parallelism does not necessarily lead to high perfor-
mance given the high fault rates and fault recovery penalties. Although in theory
fault tolerance can be achieved by redundant computation, this approach inevitably
competes with parallel processing for hardware resources. How to cooperatively

Fig. 4. The underlying problem of redundancy allocation.

manage and utilize massive parallelism for reliable and scalable performance is
critical for realizing the potential of nanoscale integration.

We illustrate this problem in Fig. 4. At a given time, all the pending instructions
will fall into two categories according to the dependency relations: some instruc-
tions have to be executed in series, as they closely depend on the results of their
precedent instructions; and some instructions can be executed in parallel, as they
are loosely coupled (e.g., they may come from different threads or become relatively
independent after dependency is safely removed). Therefore, based upon these de-
pendency relations, the instructions can be partitioned into multiple chains, where
in each chain the instructions are sequentially executed (e.g., instructions 1 through
L in chain 1, as shown in Fig. 4, have to be executed one by one). Meanwhile, in-
structions in the different chains can be executed in parallel as a group (e.g., the
instruction 2 in all the chains as shown in Fig. 4 can be organized as group 2 and
executed simultaneously). On one hand, it is generally desired to execute as many
instructions in parallel as possible for maximal throughput. On the other hand,
in nanocomputing systems each instruction requires multiple execution copies for
fault tolerance. Thus, the need of providing redundancy for fault tolerance con-
flicts with the motivation for high performance. When the subsequent instructions
in a chain are issued to avoid performance slowdown, their precedent instructions
might not have got their results confirmed yet. Thus, the subsequent instructions
have to be speculatively issued with multiple unconfirmed results. Consequently,
how to optimally allocate the available hardware resources (the number N of CEs
as shown in Fig. 4) is complex. Specifically, the hardware resources need to be
allocated to each parallel executed group (e.g, Rj of CEs allocated to the jth in-
struction group). Meanwhile, within each group the hardware resources need to be
further distributed to the individual instructions belonging to multiple chains and
the redundant execution of each instruction as well.

It can be observed that the requirement for parallel processing and the need
for reliable computation are competing against each other for hardware resources.
When the fault rate is high, all the instructions including the precedent instructions

are difficult to complete with confirmed results. To maintain speculative execution
for high parallelism, the utilization of redundancy will exponentially increase and
may eventually deplete all the available resources, causing frequent structural haz-
ards. Consequently, the course of execution will be stalled frequently because the
unconfirmed instructions cannot get enough redundancy to complete the process-
ing, and speculative execution of the subsequent instructions cannot have resources
either to continue exploiting parallelism. This problem will be exacerbated if there
are multiple simultaneous threads, where each group will contain many instructions
due to the relatively weak dependency. Therefore, how to optimally allocate re-
sources for reliable and scalable performance is a fundamental problem that must be
addressed in nanocomputing systems. Furthermore, it is also critical to adjust the
redundancy allocation at runtime according to different requirements on reliability
and performance, which may vary during the course of program execution.

3.2 Parallelism Level and the Implications to Reliable Performance

As shown in Fig. 4, there are two ways to improve performance: one is to break
the instructions into more chains so that more instructions can be simultaneously
processed in each group; the other is to execute more groups concurrently while they
are possibly in different pipeline stages. The first approach is largely determined
by the nature of dependency inherent in specific programs, which is beyond control
of nanocomputing architecture design. On the other hand, the number of groups
executed in parallel can be increased by performing speculative execution. In this
paper, we define the parallelism level as the number of instruction groups that can
be processed concurrently. Note that the parallelism level is defined for an entire
cluster, not just for a single voter or CE. As an example, a conservative design
may execute an instruction only when all the dependent instructions are completed
and confirmed with no faults. The instruction level in this case is 1. Another
example is an aggressive design, where the system may speculatively issue and
execute instructions even when the operands from precedent instructions are still
not confirmed yet. As a result, there are more instruction groups being processed at
the same time (possibly in different pipeline stages), which increases the parallelism
level (denoted as L as shown in Fig. 4). In fault-free systems, the relationship
between parallelism level and performance is straightforward: a higher parallelism
level leads to better performance. In fault-prone systems, the complete stage in the
pipeline may take an unpredictable number of cycles, depending on how quickly
the faulty results can be recovered. This complicates the relationship between
parallelism level and performance. It is likely that, while many instructions can be
executed in parallel, they cannot obtain enough hardware resources to confirm their
results quickly via redundant execution. As a result, instructions are frequently
stalled in the pipeline, leading to a superficially “high” parallelism level which
does not deliver high performance. Hence, the actual parallelism level needs to be
determined carefully.

We now examine the relationship between the parallelism level and reliable per-
formance. We assume that there are totally M instructions in the program, which
can be partitioned into multiple chains and organized into totallyK groups. Assume
that the parallelism level is always L as shown in Fig. 4, which implies that the clus-
ter can always process L groups of instructions simultaneously. The pipeline depth

is assumed to be D and the pipelined execution may be performed distributively
on multiple CEs. The total time T for processing the M instructions specifies the
execution performance. It consists of two components: regular execution time Te
(the time spent on the regular processing in all the pipeline stages, excluding stalls
due to faults) and fault recovery penalty Tf (the time spent on the re-execution
when uncorrectable faults are detected), expressed as

T = Te + Tf . (1)

In the regular execution time Te, D cycles are needed for the very first group of
instructions to go through the pipeline and complete. As the parallelism level is
assumed to be L, the pipeline can only filled to the extent of L

D . After the pipeline
is initially filled by the first L instructions, ideally the cluster can start processing
the following groups one after another. This procedure only needs K − 1 cycles
if the parallelism level is equal to the pipeline depth (i.e., L = D). However, if
L < D, there are always some “bubbles” in the pipeline (which can be considered
as having (DL − 1) NOP groups inserted immediately after each instruction group
without delivering any performance). Thus, in fault-free systems, the parallelism
level is upper-bounded by the pipeline depth, i.e., L ≤ D. The fault-free systems
can achieve the optimal performance when L = D. On the other hand, in fault-
prone systems, the parallelism level L is no longer bounded by the pipeline depth
D. If the faulty results cannot be quickly recovered, the compare stage may take
an unpredictable number of cycles to finish. As a result, there might exist L > D
instruction groups being processed concurrently. However, this does not deliver
high performance as the regular execution time Te will not be reduced. In fact, this
case indicates the existence of stalls, and hence the non-zero fault recovery penalties
Tf , as will be discussed later. The regular execution time Te can be derived as

Te =

{
D + (K − 1)DL , 0 < L ≤ D,
D +K − 1, L > D.

(2)

From (2), the optimal parallelism level should be Lopt = D for both fault-free
and fault-prone systems. Note that in ideal fault-free systems the actual parallelism
level is always smaller than Lopt. This is because not all the opportunities of parallel
execution can be detected and exploited in practice, especially considering pipeline
bubbles due to control and structural hazards. When L is much less than Lopt,
the utilization of parallelism tends to be over-conservative. As a result, execution
takes a longer time according to (2), leading to performance slowdown even when
there is no penalty Tf . On the other hand, faults in real systems may drive the
parallelism level away from the optimal Lopt. Once uncorrectable faults occur, the
comparison fails to resolve the disputed results, thereby the system has to allocate
additional redundancy (temporal and/or spatial) for re-execution. Hence, stalls
occur frequently that hold more instructions than expected. This may increase L
beyond Lopt, especially if the parallelism is over-aggressively utilized. However, this
increase in L only leads to performance degradation. Thus, both over-conservative
and over-aggressive utilization of parallelism will cause performance slowdown. An
optimal nanoarchitecture solution should aim at closing the gap between L and
Lopt as much as possible.

3.3 Scalable Parallelism via Dynamic Redundancy Allocation

We now present the dynamic redundancy allocation technique that optimizes the
resource management under high fault rates, thereby enabling scalable parallelism
for jointly achieving reliable and high-performance nanocomputing.

Assume that the redundancy allocated for parallel execution of the instructions
in group j is Rj of CEs and the total number of available CEs is N . The central
idea of our approach is to adjust Rj dynamically so that the parallelism level L is
maintained at Lopt. There is a constraint regarding the availability of redundancy,
expressed as follows

L∑
j=1

Rj ≤ N. (3)

If the requests for redundancy are more than that available, unsatisfied requests
combined with new requests during the following cycles will be accumulated quickly
and eventually push the parallelism away from the optimal level. Simulation re-
sults in section 4 clearly show that techniques unaware of (3) lead to performance
degradation.

Consider the fact that the available redundancy N may vary over time due to the
runtime variations of instruction processing. Instead of trying to find the specific
amount of redundancy allocated to each instruction, we focus on the relative ratios
that are more stable for allocating the available redundancy. Thus, the constraint
(3) can be recast as

L∑
j=1

αj ≤ 1, (4)

where αj = Rj

N defines the ratio between Rj and N , both of which are time-varying
in general.

As discussed before, when the actual parallelism level is greater than the optimal
Lopt, stalls due to uncorrectable faults occur, which hurts the overall performance.
Since speculative execution based on the faulty results of the precedent instructions
has already consumed too many resources at this time, it does not make sense to
continue allocating redundancy for further speculation. Therefore, we only need to
allocate redundancy for the instructions in groups from 1 up to Lopt at runtime,
i.e.,

αj =

{
αoptj , if 1 ≤ j ≤ Lopt,
0, if j > Lopt.

(5)

where {αoptj }L
opt

j=1 are the optimal ratios of assigning Rj of CEs to the instructions

in group j and
∑Lopt

j=1 α
opt
j = 1 so that (4) can be always satisfied. Doing so avoids

over-aggressive speculative processing that may potentially deplete the resources.
In order to determine the optimal ratios αoptj ’s, we consider the fault recovery

penalty Tf in (1). It is determined by the number of re-executions as well as
the penalty associated with these re-executions. Note that the instructions have
different probabilities of being re-executed. Thus, we consider the mean value tf ,

which is the statistical measure of Tf , expressed for group 1 through L as

tf =
L∑
j=1

Pjδ, (6)

where Pj is the probability of re-execution of instructions in group j and δ is the
average penalty of each re-execution.

To calculate the re-execution probability Pj , we need to consider the probability
of having uncorrectable faults. Assume that due to faults a CE will generate wrong
results with a probability f , referred to as the fault rate of the CEs. If an instruction
is executed with redundancy R, faults cannot be resolved when the number of
correct results is less than two, as the majority voting cannot select the correct
results out of the incorrect ones. Note that the majority voting may make wrong
decisions under certain fault patterns. This is a limitation of majority voting, which
will affect all fault-tolerant techniques using majority voting or similar schemes for
fault detection. However, fault tolerance can be achieved at a confident level when
assigning enough amount of redundancy R for a given fault rate f . The probability
of having uncorrectable faults due to lack of correct results is given by q(f,R) as
follows

q(f,R) = fR +R(1− f)fR−1. (7)

If the redundancy for the instructions in group 1 is R1, these instructions will
have a re-execution probability P1 = q(f,R1). Since the instructions in group 2
with redundancy R2 are executed speculatively when their precedent instructions in
group 1 have not been confirmed yet, each of the R1 copies of instructions in group
1 is assigned with R2

R1
redundancy on average (assuming R1 is a factor of R2) when

executing the corresponding instructions in group 2. The re-execution probability
of the instructions in group 2 is thus expressed as P2 = P1 + (1 − P1)q(f, R2

R1
).

This is obtained based on the following observations. If the instructions in group
1 need to be re-executed (with probability P1), the corresponding instructions in
group 2, which are speculatively executed based on the instructions in group 1,
should definitely be re-executed as well. On the other hand, even if the instructions
in group 1 do not need re-execution (with probability 1 − P1), the instructions in
group 2 may still have to be re-executed (with probability q(f, R2

R1
)) due to their

faulty CEs. Proceeding in the same fashion, we obtain the re-execution probability
for the instructions in group j as

Pj = Pj−1 + (1− Pj−1)q(f,
Rj
Rj−1

), (8)

where j > 1 and P1 = q(f,R1).
From (7) and (8), the re-execution probability of all the instructions can be

calculated in a recursive way. Thus, the fault recovery penalty tf can be evaluated
according to (6). Since αj ’s determine the redundancy allocation, the optimal ratios

αoptj ’s should satisfy

minimize:
Lopt∑
j=1

Pj , (9)

subject to:
Lopt∑
j=1

αj = 1. (10)

It is in general very difficult to analytically determine the values of αoptj ’s. How-
ever, the following guidelines can be applied to estimate αoptj ’s.

(i) From (7), fault tolerance is possible if R > 1, which is very much in line with
the well-prevalent notion of redundancy-based execution. Thus, Rj

Rj−1
in (8) should

be greater than 1, implying αj > αj−1. Thus, we should increase the values of
αoptj ’s from the precedent instructions to the subsequent instructions.

(ii) From (8), the re-execution probability (and hence the recovery penalty) are
accumulated from the precedent instructions to the subsequent instructions. This
implies that quick confirmation of the precedent instructions is important. Given
this observation, more resources should be made available for fault tolerance in each
copy of the precedent instructions. According to (8), a practical way to achieve this

is to make Rj+1
Rj

<
Rj

Rj−1
. This requires

αopt
j+1

αopt
j

<
αopt

j

αopt
j−1

, where the increase in the ratios

αoptj ’s needs to be slowed down from the precedent instructions to the subsequent
instructions.

By minimizing the fault recovery penalty, the proposed dynamic redundancy
allocation technique is able to improve not only the performance but also the pre-
dictability of performance. This will be shown in section 4.

Note that the above analysis can be easily extended to the general case where
Rj

Rj−1
may not be an integer. Assume that Rj

Rj−1
= r + ∆r, where we define r =

b Rj

Rj−1
c and ∆r = Rj

Rj−1
− r. When the average redundancy for each speculative

execution is Rj

Rj−1
(where Rj−1 is the total redundancy of the precedent group of

instructions), we should allocate r and r+ 1 redundancy for speculative executions
based on the Rj−1(1 − ∆r) and Rj−1∆r unconfirmed results, respectively, of the
precedent instructions. Therefore, (7) can be extended to

q(f,R) =

{
fR +R(1− f)fR−1, R ∈ Z,
(1−∆r)q(f, r) + ∆r q(f, r + 1), otherwise,

(11)

where r = bRc and ∆r = R− r.
We use an example to show the selection of the optimal allocation ratios. In

this example, Lopt = D = 4 is assumed. The total number of available CEs is
N = 20 and N = 40 for demonstration purpose. We vary the fault rate in the
range of f ∈ [0.1, 0.5] and search for αoptj ’s to minimize the fault recovery penalty.
The search is done in the space where αoptj ’s are rounded to the closest 1/N so
that Nαoptj ’s are integers. As shown in Table I, when N increases, for the same
f we should allocate relatively more redundancy for the subsequent instructions.
This is because the precedent instructions can obtain enough redundancy for quick

Table I. An example of selecting optimal redundancy allocation ratios.

N f αopt
1 αopt

2 αopt
3 αopt

4

20 0.1 0.10 0.20 0.30 0.40

20 0.2 0.15 0.25 0.25 0.35
20 0.3 0.15 0.25 0.25 0.35

20 0.4 0.20 0.25 0.25 0.30
20 0.5 0.20 0.25 0.25 0.30

40 0.1 0.075 0.150 0.300 0.475
40 0.2 0.075 0.200 0.350 0.375

40 0.3 0.100 0.275 0.300 0.325
40 0.4 0.100 0.275 0.300 0.325

40 0.5 0.125 0.275 0.275 0.325

confirmation even with the smaller ratios. If f increases but N is fixed, more
redundancy should be allocated to the precedent instructions to minimize the re-
execution probabilities.

Note that the αoptj ’s can be determined in the design phase based on availability
of N and estimated f from the physical systems. These ratios can be employed
thereafter to guide the dynamic redundancy allocation at runtime.

3.4 Dynamic Redundancy Allocation Algorithm

The general procedure of dynamic redundancy allocation is summarized in Algo-
rithm 1. Assume that the instruction being processed is in group j, and there are
totally k voters in this group. The goal of this algorithm is to determine when to
allocate redundancy and how much redundancy should be allocated.

Algorithm 1: The general procedure of dynamic redundancy allocation.
Input:
status parent (status of the parent voter),
confirmation (confirmation status of the current voter),
N (total availability),
j (group index),
k (number of voters simultaneously processing in the same group)
begin

while the voter is active do
if status parent is Invalid then

nullify all the execution under control of this voter
propagate info. to the subsequent voters

end
else if confirmation is False then

R = calculate redundancy(N, j, k)
allocate R redundant computation from neighboring CEs

end
end

end

Algorithm 2: calculate redundancy(N, j, k).
Input: N , j, k
Output: R
begin

if j is changed then
read αoptj from LUT indexed by j

if N is changed then
LUT-based calculation for Nαoptj

LUT-based calculation for R = Nαoptj
1
k

return R
end

If the parent voters notify the current voter that the operands the current voter is
using have been proved to be invalid, the current voter should nullify all the involved
results and propagate the information to the involved voters. Otherwise, the current
voter needs to check whether the execution has achieved majority agreement. If the
results are not confirmed yet, the current voter will try to allocate more redundancy.

Next, the amount of redundancy is determined according to the proposed dy-
namic redundancy allocation strategy. This function is generalized in Algorithm 2.

It is essentially performing
Nαopt

j

k . By doing so, the redundancy can be distributed
evenly to each instructions in this group for the sake of fairness. Note that pri-
oritized allocation in favor of specific instructions is also feasible. The complexity
of redundancy allocation consists mainly of LUT, as the voters just perform LUT-
based operations to allocate redundancy as shown in Algorithm 1 and Algorithm 2.
Furthermore, some operations shown in Algorithm 2 do not need to be performed
every cycle. For example, the operation for getting αoptj is not necessary if the
group number j remains the same. Thus, the algorithm can come up with a timely
decision. In addition, the timing efficiency can be further improved by separating
the issue stage into two stages.

4. EVALUATION AND DISCUSSION

In this section, we evaluate the proposed dynamic redundancy allocation technique.
We first explain the evaluation methodology and then discuss the simulation results.

4.1 Methodology

The simulations are implemented in C program based on the proposed dynamic
redundancy allocation technique. Here we are interested in architecture-level ab-
stracted behaviors instead of implementation or program details. To evaluate the
effectiveness of the proposed technique, we compare our work with two existing
techniques: one uses fixed dual-modular redundancy, where speculative execution
always takes two computation units; and the other is an improved technique [Rao
et al. 2005; Rao et al. 2007], which assigns either one processing unit if the pre-
vious instruction can still be confirmed, or two if the previous instruction is not
confirmable. In order to ensure a fair comparison, all the settings are equivalent

to the two existing techniques except for the redundancy allocation algorithm. In
particular, we compare the performance of our technique with the two existing
techniques under the same number of CEs. We also make the same assumption
on the utilization of MEMs. The focus of this work is on how to efficiently utilize
available computational hardware resources (CEs) to jointly achieve fault toler-
ance and high performance under a range of fault rates. In the simulations, all
the instructions are dependent on their immediate precedent instructions. In such
an example, instructions are speculatively executed based on unconfirmed results.
Other programs of different dependencies can be considered as a combination of
multiple copies of this specific example but with different numbers of instructions
and appearing at different phases in the program. There are totally 40 CE’s in
the cluster and Lopt = D = 4. The optimal ratios αoptj ’s for dynamic redundancy
allocation are selected according to the method described in section 3.

In these simulations, we deliberately introduce faults into the execution results
of CEs and evaluate the performance in terms of cycle per instruction (CPI). These
faults represent the possible upsets during CE execution as well as in the associ-
ated interconnects and MEM units. We evaluate our technique using abstracted
instructions, which do not depend on specific applications but do represent many
key computational activities in real tasks. Note that only the correctness of exe-
cution, rather than the actual execution results, matters to this evaluation. Thus,
abstracted instructions not targeting program details are sufficient for this study.
The voters are assumed to be reliable as explained in section 2. Each time when a
CE is processing an instruction, the result may go wrong at a certain rate, which
is contributed by both permanent defects and transient errors. Without a general
fault model for nanoscale systems, we may assume for the purpose of demonstration
that faults occur independently. Note that the fault rate of CEs is generally higher
than the fault rate of individual nanoelectronic devices. Thus, a large range of fault
rates are evaluated for the proposed technique to account for the effect of increase
in failure probability at the coarse granularity.

4.2 Average Performance

Figure 5 compares the average CPI for fault rates ranging from 0 to 0.5. The fault
rates here are the possibility that the execution results of CEs go wrong. As we
consider in-order execution, the minimum CPI is close to 1. Employing the proposed
technique, the average CPI can approach this bound even at rather high fault rates.
In addition, our technique achieves approximately 20%− 30% improvement on the
average CPI as compared to the two fixed redundancy allocation techniques.

An interesting result is that when the fault rate increases, the proposed dynamic
redundancy technique maintains a very stable performance as compared with the
other two techniques. Using the two fixed redundancy techniques, the average CPI
first reduces then increases as the fault rate increases. This is because the fixed
redundancy techniques utilize redundancy rigidly neglecting the changing demands
of fault tolerance and high performance. When the fault rate is low, the execution
results are easily confirmed. However, the fixed redundancy schemes still utilize
the same amount of redundancy for fault tolerance, thereby wasting resources that
could otherwise be used for enhancing the performance. As the fault rate starts
to increase, some speculative executions are corrupted and the incorrect paths are

Fig. 5. Comparison of average CPI.

Fig. 6. Comparison of CPI deviation.

pruned. This effectively releases some resources for performance improvement.
As a result, we observe a reduction in average CPI when the fault rate increases
from 0 to around 0.25 in fixed redundancy allocation schemes. When the fault
rate continues to increase, the fixed redundancy techniques show disadvantages
manifested as the performance slowdown. While the executions are corrupted at
a higher rate, these schemes only provide a fixed amount of redundancy for each
allocation, which is unlikely to be sufficient to confirm the instructions quickly. As
a result, although some efforts can be saved from the pruned incorrect branches,
the overall performance can hardly be satisfactory due to the lagging instruction
confirmation and frequent re-execution for fault recovery.

4.3 Performance Predictability

Performance predictability is an important metric, especially for real-time applica-
tions which typically require stable and predictable system performance. Similar
to the simulations described above, we study the standard deviation of CPI under
different fault rates. The results are shown in Fig. 6. As indicated, the performance
of the fixed redundancy techniques shows large variations. When the fault rate is
around 0.5, the CPI deviation is more than 12%. In contrast, the proposed dynamic
redundancy technique significantly reduces the CPI deviation, e.g., only at 1.5%

Fig. 7. The impact of available CEs on average CPI.

Fig. 8. The impact of available CEs on CPI deviation.

when the fault rate is 0.5, and almost zero when the fault rate is smaller.
It can be observed that the proposed technique is able to deliver stable perfor-

mance over a range of fault rates. The reason is that dynamic redundancy allocation
is flexible and can allocate more redundancy to the precedent instructions, thereby
not only preventing resources from being depleted by over-aggressive speculative
execution but also accelerating the confirmation of precedent instructions. This is
important to reduce re-execution, especially when the fault rate is high. Therefore,
the proposed technique enables high performance with a predictable manner. This
is also beneficial for synchronizing with other nanocomputing subsystems.

4.4 Scalability

We also study the scalability of the proposed technique. Figures 7 and 8 show the
results of average CPI and the deviations with different numbers of CEs under a
range of fault rates. We can easily see that the average performance of the proposed
technique is very stable for different numbers of CEs when the fault rate is below
0.3. When the system is experiencing a rather high fault rate at around 0.5, the
dynamic redundancy allocation can still achieve an average CPI at around 1.2 with
only 20 CEs. This result is even better than the fixed redundancy techniques
with 40 CEs (see Fig. 5). Thus, the proposed technique can reduce the hardware

resources needed for fault tolerance and performance. In addition, the dynamic
redundancy allocation maintains performance predictability at different numbers
of CEs, as shown in Fig. 8. Thus, the results in Fig. 7 and 8 justify the good
scalability of the proposed technique.

5. CONCLUSION

In this paper, we propose a reliable and high-performance nanoarchitecture solution
targeting the emerging challenges in nanocomputing systems. A dynamic redun-
dancy allocation strategy is developed to manage the parallelism to an optimal level
so that both fault tolerance and high performance can be jointly achieved. Simu-
lation results demonstrate performance improvement over the existing redundancy
management techniques under a range of fault rates. In addition, the performance
improvement is quite stable and scalable under different operating conditions. Our
future work is directed to architecture-level solutions for communication and close
collaboration between nanocomputing elements.

Acknowledgment

This research was supported by the NSF grant CCF-0621947 and the University of
Connecticut Faculty Research Grant 446751.

REFERENCES

Martel, R., Derycke, V., Appenzeller, J., Wind, S., and Avouris, P. 2002. “Carbon nanotube

field-effect transistors and logic circuits,” ACM IEEE Design Automation Conference, 94–98.

Huang, Y., Duan, X., Cui, Y., Lauhon, L. J., Kim, K-Y., and Lieber, C. M. 2001. “Logic gates

and computation from assembled nanowire building blocks,” Science, 294, 5545, 1313–1317.

Lent, C. S., Tougaw, P. D., Porod, W., and Bernstein, G. H. 1993. “Quantum cellular automata,”

Nanotechnology, 4, 4, 49–57.

Ma, X., Huang, J., and Lombardi, F. 2008. “A model for computing and energy dissipation of

molecular QCA devices and circuits,” ACM Journal on Emerging Technologies in Computing
Systems, 3, 4, 18:1–18:30.

Mazumder, P., Kulkarni, S., Bhattacharya, M., Sun J. P., and Haddad, G. I. 1998. “Digital circuit

applications of resonant tunneling devices,” Proceedings of the IEEE, 86, 4, 664–686.

DeHon, A. 2005. “Nanowire-based programmable architecture,” ACM Journal on Emerging Tech-
nologies in Computing Systems, 1, 2, 109–162.

Wang, T., Qi, Z., and Moritz, C. A. 2004. “Opportunities and challenges in application-tuned cir-

cutis and architectures based on nanodevices,” First ACM Conference on Computing Frontier,

503–511.

Koren, I., Koren, Z., and Stapper, C. H. 1994. “A statistical study of defect maps of large area

VLSI IC’s,” IEEE Transactions on VLSI Systems, 2, 2, 249–256.

Mishra, M. and Goldstein, S. C. 2003. “Defect tolerance at the end of the roadmap,” International

Test Conference, 1201–1211.

Tahoori, M. B. 2005. “A mapping algorithm for defect-tolerance of reconfigurable nano-
architectures,” IEEE International Conference on Computer-Aided Design, 668–672.

Jeffery, C. M. and Figueiredo, R. 2006. “Hierarchical fault tolerance for nanoscale memories,”

IEEE Transactions on Nanotechnology, 5, 44, 407–414.

Kuekes, P. J., Robinett, W., Seroussi, G. and Williams, R. S. 2005. “Defect-tolerant interconnect
to nanoelectronic circuits: internally redundant demultiplexers based on error-correcting codes,”

Nanotechnology, 16, 6, 869–882.

von Neumann, J. 1956. “Probabilistic logics and the synthesis of reliable organisms from unreliable
components,” in C. Shannon and J. McCarthy, editors, Automata Studies, Princeton University
Press.

Han, J. and Jonker, P., 2002. “A system architecture solution for unreliable nanoelectronic de-

vices,” IEEE Transactions on Nanotechnology, 1, 4, 201–208.

Bhaduri, D., Shukla, S., Graham, P., and Gokhale, M., 2007. “Comparing reliability-redundancy
tradeoffs for two von Neumann multiplexing architectures,” IEEE Transactions on Nanotech-

nology, 6, 3, 265–279.

Roy, S. and Beiu, V., 2005. “Majority multiplexing-economical redundant fault-tolerant designs
for nanoarchitectures,” IEEE Transactions on Nanotechnology, 4, 4, 441–451.

Rao, W., Orailoglu, A., and Karri, R. 2005. “Architecture-level fault tolerant computation in

nanoelectronic processors,” IEEE International Conference on Computer Design, 533–542.

Rao, W., Orailoglu, A., and Karri, R. 2007. “Towards nanoelectronics processor architectures,”

Journal of Electronic Testing: Theory and Applications, 23, 235–254.

Nicolau, A. and Fisher, J. A. 1984. “Measuring the parallelism available for very long instruction

word architectures,” IEEE Transactions on Computers, 33, 11, 968–976.

Wall, D. W. 1993. “Limits of instruction-level parallelism,” Wester Research Laboratory Research

Report 93/6, Digital Equipment Corporation.

Tullsen, D. M., Eggers, S. J., and Levy, H. M. 1995. “Simultaneous multithreading: maximizing
on-chip parallelism,” International Symposium on Computer Architecture, 392–403.

Lo, J., Eggers, S., Emer, J., Levy, H., Stamm, R., and Tullsen, D. M. 1997. “Converting thread-

level parallelism into instruction-level parallelism via simultaneous multithreading,” ACM
Transaction on Computer Systems, 15, 3, 322–354.

Olukotun, K., Nayfeh, B. A., Hammond, L., Wilson, K., and Chang, K. 1996. “The Case for a Sin-

gle Chip Multiprocessor,” International Conference on Architectural Support for Programming

Languages and Operating Systems, 2–11.

Hammond, L., Nayfeh, B., and Olukotun, K. 1997. “A single-chip multiprocessor,” Computer,

30, 9, 79–85.

Wang, S., Wang, L., and Jain, F. 2007. “Dynamic redundancy allocation for reliable and high-

performance aanocomputing,” International Symposium on Nanoscale Architectures, 1–6.

Beckett, P. and Jennings, A. 2002. “Towards nanocomputer architecture,” Asia-Pacific Confer-
ence on Computer Systems Architecture, 141–150.

Fountain, T. J., Duff, M. J. B. D., Crawley, D. G., Tomlinson, C. and Moffat, C. 1998. “The use

of nanoelectronic devices in highly-parallel computing systems,” IEEE Transactions on VLSI
Systems, 6, 1, 31–38.

Franklin, M. and Sohi, G. S. 1992. “The expandable split window paradigm for exploiting fine-

grain parallelism,” International Symposium on Microarchitecture, 58–67.

Farkas, K., Chow, P., Jouppi, N., and Vranesic, Z. 1997. “The multicluster architecture: reducing
cycle time through partitioning, ” International Symposium on Microarchitecture, 149–159.

Goldstein, S. and Budiu, M. 2001. “NanoFabrics: spatial computing using molecular electronics,”

International Symposium on Computer Architecture, 178–189.

Zhu, W. and Fleisch, B. 2000. “Performance evaluation of soft real-time scheduling on a multi-

computer cluster,” International Conference on Distributed Computing Systems, 610–617.

He, L., Jarvis, S. A., Spooner, D. P., Chen, X., and Nudd, G. R. 2004. “Dynamic scheduling of

parallel jos with QoS demands in multiclusters and grids,” International Workshop on Grid
Computing, 402–409.

Tang, X. Y. and Chanson, S. T. 2001. “Optimizing static job scheduling in a network of hetero-
geneous computers,” International Conference on Parallel Processing, 373–382.

Chen, Y., Jung, G.-Y., Ohlberg, D. A. A., Li, X., Stewart, D. R., Jeppesen, J. O., Nielsen, K.

A., Stoddart, J. F., and Williams, R. S. 2003. “Nanoscale molecular-switch crossbar circuits,”
Nanotechnology, 14, 4, 462–468.

