
Choosing Document Structure Weights Page 1

Choosing Document Structure Weights
ANDREW TROTMAN

Department of Computer Science, University of Otago,
PO Box 56, Dunedin, New Zealand

andrew@cs.otago.ac.nz

Abstract
Existing ranking schemes assume all term occurrences in a given document are of equal influence.
Intuitively, terms occurring in some places should have a greater influence than those elsewhere. An
occurrence in an abstract may be more important than an occurrence in the body text. Although this
observation is not new, there remains the issue of finding good weights for each structure.

Vector space, probability, and Okapi BM25 ranking are extended to include structure weighting.
Weights are then selected for the TREC WSJ collection using a genetic algorithm. The learned
weights are then tested on an evaluation set of queries. Structure weighted vector space inner product
and structure weighted probabilistic retrieval show an about 5% improvement in mean average
precision over their unstructured counterparts. Structure weighted BM25 shows nearly no
improvement. Analysis suggests BM25 cannot be improved using structure weighting.

Keywords: Structured Information Retrieval, Genetic Algorithms, Vector Space Model, Probability Model.

1. Introduction
Not all parts of a document are created equal. For academic papers, authors are asked to write a few
words that concisely describe their work. This is the title. They are asked to write a few paragraphs
that outline their work, the abstract. They are asked to write a few pages that precisely describe the
work, the body text. Finally they are asked to summarize the work with a conclusion. These are very
different and unequal parts of the same document.

Vector space (Salton, Wong, & Yang, 1975) and probabilistic (Robertson & Sparck-Jones, 1976) IR
systems rank documents without regard to term location. A term found in an abstract is of equal
importance to the same term in the body text of the same document. The document structure is ignored
even though authors write documents with structure. A document may even be originated with explicit
structure in a mark-up language like XML (Bray, Paoli, & Sperberg-McQueen, 1988), structure
discarded when indexing. There is a mismatch: documents have structure, yet the IR system ignores it.

Document structure should be utilized in ranking. For example, knowledge in an abstract is denser
than elsewhere, fulfilling the principle of summarization. This principle can be applied to ranking.
Terms should receive a weighting based on where in the document they occur. In other words, if a
term occurs in an abstract it should be weighted as such.

Fuller et al. (1993) first suggested structure weighting in 1993. Since then the probability model has
been extended to include structure weighting (Wolff, Flörke, & Cremers, 2000), IR query languages
have been extended to allow the user the option of choosing the weights (Fuhr & Großjohann, 2001),
and index structures have been proposed (Schlieder & Meuss, 2002).

One remaining problem is the choice of the weights. If users don’t specify the weights themselves, the
IR system should default to a good set of cross corpus weights. But how can those weights be
selected? In this investigation genetic algorithms (GA) are used. Each document structure is
represented in a chromosome in a GA learning simulation. Selective pressure is then applied to
maximise mean average precision.

Experiments with the TREC (Harman, 1993) Wall Street Journal (WSJ) collection using structured
variants of inner product, probability, and Okapi BM25 (Robertson, Walker, Beaulieu, Gatford, &
Payne, 1995) are conducted. Results demonstrate an about 5% improvement in mean average
precision for vector space and probability, while no improvement is shown for BM25.

Choosing Document Structure Weights Page 2

2. Approach
Just as someone encountering this document will glance at the title and abstract to determine its
relevance, a computer can score a document by examining its structures.

First, the document structures are identified. Conveniently, for XML these structures are already
explicit. This mark-up is not the DTD, but the document tree. The tree is used as it is also
unreasonable to assume all occurrences of a tag are equal. If a <title> tag occurs in <bibliography> it
is perhaps of less interest than when occurring as the document’s title.

Second, structured ranking is defined. The score of a document with respect to a term usually uses
term frequency, tf, as an integral component. It assumes all occurrences of a term within a single
document are of equal importance. Term frequency is replaced by a structure weighted term
frequency.

Third, weights are selected. Many approaches have been suggested including using humans with
domain knowledge (Rapela, 2001), trial and error (Wilkinson, 1994), and simulated annealing (Boyan,
Freitag, & Joachims, 1996). In this investigation genetic algorithms are used. The ubiquity of the
TREC Wall Street Journal collection makes this dataset ideal for testing the genetic algorithm
approach. The INEX collection (Fuhr, Gövert, Kazai, & Lalmas, 2002) was not used as it is not
distributed with judgements.

Finally, the learned weights are evaluated for effectiveness against a set of queries not used in training.
A t-test is applied to the results to provide evidence of significance.

2.1. Related Work
2.1.1. Genetic Algorithms
Machine learning and genetic algorithms are not new to information retrieval (Chen, 1995; Savoy &
Vrajitoru, 1996). Gordon (1988) suggests representing a posting as a chromosome and using genetic
algorithms to select good indexes. Yang et al. (1992) suggest using GAs with user feedback to choose
weights for search terms in a query. Morgan and Kilgour (1996) suggest an intermediary between the
user and IR system employing GAs to choose search terms from a thesaurus and dictionary. Vrajitoru
(1998), Boughanem et al. (2002), and Horng and Yeh (2000) examine GAs for information retrieval
and suggest new crossover and mutation operators. Vrajitoru (2000) examines the effect of population
size on learning ability, concluding that a large population size is important.

Despite the successes, little use has been made of genetic algorithms for ad hoc queries.

Harman (1993) observes different IR systems returning substantially different results, yet maintaining
approximately equal performance. Building on this, Bartell et al. (1994) suggest combining the output
of different ranking functions to improve performance. Pathak et al. (2000) use a genetic algorithm to
choose weights for such a combination.

2.1.2. Identification of the Problem
Research into structured document indexing (Meuss & Strohmaier, 1999; Shin, Jang, & Jin, 1998;
Thom, Zobel, & Grima, 1995), querying (Chinenyanga & Kushmerick, 2001; Fuhr & Großjohann,
2001) and ranking (Kotsakis, 2002; Schlieder & Meuss, 2000, 2002) has suggested using document
structures for document-centric ranking, but not how to choose good weights.

Schlieder and Meuss (2002) suggest structure weights should be specified in the query. This approach
is embraced in the query language XIRQL (Fuhr & Großjohann, 2000, 2001), and the graphical query
language of Baeza-Yates et al. (1998). Although users should be given the option of choosing
weights, choosing the weights has proven difficult. Rapela’s (2001) investigation shows a decrease in
precision at almost all points of recall when a human subject is asked to choose structure weights. This
task may prove less difficult if a good set of weights can be presented for adjustment.

Boyan et al. (1996) examine tag weighting for HTML. A hand selected set of tags and tag weights are
chosen alongside other configurable parameters. Users present queries, receive results, and view
documents. A log of documents viewed against each query is generated. Weights are then
successfully learned using simulated annealing. However, Boyan et al. outline presentation bias as a

Choosing Document Structure Weights Page 3

problem to be overcome; users select documents with high ranks regardless of how badly they fit their
information need. A good set of starting weights is needed.

2.1.3. Choosing Weights
Wilkinson (1994) uses trial and error to choose structure weights. All structures except one are given a
weight of 1 while the one’s weight is adjusted to 2. The performance is measured as the one varies
from structure to structure. Finally, one of three possible weights (0.5, 1, or 2) is assigned to each
structure. Wilkinson demonstrates a performance improvement.

Rapela (2001) successfully used a gradient-based optimisation function to learn weights for HTML tag
and non-tag heuristics.

Kim et al. (Kim & Zhang, 2000, 2001; Kim, Kim, Eom, & Zhang, 2000) suggest HTML documents
can be represented by just the contents of a few tags. New documents are derived from old by
stopping all term occurrences outside those tags. Ranking is not based on the existence of a term in a
document, but the existence of a term in a tag in document. The rank for a given document is the
product of two scores, one for the term and one for the tag. Using Kim’s technique, terms outside the
chosen tags cannot be found. For those in the chosen tags, a document containing a search term twice
in <TITLE> and once in has an identical score to twice in and once in <TITLE>.

2.1.4. XML and SGML
Constructions for HTML cannot necessarily be applied to XML and SGML. HTML has no
hierarchical structuring whereas XML does. Should an XML <title> tag occur in <bibliography> it is
unreasonable to assume weighting equal to the same tag used as the title of the document, something
perhaps reasonable for HTML <title> tags. When structure-weighing XML, the hierarchical structure
is more important than the tag names. Further, in XML the tag names may not be known in advance.

2.1.5. Document Fragmentation
Dividing a document into parts using tag boundaries can be likened to document fragmentation and
passage retrieval. These have been examined in the literature extensively (Callan, 1994; Kaszkiel &
Zobel, 1997, 2001; Wilkinson & Zobel, 1994). Documents are divided into fragments and each
indexed independently. The weight of a document with respect to a query is taken as the weight of the
highest scoring document fragment with respect to that query. Fragmentation does not preclude
document structure weighting; the two could be used in conjunction. Structured weighted
fragmentation is not examined herein.

3. Methods
3.1. Structured Information Retrieval
An inverted file index of a corpus consists of two parts, the dictionary and the postings. The dictionary
stores a list of all the unique terms in the corpus and a pointer to a posting. A posting is a vector {<d1,
f1>, <d2, f2>, … <dn, fn>} where d is a document number and f is the number of occurrences of the
term in d. Postings are sorted by increasing d as a consequence of sequential indexing.

The hierarchical structure of an XML document represents a tree. Thom et al. (1995) suggest giving
each unique tag an ordinal identifier and storing document paths directly in the indexes as paths.
Meuss and Strohmaier (1999) also store paths directly in the indexes, however encoded as a bitstring.
Kotsakis (2002) and Trotman (2003) prefer to build a corpus tree, but differ in how they store the
postings.

The corpus tree is constructed during single pass indexing. Each time a previously unseen path
through a document is encountered, it is added to the tree and given a unique ordinal identifier.
Eventually, every path through every document is represented. The resulting tree is unlikely to be the
exact structure of any given document, but the complete structure of every document is represented.

Figure 1 presents three XML documents, and the corpus tree. The tree contains all paths through all
documents, but does not match any single document. Each node in the corpus tree has a unique
identifier allotted in order of node creation. Nodes are not analogous to DTD elements, but to an
instance of an element from a DTD. A term occurring in <name> in <place>, will be treated

Choosing Document Structure Weights Page 4

differently from <name> in <person>. Should a term occur in <name> in <place> it will not be
considered to lie in <name>, or <place>, but rather in <name> in <place>.

<doc>
<docid>1</docid>
<place>

<name>University of Otago</name>
</place>
<cntry>New Zealand</cntry>

</doc>

<doc>
<docid>2</docid>
<place>

<name>Dunedin</name>
<rank>expert</rank>

</place>
</doc>

<doc>
<docid>3</docid>
<person>

<name>Smith</name>
<rank>Intermediate</rank>

</person>
</doc>

doc:1

docid:2

place:3

cntry:5

person:7

name:4

rank:6

name:8

rank:9

<doc>
<docid>1</docid>
<place>

<name>University of Otago</name>
</place>
<cntry>New Zealand</cntry>

</doc>

<doc>
<docid>2</docid>
<place>

<name>Dunedin</name>
<rank>expert</rank>

</place>
</doc>

<doc>
<docid>3</docid>
<person>

<name>Smith</name>
<rank>Intermediate</rank>

</person>
</doc>

doc:1

docid:2

place:3

cntry:5

person:7

name:4

rank:6

name:8

rank:9

doc:1

docid:2

place:3

cntry:5

person:7

docid:2

place:3

cntry:5

person:7

name:4

rank:6

name:8

rank:9

Figure 1: Three XML documents and the corpus tree. The name of each node is an XML tag
name. The path to each node is a path through a document. Numbers at each node are the

position identifiers allotted at creation time.

The postings are now modified to include pointers into the corpus tree. Each pair <d, f> becomes one
or more triples <d, p, f> where d is the document number, p is the position in the corpus tree, and f is
the number of occurrences of the given term in the given position of the given document.

These structured postings can be converted back into an unstructured posting by collecting the
occurrence counts for each document regardless of position. Term weighting and ranking could be
applied as if no change to the index had occurred, however this investigation takes advantage of
structured indexes by altering the ranking equations to use the position member of the triple.

3.2. Structured Ranking
Fuller et al. (1993) suggest applying simple scalar weighting to each DTD element, but go no further.
Wolff et al. (Wolff, Flörke, & Cremers, 1999; Wolff et al., 2000) build on this suggestion and extend
the probability model to include structure weighting. In this investigation weights are applied to each
node in the corpus tree, not to each DTD element, or to the query vector.

3.2.1. Vector Space Model
Vector space similarity is often calculated using the inner product

∑
=

×=
t

i
iqiddq wwR

1
 (1)

where Rdq is the relevance of document d with respect to query q, wiq is the weight of term i in q,

iiqiq IDFtfw ×= (2)

and wid is the weight of term i in document d.

iidid IDFtfw ×= (3)

where tfid is the term frequency of term i in document d, and likewise for tfiq in the query. IDFi is the
inverse document frequency of term i

i
i n

NIDF 1log2
+

= (4)

Choosing Document Structure Weights Page 5

where N is the number of documents in the corpus and ni is the number of documents containing term i
in the corpus.

To extend the vector space model to support structured ranking, occurrences within each document
structure must be included so

∑
=

=
n

p
ipdid tftf

1
 (5)

where tfipd is the number of occurrences of term t in position p of document d. A simple scale factor Cp
for each document structure can now be applied

()∑
=

×=
n

p
ipdpid tfCtf

1

' (6)

tf’id is then substituted for tfid in equation (3) giving

iidid IDFtfw ×= ' (7)

3.2.2. Probability Model
Rdq, the weight of a document with respect to a query is given by substitution of tf’id for tfid

() ()∑
∈

×−+×+=

qi d

id
idq m

tfLLIDFCR
'

1 (8)

where C = 1.0, L = 0.3 and md is the term frequency of the most frequent term in document d.

3.2.3. Okapi BM25
For Okapi BM25 ranking, tf’ can be substituted directly into the ranking equation giving

iq

iq
t

i id

id
idq tfk

tfk

tfK
tfkwR

+

×+
×

+

×+
×= ∑

= 3

3

1
'

'
1)1()1((9)

where

5.0
5.0log

+
+−

=
i

i
i n

nNw (10)

and

(())
av

d
T

TbbkK ×
+−×= 11 (11)

k1 = 1.2, k3 = 7, b = 0.75 and Tav is the average document length measured in terms (the same unit of
measure as Td). tfq is the number of times term i occurs in query q.

3.2.4. Discussion
The weighted tf’ can be substituted into any ranking function that ordinarily uses tf. These new
equations allow weighting for term occurrences at different nodes in the corpus tree. If any Cp is 0,
node p will have no ranking influence. If Cp are all 1, unstructured ranking results. The relative
importance of document structures is reflected in the Cp weights.

To mark terms in titles, abstracts, or figure captions as “of more interest”, suitable Cp values are
selected for these nodes. XIRQL, and other query languages, give the user the power to choose
weights; however if weights are not chosen defaults must be assigned. A genetic algorithm can be

Choosing Document Structure Weights Page 6

used to determine good default weights. Equally, by algorithmically determining good weights it is
possible to identify the most interesting document structures.

3.3. Genetic Algorithms
It is impractical to iteratively test all possible Cp weight combinations, however, the search for good
weights can be directed using a genetic algorithm.

The TREC collection is an ideal training set. The collection is distributed with a series of queries
called topics and a series of judgments. A judgment is a binary decision as to whether or not a topic is
relevant to a given document.

Genetic algorithms (Holland, 1975) direct a search towards a problem solution using the Darwinian
notion of survival of the fittest. The robustness of genetic algorithms has been demonstrated in many
domains (Goldberg, 1989) including information retrieval (Gordon, 1988; Vrajitoru, 1998). Section
2.1 discusses the already diverse use of genetic algorithms in information retrieval.

population

chromosome

gene locus

{ }56

population

chromosome

gene locus

{ }56

Figure 2: Chromosomes, loci, genes and populations are the constituent parts of the genetic
algorithm. They are, in essence, an array, a member, a value and a list.

Using genetic algorithm terminology, a population is a collection of individuals. An individual is a
chromosomal encoding of a potential problem solution. A chromosome is an array of fixed length;
each position in a chromosome is a locus. Each locus takes a value, that value being a gene. Figure 2
graphically depicts this representation.

An initial population is created with completely randomised genes. The fitness of each individual is
calculated algorithmically and selective pressure applied. The weak perish and the strong survive. A
new population, the next generation, is created through reproduction, mutation, and crossover. The
process is then applied iteratively.

To use genetic algorithms to choose structure weights it must be possible to represent potential
solutions as individuals, to calculate fitness, and to reproduce, mutate, and crossover.

Document structure weights are numeric. Each node in the corpus tree has a unique identifier. So a
chromosomal encoding is chosen with one locus for each node in the corpus tree, the gene at locus p
being the weight Cp.

Mean average precision is chosen as the fitness f(n) of individual n. Average precision for a single
query is the sum of precisions for each found and relevant document, divided by the number of
relevant documents. Mean average precision is the mean of such scores over a set of queries.

Although individual fitness is a quantitative measure of an individual’s adaptation to the environment,
it says nothing about the fitness of an individual with respect to the population, that is, the individual’s
fitness proportion fp(n).

))((

)()(

1
ε

ε

+−

+−
=

∑
=

Fmf

Fnfnfp G

m

 (12)

where G is the number of individuals in the generation, F is the minimum observed f() in the
generation, and ε is included to prevent division by zero. This linear dynamic scaled fitness proportion
(Grefenstette, 1986) is preferred over the unscaled counterpart as it is general purpose (Khuri, Bäck, &
Heitkötter, 1994).

Choosing Document Structure Weights Page 7

The sum of fitness proportions for a single generation is 1. A generation can therefore be represented
as a number line in the range [0…1]. Each individual takes a part of the line equal to its fitness
proportion. In the process of fitness proportionate selection, a random number between 0 and 1 is
chosen and the individual at that point on the line is selected.

Individuals reproduce with probability equal to their fitness proportion. An individual is chosen from
the current generation using fitness proportionate selection, then carried over into the next generation.

For mutation, an individual is selected using fitness proportionate selection. A locus is chosen at
random and the gene there is replaced with a random gene. The mutated individual is carried over into
the next generation.

a = {a1 a2 a3 a4 a5 a6}

×
b = {b1 b2 b3 b4 b5 b6}

=

c1 = {a1 a2 a3 b4 b5 b6}
c2 = {b1 b2 b3 a4 a5 a6}

Figure 3: Crossover between chromosome a and b at locus (g=3)

results in two children c1 and c2.

Using fitness proportionate selection, two individuals (a and b) are chosen for single point crossover.
A locus g is chosen at random and two new individuals are created. One with the genes from a up to g
and b thereafter, the other from b to g and a thereafter. Figure 3 illustrates this process. Both new
individuals are carried over into the new generation.

Reproduction, mutation, and crossover occur with configurable probabilities (which sum to one).
Once a new generation has been created, the genetic process is repeated iteratively until a problem
solution is found.

4. Experimental Methods
Experiments to choose good document structure weights were conducted using a genetic algorithm.
Mean average precision was used as fitness. The fitness of the found weights was then evaluated
against ranking without structures.

Average precision was computed as the sum of precisions for each found and relevant document,
divided by the number of relevant documents. Mean average precision as the mean of such scores over
a set of queries.

4.1. Test Collection
The TREC Wall Street Journal files (1987-1992) on the TREC collection disks 1 and 2 were indexed
using the structured information retrieval system described above. The corpus tree was generated
during indexing.

TREC topics 151-200 were used for training. Topics 101-150 were used for evaluation. Queries were
built by extracting the description field then stopping commonly used words. Topics 121, 175, 178,
and 181 were discarded, each having fewer than 5 judgments. Terms were not stemmed.

4.2. Genetic Parameters
Each chromosome had 20 loci, 1 locus for each node in the corpus tree. Genes took a value in the
range [0..1]. An initial population of 50 individuals was chosen at random. Mutation and crossover
rates were set at 0.2. Reproduction rate was 0.6. Alternative population sizes, mutation rates, and
crossover rates were not investigated, but could affect the evolution rate.

Choosing Document Structure Weights Page 8

Mean average precision was used for fitness. Learning continued for 25 generations. The initial
population was seeded with an individual with all weights equal to 1; the equivalent of unweighted
ranking.

Purely by chance, the fittest individual in a generation might not be selected to carry over into the next
generation. Should this happen the fittest-so-far would perish. To prevent this, the fittest individual in
each generation automatically reproduces; learning was elitist (De Jong, 1975).

4.3. Experimental Process
Experiments were run to find weights for weighted vector space (W-VSM), weighted probability (W-
PM), and weighted BM25 (W-BM25).

An initial random generation was created. Then for each generation, each individual was presented to
the retrieval system one at a time. Values for Cp were taken from the chromosome. Mean average
precision over the training set was calculated and stored with each individual.

At the end of each generation, with the fittest individual in that generation: (i) mean average precision
was recorded; (ii) average precision was calculated and recorded for each query in the evaluation set;
(iii) mean average precision for the evaluation set was calculated and recorded. Subsequently, a new
generation was created from the old using just results from the training set. Each experiment was
conducted 180 times to eliminate any chance of error.

Average precision scores for each query using unweighted vector space (VSM), probability (PM) and
BM25 (BM25) were calculated, recorded and compared to their structure weighted counterparts. A
one-tailed t-test was applied to provide evidence of a significant improvement.

Finally, the training and evaluation set were swapped and the experiment rerun for validation.

5. Results
5.1. Learning Results
Figure 4 shows how the mean average precision changed over time. Thick lines represent the training
set whereas thin lines represent the evaluation set. The MAP scores plotted are the mean over 180
runs. Changes in the training set are reflected as changes in the evaluation set. Dips in the evaluation
MAP during learning are a consequence of over-fitting – seen in BM25 learning.

The training samples used in these experiments are characterised by having “correct” target documents,
but not “correct” average precisions. Fitness can be computed, but error cannot (without knowing the
target, deviation from the target cannot be computed). Traditional cross-validation (Moody, 1994;
Weiss & Kulikowski, 1991) techniques therefore cannot be used. A validation estimate comes through
an estimation of best performance. To make this estimate, the GA is assumed to find a reasonable
approximation to the optimal solution, the training and evaluation sets are swapped, and the experiment
re-run.

Table 1 presents three sets of results – those from unweighted retrieval, weighted retrieval, and from
the validation experiment. For weighted and validation, the results presented are those from the best
learning run – the run with the highest MAP in the queries used in training.

Examining probabilistic retrieval: a set of weights is learned using the training set. The MAP of the
evaluation set using these weights is measured as 0.1787. The validation experiment is run. The
optimal MAP for the evaluation set is estimated as 0.1823. Finally the error is computed as the
distance from the measured to the optimal, 0.0036.

Figure 5 presents precision / recall graphs showing using mean average precision at 11 points of recall
in the evaluation set. Improvements can be seen for vector space and probability models, but not for
BM25.

5.2. Information Retrieval Results
In an online system, structure weights would be selected through training before the system comes
online. Evaluation would occur continuously as users present queries to the system. The training and

Choosing Document Structure Weights Page 9

evaluation sets used in the experiments herein mirror this. A set of weights was learned using the
training set and evaluated using the evaluation set.

A comparison of how such a system might perform is presented in figure 6 and figure 7. In figure 6
the average precision (computed at each document) for each evaluation query is compared. In figure 7
the change in average precision is presented. For users queries a significant improvement is seen.

Weighted vector space model shows an improvement in average precision for 61% of the queries in the
evaluation set. Overall a 4.72% improvement is observed in mean average precision. A one tailed t-
test gave a P value of 0.0014; the weighted vector space model improvement is significant at the 1%
level. The best improvement seen in the evaluation set was 4.8% (59.2% of queries), however this was
not in the best run.

Weighted probability model shows an improvement in average precision for 75.5% of the queries in
the evaluation set. Overall a 6.67% improvement is observed in mean average precision. A one tailed
t-test gave a P value of 0.0033; the weighted probability model improvement is significant at the 1%
level. The best improvement seen in the evaluation set was 8.4% (77.6% of queries), however this was
not in the best run.

Weighted BM25 shows an improvement in average precision for 37.8% of the queries in the evaluation
set. Overall a 0.33% degradation is observed in mean average precision. A one tailed t-test gave a P
value of 0.0522; the weighted BM25 improvement is not significant at the 5% level. The best
improvement seen in the evaluation set was 0.7% (65.3% of queries), however this was not in the best
run.

On unseen queries, vector space and probability models show significant improvement when weighting
is used. The weights used for these comparisons is shown in table 2.

Vector Space Probabilistic BM25 Model Training Evaluation Training Evaluation Training Evaluation
Unweighted 0.1508 0.1657 0.1890 0.1675 0.2553 0.2289

Weighted 0.1565 0.1735 0.1986 0.1787 0.2561 0.2281
Improvement 3.80% 4.72% 5.09% 6.67% 0.34% -0.33%

Validation 0.1554 0.1746 0.1974 0.1823 0.2539 0.2323
Improvement 3.07% 5.36% 4.42% 8.82% -0.51% 1.52%

Mean 0.1559 0.1740 0.1980 0.1805 0.2550 0.2302
Mean
Improvement 3.44% 5.04% 4.76% 7.74% -0.09% 0.60%

Error 0.70% 0.62% 0.64% 1.98% 0.85% 1.82%

Table 1: Comparison before and after learning of each ranking algorithms using structure
weighted and unweighted retrieval. Training on the evaluation set gives an approximation to the

optimal performance of the evaluation set.

Choosing Document Structure Weights Page 10

Weighted Vector Space Model Learning

0.1542
0.1544

0.1546
0.1548

0.1550
0.1552

0.1554
0.1556

0.1558
0.1560

0.1562

1 3 5 7 9 11 13 15 17 19 21 23 25

Generation

Tr
ai

ni
ng

 S
et

 M
A

P

0.1690

0.1695

0.1700

0.1705

0.1710

0.1715

0.1720

Ev
al

ua
tio

n
Se

t M
A

P

Training Evaluation

Weighted Probability Model Learning

0.1950

0.1955

0.1960

0.1965

0.1970

0.1975

0.1980

1 3 5 7 9 11 13 15 17 19 21 23 25

Generation

Tr
ai

ni
ng

 S
et

 M
A

P

0.1775

0.1780

0.1785

0.1790

0.1795

0.1800

0.1805

Ev
al

ua
tio

n
Se

t M
A

P

Training Evaluation

Weighted BM25 Learning

0.2550

0.2551

0.2552

0.2553

0.2554

0.2555

0.2556

0.2557

0.2558

1 3 5 7 9 11 13 15 17 19 21 23 25

Generation

Tr
ai

ni
ng

 S
et

 M
A

P

0.2287

0.2288

0.2289

0.2290

0.2291

0.2292

Ev
al

ua
tio

n
Se

t M
A

P

Training Evaluation
Figure 4: Mean average precision for the
training set and the evaluation set during

training (shown as the mean over 180 runs).

Vector Space Model Precission vs Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Recall

Pr
ec

is
io

n

Unweighted Weighted Validation

Probability Model Precission vs Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Recall

Pr
ec

is
io

n

Unweighted Weighted Validation

BM25 Precission vs Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Recall

Pr
ec

is
io

n

Unweighted Weighted Validation
Figure 5: Precision / Recall graphs

comparing structure weighted retrieval
with unweighted retrieval for the evaluation

set.

Choosing Document Structure Weights Page 11

Vector Space Model MAP by Topic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Topic

A
ve

ra
ge

 P
re

ci
si

on

Unweighted Weighted

Probability Model MAP by Topic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Topic

A
ve

ra
ge

 P
re

ci
si

on

Unweighted Weighted

BM25 MAP by Topic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Topic

A
ve

ra
ge

 P
re

ci
si

on

Unweighted Weighted
Figure 6: Average precision of each topic
using structure weighed and unweighted

retrieval

Weighted Vector Space Model MAP Improvement by Topic

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Topic

A
ve

ra
ge

 P
re

ci
si

on

Weighted Probability Model MAP Improvement by Topic

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Topic

A
ve

ra
ge

 P
re

ci
si

on

Weighted BM25 MAP Improvement by Topic

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Topic

A
ve

ra
ge

 P
re

ci
si

on

Figure 7: Improvement in average

precision for structure weighted retrieval
over unweighted retrieval.

Choosing Document Structure Weights Page 12

Field Structure
W-

VSM
Weights

W-PM
Weight

s

W-M25
Weight

s

Trainin
g

Set

Evaluatio
n

Set

Document DOC - - - -
Document Number DOCNO - - - - -
Headline HL 0.4873 0.5827 1.0000 47 49
Story date DD - - - - -
Story source SO - - - - -
Category terms IN 0.4503 0.0536 0.8492 41 40

Location DATELIN
E 0.1519 0.1770 0.0685 46 48

Text TEXT 0.1659 0.9953 0.9597 47 49
Companies CO 0.7749 0.0558 0.2692 21 16
Author AUTHOR 0.5545 0.2453 0.2200 3 5
Government
agencies G - - - 1 -

Identification code AN - - - - -
Government
agencies GV 0.9733 0.0494 1.0000 15 25

Document ID DOCID - - - - -
Date DATE - - - - -
Leading paragraph LP 0.3001 0.6589 1.0000 47 49
Indexing codes MS 0.1945 0.5507 0.2936 1 8
Region code RE 0.1206 0.7067 1.0000 35 40
Indexing codes NS 0.3274 0.6123 1.0000 31 29
Indexing codes ST 0.7019 0.7900 1.0000 7 4

Table 2: Weights learned at each node of the corpus tree. Weights are only shown for structures
influential in the evaluation set. Other structures are not present in any query in the evaluation

set. The number of queries utilising the given structure is shown in the last two columns.

6. Discussion
A method of indexing and searching structured data allowing structure weighting is presented and a
genetic algorithm is used to learn weights. Weighted ranking using vector space and probabilistic
retrieval showed significant improvements over unweighted retrieval.

6.1. Ranking
6.1.1. Vector Space Model
The vector space model used for these experiments computes the document weight as the inner product
of two vectors, the query vector and the document vector. Structure weighting does not influence the
query vector; it only affects the document vector. The influence due to the document vector, wid, is
given by

iidid IDFtfw ×= ' (13)

where tf’

id directly scales IDFi to give the term influence. The structure scalar values Cp directly affect
the influence of each term and as such reflect the relative importance of each document structure.
Structure weights in the range [0..1] were chosen for consistency with the other methods.

6.1.2. Probability Model
The ranking equation used with the probability model scales term frequencies by md, the term
frequency of the most frequently occurring term in the document. This term is often a stop-word such
as “and” or “the”. Even if such terms are removed from the indexes, the remaining most frequent
terms are likely to be noise by Zipf’s law. Terms relevant to the document / query pair are the so-
called middle terms.

Rdq, the weight of a document, d, with respect to query q is given by

Choosing Document Structure Weights Page 13

∑
∈

×=
qi

iidq edR (14)

where

ii IDFCd += (15)

and

()
d

id
i m

tfLLe
'

1 ×−+= (16)

When ranking without structure weighting, tf’

id is at most md, so ei is always in the range [0..1]. Term
influence for term i in probability ranking adds to the document / query weight some linear proportion
of di, weighted by L. As tf’

id becomes very large, the influence of L becomes very small and ei tends to
tf’

id. To this end, to preserve the influence of L, it is necessary to keep structure weights strictly in the
range [0..1].

6.1.3. BM25 Ranking
BM25 showed no significant improvement when using structure weighting. Examining the BM25
ranking equation suggests why. Rdq, the weight of a document, d, with respect to query, q, is given by

∑
=

××=
t

i
iiidq cbaR

1
 (17)

where

5.0
5.0log

+
+−

=
i

i
i n

nNa (18)

the log odds of the term occurrence in the collection,

'

'
1)1(

id

id
i

tfK
tfkb

+

×+
= (19)

the influence of the term with respect to the document, and

iq

iq
i tfk

tfk
c

+

×+
=

3

3)1(
 (20)

the influence of the term with respect to the query.

Weighted ranking does not affect the occurrence of the term in the collection, or in the query. It only
affects term occurrences with respect to the document. Neither ai nor ci will be effected. Only bi is
affected by structure weighted ranking.

Expanding bi using the constants given above,

'

'

75.025.02.1

2.2

id
av

d

id
i

tf
T

T
tfb

+

 ×
+×

×
= (21)

assuming all documents lengths, Td, are constant, and therefore equal to Tav, the average document
length,

Choosing Document Structure Weights Page 14

'

'

2.1
2.2

id

id
i

tf
tfb

+

×
= (22)

which tends from 1 when tf’

id equals 1, to 2.2 as tf’
id tends to infinity as shown in figure 8.

BM25 Term Influence

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Occurences

In
flu

en
ce

Figure 8: Ranking influence of terms using BM25.

The term influence expression, bi, in the BM25 ranking equation is highly discriminatory when term
occurrences are small, but not so when term occurrences are large. Structure weights greater than 1
create virtual term occurrences increasing the number of terms in a given document. These additional
occurrences add an ever-decreasing influence. Eventually, the additional influence becomes smaller
than the gap between document weights and document ordering is preserved regardless of the term
count. Structure weights between 0 and 1 were used to push discrimination into the steeper parts of
figure 8.

Even by keeping structure weights low, it has not proven possible to improve BM25 with structure
ranking. This is likely to be because BM25 is already tuned for this data. The tuning parameter k1 is
already very good and has a similar effect to structure weighting.

6.1.4. Comparison
For structures HL, LP and TEXT, the weights differ between weighted vector space model and
weighted probability model (Table 2). Using W-VSM the weights are ordered as expected, HL, LP,
TEXT. Using W-PM they are ordered in the reverse order.

Probability Model Ranking Surface

LP

TEXT

HL

Inner Product Ranking Surface

LP

TEXT

HL

Figure 9: Scatter plot for the three structures TEXT, LP and HL. Each point represents a single

25-generation run. The learned values for these three structures appear to lie in a plane.
Different planes are seen for probabilistic and vector space models.

Examining only these three structures, each run can be considered to return a coordinate in three-
dimensional space; each structure representing an axis. Plotted in figure 9 are such points for each

Choosing Document Structure Weights Page 15

experimental run. From the figure it is clear the points lie in a plane, but a different plane depending
on ranking function. This plane represents a three-dimensional projection of the multi-dimensional
ranking surface. The genetic algorithms can be considered as a search for this surface.

To determine if weights are interchangeable between ranking function, the probability weights were
tried with vector space ranking and vice versa. This experiment resulted in a decrease in mean average
precision of 3.9% in vector space ranking and 7.4% in probability ranking. The structure weights are
dependant on ranking function.

Each ranking function behaves differently, and subsequently different structure weights are learned.
This dependence of structure weights on ranking function may contribute to why human subjects are
unable to choose good values. Although the user should be given the option of choosing weights,
default weights tuned to the particular ranking function should be provided. Default weights should be
derived from the collection and ranking function, not chosen ad hoc.

In some topics a performance decrease was observed. In these cases, search terms influential in the
meaning of the query only occurred in low-weighted structures. When this happens, less important
query terms become more influential in ranking. Should the most important query terms be found only
in structures with low weights, the meaning of the query can be lost.

6.2. Efficiency
The experiments necessary to learn good structure weights need only be run once for each document
collection. The weights will not change if the experiment is run a second time. The cost in CPU
cycles, and real time, is therefore not an important issue. However, the cost remains low.

The training set contained 47 queries. The initial population contained 50 individuals. In the first
generation 2,350 searches were necessary. After the first generation, searches were necessary only for
new individuals. Mean average precision is already known for individuals that reproduce (60%) so a
search is unnecessary. A search is only necessary for those individuals that come about through
crossover or mutation. In all the number of queries required for 25 generations is about 24,910. On a
1.6GHz Pentium 4, these 25 generations can be completed in less than an hour. Over a weekend, 50
such runs can easily be completed on a single CPU.

7. Conclusions
Some parts of a document are more interesting than others. When flipping through a journal a reader
will stop on seeing something interesting. These interesting structures should be weighted as such
during ranking.

Experiments were conducted with the TREC WSJ collection. Indexing was with the presented
structured information retrieval system. A single tree representing the tagging structure of the
collection was built. Structure weights, assigned to each node in the tree, were found using a genetic
algorithm. Finally, the results were evaluated demonstrating significant improvements when using
vector space model or probability model. No significant improvement was observed for BM25.

Improvements gained through learning are mirrored in evaluation. Not only was there a gain in mean
average precision, but also in most queries. The one-off task of determining document weights using a
genetic algorithm has resulted in significant improvements when using vector space and probability
models.

8. Acknowledgements
This work was supported by University of Otago Research Grant (UORG) funding.

9. References
Baeza-Yates, R., Navarro, G., & Vegas, J. (1998). A model and a visual query language for structured

text. In Proceedings of the String Processing and Information Retrieval: A South American
Symposium, (pp. 7-13).

Choosing Document Structure Weights Page 16

Bartell, B. T., Cottrell, G. W., & Belew, R. K. (1994). Automatic combination of multiple ranked
retrieval systems. In Proceedings of the 17th ACM SIGIR Conference on Information
Retrieval, (pp. 173-181).

Boughanem, M., Chrisment, C., & Tamine, L. (2002). On using genetic algorithms for multimodal
relevance optimization in information retrieval. Journal of the American Society for
Information Science and Technology, 53(11), 934-942.

Boyan, J., Freitag, D., & Joachims, T. (1996). A machine learning architecture for optimizing web
search engines. In Proceedings of the AAAI Workshop on Internet-Based Information Systems.

Bray, T., Paoli, J., & Sperberg-McQueen, C. (1988). Extensible markup language (XML) 1.0, W3C
recommendation. Available: http://www.w3.org/TR/REC-xml.

Callan, J. P. (1994). Passage-level evidence in document retrieval. In Proceedings of the 17th ACM
SIGIR Conference on Information Retrieval, (pp. 302-310).

Chen, H. (1995). Machine learning for information retrieval: Neural networks, symbolic learning, and
genetic algorithms. Journal of the American Society for Information Science, 46(3), 194-216.

Chinenyanga, T. T., & Kushmerick, N. (2001). Expressive retrieval from XML documents. In
Proceedings of the 24th ACM SIGIR Conference on Information Retrieval, (pp. 163-171).

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems. Unpublished
Ph.D., University of Michigan.

Fuhr, N., Gövert, N., Kazai, G., & Lalmas, M. (2002). Inex: Initiative for the evaluation of XML
retrieval. In Proceedings of the ACM SIGIR 2000 Workshop on XML and Information
Retrieval.

Fuhr, N., & Großjohann, K. (2000). XIRQL an extension of XQL for information retrieval. In
Proceedings of the ACM SIGIR 2000 Workshop on XML and Information Retrieval.

Fuhr, N., & Großjohann, K. (2001). XIRQL: A query language for information retrieval in XML
documents. In Proceedings of the 24th ACM SIGIR Conference on Information Retrieval, (pp.
172-180).

Fuller, M., Mackie, E., Sacks-Davis, R., & Wilkinson, R. (1993). Structured answers for a large
structured document collection. In Proceedings of the 16th ACM SIGIR Conference on
Information Retrieval, (pp. 204-213).

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning.: Addison-
Wesley.

Gordon, M. (1988). Probabilistic and genetic algorithms in document retrieval. Communications of the
ACM, 31(10), 1208-1218.

Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms. IEEE
Transactions. on Systems, Man, and Cybernetics, 16(1), 122-128.

Harman, D. (1993). Overview of the first TREC conference. In Proceedings of the 16th ACM SIGIR
Conference on Information Retrieval, (pp. 36-47).

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan
Press.

Horng, J.-T., & Yeh, C.-C. (2000). Applying genetic algorithms to query optimization in document
retrieval. Information Processing & Management, 36(5), 737-759.

Kaszkiel, M., & Zobel, J. (1997). Passage retrieval revisited. In Proceedings of the 20th ACM SIGIR
Conference on Information Retrieval, (pp. 178-185).

Kaszkiel, M., & Zobel, J. (2001). Effective ranking with arbitrary passages. Journal of the American
Society for Information Science and Technology, 52(4), 344-364.

Khuri, S., Bäck, T., & Heitkötter, J. (1994). An evolutionary approach to combinatorial optimization
problems. In Proceedings of the 22nd annual ACM computer science conference, (pp. 66-73).

Kim, S., & Zhang, B.-T. (2000). Web-document retrieval by genetic learning of importance factors for
HTML tags. In Proceedings of the PRICAI-2000 Workshop on Text and Web Mining, (pp. 13-
23).

Kim, S., & Zhang, B.-T. (2001). Evolutionary learning of web-document structure for information
retrieval. In Proceedings of the 2001 Congress on Evolutionary Computation (CEC2001),
(pp. 1253-1260).

Kim, Y.-H., Kim, S., Eom, J.-H., & Zhang, B.-T. (2000). SCAI experiments on TREC-9. In
Proceedings of the 9th Text REtrieval Conference (TREC-9), (pp. 392-399).

Kotsakis, E. (2002). Structured information retrieval in XML documents. In Proceedings of the ACM
Symposium on Applied Computing, (pp. 663-667).

Meuss, H., & Strohmaier, C. (1999). Improving index structures for structured document retrieval. In
Proceedings of the 21st Annual Colloquium on IR Research (IRSG'99).

Choosing Document Structure Weights Page 17

Moody, J. (1994). Prediction risk and architecture selection for neural networks. In V. Cherkassky & J.
H. Friedman & H. Wechsler (Eds.), Statistics to neural networks: Theory and pattern
recognition applications.: Springer-Verlag.

Morgan, J., & Kilgour, A. (1996). Personalising on-line information retrieval support with a genetic
algorithm. In A. Moscardini & P. Smith (Eds.), PolyModel 16: Applications of artificial
intelligence (pp. 142-149).

Pathak, P., Gordon, M. D., & Fan, W. (2000). Effective information retrieval using genetic algorithms
based matching function adaptation. In Proceedings of the The 33rd Hawaii International
Conference on System Science.

Rapela, J. (2001). Automatically combining ranking heuristics for HTML documents. In Proceedings
of the 3rd International Workshop on Web Information and Data Management, (pp. 61-67).

Robertson, S. E., & Sparck-Jones, K. (1976). Relevance weighting of search terms. Journal of the
American Society for Information Science, 27(3), 129-146.

Robertson, S. E., Walker, S., Beaulieu, M. M., Gatford, M., & Payne, A. (1995). Okapi at TREC-4. In
Proceedings of the 4th Text REtrieval Conference (TREC-4), (pp. 73-96).

Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing.
Communications of the ACM, 18(11), 613-620.

Savoy, J., & Vrajitoru, D. (1996). Evaluation of learning schemes used in information retrieval (CR-I-
95-02): Université de Neuchâtel, Faculté de droit et des Sciences Économiques.

Schlieder, T., & Meuss, H. (2000). Result ranking for structured queries against XML documents. In
Proceedings of the DELOS Workshop on Information Seeking, Searching and Querying in
Digital Libraries.

Schlieder, T., & Meuss, H. (2002). Querying and ranking XML documents. Journal of the American
Society for Information Science and Technology, 53(6), 489-503.

Shin, D., Jang, H., & Jin, H. (1998). Bus: An effective indexing and retrieval scheme in structured
documents. In Proceedings of the 3rd ACM International Conference on Digital libraries,
(pp. 235-243).

Thom, J. A., Zobel, J., & Grima, B. (1995). Design of indexes for structured documents (CITRI/TR-
95- 8). Melbourne, Australia: Department of Computer Science, RMIT.

Trotman, A. (2003). Searching structured documents. Information Processing & Management, (to
appear) doi:10.1016/S0306-4573(03)00041-4, available on ScienceDirect since 6 June 2003.

Vrajitoru, D. (1998). Crossover improvement for the genetic algorithm in information retrieval.
Information Processing & Management, 34(4), 405-415.

Vrajitoru, D. (2000). Large population or many generations for genetic algorithms? Implications in
information retrieval. In F. Crestani & G. Pasi (Eds.), Soft computing in information retrieval.
Techniques and applications (pp. 199-222): Physica-Verlag.

Weiss, S. M., & Kulikowski, C. A. (1991). Computer systems that learn: Classification and prediction
methods from statistics, neural nets, machine learning, and expert systems.: Morgan
Kaufman.

Wilkinson, R. (1994). Effective retrieval of structured documents. In Proceedings of the 17th ACM
SIGIR Conference on Information Retrieval, (pp. 311-317).

Wilkinson, R., & Zobel, J. (1994). Comparison of fragmentation schemes for document retrieval. In
Proceedings of the 3th Text REtrieval Conference (TREC-3), (pp. 81-84).

Wolff, J. E., Flörke, H., & Cremers, A. B. (1999). Xpres: A ranking approach to retrieval on
structured documents (IAI-TR-99-12). Bonn: University of Bonn.

Wolff, J. E., Flörke, H., & Cremers, A. B. (2000). Searching and browsing collections of structural
information. In Proceedings of the IEEE Advances in Digital Libraries, (pp. 141-150).

Yang, J., Korfhage, R., & Rasmussen, E. (1992). Query improvement in information retrieval using
genetic algorithms - a report on the experiments of the TREC project. In Proceedings of the
1st Text REtrieval Conference (TREC-1), (pp. 31-58).

