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Abstract 
Existing ranking schemes assume all term occurrences in a given document are of equal influence.  
Intuitively, terms occurring in some places should have a greater influence than those elsewhere.  An 
occurrence in an abstract may be more important than an occurrence in the body text.  Although this 
observation is not new, there remains the issue of finding good weights for each structure. 
 
Vector space, probability, and Okapi BM25 ranking are extended to include structure weighting.  
Weights are then selected for the TREC WSJ collection using a genetic algorithm.  The learned 
weights are then tested on an evaluation set of queries.  Structure weighted vector space inner product 
and structure weighted probabilistic retrieval show an about 5% improvement in mean average 
precision over their unstructured counterparts.  Structure weighted BM25 shows nearly no 
improvement.  Analysis suggests BM25 cannot be improved using structure weighting. 
 
Keywords: Structured Information Retrieval, Genetic Algorithms, Vector Space Model, Probability Model. 
 

1. Introduction 
Not all parts of a document are created equal.  For academic papers, authors are asked to write a few 
words that concisely describe their work.  This is the title.  They are asked to write a few paragraphs 
that outline their work, the abstract.  They are asked to write a few pages that precisely describe the 
work, the body text.  Finally they are asked to summarize the work with a conclusion.  These are very 
different and unequal parts of the same document. 
 
Vector space (Salton, Wong, & Yang, 1975) and probabilistic (Robertson & Sparck-Jones, 1976) IR 
systems rank documents without regard to term location.  A term found in an abstract is of equal 
importance to the same term in the body text of the same document.  The document structure is ignored 
even though authors write documents with structure.  A document may even be originated with explicit 
structure in a mark-up language like XML (Bray, Paoli, & Sperberg-McQueen, 1988), structure 
discarded when indexing.  There is a mismatch: documents have structure, yet the IR system ignores it. 
 
Document structure should be utilized in ranking.  For example, knowledge in an abstract is denser 
than elsewhere, fulfilling the principle of summarization.  This principle can be applied to ranking.  
Terms should receive a weighting based on where in the document they occur.  In other words, if a 
term occurs in an abstract it should be weighted as such. 
 
Fuller et al. (1993) first suggested structure weighting in 1993.  Since then the probability model has 
been extended to include structure weighting (Wolff, Flörke, & Cremers, 2000), IR query languages 
have been extended to allow the user the option of choosing the weights (Fuhr & Großjohann, 2001), 
and index structures have been proposed (Schlieder & Meuss, 2002). 
 
One remaining problem is the choice of the weights.  If users don’t specify the weights themselves, the 
IR system should default to a good set of cross corpus weights.  But how can those weights be 
selected?  In this investigation genetic algorithms (GA) are used.  Each document structure is 
represented in a chromosome in a GA learning simulation.  Selective pressure is then applied to 
maximise mean average precision. 
 
Experiments with the TREC (Harman, 1993) Wall Street Journal (WSJ) collection using structured 
variants of inner product, probability, and Okapi BM25 (Robertson, Walker, Beaulieu, Gatford, & 
Payne, 1995) are conducted.  Results demonstrate an about 5% improvement in mean average 
precision for vector space and probability, while no improvement is shown for BM25. 
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2. Approach 
Just as someone encountering this document will glance at the title and abstract to determine its 
relevance, a computer can score a document by examining its structures. 
 
First, the document structures are identified.  Conveniently, for XML these structures are already 
explicit.  This mark-up is not the DTD, but the document tree.  The tree is used as it is also 
unreasonable to assume all occurrences of a tag are equal.   If a <title> tag occurs in <bibliography> it 
is perhaps of less interest than when occurring as the document’s title. 
 
Second, structured ranking is defined.  The score of a document with respect to a term usually uses 
term frequency, tf, as an integral component.  It assumes all occurrences of a term within a single 
document are of equal importance.  Term frequency is replaced by a structure weighted term 
frequency. 
 
Third, weights are selected.  Many approaches have been suggested including using humans with 
domain knowledge (Rapela, 2001), trial and error (Wilkinson, 1994), and simulated annealing (Boyan, 
Freitag, & Joachims, 1996).  In this investigation genetic algorithms are used.  The ubiquity of the 
TREC Wall Street Journal collection makes this dataset ideal for testing the genetic algorithm 
approach.  The INEX collection (Fuhr, Gövert, Kazai, & Lalmas, 2002) was not used as it is not 
distributed with judgements. 
 
Finally, the learned weights are evaluated for effectiveness against a set of queries not used in training.  
A t-test is applied to the results to provide evidence of significance. 
 
2.1. Related Work 
2.1.1. Genetic Algorithms 
Machine learning and genetic algorithms are not new to information retrieval (Chen, 1995; Savoy & 
Vrajitoru, 1996).  Gordon (1988) suggests representing a posting as a chromosome and using genetic 
algorithms to select good indexes.  Yang et al. (1992) suggest using GAs with user feedback to choose 
weights for search terms in a query.  Morgan and Kilgour (1996) suggest an intermediary between the 
user and IR system employing GAs to choose search terms from a thesaurus and dictionary.  Vrajitoru 
(1998), Boughanem et al. (2002), and Horng and Yeh (2000) examine GAs for information retrieval 
and suggest new crossover and mutation operators.  Vrajitoru (2000) examines the effect of population 
size on learning ability, concluding that a large population size is important. 
 
Despite the successes, little use has been made of genetic algorithms for ad hoc queries. 
 
Harman (1993) observes different IR systems returning substantially different results, yet maintaining 
approximately equal performance.  Building on this, Bartell et al. (1994) suggest combining the output 
of different ranking functions to improve performance.  Pathak et al. (2000) use a genetic algorithm to 
choose weights for such a combination. 
 
2.1.2. Identification of the Problem 
Research into structured document indexing (Meuss & Strohmaier, 1999; Shin, Jang, & Jin, 1998; 
Thom, Zobel, & Grima, 1995), querying (Chinenyanga & Kushmerick, 2001; Fuhr & Großjohann, 
2001) and ranking (Kotsakis, 2002; Schlieder & Meuss, 2000, 2002) has suggested using document 
structures for document-centric ranking, but not how to choose good weights. 
 
Schlieder and Meuss (2002) suggest structure weights should be specified in the query.  This approach 
is embraced in the query language XIRQL (Fuhr & Großjohann, 2000, 2001), and the graphical query 
language of Baeza-Yates et al. (1998).  Although users should be given the option of choosing 
weights, choosing the weights has proven difficult.  Rapela’s (2001) investigation shows a decrease in 
precision at almost all points of recall when a human subject is asked to choose structure weights.  This 
task may prove less difficult if a good set of weights can be presented for adjustment. 
 
Boyan et al. (1996) examine tag weighting for HTML.  A hand selected set of tags and tag weights are 
chosen alongside other configurable parameters.  Users present queries, receive results, and view 
documents.  A log of documents viewed against each query is generated.  Weights are then 
successfully learned using simulated annealing.  However, Boyan et al. outline presentation bias as a 
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problem to be overcome; users select documents with high ranks regardless of how badly they fit their 
information need.  A good set of starting weights is needed. 
 
2.1.3. Choosing Weights 
Wilkinson (1994) uses trial and error to choose structure weights.  All structures except one are given a 
weight of 1 while the one’s weight is adjusted to 2.  The performance is measured as the one varies 
from structure to structure.  Finally, one of three possible weights (0.5, 1, or 2) is assigned to each 
structure.  Wilkinson demonstrates a performance improvement. 
 
Rapela (2001) successfully used a gradient-based optimisation function to learn weights for HTML tag 
and non-tag heuristics. 
 
Kim et al. (Kim & Zhang, 2000, 2001; Kim, Kim, Eom, & Zhang, 2000) suggest HTML documents 
can be represented by just the contents of a few tags.  New documents are derived from old by 
stopping all term occurrences outside those tags.  Ranking is not based on the existence of a term in a 
document, but the existence of a term in a tag in document.  The rank for a given document is the 
product of two scores, one for the term and one for the tag.  Using Kim’s technique, terms outside the 
chosen tags cannot be found.  For those in the chosen tags, a document containing a search term twice 
in <TITLE> and once in <B> has an identical score to twice in <B> and once in <TITLE>. 
 
2.1.4. XML and SGML 
Constructions for HTML cannot necessarily be applied to XML and SGML.  HTML has no 
hierarchical structuring whereas XML does.  Should an XML <title> tag occur in <bibliography> it is 
unreasonable to assume weighting equal to the same tag used as the title of the document, something 
perhaps reasonable for HTML <title> tags.  When structure-weighing XML, the hierarchical structure 
is more important than the tag names.  Further, in XML the tag names may not be known in advance. 
 
2.1.5. Document Fragmentation 
Dividing a document into parts using tag boundaries can be likened to document fragmentation and 
passage retrieval.  These have been examined in the literature extensively (Callan, 1994; Kaszkiel & 
Zobel, 1997, 2001; Wilkinson & Zobel, 1994).  Documents are divided into fragments and each 
indexed independently.  The weight of a document with respect to a query is taken as the weight of the 
highest scoring document fragment with respect to that query.  Fragmentation does not preclude 
document structure weighting; the two could be used in conjunction. Structured weighted 
fragmentation is not examined herein. 
 
3. Methods 
3.1. Structured Information Retrieval 
An inverted file index of a corpus consists of two parts, the dictionary and the postings.  The dictionary 
stores a list of all the unique terms in the corpus and a pointer to a posting.  A posting is a vector {<d1, 
f1>, <d2, f2>, … <dn, fn>} where d is a document number and f is the number of occurrences of the 
term in d.  Postings are sorted by increasing d as a consequence of sequential indexing. 
 
The hierarchical structure of an XML document represents a tree.  Thom et al. (1995) suggest giving 
each unique tag an ordinal identifier and storing document paths directly in the indexes as paths.  
Meuss and Strohmaier (1999) also store paths directly in the indexes, however encoded as a bitstring.  
Kotsakis (2002) and Trotman (2003) prefer to build a corpus tree, but differ in how they store the 
postings. 
 
The corpus tree is constructed during single pass indexing.  Each time a previously unseen path 
through a document is encountered, it is added to the tree and given a unique ordinal identifier.  
Eventually, every path through every document is represented.  The resulting tree is unlikely to be the 
exact structure of any given document, but the complete structure of every document is represented. 
 
Figure 1 presents three XML documents, and the corpus tree.   The tree contains all paths through all 
documents, but does not match any single document.  Each node in the corpus tree has a unique 
identifier allotted in order of node creation.  Nodes are not analogous to DTD elements, but to an 
instance of an element from a DTD.  A term occurring in <name> in <place>, will be treated 
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differently from <name> in <person>.  Should a term occur in <name> in <place> it will not be 
considered to lie in <name>, or <place>, but rather in <name> in <place>.  
 
 

<doc>
<docid>1</docid>
<place>
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</place>
<cntry>New Zealand</cntry>

</doc>
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<docid>2</docid>
<place>

<name>Dunedin</name>
<rank>expert</rank>
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<name>Smith</name>
<rank>Intermediate</rank>
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Figure 1: Three XML documents and the corpus tree.  The name of each node is an XML tag 
name.  The path to each node is a path through a document.  Numbers at each node are the 

position identifiers allotted at creation time. 
 
The postings are now modified to include pointers into the corpus tree.  Each pair <d, f> becomes one 
or more triples <d, p, f> where d is the document number, p is the position in the corpus tree, and f is 
the number of occurrences of the given term in the given position of the given document. 
 
These structured postings can be converted back into an unstructured posting by collecting the 
occurrence counts for each document regardless of position.   Term weighting and ranking could be 
applied as if no change to the index had occurred, however this investigation takes advantage of 
structured indexes by altering the ranking equations to use the position member of the triple. 
 
3.2. Structured Ranking 
Fuller et al. (1993) suggest applying simple scalar weighting to each DTD element, but go no further.  
Wolff et al. (Wolff, Flörke, & Cremers, 1999; Wolff et al., 2000) build on this suggestion and extend 
the probability model to include structure weighting.  In this investigation weights are applied to each 
node in the corpus tree, not to each DTD element, or to the query vector. 
 
3.2.1. Vector Space Model 
Vector space similarity is often calculated using the inner product 
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where Rdq is the relevance of document d with respect to query q, wiq is the weight of term i in q,  
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and  wid is the weight of term i in document d. 
 

iidid IDFtfw ×=  (3) 
 
where tfid is the term frequency of term i in document d, and likewise for tfiq in the query.  IDFi is the 
inverse document frequency of term i 
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where N is the number of documents in the corpus and ni is the number of documents containing term i 
in the corpus. 
 
To extend the vector space model to support structured ranking, occurrences within each document 
structure must be included so 
 

∑
=

=
n

p
ipdid tftf

1
 (5) 

 
where tfipd is the number of occurrences of term t in position p of document d.  A simple scale factor Cp 
for each document structure can now be applied 
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tf’id is then substituted for tfid in equation (3) giving 
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3.2.2. Probability Model 
Rdq, the weight of a document with respect to a query is given by substitution of tf’id for tfid 
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where C = 1.0, L = 0.3 and md is the term frequency of the most frequent term in document d. 
 
3.2.3. Okapi BM25 
For Okapi BM25 ranking, tf’ can be substituted directly into the ranking equation giving 
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k1 = 1.2, k3 = 7, b = 0.75 and Tav is the average document length measured in terms (the same unit of 
measure as Td).  tfq is the number of times term i occurs in query q. 
 
3.2.4. Discussion 
The weighted tf’ can be substituted into any ranking function that ordinarily uses tf.  These new 
equations allow weighting for term occurrences at different nodes in the corpus tree.  If any Cp is 0, 
node p will have no ranking influence.  If Cp are all 1, unstructured ranking results.  The relative 
importance of document structures is reflected in the Cp weights. 
 
To mark terms in titles, abstracts, or figure captions as “of more interest”, suitable Cp values are 
selected for these nodes.  XIRQL, and other query languages, give the user the power to choose 
weights; however if weights are not chosen defaults must be assigned.  A genetic algorithm can be 
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used to determine good default weights.  Equally, by algorithmically determining good weights it is 
possible to identify the most interesting document structures. 
 
3.3. Genetic Algorithms 
It is impractical to iteratively test all possible Cp weight combinations, however, the search for good 
weights can be directed using a genetic algorithm. 
 
The TREC collection is an ideal training set.  The collection is distributed with a series of queries 
called topics and a series of judgments.  A judgment is a binary decision as to whether or not a topic is 
relevant to a given document. 
 
Genetic algorithms (Holland, 1975) direct a search towards a problem solution using the Darwinian 
notion of survival of the fittest.  The robustness of genetic algorithms has been demonstrated in many 
domains (Goldberg, 1989) including information retrieval (Gordon, 1988; Vrajitoru, 1998).  Section 
2.1 discusses the already diverse use of genetic algorithms in information retrieval. 
 

population

chromosome

gene locus

{ }56

population

chromosome

gene locus

{ }56

Figure 2:  Chromosomes, loci, genes and populations are the constituent parts of the genetic 
algorithm.  They are, in essence, an array, a member, a value and a list. 

 
Using genetic algorithm terminology, a population is a collection of individuals.  An individual is a 
chromosomal encoding of a potential problem solution.  A chromosome is an array of fixed length; 
each position in a chromosome is a locus.  Each locus takes a value, that value being a gene.  Figure 2 
graphically depicts this representation. 
 
An initial population is created with completely randomised genes.  The fitness of each individual is 
calculated algorithmically and selective pressure applied.  The weak perish and the strong survive.  A 
new population, the next generation, is created through reproduction, mutation, and crossover.  The 
process is then applied iteratively. 
 
To use genetic algorithms to choose structure weights it must be possible to represent potential 
solutions as individuals, to calculate fitness, and to reproduce, mutate, and crossover. 
 
Document structure weights are numeric.  Each node in the corpus tree has a unique identifier.  So a 
chromosomal encoding is chosen with one locus for each node in the corpus tree, the gene at locus p 
being the weight Cp. 
 
Mean average precision is chosen as the fitness f(n) of individual n.  Average precision for a single 
query is the sum of precisions for each found and relevant document, divided by the number of 
relevant documents.  Mean average precision is the mean of such scores over a set of queries. 
 
Although individual fitness is a quantitative measure of an individual’s adaptation to the environment, 
it says nothing about the fitness of an individual with respect to the population, that is, the individual’s 
fitness proportion fp(n). 
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where G is the number of individuals in the generation, F is the minimum observed f() in the 
generation, and ε is included to prevent division by zero.  This linear dynamic scaled fitness proportion 
(Grefenstette, 1986) is preferred over the unscaled counterpart as it is general purpose (Khuri, Bäck, & 
Heitkötter, 1994). 
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The sum of fitness proportions for a single generation is 1.  A generation can therefore be represented 
as a number line in the range [0…1].  Each individual takes a part of the line equal to its fitness 
proportion.  In the process of fitness proportionate selection, a random number between 0 and 1 is 
chosen and the individual at that point on the line is selected. 
 
Individuals reproduce with probability equal to their fitness proportion.  An individual is chosen from 
the current generation using fitness proportionate selection, then carried over into the next generation. 
 
For mutation, an individual is selected using fitness proportionate selection.  A locus is chosen at 
random and the gene there is replaced with a random gene.  The mutated individual is carried over into 
the next generation. 
 

 
a = {a1   a2   a3   a4   a5   a6} 

× 
b = {b1   b2   b3   b4   b5   b6} 

 
= 
 

c1 = {a1   a2   a3   b4   b5   b6} 
c2 = {b1   b2   b3   a4   a5   a6} 

 
Figure 3: Crossover between chromosome a and b at locus (g=3)  

results in two children c1 and c2. 
 
Using fitness proportionate selection, two individuals (a and b) are chosen for single point crossover.  
A locus g is chosen at random and two new individuals are created.  One with the genes from a up to g 
and b thereafter, the other from b to g and a thereafter.  Figure 3 illustrates this process.  Both new 
individuals are carried over into the new generation.   
 
Reproduction, mutation, and crossover occur with configurable probabilities (which sum to one).  
Once a new generation has been created, the genetic process is repeated iteratively until a problem 
solution is found. 
 
4. Experimental Methods 
Experiments to choose good document structure weights were conducted using a genetic algorithm.  
Mean average precision was used as fitness.  The fitness of the found weights was then evaluated 
against ranking without structures. 
 
Average precision was computed as the sum of precisions for each found and relevant document, 
divided by the number of relevant documents.  Mean average precision as the mean of such scores over 
a set of queries. 
 
4.1. Test Collection 
The TREC Wall Street Journal files (1987-1992) on the TREC collection disks 1 and 2 were indexed 
using the structured information retrieval system described above.  The corpus tree was generated 
during indexing. 
 
TREC topics 151-200 were used for training.  Topics 101-150 were used for evaluation.  Queries were 
built by extracting the description field then stopping commonly used words.  Topics 121, 175, 178, 
and 181 were discarded, each having fewer than 5 judgments.  Terms were not stemmed. 
 
4.2. Genetic Parameters 
Each chromosome had 20 loci, 1 locus for each node in the corpus tree.  Genes took a value in the 
range [0..1].  An initial population of 50 individuals was chosen at random.  Mutation and crossover 
rates were set at 0.2.  Reproduction rate was 0.6.  Alternative population sizes, mutation rates, and 
crossover rates were not investigated, but could affect the evolution rate.   
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Mean average precision was used for fitness.  Learning continued for 25 generations.  The initial 
population was seeded with an individual with all weights equal to 1; the equivalent of unweighted 
ranking. 
 
Purely by chance, the fittest individual in a generation might not be selected to carry over into the next 
generation.  Should this happen the fittest-so-far would perish.  To prevent this, the fittest individual in 
each generation automatically reproduces; learning was elitist (De Jong, 1975). 
 
4.3. Experimental Process 
Experiments were run to find weights for weighted vector space (W-VSM), weighted probability (W-
PM), and weighted BM25 (W-BM25). 
 
An initial random generation was created.  Then for each generation, each individual was presented to 
the retrieval system one at a time.  Values for Cp were taken from the chromosome.  Mean average 
precision over the training set was calculated and stored with each individual. 
 
At the end of each generation, with the fittest individual in that generation: (i) mean average precision 
was recorded;  (ii) average precision was calculated and recorded for each query in the evaluation set;  
(iii) mean average precision for the evaluation set was calculated and recorded.  Subsequently, a new 
generation was created from the old using just results from the training set.  Each experiment was 
conducted 180 times to eliminate any chance of error. 
 
Average precision scores for each query using unweighted vector space (VSM), probability (PM) and 
BM25 (BM25) were calculated, recorded and compared to their structure weighted counterparts.  A 
one-tailed t-test was applied to provide evidence of a significant improvement. 
 
Finally, the training and evaluation set were swapped and the experiment rerun for validation. 
 
5. Results 
5.1. Learning Results 
Figure 4 shows how the mean average precision changed over time.  Thick lines represent the training 
set whereas thin lines represent the evaluation set.  The MAP scores plotted are the mean over 180 
runs.  Changes in the training set are reflected as changes in the evaluation set.  Dips in the evaluation 
MAP during learning are a consequence of over-fitting – seen in BM25 learning. 
 
The training samples used in these experiments are characterised by having “correct” target documents, 
but not “correct” average precisions.  Fitness can be computed, but error cannot (without knowing the 
target, deviation from the target cannot be computed).  Traditional cross-validation (Moody, 1994; 
Weiss & Kulikowski, 1991) techniques therefore cannot be used.  A validation estimate comes through 
an estimation of best performance.  To make this estimate, the GA is assumed to find a reasonable 
approximation to the optimal solution, the training and evaluation sets are swapped, and the experiment 
re-run. 
 
Table 1 presents three sets of results – those from unweighted retrieval, weighted retrieval, and from 
the validation experiment.  For weighted and validation, the results presented are those from the best 
learning run – the run with the highest MAP in the queries used in training. 
 
Examining probabilistic retrieval: a set of weights is learned using the training set.  The MAP of the 
evaluation set using these weights is measured as 0.1787.  The validation experiment is run.  The 
optimal MAP for the evaluation set is estimated as 0.1823.  Finally the error is computed as the 
distance from the measured to the optimal, 0.0036. 
 
Figure 5 presents precision / recall graphs showing using mean average precision at 11 points of recall 
in the evaluation set.  Improvements can be seen for vector space and probability models, but not for 
BM25. 
 
5.2. Information Retrieval Results 
In an online system, structure weights would be selected through training before the system comes 
online.  Evaluation would occur continuously as users present queries to the system.  The training and 
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evaluation sets used in the experiments herein mirror this.  A set of weights was learned using the 
training set and evaluated using the evaluation set. 
 
A comparison of how such a system might perform is presented in figure 6 and figure 7.  In figure 6 
the average precision (computed at each document) for each evaluation query is compared.  In figure 7 
the change in average precision is presented.  For users queries a significant improvement is seen. 
 
Weighted vector space model shows an improvement in average precision for 61% of the queries in the 
evaluation set.  Overall a 4.72% improvement is observed in mean average precision.    A one tailed t-
test gave a P value of 0.0014; the weighted vector space model improvement is significant at the 1% 
level.  The best improvement seen in the evaluation set was 4.8% (59.2% of queries), however this was 
not in the best run. 
 
Weighted probability model shows an improvement in average precision for 75.5% of the queries in 
the evaluation set.  Overall a 6.67% improvement is observed in mean average precision.  A one tailed 
t-test gave a P value of 0.0033; the weighted probability model improvement is significant at the 1% 
level.  The best improvement seen in the evaluation set was 8.4% (77.6% of queries), however this was 
not in the best run. 
 
Weighted BM25 shows an improvement in average precision for 37.8% of the queries in the evaluation 
set.  Overall a 0.33% degradation is observed in mean average precision.  A one tailed t-test gave a P 
value of 0.0522; the weighted BM25 improvement is not significant at the 5% level.  The best 
improvement seen in the evaluation set was 0.7% (65.3% of queries), however this was not in the best 
run. 
 
On unseen queries, vector space and probability models show significant improvement when weighting 
is used.  The weights used for these comparisons is shown in table 2. 
 

Vector Space Probabilistic BM25 Model Training Evaluation Training Evaluation Training Evaluation 
Unweighted 0.1508 0.1657 0.1890 0.1675 0.2553 0.2289 
       
Weighted 0.1565 0.1735 0.1986 0.1787 0.2561 0.2281 
Improvement 3.80% 4.72% 5.09% 6.67% 0.34% -0.33% 
       
Validation  0.1554 0.1746 0.1974 0.1823 0.2539 0.2323 
Improvement 3.07% 5.36% 4.42% 8.82% -0.51% 1.52% 
       
Mean 0.1559 0.1740 0.1980 0.1805 0.2550 0.2302 
Mean 
Improvement 3.44% 5.04% 4.76% 7.74% -0.09% 0.60% 
       
Error 0.70% 0.62% 0.64% 1.98% 0.85% 1.82% 

Table 1: Comparison before and after learning of each ranking algorithms using structure 
weighted and unweighted retrieval.  Training on the evaluation set gives an approximation to the 

optimal performance of the evaluation set. 
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Figure 4: Mean average precision for the 
training set and the evaluation set during 

training (shown as the mean over 180 runs). 
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Figure 5: Precision / Recall graphs 

comparing structure weighted retrieval 
with unweighted retrieval for the evaluation 

set. 
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Vector Space Model MAP by Topic
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BM25 MAP by Topic
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Figure 6: Average precision of each topic 
using structure weighed and unweighted 

retrieval 

Weighted Vector Space Model MAP Improvement by Topic
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Weighted BM25 MAP Improvement by Topic
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Figure 7:  Improvement in average 

precision for structure weighted retrieval 
over unweighted retrieval.
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Field Structure 
W-

VSM 
Weights

W-PM 
Weight

s 

W-M25
Weight

s 

Trainin
g 

Set 

Evaluatio
n 

Set 

Document DOC - - - -  
Document Number DOCNO - - - - - 
Headline HL 0.4873 0.5827 1.0000 47 49 
Story date DD - - - - - 
Story source SO - - - - - 
Category terms IN 0.4503 0.0536 0.8492 41 40 

Location DATELIN
E 0.1519 0.1770 0.0685 46 48 

Text TEXT 0.1659 0.9953 0.9597 47 49 
Companies CO 0.7749 0.0558 0.2692 21 16 
Author AUTHOR 0.5545 0.2453 0.2200 3 5 
Government 
agencies G - - - 1 - 

Identification code AN - - - - - 
Government 
agencies GV 0.9733 0.0494 1.0000 15 25 

Document ID DOCID - - - - - 
Date DATE - - - - - 
Leading paragraph LP 0.3001 0.6589 1.0000 47 49 
Indexing codes MS 0.1945 0.5507 0.2936 1 8 
Region code RE 0.1206 0.7067 1.0000 35 40 
Indexing codes NS 0.3274 0.6123 1.0000 31 29 
Indexing codes ST 0.7019 0.7900 1.0000 7 4 

Table 2: Weights learned at each node of the corpus tree.  Weights are only shown for structures 
influential in the evaluation set.  Other structures are not present in any query in the evaluation 

set.  The number of queries utilising the given structure is shown in the last two columns. 
 
6. Discussion 
A method of indexing and searching structured data allowing structure weighting is presented and a 
genetic algorithm is used to learn weights.  Weighted ranking using vector space and probabilistic 
retrieval showed significant improvements over unweighted retrieval. 
 
6.1. Ranking 
6.1.1. Vector Space Model 
The vector space model used for these experiments computes the document weight as the inner product 
of two vectors, the query vector and the document vector.  Structure weighting does not influence the 
query vector; it only affects the document vector.  The influence due to the document vector, wid, is 
given by  
 

iidid IDFtfw ×= '  (13) 
 
where tf’

id directly scales IDFi to give the term influence.  The structure scalar values Cp directly affect 
the influence of each term and as such reflect the relative importance of each document structure.  
Structure weights in the range [0..1] were chosen for consistency with the other methods. 
 
6.1.2. Probability Model 
The ranking equation used with the probability model scales term frequencies by md, the term 
frequency of the most frequently occurring term in the document.  This term is often a stop-word such 
as “and” or “the”.  Even if such terms are removed from the indexes, the remaining most frequent 
terms are likely to be noise by Zipf’s law.  Terms relevant to the document / query pair are the so-
called middle terms. 
 
Rdq, the weight of a document, d, with respect to query q is given by 
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∑
∈

×=
qi

iidq edR  (14) 

 
where  
 

ii IDFCd +=  (15) 
 
and 

( )
d

id
i m

tfLLe
'

1 ×−+=  (16) 

 
When ranking without structure weighting, tf’

id is at most md, so ei is always in the range [0..1].  Term 
influence for term i in probability ranking adds to the document / query weight some linear proportion 
of di, weighted by L.  As tf’

id becomes very large, the influence of L becomes very small and ei tends to 
tf’

id.   To this end, to preserve the influence of L, it is necessary to keep structure weights strictly in the 
range [0..1]. 
 
6.1.3. BM25 Ranking 
BM25 showed no significant improvement when using structure weighting.  Examining the BM25 
ranking equation suggests why.  Rdq, the weight of a document, d, with respect to query, q, is given by 
 

∑
=

××=
t

i
iiidq cbaR

1
 (17) 

 
where 
 

5.0
5.0log
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the log odds of the term occurrence in the collection, 
 

'

'
1 )1(
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id
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=  (19) 

 
the influence of the term with respect to the document, and 
 

iq

iq
i tfk

tfk
c

+

×+
=

3

3 )1(
 (20) 

 
the influence of the term with respect to the query. 
 
Weighted ranking does not affect the occurrence of the term in the collection, or in the query.  It only 
affects term occurrences with respect to the document.  Neither ai nor ci will be effected.  Only bi is 
affected by structure weighted ranking. 
 
Expanding bi using the constants given above, 
 

'

'

75.025.02.1

2.2

id
av

d

id
i

tf
T

T
tfb

+






 ×
+×

×
=  (21) 

 
assuming all documents lengths, Td, are constant, and therefore equal to Tav, the average document 
length, 
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which tends from 1 when tf’

id equals 1, to 2.2 as tf’
id tends to infinity as shown in figure 8. 
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Figure 8: Ranking influence of terms using BM25. 

 
The term influence expression, bi, in the BM25 ranking equation is highly discriminatory when term 
occurrences are small, but not so when term occurrences are large.  Structure weights greater than 1 
create virtual term occurrences increasing the number of terms in a given document.  These additional 
occurrences add an ever-decreasing influence.  Eventually, the additional influence becomes smaller 
than the gap between document weights and document ordering is preserved regardless of the term 
count.  Structure weights between 0 and 1 were used to push discrimination into the steeper parts of 
figure 8. 
 
Even by keeping structure weights low, it has not proven possible to improve BM25 with structure 
ranking.  This is likely to be because BM25 is already tuned for this data.  The tuning parameter k1 is 
already very good and has a similar effect to structure weighting. 
 
6.1.4. Comparison 
For structures HL, LP and TEXT, the weights differ between weighted vector space model and 
weighted probability model (Table 2).  Using W-VSM the weights are ordered as expected, HL, LP, 
TEXT.  Using W-PM they are ordered in the reverse order. 
 

Probability Model Ranking Surface

LP

TEXT

HL

Inner Product Ranking Surface

LP

TEXT

HL

 
Figure 9: Scatter plot for the three structures TEXT, LP and HL.  Each point represents a single 

25-generation run.  The learned values for these three structures appear to lie in a plane.  
Different planes are seen for probabilistic and vector space models. 

 
Examining only these three structures, each run can be considered to return a coordinate in three-
dimensional space; each structure representing an axis.  Plotted in figure 9 are such points for each 
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experimental run.  From the figure it is clear the points lie in a plane, but a different plane depending 
on ranking function.  This plane represents a three-dimensional projection of the multi-dimensional 
ranking surface.  The genetic algorithms can be considered as a search for this surface. 
 
To determine if weights are interchangeable between ranking function, the probability weights were 
tried with vector space ranking and vice versa.  This experiment resulted in a decrease in mean average 
precision of 3.9% in vector space ranking and 7.4% in probability ranking.  The structure weights are 
dependant on ranking function. 
 
Each ranking function behaves differently, and subsequently different structure weights are learned.  
This dependence of structure weights on ranking function may contribute to why human subjects are 
unable to choose good values.  Although the user should be given the option of choosing weights, 
default weights tuned to the particular ranking function should be provided.  Default weights should be 
derived from the collection and ranking function, not chosen ad hoc. 
 
In some topics a performance decrease was observed.  In these cases, search terms influential in the 
meaning of the query only occurred in low-weighted structures.  When this happens, less important 
query terms become more influential in ranking.  Should the most important query terms be found only 
in structures with low weights, the meaning of the query can be lost. 
 
6.2. Efficiency 
The experiments necessary to learn good structure weights need only be run once for each document 
collection.  The weights will not change if the experiment is run a second time.  The cost in CPU 
cycles, and real time, is therefore not an important issue.  However, the cost remains low. 
 
The training set contained 47 queries.  The initial population contained 50 individuals.  In the first 
generation 2,350 searches were necessary.  After the first generation, searches were necessary only for 
new individuals.  Mean average precision is already known for individuals that reproduce (60%) so a 
search is unnecessary.  A search is only necessary for those individuals that come about through 
crossover or mutation.  In all the number of queries required for 25 generations is about 24,910.  On a 
1.6GHz Pentium 4, these 25 generations can be completed in less than an hour.  Over a weekend, 50 
such runs can easily be completed on a single CPU. 
 
7. Conclusions 
Some parts of a document are more interesting than others.  When flipping through a journal a reader 
will stop on seeing something interesting.  These interesting structures should be weighted as such 
during ranking. 
 
Experiments were conducted with the TREC WSJ collection.   Indexing was with the presented 
structured information retrieval system.  A single tree representing the tagging structure of the 
collection was built.  Structure weights, assigned to each node in the tree, were found using a genetic 
algorithm.  Finally, the results were evaluated demonstrating significant improvements when using 
vector space model or probability model.  No significant improvement was observed for BM25. 
 
Improvements gained through learning are mirrored in evaluation.  Not only was there a gain in mean 
average precision, but also in most queries.  The one-off task of determining document weights using a 
genetic algorithm has resulted in significant improvements when using vector space and probability 
models. 
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