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Abstract

The paper considers the design of diffractive phase elements (DPEs)
for solving the general beam shaping problem where the signal wave
is specified by an intensity distribution on a continuous support in
a finite signal window. In this case serious design problems due to
speckles may arise.

After introducing a mathematical definition and description of
speckles, the influence of the phase of the signal wave on the design
process is examined. It turns out that depending on the application a
pseudo-random or a spherical phase should be used as an initial phase
of the signal wave for an iterative design procedure.

Due to its smoothness the spherical phase prevents the occurrence
of speckles during the iteration process whereas the pseudo-random
phase is accompanied by speckle effects. For applications where the
imaging properties of the spherical phase are undesirable a soft coding
method is presented which significantly reduces the number of speckles
of the pseudo-random phase. For cases where speckles still remain we
finally present an approach for removing these in pairs.



1 Introduction

Beam shaping with diffractive elements is of great importance in various
laser applications such as material processing, proximity printing or pattern
projection. In literature beam shaping usually means the transformation of
a laser beam, e.g. a Gaussian beam, into a beam of different shape. From
a general point of view beam shaping is the transformation of a specified
illumination wave into a specified diffracted wave referred to as the signal
wave in the following—by an optical component. When applying scalar
diffraction theory, both the illumination wave and the signal wave can be
described by complex-valued functions defined on a continuous support.

Methods of diffractive optics can be successfully applied in the design of
diffractive elements (DEs) solving beam shaping problems. The computer-
aided design of DEs offers a maximum in flexibility to find a transmission
function fulfilling the specifications posed by the application. In some cases
analytical solutions based on geometrical optics can be derived by applying
the method of stationary phase [1] to find the transmission function of a DE
[2, 3] performing the desired wave transformation. However, we will consider
general beam shaping problems for which no analytical solutions exist. In
this case, well-known design algorithms such as iterative fourier transform
algorithms (IFTAs) [4, 5, 6], direct binary search (DBS) [7] and simulated
annealing (SA) [5] can be used to compute a transmission function fulfilling
the problem specification.

Some applications require the generation of a signal wave with a com-
plex amplitude specified in a finite domain referred to as the signal window
Wignal- An algorithm for the design of a DE solving the beam shaping prob-
lem is described in [8]. However, there are many applications where only
the intensity of the signal wave is of interest. In this case the signal phase
is a parameter of freedom that can be used in the design of a DE to fulfil
constraints imposed on the signal wave and the transmission function of the
DE. Thus, the quality of the intensity profile of the signal wave as well as the
diffraction efficiency of the DE may be considerably improved. This paper
considers the general beam shaping problem under the assumption that the
signal phase can be used as a free parameter in the DE design. In applica-
tions in which a certain signal phase is required a second DE correcting the
signal phase could be introduced.

In the iterative design a serious problem may arise because the complex
amplitude of the signal wave may only be specified and controlled on a finite
sampling grid. The corresponding physical wave field is determined by the
interpolation of the sampled signal due to the finite size of the DE. Thus,



the phase of the signal wave defined on the sampling grid clearly influences
the intensity of the signal between the sample points. Due to the discrete
definition of the signal strong intensity fluctuations may occur in the physical
wave field. These fluctuations are normally referred to as speckles.

Figure 1 presents different forms of intensity fluctuations and their corre-
sponding phase distributions. It shows the computer-simulated intensity of
the physical signal wave generated by a DE (lower-left). The obvious inten-
sity fluctuations of the generated signal wave can be divided into two types,
fluctuations caused by spiral phase singularities (upper-right and upper-left)
and fluctuations originating from neighbouring sample points with a phase
difference close to m without forming a phase singularity (lower-right). The
latter type consists of intensity fluctuations only close to zero. As stated in
the next section, the first type is actually a zero location of the signal wave.
This zero location lies on an optical vortex of the propagating EM field. We
will refer to an intersection of an optical vortex with the observation plane
as a speckle or phase singularity. It should be mentioned that in certain
cases spiral phase singularities are needed in the design of DEs performing
map transforms on the incoming wave [9, 10].

An approach based on an IFTA to avoid speckle problems in the design of
diffractive amplitude elements (DAE) of the Fourier type has been proposed
in [11, 12]. In this paper we present an extended design concept which can
be used to determine transmission functions of DEs of the Fourier or Fres-
nel type fulfilling almost any restriction to the modulation domain without
speckles in the physical signal wave. Because of their practical importance
we focus our methods on the design of diffractive phase elements (DPE).
These elements are characterized by perfect transparency and thus by opti-
mal diffraction efficiencies. In section 2 the theory of speckles is consolidated
to get a better understanding about the nature of speckles which turns out
to be useful for the development of methods avoiding or removing speckles
during a design process. In section 3 the influence of the signal phase on the
DPE design is examined. A soft coding method avoiding speckles during
the DPE computation is presented in section 4 and finally an algorithm to
remove pairs of speckles is introduced in section 5.

2 Theory of Speckles

A point in the phase distribution of a wave front is called spiral phase sin-
gularity if all phase values between 0 and 27 can be found in an arbitrary
small surrounding around the point. Such a point must be a zero location
of the wave front. In the following a relation between the order of the zero



location and a property called the order of the spiral phase singularity will

be derived.

Let f(z) = fr(z)+ifi(z) with z = (z1, z2) be a complex-valued infinitely
many times continuously differentiable function specifying a scalar wavefront
in a certain plane. The integral
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where I';, is a sufficiently small positively oriented simple closed curve
around zy with f(I'y,(¢)) # 0, defines the order of the spiral singularity
of the phase of f(z) in the point z5. We will show that S(f,z¢) is an integer
and that z( has to be an isolated zero location of f(x) if S(f,z¢) is not equal
to zero. We will call such a zero location a speckle of order k = S(f, zq) € Z.
If S(f1,z0) and S(fo, o) is defined for two functions f; and fo it is obvious
that

S(fifaszo) = S(fi,m0) +S(f2,z0)  and (2)
S(a,zg) = 0 with a€C (3)

hold.

Because f(z) is infinitely many times continuously differentiable in the
point xg, f(x) may be developed in a bivariate power series around z.
Without loss of generality we let zg coincide with the origin (otherwise
consider f(x — x¢)) and get

f(z1,29) = Z Zam;xl’lx’;*l (4)

with complex coefficients a,,;. The behaviour of f(z) in the vicinity of the
origin may now be described by considering only the monomials of the least
order n with non-zero coefficients, i.e. S(f, ) = S(f,zo) with

n

flxr,29) == Zamxl’lngl. (5)

=0

If n > 0, 2y is a zero location of order n and f may be factorized uniquely

as
n—p—q

flz1,m2) = boah ) H (21 + bmwa) (6)

m=1
with complex constants b, # 0 and p,q € Ny. The point z = 0 is an
isolated zero location of f(z) if and only if p,q = 0 and Im(b,,) # 0 for all



m € {1,...,n}. Otherwise f(z) contains zero lines through the point z =0
as described in [13].

It can be shown that

—1 for Im(b,) <0

S(m1+bmm2,0)=sign<1m(bm>>:{ L st

holds whereas, as already mentioned, Im(b,,) = 0 does not occur in the case
of isolated zero locations. With equation (2) we achieve

S(£.0) =) S(m1 + bnws, 0). (8)

m=1

Thus, a zero location xy of order n is a speckle of order k = S(f,z¢) with
|k| < n. Figure 2 shows the amplitude and phase distribution of speckles
with order K =1, k =2, £k = 3 and k = —1, respectively. The three leftmost
speckles are zero locations of order n = k, whereas the speckle to the right
is a 3rd.-order zero with a spiral phase singularity of order k = —1 # n.

One should be aware of the fact that a spiral phase singularity of order &
leads to zero location of order n > |k|. On the other hand, an isolated zero
location of order n does not necessarily lead to a spiral phase singularity.
This is only true whenever n is odd. If n is even, the sum in equation (8)
could add up to zero.

As already stated in [14] speckles of order |k| > 2 are very rare. This
is due to the fact that small perturbations of the wavefront tend to split a
higher order zero location into several zero locations of order 1, thus lim-
iting the absolute value of the order of the corresponding speckles to 1.
Likewise, zero lines tend to be split into isolated zero locations according to
Eisenstein’s criterion [13].

Considering the lines of a constant phase ¢ of arg(f(x)) it becomes clear
that every speckle of order 1 is connected to exactly one speckle of order
—1 and vice versa under the assumption that f(z) does not possess any
zero locations of order n > 1. We refer to two corresponding speckles as a
speckle pair (top-left of figure refrealspecs). These pairs are not unique, i.e.
by choosing another ¢ other speckle pairs may be built. The lines of the
constant phase ¢ never intersect, but may touch one another. This leads to
the fact that there is always an equal number of speckles of order 1 (positive
speckles) and —1 (negative speckles).



3 The influence of the signal phase

As mentioned above algorithms such as IFTAs, DBS or SA for the compu-
tation of DEs generating desired intensity signals only control the intensity
in discrete points of the generated continuous wavefront. The phase of these
sample points has an enormous influence on the intensity distribution be-
tween the points. If the phase difference of two neighbouring sample points
is close to m, the intensity of the continuous distribution between these two
points is likely to possess a minimum value close to zero. The way the sam-
ple points have to be interpolated in order to describe the optical output
depends on the form of the finite sized element and whether the signal lies
in the Fourier or Fresnel region of the DE.

One possibility to control the intensity between the sample points is sim-
ply to supersample the generated intensity signal and optimize the DE in
terms of this supersampled signal. This method works well for all inten-
sity fluctuations except for fluctuations caused by spiral phase singularities.
These zero locations cannot be removed by local changes of the intensity of
the generated wavefront. Standard optimization techniques are all based on
local changes of the sample points, i.e. the sample points are independently
optimized. One approach applying global changes was given in [15].

Because IFTA cannot remove zero locations in the signal wave caused
by spiral phase singularity the initial signal phase distribution has to be
carefully chosen. Two requirements should be fulfilled by the chosen signal
phase. First, the phase distribution should not possess phase singularities
because these would induce zero locations in the physical signal wave ac-
cording to section 2. Secondly, the signal phase should distribute the entire
signal energy as uniformly as possible into the region Wpg in which the
DE is located when applying the inverse wave propagation operator. Such
a signal phase is a well-chosen starting point for the iterative optimization
process because the amplitude of the inverse wave propagation of the com-
plex signal is close to the constant amplitude of a DPE. These requirements
will in the following be examined for four different signal phases; a constant,
random, pseudo-random and spherical phase p(r) = exp(ic|z|?). The in-
tensity distribution in figure 1 is used as an illustrative example of a signal
wave in the general beam shaping problem. Of course any other intensity
signal could be used.

We combine the amplitude of the signal in figure 1 with each of the
above phase distributions leading to four different complex-valued signal
waves. Figure 3 shows the inverse wave propagation of the signal waves.
Obviously, the constant phase does not distribute the energy of the signal



wave uniformly into the DE window. Thus, the amplitude distribution in
the DE Window is very different from the constant amplitude of a DPE.
The other phase distributions show a much better uniformity of the energy
distribution in the DE window and are thus better suited as initial phase
distributions in the design of a DPE. The initial phase may be further im-
proved by a pre-iteration finding an object-dependent initial signal phase
[12].

Because the constant signal phase distribution did not fulfil the second
requirement we continue by using the signal waves with a random, pseudo-
random and spherical phase for a DPE design for the general beam shaping
problem. We will in the following compute DPEs using an IFTA with equal
computation costs for all three signal phase distributions. Figure 4 shows the
flow diagram of a general IFTA as described in [16]. The operators U and X
are applied in every step of the iteration process in order to fulfil constraints
on the DE and the signal, respectively. These are normally projections onto
the desired subset, i.e. the set of “fabricatable” DEs and that of acceptable
signals.

Without a significant loss of generality, we consider a DPE design assum-
ing a plane illumination wave and a Fourier propagation operator. For the
computation of a continuous DPE F'(u) which is defined in a window Wpg
and generates a desired intensity distribution |sq(z)|?
Weignal the operators & and U may be defined as

in a signal window

. also(z)|exp(iarg s(z))  for x € Waignal
(Xs)(z) = { s(x) otherwise )
. exp(iarg F(u)) for u € Wpg
Unara ) (1) 2= { 0 otherwise (10)

with a being a free scale parameter as described in [16, 17].

The amplitude of the signal waves of the computed DPEs are shown
in figure 5. The left image depicts the DPE and its signal wave in the
case of the random initial signal phase. This phase distribution definitely
contains spiral singularities. As can be seen from figure 5, these could not
be removed by an IFTA. The middle image was computed with a special
object-independent phase distribution designed by Brauer et al. [12]. This
is a non-deterministic phase distribution without spiral phase singularities
but at the same time a good diffuser as shown in figure 3. The number
of speckles could be significantly reduced. However, the hard projection
operator U tends to change the signal phase dramatically during the iteration
process. This usually introduces spiral phase singularities which again leads
to speckles. In the right image of figure 5 a spherical phase distribution



was applied. The continuous spherical phase does of course not contain any
spiral phase singularities. This also holds for the sampled version unless the
sampling criterion is violated. The smoothness of the spherical wave seems
to prevent the introduction of spiral phase singularities in the signal wave
during the iteration process.

At first glance a suitably chosen spherical signal phase seems to be ideal
for solving the general beam shaping problem. However, a spherical signal
phase leads to often undesirable imaging properties of the DE. A conse-
quence is the effect of perturbations of the DPE distribution due to damages,
dust or a varying illumination wave. This effect is illustrated in figure 6 for
a pseudo-random and a spherical signal phase. It can easily be seen that
the DPE computed with the initial pseudo-random signal phase spreads the
local error over the entire signal window, whereas the DPE with the initial
spherical signal phase rather images the error into the signal window.

If the modulation constraints of the DPE are harder to fulfil than those
of the above examples, e.g. if a quantized phase element is to be computed,
speckles may occur even when the DPE was computed with an initial spher-
ical signal phase. In this case, or if the imaging property of the spherical
phase is unwanted, the above method can be improved by introducing a soft
coding operator.

4 Soft coding

The hard projection I/ tends to change the phase of the signal wave 5, = X's,
dramatically from one iteration step to the next. Such a hard operator thus
leads to a lack of control of the signal phase initiated by the carefully chosen
initial phase and may cause spiral phase singularities in §;. In the case of
a discrete intensity signal in which the phase is a complete parameter of
freedom such changes are of no concern. However, when computing DPEs
for continuous intensity distributions only a restricted phase freedom may be
used in the optimization process, i.e. the phase distribution of the signal may
develop freely as long as no spiral singularities occur during the iteration
process. One possible way to achieve this is to choose an appropriate initial
signal phase and apply a soft operator

Usott := B Unard + (1 - /6) I (11)

where [ is a parameter of progression going from 0 to 1 during the iter-
ation process and I the identity operator. U.s leads to minimal changes
in the phase of si, thus avoiding spiral phase singularities to arise. It is
perfectly permissible to apply such a soft operator because Fj only has to



fulfil the DPE constraint at the end of the iteration process and not after
every iteration step. However, also soft operators cause changes in the phase
distribution of §;. Thus, it is important that the initial phase distribution
allows minor changes without introducing spiral phase singularities.

Figure 7 (left column) shows the generated signal wave of a DPE com-
puted with an initial pseudo-random phase and the soft operator defined in
equation (11). Other boundary conditions were the same as in the previ-
ous section. Compared to figure 5 the amplitude of the signal wave shows
only a few speckles. However, it may happen that they cannot completely
be removed by the iteration. Thus an additional method for removing the
remaining speckles has to be developed.

5 Removing pairs of speckles

From section 2 we know that normally only speckles of order 4+1 occur
in practice and that these build pairs of speckles. Hence, it is impossible
to remove a single speckle no matter how the amplitude, phase or both
of the phase singularity are smoothed because this violates the equality of
positive and negative speckles. In the case of IFTA the removed speckle will
definitely reappear in the next iteration step. The only way to overcome
this problem is to remove pairs of speckles. Therefore we need a method to
identify speckle pairs which will be derived from the following line integral.

Let B be a simply connected region in R?. We will call
1
S(f,0B) = o— [ (Varg f)(z) - dz (12)
2w JoB

where 0B denotes a positively oriented simple closed curve around B the
speckle number of f in region B. If the interior of B contains n isolated

%€ros T1i,..., Ty of f, it can be shown that
n
S(f,0B) =) _ S(f.wm) (13)
m=1

holds. Thus, if z1,...,z, are all first order zero locations of f, S(f,0B) is
simply the difference between positive and negative speckles of f in B.

The integral can be used to find a small region B containing speck-
les which can be removed. If B only contains two speckles building a
pair, S(f,0B) must be zero. Such a pair can be removed with the fol-
lowing procedure. First, the signal phase of region B has to be smoothed so
that B contains no spiral phase singularities. This is always possible when



S(f,0B) = 0. We applied a simple smoothing algorithm setting the phase of
an inner point to the weighted sum of the phase values on 0B with weights
depending on the distance. Then a standard optimization algorithm for
instance an IFTA—should be applied with no freedom of phase in B so that
the forced phase alteration can be evenly distributed over the entire signal
distribution. One advantage of soft operators is to limit widely separated
speckle pairs to a minimum which is very helpful for later removement of
speckle pairs. A result of the above described procedure is shown in the right
column of figure 7. If a small region contains several speckles the speckle
cluster (larger circle) can be removed if the line integral is equal to zero.

6 Conclusion

We have stated the point that the phase distribution of intensity signals
cannot be used as a complete parameter of freedom for the optimization
process of DEs generating a signal wave specified on a continuous support
in the Fresnel or Fourier region. A “restricted phase freedom” must however
be used in order to achieve a high quality element.

A mathematical definition of speckles in wavefronts was given. Based on
this definition a speckle of order k could be described as an n-fold isolated
zero location of the wavefront with a spiral phase singularity of order k,
where |k| < n holds. This theory turned out to be useful for creating
strategies for avoiding speckles during an iterative design process. Because
IFTA is not capable of removing speckles caused by spiral phase singularities
in the signal wave, the importance of using an initial signal phase without
phase singularities was emphasized. Different signal phase distributions were
examined and compared. An interesting result is that a spherical phase is
a very good initial phase for the design of a DPE if imaging properties of
the DPE are acceptable. The presented iterative design algorithm was used
to compute continuous DPEs generating continuous signal waves without
speckles if an initial spherical signal phase was applied. If an application
does not allow the imaging properties introduced by a spherical phase an
initial pseudo-random signal phase should be used.

A further improvement of the method was achieved by introducing a
soft coding operator with which the signal phase can better be controlled
during the iteration process so that spiral phase singularities of the signal
wave are not likely to appear. However, if speckles do appear these can be
removed by a proposed method based on a line integral which can be used
to find regions containing pairs of speckles. These pairs could be removed
by applying a post-iteration with a restricted freedom of phase.
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Figure 1: Simulated signal wave generated by a diffractive phase element
and some examples of intensity fluctuations. Each collection contains the
amplitude (upper row) and phase distribution (lower row) as greyscale im-
ages (left column) and 3D plots (right column).
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Figure 3: The capability of different signal phase distributions (upper row)
to distribute the signal energy uniformly into the DE Window Wpg. The
phase distributions are (from left to right) a constant, random, pseudo-
random and a spherical phase. The corresponding amplitude distributions
of the inverse wave propagation is shown in the lower row.
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Figure 4: The flow diagram of a general IFTA (P: wave propation operator,
I: illumination wave, Fj: DE distribution of step k, s;: generated signal of
step k).

Figure 5: Amplitude distribution of the continuous signal wave generated
by DPEs computed with an initial random (left), pseudo-random (middle)
and spherical (right) signal phase distribution with the same computational
costs (120 iteration steps).
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Figure 6: The effect of a perturbation of the transmission functions (upper
row) of DPEs computed with an initial pseudo-random signal phase (left
column) and a spherical signal phase (right column) on the generated signal
wave (lower row).
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Figure 7: The amplitude and the phase of the signal wave generated by the
DPE computed with the initial pseudo-random signal phase and the soft
operator Usog (left column). In the right column the speckles in the circum-
scribed regions were removed by a method applying a restricted freedom of
phase.
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