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An adaptive output feedback controller for robot arms is developed in this paper. A nonlinear observer
based on desired joint velocities and bounded joint position error is used to estimate joint velocities.
Experimental results validate the ewectiveness of the proposed adaptive output feedback controller.

Abstract

An adaptive output feedback controller for robot arms is developed in this paper. To estimate the joint velocities, a simple nonlinear
observer based on the desired velocity and bounded position tracking error is proposed. The closed-loop system formed by the
adaptive controller, observer and the robot system is shown to be semi-global asymptotically stable. Extensive experiments conducted
on a two link robot manipulator con"rm the e!ectiveness of the proposed controller}observer structure. To highlight the performance
of the proposed scheme, it is compared via experiments with a well-known passivity based control algorithm. � 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Adaptive control of robot arms based on complete
state measurements has been dealt in great detail in the
literature. The feed-forward and passivity based algo-
rithms for robot arms proposed in Sadegh and Horowitz
(1990), Slotine and Li (1991) and Ortega and Spong
(1989), and the references therein, have been extensively
used. A comparative experimental study of the standard
and new algorithms has been done in Whitcomb, Rizzi,
and Koditschek (1993). Most of these algorithms need
complete state measurements. A major drawback of such
schemes is that both joint position and joint velocity
measurements of the robot are required for feedback

control. Sensors for measuring robot joint velocities are
expensive. Further, measurements from these sensors are
often contaminated by noise. Velocity estimated feed-
back control of robot arms can be used instead and the
requirement of robots to be equipped with velocity sen-
sors can be eliminated. Most of the robot adaptive
schemes use velocity errors or modi"ed velocity errors to
drive the parameter adaptation algorithms. When the
actual velocities are not available, estimated velocities
and position errors have to be used to drive the para-
meter adaptation algorithms. This leads to an added
di$culty in proving the stability of these algorithms.
Considerable research is being conducted in the area of

output feedback control of nonlinear systems. Output
feedback control of robot arms has been studied by many
researchers. In Berghuis and Nijmeijer (1993), the
authors consider passivity based controller}observer de-
sign for robots. A linear observer is designed to estimate
the velocities. It is shown that the closed-loop system
formed by the controller}observer and the robot is lo-
cally exponentially stable. A linear velocity observer is
designed assuming complete knowledge of the structural
parameters of the robot. A robust variable structure
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controller and a nonlinear observer is designed in Zhu,
Chen, and Zhang (1992). Berghuis and Nijmeijer (1994)
proposes a linear controller and a linear observer for
robust control in the presence of parameter uncertainties.
In Canudas de Wit and Fixot (1992), tracking control of
robot manipulators is proposed by combining a passivity
based controller and a nonlinear sliding observer. Local
asymptotic convergence of the position tracking errors
and the velocity estimation errors was shown.
A nonlinear observer based on the robot error dynam-

ics was designed in Nicosia and Tomei (1990), and a con-
trol design that uses joint position measurements and
estimated velocity is proposed. Repetitive and adaptive
control of robot manipulators with velocity estimation is
presented in Kaneko and Horowitz (1997). In the case of
repetitive control, the robot achieves tracking of the
desired periodic trajectory through repeated learning
trials. An adaptive controller is also designed. A linear
observer is designed to estimate the velocities. Local
asymptotic stability is shown for both the repetitive and
the adaptive cases.
In this work, an adaptive feedback controller for robot

arms is designed using partial state feedback, i.e., only
joint position measurements are used to design the adap-
tive controller. A simple nonlinear observer is designed to
estimate the robot joint velocities. The closed-loop sys-
tem formed by the adaptive controller, observer and the
robot system is shown to be semi-global asymptotically
stable, i.e., the region of attraction can be increased
arbitrarily by increasing the controller and the observer
gains.
Convergence of the estimated parameters to the true

parameters depends on whether the regressor matrix
satis"es the persistence of excitation condition. In the
proposed adaptive controller the regressor matrix entire-
ly depends on the desired trajectory. Hence, the persist-
ence of excitation condition is satis"ed by choosing
a persistently exciting desired trajectory. Experiments
were conducted on a two link planar arm for the pro-
posed controller}observer. Successful experimental re-
sults show the validity of the proposed controller and
observer. The proposed scheme is compared, via experi-
ments, with a well-known passivity based controller. The
passivity based controller used for this comparison
assumes that the parameters are exactly known and
a "rst-order numerical di!erentiation of joint position
measurements is used to estimate velocities.
The remainder of this paper is organized as follows. In

Section 2, robot dynamics and problem formulation is
given. Section 3 gives the proposed adaptive controller
and observer. Closed-loop error dynamics is also derived
in Section 3. Stability of the closed-loop system is shown
in Section 4. Section 5 discusses the experimental
platform and the experimental results. Some concluding
remarks with a summary of this paper are given in
Section 6.

2. Robot dynamics and problem formulation

Consider the dynamics of an n degree of freedom robot
arm
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where x
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3�� are the generalized position and
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)3���� is the inertia matrix,
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centrifugal terms, g(x
�
)3�� is the gravity vector, and

�3�� is the vector composed of joint torques. The struc-
ture of the robot dynamics satis"es the properties given
in Appendix A.
Given a desired trajectory of the robot, the objective is

to design a stable tracking controller that only requires
joint position measurements for feedback. To achieve
this objective, an adaptive controller together with
a simple nonlinear observer to estimate joint velocities is
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�
(t)

is the reference velocity error, �I (t) is the parameter es-
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where e
��
(t),2, e
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(t) are the components of the position

error vector e
�
(t) and �

�
is a positive gain. Notice that this

choice of �
�
(e

�
) renders e

�
(t) to be bounded by �

�
. In the

remainder of the paper, whenever it is clear from the
context, explicit dependence of variables on time is
not shown. Also, throughout the paper ��A�� denotes the
2-norm of A. The following section gives the adaptive
controller, observer, and the closed-loop error dynamics.
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3. Adaptive controller and observer

The following control scheme is proposed:
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where K
�
, K

�
are positive de"nite gain matrices and �K is

the estimated parameter vector of the robot. Note that
the second term in the control law is a function of
estimated velocity, desired velocity, and actual position
error, i.e., e
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gressor matrix depends only on the desired trajectory
and can be pre-computed. The parameter adaptation law
is chosen as follows:
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where �K (0) is the initial estimate of the unknown
parameter vector, � is a positive de"nite gain matrix, and
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The following observer is proposed to estimate the states:
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where �
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terms, the observer error dynamics is given by
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The closed-loop error dynamics is derived in the follow-
ing section.

3.1. Error dynamics
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From (1) and (8), we obtain
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where �W is given by
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Using Eq. (7), the observer error equation can be derived
as follows:
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On substitution of the robot error dynamics (10) and
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4. Stability

First, de"ne an extended vector z given by
z� :"[e�
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, e�
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, e( �
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, �I �]. The following theorem gives the

stability of the closed-loop system with the proposed
controller}observer structure.

Theorem 1. For the robot dynamics given in (1), using the
adaptive controller (3) together with the update law (4) and
the observer (6), it is always possible to choose feedback
gains K
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and the observer gains �
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and �
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that z"0 is locally uniformly stable, e
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locally asymptotically converge to zero. Further, the
closed-loop system is semi-globally asymptotically stable,
i.e., the region of attraction can be arbitrarily increased by
increasing the controller and the observer gains.

Proof. Consider the following Lyapunov function candi-
dates, <
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Taking the time derivative of these Lyapunov function
candidates along the trajectories of (10) and (12) and
simplifying gives
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Now, consider the composite Lyapunov function candi-
date <"<
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for the closed-loop system. Using the

parameter adaptation law given in (4), <Q is given by
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Using the upper bound on ���W��, derived in Appendix B,
and grouping similar terms together, the time derivative
of < can be bounded by
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Fig. 1. Two-link robot manipulator.
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Consider the following:
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Suppose ��e
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This implies that e
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. Further, from (10) and (12) we can conclude that
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. Thus, asymptotic convergence of e
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follows from Barbalat's lemma. To "nd the region of
attraction, de"ne <
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	, where �

�
and �

�
are

the minimum and maximum eigenvalues, respectively, of
the matrix �. Then the Lyapunov function <(z) can be
bounded as
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then the region of attraction is given by
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(28)

Remark. The region of attraction given by (28) is very
conservative. The region of attraction can be increased
arbitrarily by increasing the controller gains K

�
, K

�
and

the observer gains �
�
,�

�
. Thus, the closed-loop system is

semi-globally stable. Notice that � in (28) depends on the
gains k

��
, k

��
, �

�
, and �

�
.

5. Experiments

5.1. Experimental platform

The experimental platform consists of a two-link direct
drive planar manipulator shown in Fig. 1. Each axis is
driven by an NSK-Megatorque direct drive servo-motor
which is capable of up to 3 revolutions per second max-
imum velocity and position feedback resolution of up to
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156,400 counts per revolution. The base motor is rated to
deliver up to 245 N m of torque output, and the elbow
motor produces torque output up to 40 N m. The NSK-
Megatorque motor system consists of motor and its
driver unit. This is a stand-alone system that contains
all the elements needed for complete closed-loop servo
motor control.
The NSK motor consists of a high torque direct drive

brush-less actuator, a high resolution brush-less resolver,
and a high precision bearing. The Megatorque motor is
capable of producing extremely high torque at low
speeds suitable for direct drive applications. The heavy-
duty bearing eliminates the need for separate mechanical
support since the motor case can often support the load
directly. The direct drive actuator eliminates the need for
gear reduction, so repeatability is limited only by the
resolution of the position feedback. Also, direct coupling
of the motor and load permits tighter and more direct
control of the load. Real-time control is performed with
a host computer (Pentium PC) and a servo DSP
(TMS320C30). The integer and #oating-point arithmetic
units equipped on the TMS320C30 DSP can obtain
a peak arithmetic performance of 33.3 million #oating
point computations per second. This allows complex algo-
rithms to be executed using very small sampling periods.
The inertia matrix,M(x

�
), and the matrix composed of

Coriolis and centrifugal terms, C(x
�
,x

�
), for the two-link

manipulator are given by
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where c

�
"cos(x

��
), s

�
"sin(x

��
) and x

��
and x

��
denote

the components of the vectors x
�
and x

�
, respectively,

and p
�
, p

�
and p

�
are coupled inertial parameters, which

are treated as unknowns and estimated by the adaptive
controller. The gravity term for this robot con"guration
is zero, i.e., g(x

�
)"0. The mathematical model for the

robot is derived in Kao (1990). Exact expressions for
the inertial parameters p

�
can be found in Kao (1990).

The desired regressor for the two-link manipulator is

The desired position, velocity, acceleration, and jerk (de-
rivative of acceleration) trajectories for the two joint
angles used in the experiments are given in Fig. 2. These
represent desired joint angles for 14 cycles of circle tra-
jectory in the Cartesian space. The "rst and the last cycle
are of duration 2 s each, and the middle 12 cycles are of

1 s duration. In the "rst cycle the manipulator is acceler-
ated such that a constant Cartesian velocity magnitude is
reached, in the middle 12 cycles the constant Cartesian
velocity is maintained, and the manipulator is decel-
erated to a stop in the last cycle.
The proposed controller}observer is compared with

a well-known passivity based control algorithm. Exact
knowledge of the parameters is assumed for the passivity
based control scheme and a "rst-order (one-step) numer-
ical di!erentiation of the joint position measurements
has been used to obtain joint velocities. The following
passivity based control algorithm is chosen:

�"M(x
�
)x�

��
#C(x

�
,x

�
)x

��
#F

�
(x

��
!x

�
), (29)

where x�
��

"x� �
�
!K

�
(x

�
!x�

�
)!K

�
(x

�
!x�

�
), and F

�
,

K
�
, K

�
are positive de"nite gain matrices.

5.2. Experimental results

Experimental results with the proposed adaptive con-
troller}observer with a sampling period of 4 ms are
shown in Figs. 3}6. Experimental results with the passiv-
ity based control algorithm with a sampling period of
4 ms are shown in Figs. 7}9. Since exact knowledge of the
true parameters is assumed and joint velocity is obtained
by "nite di!erence of joint position for the passivity
based algorithm, it does not involve parameter estima-
tion and velocity estimation via an observer. Thus, po-
tentially lower sampling rates could be used for the
passivity based control algorithm as it involves less com-
putation. Experiments were conducted with the passivity
based scheme with a sampling period of 2 ms for the
same trajectory. These experimental results are shown in
Figs. 10}12.
The position tracking errors and the velocity estima-

tion errors are given in Figs. 3 and 4, respectively. Fig. 3
shows that the absolute maximum position tracking er-
ror for joint 1 is about 0.01 rad (0.53) and it is about
0.015 rad (0.753) for joint 2. The velocity estimation er-
rors are given in Fig. 4. There is an initial spike in the
velocity estimation error at t"0 because of the initial
condition error. Fig. 4 shows that the velocity estimation
errors are bounded within 0.2 rad/s for both links 1

and 2 after the initial errors settle down. These values
correspond to about 10% of the desired velocity for link
1 and 4% for link 2. Notice that whenever there is change
in direction of velocity the tracking errors take a sudden
abrupt variation. This is typically due to the presence of
low velocity friction in the motors.
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Fig. 2. Desired joint space trajectory.

Fig. 3. Position tracking errors (proposed adaptive controller with observer).
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Fig. 4. Estimated velocity errors (proposed adaptive controller with observer).

Fig. 5. Parameter estimates (proposed adaptive controller with observer).

The true parameters of the manipulator are p
�
"3.6,

p
�
"0.2, and p

�
"0.15. Fig. 5 shows parameter

estimates for two sets of initial conditions, i.e.,

(1.5, 0.01, 0.3) and (6.0, 0.5, 0.6) were used as initial
estimates of (p

�
, p

�
, p

�
). The parameter estimates con-

verge to values that are close to those of the true
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Fig. 6. Control input torque (proposed adaptive controller with observer).

Fig. 7. Position tracking errors (passivity based scheme, ¹
�
"4 ms).

parameters. There is a slight bias for the converged
value of the estimate of p

�
. This can be noticed in para-

meter estimates obtained using di!erent trajectories
and is mainly attributed to friction. It is reasonable

to attribute the smooth convergence of the parameter
estimates to the use of the desired regressor matrix
which completely depends on the desired joint
trajectory.
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Fig. 8. Velocity errors ("nite di!erence, passivity based scheme, ¹
�
"4 ms).

Fig. 9. Control torque (passivity based scheme, ¹
�
"4 ms).

Figs. 7}9 show the position error, the velocity error
("nite-di!erence) and the control torque, respectively, for
the passivity based algorithm with 4 ms sampling time.
The feedback gains are well tuned to obtain the lowest

possible errors for this scheme. Exact knowledge of the
true robot parameters is assumed for the passivity based
scheme. From the experimental results, we can conclude
that the tracking errors for the proposed controller
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Fig. 10. Position tracking errors (passivity based scheme, ¹
�
"2 ms).

Fig. 11. Velocity errors ("nite di!erence, passivity based scheme, ¹
�
"2 ms).

without velocity measurements and with uncertainty in
the robot inertial parameters are similar to the passivity
based algorithm with exact knowledge of the parameters.
Figs. 10}12 show the position error, the velocity error

("nite-di!erence) and the control torque, respectively, for
the passivity based algorithm with 2 ms sampling time.
These results are very similar to the ones with 4 ms
sampling time.
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Fig. 12. Control torque (passivity based scheme, ¹
�
"2 ms).

6. Conclusions

In this paper, an adaptive control algorithm for robot
manipulators without joint velocity measurements is
given. A simple nonlinear observer was proposed to
estimate the joint velocities utilizing the desired velocities
and position tracking errors. The uniqueness of
the proposed observer stems from the fact that it is
robust to initial condition errors, since a modi"ed
bounded position tracking error is used. Lyapunov stab-
ility analysis is conducted to show that the proposed
controller}observer structure renders the closed-loop
system semi-global asymptotically stable. Experimental
results validate the e!ectiveness of the proposed algo-
rithm in the presence of unknown robot parameters.
Comparison with a passivity based control algorithm,
implemented with exact knowledge of the true para-
meters, shows that the proposed algorithm gives similar
results even under large uncertainties in the robot
parameters.

Appendix A. Properties of robot dynamics

(1) The inertia matrix M(x
�
) is positive de"nite and is

bounded from above and below by positive con-
stants 


�
and 


�
, that is



�
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)��)
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�
.

(2) The matrix C(x
�
,x
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) is bounded and satis"es the

following:
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(3) The matrix MQ (x
�
)!2C(x

�
,x

�
) is skew-symmetric.

(4) The dynamics is linear in the unknown parameters
and can be expressed as
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where �3�� is the unknown parameter vector and
Y(x

�
,x

�
,x�

�
)3���� is the known regressor matrix.

Appendix B. Upper bound of ���W��

A bound for ���W�� to be used in (18) is obtained in this
section. First, �W is written as
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)!g(x�
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) (B.1)
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�W can be also be written as
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A bound on the "rst part of the above equation can be
derived as in Sadegh and Horowitz (1990):
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The last part of equation (B.3) can be written as
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This term can be bounded as
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Hence the bound on �W is given by

���W��)(b
�

#b
�
#b

�
#2c

�
v
�
�
�
#c

�
��
�
)��e

�
��

#(c
�
v
�
#c

�
�
�
)��e

�
��. (B.4)

References

Berghuis, H., & Nijmeijer, H. (1993). A passivity approach to control-
ler}observer design for robots. IEEE Transactions on Robotics and
Automation, 9(6), 740}754.

Berghuis, H., & Nijmeijer, H. (1994). Robust control of robots via linear
estimated state feedback. IEEE Transactions on Robotics and Auto-
mation, 39(10), 2159}2162.

Canudas de Wit, C., & Fixot, N. (1992). Trajectory tracking in robot
manipulators via nonlinear estimated state feedback. IEEE Transac-
tions on Robotics and Automation, 8(1), 138}142.

Kaneko, K., & Horowitz, R. (1997). Repetitive and adaptive control of
robot manipulators with velocity estimation. IEEE Transactions on
Robotics and Automation, 13(2), 204}217.

Kao, W.W. (1990). Learning control of robot manipulators, Ph.D.
thesis, University of California, Berkeley, CA.

Nicosia, S., & Tomei, P. (1990). Robot control using only joint
position measurements. IEEE Transactions on Automatic Control, 35,
1058}1061.

Ortega, R., & Spong, M. W. (1989). Adaptive motion control of rigid
robots: A tutorial. Automatica, 25(6), 877}888.

Sadegh, N., & Horowitz, R. (1990). Stability and robustness analysis of
a class of adaptive controllers for robotic manipulators. The Interna-
tional Journal of Robotics Research, 9(3), 74}92.

Slotine, J. J. E., & Li, W. (1991). Applied nonlinear control. Englewood
Cli!s, NJ: Prentice-Hall.

Whitcomb, L. L., Rizzi, A. A., & Koditschek, D. E. (1993). Comparative
experiments with a new adaptive controller for robot arms. IEEE
Transactions on Robotics and Automation, 9(1), 59}70.

Zhu, J. H., Chen, H. T., & Zhang, Z. J. (1992). A variable structure robot
control algorithm with an observer. IEEE Transactions on Robotics
and Automation, 8(4), 486}492.

Prabhakar R. Pagilla received his B. Engg.
degree from Osmania University, India,
and the M.S. and Ph.D. degrees from the
University of California, Berkeley, in 1990,
1994, and 1996, respectively, all in mechan-
ical engineering. He is currently an Assist-
ant Professor in the School of Mechanical
and Aerospace Engineering, Oklahoma
State University, Stillwater. His research
activities are mainly in the areas of nonlin-
ear systems, adaptive control, constrained
mechanical systems, large-scale systems,

mechatronics, and modeling and control of web handling systems. Dr.
Pagilla received a National Science Foundation CAREER Award in
2000.

Masayoshi Tomizuka was born in Tokyo,
Japan in 1946. He received his B.S. and
M.S. degrees in Mechanical Engineering
from Keio University, Tokyo, Japan and
his Ph.D. degree in Mechanical Engineer-
ing from the Massachusetts Institute of
Technology in February 1974. In 1974, he
joined the faculty of the Department of
Mechanical Engineering at the University
of California at Berkeley, where he cur-
rently holds the Cheryl and John Neer-
hout, Jr., Distinguished Professorship

Chair. At UC Berkeley, he teaches courses in dynamic systems and
controls. His current research interests are optimal and adaptive control,
digital control, signal processing, motion control, and control problems
related to robotics, machining, manufacturing, information storage devi-
ces and vehicles. He has served as a consultant to various organizations,
including Lawrence Berkeley Laboratory, General Electric, General Mo-
tors and United Technologies.
He served as Technical Editor of the ASME Journal of Dynamic

Systems, Measurement and Control, J-DSMC (1988}1993), Editor-in-
Chief of the IEEE/ASME Transactions onMechatronics (1997}99) and
an Associate Editor of the Journal of the International Federation of
Automatic Control, Automatica. He currently serves for an European
Journal of Control. He was General Chairman of the 1995 American
Control Conference, and served as President of the American Auto-
matic Control Council (1998}1999). He is a Fellow of the ASME, the
Institute of Electric and Electronics Engineers (IEEE) and the Society
of Manufacturing Engineers. He is the recipient of the Best J-DSMC
Best Paper Award (1995), the DSCD Outstanding Investigator Award
(1996) and the Charles Russ Richards Memorial Award (ASME, 1997).
The Charles Russ Richards Memorial Award, established in 1944, is
given to an engineering graduate who demonstrates outstanding
achievement in mechanical engineering 20 years or more following
graduation.

P. R. Pagilla, M. Tomizuka / Automatica 37 (2001) 983}995 995


