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We describe a distributed simulation tool which addresses the unique needs for the simulation of
emergency response scenarios. The simulation tool adopts the multi-agent paradigm, so as to facilitate
the modelling of diverse and autonomous agents, and it provides mechanisms for the interaction of
the entities that are being simulated. It operates in a distributed fashion to reduce the simulation
time required for such large-scale systems. The simulation tool represents the individuals that need
to be evacuated, the resources that contribute to the evacuation including human rescuers, and other
active resources and entities which may include robots and which can autonomously interact with
the environment and with each other and take individual or collaborative decisions. We illustrate the
tool with an application and compare the results for both centralized and distributed execution. Our
results also show the significant reduction in execution time that is achieved for different degrees of

distribution of the simulator on multiple servers.
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1. INTRODUCTION

The organization and coordination of emergency operations
is usually placed under the responsibility of an incident
commander who needs to efficiently allocate the available
resources, communicate information to all entities and take
decisions regarding the planning and execution of the response.
However, the severe time constraints related to managing a
response implies that, as far as possible, many of the possible
courses of action related to a specific form that an emergency
may take must have been designed and evaluated well in
advance through modelling, simulation and emergency drills.
Simulation is therefore a key technology for the preparation of
the response to emergency events. However, if simulation tools
are sufficiently fast and flexible, they can potentially also be
used to evaluate alternative courses of action when emergencies
actually take place. This paper focuses on the distributed
building evacuation simulator (DBES) which is a tool that
we have designed to support the evaluation of alternative
emergency courses of action in confined environments such as
buildings or ships. The setting we consider is the evacuation

process itself, and the need to provide guidance to evacuees and
to emergency personnel. The simulation environment that we
have built is distributed, in that it can be run with different
components installed on different servers linked via a local
network so as to accelerate the execution time of the simulation.
The layout of the building or other space is provided as an
input via appropriate graph models, allowing for the evaluation
of numerous evacuation scenarios in areas such as buildings,
ships, oil platforms, small campuses etc. and the emergency
itself (e.g. a spreading fire or a series of explosions) can be
represented within the simulation framework under changing
conditions. The simulation tool can then be used to design and
test different evacuation scenarios and the impact they will have
on the success of the evacuation procedures.

The rest of the paper is structured as follows. Section 2
presents related work in evacuation simulation and in distributed
simulation, as well as in movement decision support systems.
The details of the DBES are presented in Section 3 while Section
4 describes a decision support system for building evacuation
and evaluates its performance. In Section 5 we illustrate the
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DBES in the context of some specific scenarios, and discuss the
role of the DBES distributed architecture as a way to reduce the
simulation execution times.

2. RELATED WORK

In this section we review the literature related to our problem.
We begin with an overview of simulation tools on emergency
response and we continue with a description of various
distributed simulation approaches. Finally, we present work
related to movement decision support systems and algorithms.

2.1. Emergency response simulation

The most widely used emergency response simulation models
are EXODUS [1, 2] and SIMULEX [3]. In EXODUS an
agent-based approach is adopted that uses a coarse grid to
map the geometry of a building or vessel. The grid contains
nodes that can be connected with eight other neighbouring
nodes through arcs. The simulation calculates shortest distances
to the exits and stores that information in the environment.
SIMULEX is an agent-based model that also uses a coarse grid
geometry. It is a partial behaviour model that relies on inter-
person distances to specify the walking speed of individuals,
allowing for overtaking, body rotation, sideways stepping and
small degrees of back stepping. Other simulation models are
EXIT 89 [4], EVACNET+ [5] and EVACSIM [6]. For a thorough
comparison of these models, the reader should refer to [7].

There are also other systems that can be used for emergency
evacuation simulation. In SGEM [8] the authors model the
building as a graph consisting of a series of nodes, each of which
represents a building region and holds its own configuration.
The direction in which evacuees need to go is determined
by a function of the zone in which they are, the adjoining
zones and the distance to the final exit. In [9] the authors use
an integrated approach, which includes a fine grid network
that models the areas of the building that are of particular
interest, and a coarse network that models the remaining
parts of the building. This integrated approach is advantageous
over the coarse network approach because it gives detailed
evacuation information for the critical areas. The multi-agent
paradigm is used in [10, 11] to simulate human behaviour,
such as (competitive) queueing, congestion and herding. A
collaborative training simulator for the purposes of emergency
preparedness and response is presented in SimSITE [12]. The
coordination among the simulation entities and their real-time
interaction is achieved using high-level architecture (HLA) [13].
In [14], information theory and graph theory are used to develop
an evacuation algorithm in comparable sets of non-identical
floorplans, each represented by a unique k-node rooted tree.
Finally, RoboCupRescue [15, 16] is one of the most common
approaches that brings together many institutions across the
world to develop a platform for simulating emergency response

algorithms that can be applied to scenarios such as a fire erupting
in a city.

All of the above approaches, although some of which provide
an infrastructure for distributing components of the simulation
such as RoboCupRescue, require that a single application
control and orchestrate the simulation. This approach has a
number of advantages as follows: (i) all simulated objects
are simple references in memory which in effect introduce
a very limited overhead to the simulation; (ii) interaction
among the objects and the central application is minimal
as they are both physically located on the same processor;
(iii) the central application constantly has a full view of
the simulated environment, allowing it to identify potential
‘shortcuts’ in the simulation before these appear; and (iv) the
central application has full knowledge of the simulated objects’
strategies and goals, and thus it is able to pre-calculate and store
information, significantly reducing the processing requirements
of the simulation.

This centralized approach, however, has characteristics that
are not realistic. For instance (i) it uses customized interaction
protocols that are specific to the simulation, prohibiting the
incorporation of additional features; (ii) before the simulation
begins, all of the objects of interest have to be physically located
on the same processor; (iii) the strategies and goals for each
simulated object must be known to the central application, and
this may not be possible for a number of reasons, including
that of security and privacy; (iv) security and fault tolerance is
minimal, as the central application is the single point of failure;
and (v) performance can only be improved by either using
scenario-specific approaches or high-performance libraries.

Thus our approach alleviates some of these problems via a
new distributed simulation platform, each of whose components
maintain only a subset of the complete state space. In
addition, each simulated object is a dedicated active entity
that does not necessarily need to be in the same physical
computer location as any other of the entities. Furthermore,
all aspects of the simulation (i.e. strategy, goals, internal data
structures) are all privately held by each simulated object and
this enhances flexibility and security. Finally, our distributed
simulation platform adopts a paradigm in which certain parts
of the simulation are simulated independently. In the context
of building evacuation (which is our main area of study),
we consider that simulating the evacuation of a three-storey
building can be segmented in three individual concurrent parts,
where the events of each floor are independent of one another.

Our earlier work on emergency response simulation has
resulted in the development of a simulation tool for building
evacuation [17], which is a centralized discrete event simulation
framework that models the evacuation of a multi-storey
building. A later version [18, 19] used an HLA-based approach
to distributed simulation in which the evacuees are modelled as
agents and the physical world is represented through the use of a
graph. In disaster scenarios that are simulated, a hazard (such as
a fire) spreads in a building and the evacuees try to leave using

The Computer Journal, Vol. 53 No. 9, 2010

 at Im
perial C

ollege L
ondon L

ibrary on February 20, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


1386 N. Dimakis et al.

the best possible exit. Apart from evaluating the evacuation
procedure in terms of total evacuation time and civilian injuries,
this simulator also represents the behaviour of the evacuees and
there is an attempt to take into account their detailed behaviour.

These simulation tools have also been applied to evaluate
other specialized applications and smart systems for emergency
situations [20]. In other work, we have studied the use of mobile
robots equipped with wireless devices that search a disaster
area for injured civilians and provide them with connectivity
to a wireless sink node [21–23]. Here it is assumed that each
evacuee carries a wireless device and the goal of the robots
is to maximize the evacuees’ connectivity so as to support
the evacuation. Moreover, we have also designed a distributed
decision support system that operates inside a building during
a disaster and provides its occupants with directions regarding
the best exit [24]. A brief description of this system is also given
in Section 4.

2.2. Distributed simulation

There are two main approaches regarding distributed simula-
tion: conservative and optimistic. Both perceive the simulation
task from different angles and are characterized by their own
advantages and disadvantages.

The term ‘conservative’ refers to the fact that this approach
ensures causality of the simulated events by exchanging time-
stamped messages among the distributed agents, prior to every
event execution, thus introducing no errors. All agents negotiate
for the earliest event, and the appropriate event is executed. One
of the pioneering work was done by Chandy, Misra and Bryant
[25, 26]. Other early conservative approaches [27] are the
blocking table algorithm [28], SRADS [29], appointments [30],
feed-forward [31], conditional knowledge [32] and bounded
lag [33].

The optimistic simulation scheme on the other hand makes
a very light use of the communication channels between
the distributed agents, exploiting the intrinsic parallelism of
different simulation parts. This approach is significantly faster
than traditional conservative ones, however, it is much more
prone to errors, as each agent is operating independently without
prior knowledge of other potentially erroneous events. To
alleviate this inherent disadvantage, the optimistic simulation
approach requires synchronization schemes and rollbacking
mechanisms to correct errors when they appear.

2.2.1. Time Warp
Time Warp [34, 35] is one of the most prominent protocols in
optimistic distributed simulation. One of its key features is that it
employs a rollback mechanism to correct errors in the sequence
of the simulated events. If an event that refers to the past is
received, then the agent rolls back to the latest error-free saved
state in the current simulation history, and notifies the other
agents, as this error might affect them as well. After rolling
back, the simulation continues from that point. To achieve this,

each agent has to save its operational state at regular intervals
so that it will be able to roll back to it.

In the original Time Warp algorithm, as soon as an
agent identifies a causality error, it immediately initiates the
rollback sequence to the simulation network, a behaviour called
aggressive cancellation. Lazy cancellation [36] tries to improve
this by estimating if the notification to all agents is necessary,
thus reducing the number of communication messages. To
achieve this, the agent that determined the error alone initiates
the rollback procedure, until the local clock reaches the latest
valid time-stamp prior to receiving the out-of-order message.
If the re-simulation after the rollback produces the same
virtual time, then no further action is needed. This avoids the
unnecessary cancelling of correct events but also increases the
memory consumption. Lazy re-evaluation [37] tries to minimize
the extent of re-simulation after an error, by comparing the
intermediate states during a re-simulation with the state just
before the error appeared. If such a case is found, then the agent
‘jumps’ forwards in time, disregarding the remaining events.
However, this scheme has increased memory and computation
requirements compared to the original one.

The work in [38] attempts to further reduce the amount
of messages that are generated during an error, by requiring
only the agent that determined the error to initiate the rollback
process. This approach eliminates the problem of cascading
rollbacks and ‘echoing’, and results in faster simulation. The
authors in [39] present an approach that uses reinforcement
learning techniques, also known as simulation-based dynamic
programming. Instead of assuming an optimal control strategy,
the goal of reinforcement learning is to find the optimal strategy
through simulation by utilizing a value function that captures
the history of system feedbacks, requiring no prior knowledge
of the system.

Other types of optimizations include [40] which investigates
adaptive mechanisms for saving the current state of an agent,
taking the potential rollbacks into account. Also, [41] explores
an adaptive state saving policy to reduce the complexity
of a rollback when an error arises. Another approach is to
use message aggregation techniques in an effort to optimize
the communication process among the agents [42]. In [43],
the authors discuss the option of using consistent global
checkpoints to synchronize the processes of a distributed
simulation during the rollback procedure, allowing to improve
the simulation performance and to carry out a more suitable
memory management. They present a new optimistic protocol
that uses consistent global checkpoints. Finally, in [44], the
authors analyse the performance of the Time Warp protocol
in cases of limited memory.

2.2.2. Modern standards
In addition to the distributed simulation protocols that
were presented in the previous section, there has also
been significant effort in producing standards for distributed
simulation. HLA [13] provides a general framework within
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which simulation developers can structure and describe their
simulation applications. In particular, the HLA addresses two
key issues: (i) promoting interoperability between simulations
and (ii) aiding the reuse of models in different contexts.
Although the HLA is an architecture, not a software platform,
the use of runtime infrastructure (RTI) software is required to
support operations of a federation execution. The RTI software
provides a set of services, as defined by the Federate Interface
Specification, used by federates to coordinate operations and
data exchange during a runtime execution. While HLA is one
of the leading standards for distributed simulations, it is coupled
with issues of poor scalability, without addressing semantic
interoperability. Furthermore, it is a very complex standard and
time-consuming to adopt and use.

Distributed interactive simulation (DIS) [45] is a standard
used mostly in military simulations. It is used to integrate
heterogeneous simulators with different fidelity levels that
are geographically dispersed. An application is then used to
receive, process and forward the DIS data across the WAN.
While DIS is a much lighter and simpler protocol than HLA,
its inherent limitations require proprietary customizations and
modifications, limiting its reusability. Finally, DIS is highly
focused on military training simulations.

2.3. Movement decision support

The problem of finding the best path to a specified location in
order to guide humans towards an exit or an area of interest has
been approached in various ways.

An algorithm that aims at navigating a robot using a
predeployed sensor network is proposed in [46]. The authors
use the value iteration algorithm for determining the direction
towards which the robot should move, while the relevant
calculations are performed by the sensor network in a distributed
manner. They evaluate their approach using a wireless sensor
network of nine nodes and a robot that has to navigate from
a ‘home’ node to a destination. The robot is able to navigate
inside the network, but the approach is not tested under dynamic
conditions since the cost of the links remains static. Moreover,
parameters inherent to human navigation during a disaster, such
as potential congestion or hazard along paths, are not taken into
account.

In [47] the authors use a sensor network to navigate a
flying robot. The path calculation algorithm is based on a
routing protocol for sensor networks. The robot gathers lists
of path segments from multiple sensors as it moves and is
able to assemble the entire path. A network of 54 wireless
sensor nodes was used for the experimental evaluation of the
approach. The nodes were positioned in a grid topology while a
robot helicopter, equipped with a wireless sensor, hovered over
them. The helicopter was able to successfully follow the paths
suggested to it by the sensor network. The proposed system
was extended for guiding humans, but the approach consisted of
only one human and twelve sensors positioned inside a building.

The approach was not evaluated for larger building occupancies
and dynamic conditions such as the spreading of a hazard.

A system composed of a sensor network that navigates a
user to a goal region, by avoiding hazardous areas, is presented
in [48]. The approach relies on artificial potential fields. The
dangerous areas are represented as obstacles, which generate
a repulsive potential. The goal area generates an attractive
potential that pulls objects towards it. The authors propose
three algorithms for calculating the potential field, computing
the safest path to the goal and navigating the user along it.
They evaluated the system using a testbed of 50 wireless nodes.
Various network topologies were used, with different positions
of goal nodes and obstacles. The focus was on the network
adaptability to environmental changes, such as the time needed
for the network nodes to obtain the shortest path to the goal.
However, during a disaster it is very probable that the size of
the dangerous areas will not remain unchanged. The authors
have not taken into account the case of a dynamic hazard that
spreads in different locations. Moreover, the system is not tested
in a scenario that incorporates a large number of evacuees.

Finally, [49] presents a distributed navigation algorithm for
emergency situations. The approach is based on a routing
protocol for mobile ad hoc networks. The algorithm sets a low
altitude value to sensors located near exits. Sensors that are away
from an exit have higher altitude value. The distance metric used
is hop count. When an emergency is detected, the respective
sensor sets its altitude value to a large constant and broadcasts
a message to the network. The authors tested their proposed
method using simulations that included two sizes of sensor
networks (100 and 2500 nodes), various emergency locations
and different network topologies. They used a 20 mote testbed,
where emergency events were simulated by light readings, to
evaluate their approach. In all cases, the proposed algorithm
was able to find paths towards the exit that avoided hazardous
areas. Nevertheless, the simulations do not take into account
the spreading of a hazard as they assume that the size of the
emergency area remains the same. The system’s performance
in scenarios that include evacuees’ movement inside the area is
also not evaluated.

3. DBES

The DBES presented in this paper is a tool that simulates
emergency response scenarios taking place inside buildings. It
is built on top of the JADE platform [50], following the multi-
agent paradigm, modelling all simulated entities as dedicated
agents. These entities are able to interact with, search for and
subscribe to one another. The communication between them
is done using a well-defined communication ontology and all
interactions follow the FIPA standards [51]. DBES is able
to conduct sequential simulations and provide a summary of
the results, or can act as a demonstrator for each individual
simulation, as seen in Fig. 1. The latter approach allows the user
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FIGURE 1. The graphical user interface of the DBES simulating the evacuation of 10 entities from the ground floor of an office building.

to interact with the simulation scenario and alter the simulation
parameters (e.g. to initiate a fire in a specific location). DBES is
also used as a tool to evaluate algorithms for evacuation and
resource allocation in emergency response scenarios. In the
following paragraphs we elaborate on the building blocks of
the DBES and highlight its most important features.

3.1. Architecture

DBES considers only two types of agents: simulators and
simulated agents. The simulated agents are active agents that
implement a specific strategy, such as evacuating a building by
going to the nearest exit, searching for other agents in a building
or locating and transporting agents to the exit. Each strategy is
private to the agent itself and at every point in time it determines
the agent’s next action. Each action is modelled by an event,
which is described by a time-stamp and the event description
such as event := 〈t, type〉. Simulators on the other hand are a
different type of agents. They are passive in terms of how they
affect the simulation evolution. Their main task is to receive
a list of events that each agent is committed to simulate in the
upcoming future, sort them in an ascending order of time-stamp
and trigger the appropriate agent when it is its time to make the
next action. Prior to be notified, each agent receives information
about its line of sight, so as to be able to determine if its action
is feasible or not (to avoid, for example, a possible collision).
After determining the output of its strategy, the agent notifies
the simulator which in turn makes a final validity check about
the agent’s new state. The component that is responsible for the
ordering of the events and determining the next agent to be
triggered is the simulation engine.

Using DBES, a simulation scenario can be broken down
in smaller ones and can be assigned an individual simulator.

The reason for this capability is that in the case of building
evacuation, we can take advantage of the temporal and spatial
independence of simulated events. For example, if we consider
a scenario of a fire in a three-storey building with any number
of people in each floor, we can see that the events that take
place on the third floor are independent of the events that take
place on the ground floor. Similarly, the events taking place in
certain rooms are independent of the events taking place along
stairs, etc. We could thus create a network of simulators, each
of which would simulate the events in a small part of the overall
area instead of having a single simulator controlling the whole
area. To achieve this, we need a method that is able to model
the simulation area in such a way that allows the separating of
sub-parts.

DBES uses graphs to model the different building areas.
The nodes of a graph reflect specific locations in the
simulated area and the edges model the distance between these
locations. We consider that this distance is the point-to-point
physical distance between each set of nodes. The graphs may
contain special nodes, such as collection points (e.g. building
exits).

Using this graph-based approach, we are able to put more
focus in special areas of the simulation and dedicate an
individual simulation network for each area separately, instead
of simulating the whole area. This allows us to maintain
a smaller graph, which improves the performance of the
simulation, especially in the case of operations that take place
on the graph such as finding the shortest path or solving
connectivity problems.

3.1.1. The simulated agents
The simulated agents are members of our platform and are given
individual characteristics. We consider that all our agents are
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honest and have no incentive of providing wrong information
intentionally. However, a certain level of control is in the hands
of the simulators: after receiving an agent’s decision, a simulator
is able to determine if the action is valid (for instance, an agent
can only move to adjacent nodes).

The agents’ skill-set is differentiated into various levels
which forms the agent hierarchy. At the lowest level, the
agents are given functionalities to interact with the underlying
agent framework compile messages given a certain ontology
(described in Section 3.1.3), etc. Higher levels comprise
more sophisticated functionalities such as determining the
next action given a current state. Apart from their agent
front-end, which they use to interact with each other and
with the rest of the simulation platform, they comprise key
elements that refer to their nature and to their operational
level:

State: The state of each entity is reflected by its location,
health level and goal, which is considered to be a specific
node of the graph. As the simulation evolves, these
parameters are affected by the environmental conditions,
for example the hazard of a room in the case of a fire.
This information is private to the agent itself, but can
be forwarded to the simulator as well, for visualization
reasons, or to extract statistical information.
World perspective: Each entity has its own world
perspective, which initially is an estimate of the overall
graph model for the whole simulated area. As the
simulation evolves and the entities traverse the graph,
they update their internal perspective with more up-
to-date information about the area in the agent’s
proximity. This updated view is the basis for their next
decisions.
Functionality/purpose: The entities participating in the
simulation have different functionalities. For instance, a
possible evacuation scenario involves civilians who wish
to evacuate the building and reach predefined collection
points. At any time, they select their next actions so that
they move towards the closest exit. In addition, robot agents
who search for civilians inside the building could also be
present.
Behavioural model: Our entities maintain a behavioural
model which comprises mobility and health behaviours.
In our simulations we consider that these models pertain
to moving speeds and how any form of danger affects the
health of the agent.

After each action is completed, the simulated agents update
their world perspective and, by consulting their behavioural
model, they recalibrate their internal state. The decisions about
their next action are based on their functionality, which we
assume does not change during the simulation. At the final step,
the updated information is forwarded to the simulator which in
turn notifies the next entity. A snapshot of an agent’s sequence
diagram is shown in Fig. 2.

FIGURE 2. The activity diagram of a simulated agent in DBES.

3.1.2. Standard communication protocols
As proposed in the FIPA Abstract Architecture Specification
[51], the information exchange between agents is completely
based upon a specific communication ontology in order to
ensure that the semantic content of tokens is preserved across
agents. Distributed development of multiple agents and the
necessity to understand each other increase the importance of
a common semantic concept. Together with a FIPA-compliant
implementation of the agent communication and an agent
coordination mechanism, the communication ontology forms a
sophisticated technique for the collaboration among agents [52].

Our interaction models follow in their majority the FIPA-
Request protocol, a standard that has been proposed by FIPA.
Initially the sender makes a request, which the recipient
acknowledges with a refuse message if the message was not
valid, or with an inform message if the message has been
accepted. Both messages act as an acknowledgement and hence
the initiating agent knows whether its request has been received
and what its outcome was.

The reason for adopting this protocol, instead of simply
sending a message without an acknowledgement, is the fact that
all our simulation entities, including the simulators themselves,
are located in different computers. Notifying a simulated agent
that it is its time to act, without pending on its acknowledgement,
would deteriorate the consistency of the simulation results
in the case of a failure in the computer in which the agent
resided. Introducing this additional handshake step prohibits
unexpected behaviours during the simulation, with a very small
communication overhead.

3.1.3. Ontological messaging
Communication in DBES is achieved by the use of ontologies.
The platform distinguishes between two communication
channels: (i) interfacing with the simulation engine and
(ii) interacting with other agent-members of the simulation
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network. The formulation and exchange of messages between
a simulated agent and the simulation engine is done at the
lower level of the agent hierarchy. In this manner, the simulated
agents and their interaction with the simulator is transparent
to the user of the simulation platform. Each ontological layer
comprises concepts and actions for a certain type of events.
For instance, the ontology which refers to the interfacing
with the simulation engine contains events such as Movement,
Wait, Exit, Die etc., whereas the ontology for interfacing
with other agents contains events such as MakeEvent,
RegisterToSimulator, UnregisterFromSimulator, SubscribeTo
etc. The overall communication ontology encapsulates in a
hierarchical fashion all ontological layers and allows for
complex communication exchanges: A MakeEvent which
contains a Wait event.

Appropriate mechanisms have been integrated so that agents
only receive messages that are of interest to them, in order
to reduce the unnecessary overhead. Moreover, the ontologies
have been designed in such a way so as to facilitate the
reusability of messages. This feature has been used in a plethora
of occasions in our platform, especially when integrating
additional types of simulated agents.

A fragment of the communication ontology used in DBES is
depicted in Fig. 3. The communication ontology uses concepts
of the core ontology as message content in the answers to of
requests, whenever artefacts are required, which are part of
the common domain. Moreover, it extends the core ontology
by tokens, which are specific to agent communication and
not defined in the core ontology, particularly agent actions
for requesting services and specialized result classes. Each
simulated agent class can define its own communication
ontology and use it appropriately. DBES provides an initial set
of well-defined concepts and actions. Moreover, an additional
ontology has been designed, which encapsulates the actions and
concepts for supporting the simulation, such as the notification
of the next entity or the type of action that is to be executed.

The message handling of the agent framework consists
of several parts and is based on the DBES communication
ontology. A basic abstract class for all agents provides methods
for creating, sending, receiving and decoding messages, which
are strictly based on the semantic entries of the communication
ontology. Furthermore, these methods, together with additional
initiator and responder classes for submitting and receiving

FIGURE 3. A fraction of the communication ontology structure of
DBES.

messages, ensure that the agent communication is strictly
compliant to the FIPA interaction protocols and communicative
acts. The application of FIPA protocols has proved to be a very
significant factor in detecting a large number of errors which
are expected to arise in such systems, despite the fact that it
introduces an additional overhead due to their handshake nature.
For example, assume that a simulator agent grants access to an
agent to execute its next event. If this agent dies in the process,
the simulator will not be in a position to realize that, and might
continue the simulation process, inevitably causing causality
errors.

The benefit of using this approach is that we are able to
simulate a number of different scenarios using the DBES. For
instance, we have investigated scenarios in which a group of
robots moves inside a site looking for trapped civilians and
forming a wireless network [23] or a group of rescuers move
inside a multi-storey building in an effort to transport injured
civilians. The DBES also allows for the parallel simulation of
more complex scenarios in which all these entities co-exist, as
each strategy and each set of behaviours are independent among
different entities and are not required by the simulation network.

3.1.4. Integration with a sensor network
An important part of an intelligent building is its ability to
monitor the environment and detect the presence of hazards.
Rudimentary versions of these abilities are the familiar domestic
smoke detectors, or the more advanced devices present in
office buildings. Future buildings, however, will be monitored
by distributed wireless sensor networks (WSNs) capable of
processing the data obtained by their sensors, communicating
independently of the building infrastructure, and playing an
integral role in evacuation procedures in the presence of hazards.
In order to aid the development of such systems, we have
integrated a real WSN, which consists of 34 telosb motes, into
our distributed evacuation simulator. In addition to their wireless
capabilities, the motes are connected to a wired network, which
allows them to be programmed and also facilitates two-way
communication between the motes and the simulator.

Each mote has a corresponding agent present within the
simulator. These agents relay the intensity of the hazard in
the simulated location of a sensor to a real sensor, which then
samples these values and communicates them to a common
data-sink. The data-sink also has a simulator presence, in that
each floor of the building receives updates on the state of the
hazard via the network. The agents also enable other forms of
integration between the real sensors and the DBES, including
mobility, and allow us to study the impact of network properties
(such as delay and packet loss) on the outcome of the evacuation.

The distributed nature of the DBES enables the augmentation
of the simulator with a real sensor network. In order for this
interaction to be possible, the simulator must run in real-time.
It is possible to slow down the advancement of the event-driven
simulation to approximate real-time operation, by waiting for
an appropriate amount of time between events. There must,
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however, be guarantees that the simulator is capable of operating
faster than real-time at all times. This is not possible when using
a single desktop PC simulating a large building, but can be
ensured by distributing the simulation over a sufficient number
of machines.

3.2. Simulation approach

Our simulation approach is based on discrete event simulation
techniques, which we have enriched with additional features to
match the complexity of our simulation scenarios.As soon as an
agent wishes to move to a location which is not modelled by its
current simulator, then it moves to the next one and continues it
progress as before. During this movement, the agent maintains
its state completely and is registered to the new simulator as a
new agent. To further clarify this, consider Fig. 6 which shows
a three-storey building. If each floor is controlled by a different
simulator and an agent moves from the second floor to the
ground floor, then it has to inform the ground floor simulator of
its arrival. At the same time, the second floor simulator should
remove this agent from its agent list and manage the remaining
agents. Both steps are done when an agent changes simulators.
In our approach, simulators interact with each other only when
an agent is to be moved from one simulator to another, and
not on a regular basis. Agents change simulators when their
location is not controlled by their current simulator.This benefits
the overall simulation performance as less communication is
required, but it also affects to some extent the simulation results.
The reason for this is that as soon as an entity wishes to move
from one simulator to another, the time when the registration
request arrives in the new simulator plays a key role in the
evolution of the simulation. Since the simulators have no way
of knowing when such an event is imminent, they continue their
operations as normal. If the registration that arrives puts the
simulated entity in the far future, then the effect on the simulator
is minimal and the simulator places the new entity in its queue.
However, if the entity arrives from the ‘past’, then the moment
that this request arrives forces the simulator to re-structure its
event queue.

To provide an error control mechanism, we use a partial
synchronization scheme among the network of simulators, so
that at regular intervals their local clocks are synchronized.
This approach enables the consistency of the simulation
results to be bounded by the synchronization interval, while
introducing a very low overhead in the simulation. In practice,
a synchronization agent is responsible for setting ‘rendez-
vous’ points in all simulators that participate in the simulation
network. These ‘rendez-vous’ points are references in virtual
time. As soon as this point in virtual time has been reached, the
simulators assign the next action to the synchronization agent,
which reschedules another ‘rendez-vous’ time in the future. In
Section 5 we demonstrate how this scheme maintains a very high
confidence level for the simulation results, without introducing
a significant communication overhead.

In emergency response scenarios, especially in building
evacuation, we expect that as the simulation evolves the agent
transitions between simulators become increasingly frequent,
since the simulated entities will need to get to the collection
points (e.g. building exits). The variation from the expected
results is expected to be seen in the later parts of the simulation.

3.3. Unique features

The DBES has been designed to facilitate the integration of new
strategies for evacuation and emergency personnel allocation,
and to be able to simulate them in parallel without requiring
tedious tasks such as manually configuring the simulation
scenario.

The core functionalities of the DBES include a pluggable
mechanism for loading individual agent behaviours on runtime,
depending on each agent’s purpose. This makes the DBES
platform not only scenario-independent but also independent of
the number of different agent classes that can participate in the
simulation. Moreover, each agent’s strategy is not required to be
known in advance as each agent needs to respond to simulator
requests following the ontological structure that was previously
presented. Furthermore, functionalities for interacting with the
underlying framework are also included such as capabilities for
searching agents, compiling messages using appropriate FIPA
protocols and template matching are also included at the lowest
level of agent hierarchy. The simulated agents are given the
capability to interface with the simulation engine, by compiling
messages using the appropriate ontology, or to interact with
other agents in forming and executing a group task. Moreover,
the simulated agents may subscribe to be notified when an agent
of a given type is instantiated, given some constraints.

To increase the flexibility of the platform, we have designed
the simulator to require very little knowledge of the overall
simulation environment. Each simulator is only given the graph
model of the area that it will simulate and the simulation engine
that it will use in order to orchestrate the simulation evolution.
In addition to that, the simulator maintains a set of internal
variables which reflect the current state of the simulation, and a
number of passive communication links for incoming requests.
This scheme allows for very high flexibility in the modelling of
different areas, regardless of their complexity and size. Finally,
despite the fact that each simulator is not aware of the presence
of other simulators, it is able to determine its neighbours, that
is the simulators that are responsible for adjacent areas. This is
achieved by allowing each simulator agent to advertise its edge
nodes and request to be notified when other simulator agents
have an identical edge node. Events are processed upon arrival
with no prior coordination or negotiation.

Our simulation platform is designed so as to perform
batch simulations and conduct performance evaluation of
emergency response systems and algorithms. However, it can
also provide a graphical user interface that combines the
majority of its features into a more pleasant visual form. This
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interface makes the simulation environment highly interactive
as it can dynamically alter the simulation scenario. Moreover,
this interface can visualize statistical information, such as
the average evacuation time, the path followed during the
evacuation and the fire expansion rate, and can also maintain
the history of the agents’ actions so that they can be replayed
later.

Our agents are mobile and move inside the computer network
either in an automated fashion, or according to the user’s request.
In our simulation experiments shown in a subsequent section,
we assume that all agents are instantiated on the same computer
as the simulator that simulates their current location. As soon as
they move to a different simulated area, they physically move
to the new computer as well. In our platform, entities move
transparently inside the network and maintain their state during
this transfer. As soon as the agents reach their goal and no other
action is required, they exit the platform.

4. A DECISION SUPPORT SYSTEM FOR BUILDING
EVACUATION

We have used the DBES in order to evaluate a system geared
towards decision support for emergency situations in buildings.
In the next sections we give a description of the system,
present the algorithm that is used to provide decision support
and evaluate our approach using the DBES. Many of the
ideas that we develop here find their origins on earlier work
concerning the simulation of smart adaptive agents that take
on-line decisions based on locally available information [53–
56]. More sophisticated routing techniques are also discussed
in [57]. One area that we have not pursued is the possibility of
conducting simulations with a visually realistic representation
as suggested in [58].

During a crisis, the occupants of a building will not be
aware about the safest routes that lead to an exit, and even
if they are familiar with the building’s layout, a hazard (such
as a fire) may be spreading in different locations inside the
building [59]. This effectively means that the safest exit path
changes as the evacuation procedure evolves. We propose a
system that computes the best evacuation routes in real-time
and informs the evacuees accordingly. The system consists of a
number of decision nodes (DN) and of a network of sensors. The
DNs are positioned in specific locations in the building. Their
role is to provide directions to the evacuees regarding the best
available exit, based on real-time information coming from the
sensor network. An underlying communication network links
the DNs and the sensors. The recommendations of the DNs are
computed in a distributed manner, at each DN, and are then
communicated to the evacuees or emergency personnel. This
can be achieved in the form of ‘smart panel’ indicators installed
on the DNs, or as information sent wirelessly from the DNs
to handheld devices. Figure 4 depicts a simulation scenario
where the decision support system is used inside the DBES.

FIGURE 4. The decision support system implemented in the
evacuation simulation platform. The arrows correspond to directions
from the ‘smart panel’ indicators.

FIGURE 5. A sensor that monitors hazard intensity on a link between
two DNs.

A fire is spreading inside while the occupants try to find the
best available exit. The arrows correspond to directions from
the smart panel indicators positioned inside the building. Each
arrow points towards the direction a civilian should follow in
order to reach the best available building exit.

When designing the system, we made the assumption of a
known building layout, since such a system will be pre-deployed
in the building. Based on this assumption, we construct a graph
G. The vertices of the graph correspond to locations where
people can congregate, such as rooms, corridors and doorways.
The length l(i, j) of a link between two vertices represents its
physical distance. Each sensor is associated with each link (i, j)

and monitors its hazard intensity H(i, j). When there is no
hazard present, H(i, j) is equal to 1 and it will increase with
the observed hazard. The ‘effective length’ L(i, j) of a link is
defined as L(i, j) = l(i, j) ·H(i, j). Each DN is placed at each
of the vertices of the graph G. In practice, however, there could
be fewer DNs than nodes in G, with each DN being in charge
of providing decisions for a set of contiguous locations of G.
Figure 5 illustrates how a sensor node can be used in order to
determine the value of the effective length between two DNs.

4.1. The algorithm at the core of the system

Instead of using a centralized system to compute the value
of the effective length of the paths to an exit, we propose a
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distributed decision system for the building evacuation itself
which is similar to principles developed in [56, 60], and inspired
by the distributed shortest path algorithm [61–63] and adaptive
routing techniques such as the Cognitive Packet Network [64].
It is executed by each DN, in a distributed manner, and its output
is the next DN that is on the best available path towards an exit.

A DN, at vertex u, stores the following information:

(i) the effective length L of all the links that are incident to
u;

(ii) for every neighbour n of u, the effective length of the
path y from n to an exit e : L(n, e);

(iii) the effective length of the shortest path from u to an exit
e: L(u, e);

(iv) the next suggested DN.

The initial value for L(u, e) is set to zero if node u is an exit,
otherwise it is set to infinity. A DN does not keep information
regarding the effective length L of the paths towards all the
available exits. As the algorithm is executed, this information is
propagated from the exits to the DNs. Each DN will eventually
select the exit that minimizes the value of the effective length
of the path from the node to the exit. The selection of an exit
depends on the location of the DN, the locations of the exits and
the spreading of the hazard.

When the decision support system is in operation, each DN
at u periodically executes the decision support algorithm and
provides a suggestion to the evacuees who are in its vicinity. The
suggestion is of the form “go to v”, where v is a neighbour of u.

More specifically, each DN periodically:

(i) Sends to every neighbour n of u, the effective length of
the path from u to the exit e : L(u, e);

(ii) Requests the hazard intensity H from each sensor node
that monitors a link incident to u;

(iii) Calculates the effective lengths L(u, n) ,where n is a
neighbour of u;

(iv) Updates the effective length L(u, e) of the shortest path
to the exit as follows:

L(u, e) = min{L(u, n)+L(n, e) : ∀neighbours n of u};
(v) Sets the next suggested DN v as follows:

v = argmin {L(u, n) + L(n, e): ∀ neighbours n of u}.

4.2. Implementation and evaluation of the system in the
DBES

We have implemented the proposed decision support system
using the DBES, in order to evaluate its performance. In the
case where the system is used, each civilian decides its next
destination based on the recommendation of the respective DN.
When the decision support system is not used, we assume that
each evacuee moves according to an initial knowledge of the
building structure and becomes aware of the hazard when he

FIGURE 6. The building used in the evacuation scenarios.

FIGURE 7. Simulation performance in centralized and distributed
settings.

approaches a location close to it. Figure 4 depicts the decision
support system being used inside the DBES. Each arrow points
towards the direction a civilian should follow in order to reach
the best available building exit. In the evacuation scenarios we
consider the three-storey building depicted in Fig. 6.

The first part of our evaluation investigates how the
distribution of the simulation platform affects the execution time
of an evacuation scenario. We have tested our system both in a
centralized and in a distributed simulation configuration. In the
distributed setting, the number of machines is each time equal to
the number of floors. Figure 7 shows the simulation execution
time for 200 simulation runs. We have run various emergency
scenarios, with the number of floors varying from one to three.
The number of civilians per floor is 20. As we can observe, by
simulating each building floor on a different machine we obtain
faster simulation execution times.
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FIGURE 8. Performance evaluation of the decision support system for different algorithm execution frequencies. (a) Percentage of successfully
evacuated civilians versus simulation time. (b) Percentage of fatally injured civilians.

The second part of the evaluation measures the efficiency of
the system during various evacuation scenarios inside a three-
storey building. The building occupancy is 10 civilians per floor
and the exit is located on the ground floor, while a fire starts at
the first floor of the building We tested our-system for different
cases of the algorithm execution frequency. We conducted 200
simulation runs for each case, with different initial civilian
locations and different fire-spreading rates each time.

Figure 8a illustrates the percentage of evacuees who have
exited the building versus the evacuation time. We can note that
when the system is in use, the civilians evacuate the building
faster. This is verified by the slope of the respective curves.
Furthermore, the use of the decision support system results in a
higher percentage of safely evacuated civilians. The percentage
of fatally injured evacuees is shown in Fig. 8b. We can again
verify that the use of the decision support system minimizes
the casualties during the emergency situation and provides
better results compared with the case where the system is not
present. We should also note that a high value of the execution
frequency results in a higher percentage of safely evacuated
civilians, as can be verified by Fig. 8a. This is due the fact
that the propagation of the changes in the environment depends
on the execution frequency. A high value for the algorithm
execution frequency results in a more adaptive system which
is able to give fast, correct suggestions to the evacuees. Lower
execution frequencies, however, result in inferior performance.
The changes in the environment are due to the fire that is
spreading inside the building. The spreading mechanism is
similar to the one used in our earlier work on emergency
simulation [17, 18, 65, 66], and is based on a Bernoulli trial
model that uses a graph to propagate fire through the building.
The speed at which evacuation paths become unsafe depends
on that hazard spreading rate and the initial location of the
fire. In the case where a fire starts inside a room, the majority
of evacuation paths will not be affected (except the ones

corresponding to civilians located inside the room). If, however,
a fire starts near one of the building exits or along a corridor that
belongs to one or more evacuation paths, escape routes will be
affected and the occupants should choose another evacuation
route in the course of the evacuation procedure. Further work
will be useful to evaluate how well such approaches compare
with random or misinformed decisions [60], and also to develop
appropriate mathematical models that help compute the actual
time it takes to reach a safe evacuation point in a random and
dangerous context [67, 68]. Some of the distributed computing
and autonomic network infrastructure needs of such decision
systems are discussed in [69–72]. The optimal allocation of
resources, such as emergency equipment or personnel, has also
been considered in [73, 74].

5. PERFORMANCE OF THE DISTRIBUTED
SIMULATION PLATFORM

In this section we present the results obtained by a series of
simulation runs in a network of five Linux 2.5 GHz computers
with 4 GB RAM each, using a dedicated network. In these
scenarios we simulated a three-storey building with two exits
on the ground floor, where each floor was connected with the
one above it with three different staircases, as depicted in Fig. 6.
Each area operated on a different computer and had a number
of agents to handle. The purpose of the individual agents is to
evacuate the building by choosing the path towards their nearest
exit. The results will demonstrate that the distributed simulation
approach we adopted favours the simulation performance
without significantly affecting the simulation results. We also
compare our results with the case where a single simulator is
responsible for the whole area.

Figure 9a and b show the effect of synchronization among the
simulators and how it affects both the total execution time and
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FIGURE 9. How different population settings affect the simulation performance and consistency of the simulation results. (a) Synchronization
period versus simulation consistency in different population settings. (b) Synchronization period versus simulation performance in different
population settings.

the consistency of the simulation results1 in different building
occupancy settings. These figures verify that scenarios that
involve more agents take more time to complete. At the same
time, the error that is introduced during the simulation increases
as the synchronization period increases, a phenomenon that
is clearer in lower-populated scenarios. The reason for this is
that during higher-populated scenarios the simulation evolution
is done in smaller time steps. External arrivals thus place the
new agents in relatively the same time span at each execution.
However, when the simulation involves fewer agents, as soon
as each agent evacuates the simulation progresses even faster as
less events are in the queue. This renders the placement of each
new external arrival volatile.

To demonstrate the benefit of distributing the simulation in
individual simulators, we present Fig. 10a and b, which depict
a more complex scenario involving a five-storey building but
having various simulator allocation settings: one simulator per
computer (which is a fully distributed setting), three in the same
computer and two on others etc. We can clearly see that there
is a linear performance increase, something expected as we are
now taking advantage of spatial and temporal independence of
simulation events. At the same time, the error in the results
is always lower than 3.5% as seen in Table 1, and was only
experienced in one of the scenarios with 10 agents per area. As
explained before, we expect that as the simulation gets more
complicated, this error will drop significantly since scenarios
involving more agents make the simulation progress in tighter
time steps and the possible error caused by an external event is
reduced. Fewer agents make the simulation progress faster, as

1Consistency of the simulation results refers to how consistent each
simulation run is. The confidence level that is shown in the figure illustrates
the range of the results.

the computational load is decreased and the potential error is
increased.

We should also note that synchronization at regular intervals
improves the simulation performance. This is explained by the
fact that if all simulation agents and simulators are operating
on a single computer, then this computer has to control the
entire load that is generated during the simulation. However,
since the simulators operate in parallel and not in a sequential
fashion, the transmission and reception of a message from
any simulated agent is affected by the overall load. Having
no synchronization scheme would render the consistency of
the simulation results highly variable, and each individual
simulation execution unreliable.

However, in the case of a too frequent synchronization
scheme, i.e. every 100 ms in virtual time, the simulation
performance resembles the conservative approach as the
simulators spend more time synchronizing than serving
simulation-related tasks. This is clearly seen in Fig. 9b, where
we simulate 30 agents per building area. Having a 500-
ms synchronization scheme would require a 90-s simulation
run, while a 20-s synchronization scheme requires 71 s,
increasing the performance by 20%. On the other hand, further
increasing the synchronization period has negative effects as it
resembles the no-synchronization scheme.

The errors in the simulation are related to the fact that as
soon as an agent wishes to move from one simulator to another,
then for a period of time this agent does not belong to any of the
simulators but is in the process of registering to the new one. The
time of arrival of the registration message significantly affects
the consistency of the result. As seen in our results, there is an
optimal selection of a synchronization period, which in our case
is every 5–10 s.

The simulation performance and the level of accuracy when
having a distributed simulation rather than a centralized one
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FIGURE 10. How the distribution setting affects the simulation performance and consistency of the simulation results, in different population
scenarios. (a) How distributing the simulated entities improves the simulation consistency in different population scenarios. (b) How distributing
the simulated entities improves the simulation performance in different population scenarios.

TABLE 1. Summarizing the simulation results in different population and distribution settings, compared to having a single simulator controlling
the total area.

10 agents per area (%) 20 agents per area (%) 30 agents per area (%)

Distribution setting Speed Max Error Speed Max Error Speed Max Error

Centralized – 1.8 – 0.98 – 0.46
Four centralized one distributed 5.15 1.25 4.84 0.38 4.15 0.77
Three centralized two distributed 12.95 3.41 9.76 1.5 8.08 0.93
Two centralized three distributed 20.78 1.15 15.2 1.58 12.15 0.88
Distributed 30.2 1.98 20.21 0.56 16.22 1.17

is shown in Fig. 10a and b. Our simulation scenarios involve
a five-storey building and three different population settings:
10, 20 and 30 civilians per floor. In the first figure we show
how the execution time is affected by distributing the simulated
agents and simulators in more computers. We evaluate a range
of cases, from having all five simulators and the agents in the
same computer, to a fully distributed case where all simulators
and their corresponding agents on a dedicated computer.
Performance-wise, increasing the level of distribution improves
the simulation performance as more independent events can be
simulated at the same time, by independent simulators.As far as
the consistency of our results is concerned, they remain bounded
by the synchronization mechanism, which in this case is every
five virtual seconds.

In Table 1 we present the results that were obtained after
1000 simulations of a five-storey building with different
population settings in an evacuation scenario. In this table
we show the performance increase in different distribution
settings. Comparing the results to the centralized case, we
observe an increase to the simulation performance. For example,

having two simulators distributed and three on the same
computer, when we simulate 20 agents per area, will result
in a performance increase of 9.08% with an accuracy of
1.5%. The accuracy of the simulation results is bounded by
the synchronization scheme, which in this case is five virtual
seconds.

The errors in the consistency of the simulation results are
inherent in the simulation approach that we have adopted. To
clarify this, let us consider the following case. Our example
consists of a network of simulators, each of which simulates
the events of a part of a multi-storey building. Each floor is
assigned to an individual simulator and each simulator simulates
a number of simulated agents, all of which move towards the
exit located on the ground floor. Let us assume that one of the
simulators receives a notification from an agent that arrives from
another simulator (e.g. an agent that arrives to the lower floor via
the stairs).Assume also that this agent left the previous simulator
at a given simulation time. The agents sends a message to the
new simulator, and requests to be put in the simulation queue
at a specific point in virtual time. The time of arrival of this
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message is crucial to the evolution and thus to the accuracy of
the simulation. Since the receiving simulator cannot determine
if an incoming agent is about to arrive, it continues its operation.
Let us now consider two cases: (i) if the network was not loaded
and the processing load of the computer was not high, then the
message is received in a timely manner and the scenario evolves
in a certain way, and (ii) if the message is received with a delay,
then the whole simulation sequence is totally different and the
simulation time is significantly altered. If the point in time that
the arriving agent is referring to is in the past, then the amount
of already executed events are more depending on how late
the agent’s message arrives. However, even if the point in time
that the arriving agent is referring to is in the far future, its
presence in the evacuation scenario may alter the rest of the
agents’ decisions and again alter the simulation evolution.

Moreover, due to the nature of our simulation scenarios, we
expect that such agent–simulator interaction is not a highly
improbable event, as all entities are expected to reach the area
that has the collection points. In the case of having distributed
simulators, the only factor that seems to play a part in this
accuracy issue is the network load. In our experiments, the
simulators were operating on a dedicated network and thus we
have achieved a more controlled environment. In such a manner,
by simply distributing the simulators and the simulated agents,
we are able to gain a 15% performance increase in comparison
to a centralized unsynchronized setting, while at the same time
we are able to gain much more consistent results.

As a final note we elaborate on the distributed nature
of our simulation platform. Our scenarios include a large
number of simulated agents that interact with the simulator
they operate on and make their appropriate actions. In Fig. 10
we show how increasing the number of simulated entities and
simulation areas degrades the simulation performance when
run centrally, and how the performance is increased when
the same entities are simulated in a distributed fashion. Due
to the discrete event simulation approach a larger number of
simulated entities slows down the simulation, as more entities
are to be simulated. However, even if more simulators are being
used, since they operate in parallel, they introduce much higher
processing load which eventually degrades the simulation
performance significantly. Scattering them in a computer
network significantly increases the simulation performance,
while keeping the consistency of the simulation results at
identical levels, if a partial synchronization scheme is adopted.
What is also worthy of mention is that distributed simulation is
not a fully parallelized problem, and thus we do not expect
a speed-up that is analogous to the number of processors
available. Furthermore, it is expected that the computation
load is not at all balanced not only in the beginning but also
throughout the evolution of the simulation. As all entities need
to evacuate from a single position of the whole simulated area,
all of the agents will have to move from their position (and thus
from their initial simulator) to the exit and the simulator that
contains this node. Eventually, this becomes the bottleneck of

the simulator. However, we claim that better allocations of parts
of the simulated area will generate better results. Finally, in the
ideal scenario when all individual areas contain a collection
point, then we could expect an even higher speed up.

6. CONCLUSIONS

We have presented a distributed simulation system that has been
designed and implemented for building evacuation simulations
and emergency response scenarios in confined environments.
The underlying principles and the building blocks of the
simulation system have been discussed, in particular the
system’s flexibility to incorporate different types of entities that
need to be simulated, their interactions and the strategies that
each entity may be using. The possibility of distributing the
simulation system on multiple servers has also been detailed.
We have illustrated the use of the system via simulation
examples and results that show that the proposed approach
provides a very good level of scalability that can support a
large number of individual simulated agents with simulator
subsystems operating in a distributed mode. The simulation
of smart entities that use adaptive algorithms has also been
illustrated.

In future work we will investigate the incorporation of
richer user interfaces, and we will also investigate techniques
to improve the performance of the simulation scenario by
identifying ‘short-cuts’ in the simulated events. For the latter
case, subsets of simulated events that are independent of each
other could be automatically identified during a simulation run,
and their execution could proceed in parallel so as to provide
high throughput for large numbers of events and simulated
entities.
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