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f Department of Civil and Environmental Engineering, ITM University, Gurgaon, Haryana 122017, India

Received 18 September 2014; received in revised form 16 December 2014; accepted 9 March 2015
Available online 2 April 2015

Communicated by: Associate Editor Christian A. Gueymard
Abstract

In this paper, the accuracy of a hybrid machine learning technique for solar radiation prediction based on some meteorological data is
examined. For this aim, a novel method named as SVM–FFA is developed by hybridizing the Support Vector Machines (SVMs) with
Firefly Algorithm (FFA) to predict the monthly mean horizontal global solar radiation using three meteorological parameters of sun-
shine duration (�n), maximum temperature (Tmax) and minimum temperature (Tmin) as inputs. The predictions accuracy of the proposed
SVM–FFA model is validated compared to those of Artificial Neural Networks (ANN) and Genetic Programming (GP) models. The
root mean square (RMSE), coefficient of determination (R2), correlation coefficient (r) and mean absolute percentage error (MAPE)
are used as reliable indicators to assess the models’ performance. The attained results show that the developed SVM–FFA model pro-
vides more precise predictions compared to ANN and GP models, with RMSE of 0.6988, R2 of 0.8024, r of 0.8956 and MAPE of 6.1768
in training phase while, RMSE value of 1.8661, R2 value of 0.7280, r value of 0.8532 and MAPE value of 11.5192 are obtained in the
testing phase. The results specify that the developed SVM–FFA model can be adjudged as an efficient machine learning technique for
accurate prediction of horizontal global solar radiation.
� 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

The long-term knowledge of solar radiation at any par-
ticular locations is essential for variety of areas such as
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agricultural, hydrological, ecological as well as solar energy
applications. It has been proved that the abundant poten-
tial of solar energy can play an important role to meet
the ever-growing energy demand of the world (Ming
et al., 2014; Akikur et al., 2013; Azoumah et al., 2011;
Bajpai and Dash, 2012; Hasan et al., 2012). Among
different types of renewable resources, solar energy has
attracted enormous attention because not only it is
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Nomenclature

ANFIS adaptive neuro fuzzy inference system
ANN Artificial Neural Network
FFA Firefly Algorithm
FG fuzzy genetic
GP Genetic Programming
H monthly mean global solar radiation

(MJ/m2/day)

�n monthly mean sunshine duration hour (h)
RBF radial basis function
RMSE root-mean-square error
R2 coefficient of determination
SVM Support Vector Machine
T max monthly mean maximum temperature (�C)
T min monthly mean minimum temperature (�C)
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sustainable, but also it is abundant and environmental
friendly (Akikur et al., 2013). Solar energy exploitation is
beneficial in abatement of prevalent global warming, since
it does not emit CO2 or hazardous greenhouse gases. In
electricity production, solar radiation study is a pre-
requisite for design and prediction of energy output of
solar conversion system. The best way to obtain solar
radiation data is from measurements taken remotely at a
particular location using designated measuring instru-
ments; due to required high cost for calibration and main-
tenance of the instruments, solar radiation data are limited
in many meteorological stations around the world (Hunt
et al., 1998). The difficulties and uncertainty involve in
the measurement of global solar radiation have resulted
in development of so many models and algorithms for its
estimation from some routinely measured meteorological
variables consisting sunshine hour, maximum, minimum
and average air temperature, relative humidity, cloud fac-
tor, etc. In Nigeria, numerous of the government owned
meteorological stations have no record of solar radiation
data, even where the record are available there are some
missing days or month without record possibly due to
improper calibration of measuring equipment employed.
Over the past years, a vast number of methods including
the empirical models (Angstrom, 1924; Hargreaves and
Samani, 1982; Bristow and Campbell, 1984; Besharat
et al., 2013; Halawa et al., 2014), satellite-derived model
(Pinker et al., 1995; Viana et al., 2011) and stochastic algo-
rithm model (Markov chain) (Hocaoğlu, 2011; Amato
et al., 1986; Aguiar et al., 1988) have been developed for
estimating the global solar radiation on a horizontal sur-
face. Empirical models have been widely developed and
used to correlate the global solar radiation with various
routinely measured meteorological and geographical
parameters. In many researches, the parameters such as
sunshine duration, maximum and minimum temperatures
have been recognized as the most proper elements for solar
radiation prediction (Besharat et al., 2013; Trnka et al.,
2005; Chen and Li, 2013; Wu et al., 2007). However, due
to inaccessibility of sunshine duration data in some loca-
tions, some studies have proved that good estimations
can be attained by using measured maximum and mini-
mum temperature as inputs (Hargreaves and Samani,
1982; Bristow and Campbell, 1984; Liu et al., 2009).
Although, application of satellite-based methods seems
promising for estimation of solar radiation over a large
region, their main drawbacks are the required cost and lack
of sufficient historical data because it is relatively new.
These methodologies have shown low performance when
forecasting/modeling data on long term basis; they are also
not suitable when there are some missing data in the
database. However, one way to overcome these problems
is utilization of artificial intelligence techniques.

In Nigeria, several works have been carried out on pre-
dictions of solar radiation using the conventional empirical
models (Ezekwe and Ezeilo, 1981; Sambo, 1986; Akpabio
and Etuk, 2003; Layi Fagbenle, 1993; Ajayi et al., 2014).
Nevertheless, due to necessity of accurate and reliable solar
radiation, artificial and computational intelligence tech-
niques have been broadly applied to estimate solar radia-
tion in many regions around the word. Al-Alawi and Al-
Hinai (1998) predicted solar radiation for a location with
no availability of measured data. They used monthly mean
daily values of temperature, pressure, relative humidity,
sunshine duration hours and wind speed as inputs for
Artificial Neural Networks (ANN) technique to predict
global solar radiation. They compared the results with
empirical methods model and found more accuracy for
ANN-based model. Mellit et al. (2006) employed the
combination of neural and wavelet network to forecast
daily solar radiation for photovoltaic (PV) sizing
application. In their study, wavelets served as activation
function. Their results of the forecast demonstrated the
more favorable performance of the approach compared
to other neural network models. In Jiang (2009), a ANN
model was developed to estimate monthly mean daily solar
radiation for eight typical cities in China. The achieved
results were compared to those of conventional empirical
models. The statistical analysis results indicated a good
correlation between estimated values by the ANN model
and the actual data with higher accuracy than other
empirical models.

Behrang et al. (2011) applied particle swarm optimiza-
tion (PSO) technique to estimate monthly mean daily
global solar radiation on a horizontal surface for 17 cities
in different regions of Iran. Their results showed better per-
formance of PSO-based models compared to the tradi-
tional empirical models. Mohandes (2012) employed PSO



Table 1
The geographical information of the nominated locations.

Location Zone Latitude (�N) Longitude (�E) Altitude (m)

Iseyin SW 7.96 3.60 330
Maiduguri NE 11.83 13.15 353.8
Jos NC 9.92 8.9 1217

SW (South-West); NE (North-East); NW (North-Central).
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algorithm to train ANN in other to model the monthly
mean daily global solar radiation values in Saudi Arabia.
Different parameters such as month number, sunshine
duration, latitude, longitude, and altitude of the location
were considered as inputs. The developed hybrid PSO–
ANN model showed a better performance compared to
back-propagation trained neural network (BP-NN).
Benghanem et al. (2009; Ornella and Tapia, 2010) devel-
oped six ANN-based models to estimate horizontal global
solar radiation at Al-Madinah in Saudi Arabia. They uti-
lized different combinations of input parameters consisting
sunshine hours, ambient temperature, relative humidity
and the day of year. Their results showed that the model
with higher accuracy is dependent upon sunshine duration
and air temperature. Ramedani et al. (2014; Jain et al.,
2009) employed support vector regression (SVR) technique
to develop a model for prediction of global solar radiation
in Tehran, Iran. They used two SVRs models of radial
basis function (SVR-rbf) and polynomial function (SVR-
poly). They found more superiority for SVR-rbf technique.
In another study, Ramedani et al. (2014; Bao et al., 2013)
performed a comparative investigation between fuzzy lin-
ear regression (FLR) and support vector regression
(SVR) techniques to predict global solar radiation in
Tehran, Iran. They found that SVR-rbf approach enjoy
superior performance compared to FLR. Also, in some
studies, different techniques were combined to propose a
hybrid approaches with more accuracy. Wu et al. (2014;
Friedrichs and Igel, 2005) developed a genetic algorithm
combing multi-model framework to predict solar radiation.
Bhardwaj et al. (2013; Lorena and De Carvalho, 2008) pro-
posed a hybrid approach which includes hidden Markov
models and generalized fuzzy models to estimate solar irra-
diation in India. They assessed the influence of different
meteorological parameters for estimation of solar radiation
using the developed model. Wu et al. (2014; Hsu et al.,
2003) combined the Autoregressive and Moving Average
(ARMA) model with the controversial Time Delay
Neural Network (TDNN) for prediction of hourly solar
radiation. Salcedo-Sanz et al. (2014; Chung et al., 2003)
assessed the capability of a novel Coral Reefs
Optimization–Extreme Learning Machine (CRO–ELM)
algorithm to predict the global solar radiation at Murcia
(southern Spain) using different meteorological data.
Hung et al. (2013; Chapelle et al., 2002) developed a hybrid
Auto Regressive and Dynamical System (CARDS) model
to forecast hourly global solar radiation in Mildura,
Australia.

Generally, Support Vector Machines (SVMs) is a type of
machine learning technique that has gained importance in
environmental related applications (Ornella and Tapia,
2010; Jain et al., 2009). SVM is a learning algorithms
employing high dimensional feature. The correctness of an
SVM model is to a great extent relies on determination of
its model parameters. Even though organized strategies
for selecting parameters are important, model parameters
alignment also need to be made. In the past, although some
researchers have applied various conventional optimization
algorithms to select these parameters, the achieved results
have not been so effective due to the complex nature of the
parameters (Bao et al., 2013; Friedrichs and Igel, 2005;
Lorena and De Carvalho, 2008). Grid search algorithm
(Hsu et al., 2003) and gradient decent algorithm (Chung
et al., 2003; Chapelle et al., 2002) are among the algorithms
that have been employed earlier. Computational complexity
is a major drawback of grid search algorithm; thus, it only
applicable to area involving fewer parameter selection. On
the other hand, grid search algorithm is usually prone to
local minima. In most optimization problems, multiple local
solution do exist, but evolutionary algorithms seems to be
the best approach due to the fact that they are capable of
providing global solution to such optimization problems.

In this study, a hybrid approach by integrating Support
Vector Machine (SVM) and Firefly Algorithm (FFA) has
been developed to predict the global solar radiation. The
Firefly Algorithm (FFA) is applied to determine optimal
SVM parameters. The main objective of the study is to
investigate the suitability of the proposed combined
method (SVM–FFA) for prediction of monthly mean daily
global solar radiation on a horizontal surface. To achieve
this, three locations distributed in different regions of
Nigeria have been considered to analyze the influence of
weather conditions on the capability of the developed
approach. Three widely available meteorological parame-
ters of sunshine duration, maximum air temperature and
minimum temperature are considered as inputs to predict
the global solar radiation. These inputs are chosen because
of their high availability in most areas and their strong cor-
relations with the global solar radiation. The motivation
behind this investigation is centered upon the significance
of reliable solar radiation data in many applications includ-
ing agricultural productions, hydrological and ecological
studies as well as assessments and prediction of energy out-
put of solar systems. Also, in most cases the solar radiation
data are not readily available due to several issues. To vali-
date the precision of developed SVM–FFA approach its
capability is compared to Artificial Neural Network
(ANN) and Genetic Programming (GP).
2. Materials and methods

2.1. Descriptions of study sites and data set

In this study, long-term monthly average daily global

solar radiation on a horizontal surface (H ), sunshine
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duration (�n), maximum air temperature (T max) and mini-

mum air temperature (T min), for the period of 21 years from
1987 to 2007 for three sites of Iseyin, Maiduguri and Jos
distributed in different regions of Nigeria were used.
These data were measured at respective metrological sta-
tion located in each sites courtesy of the Nigerian
Meteorological Agency (NIMET) NIMET, 2014. The geo-
graphical information of the selected sites is presented in
Table 1. Also, Fig. 1 shows the locations of the considered
sites on the map of Nigeria. According to NIMET
(NIMET, 2014), the measured solar radiation data were
recorded using Gunn-Bellini radiometer. This instrument
produce a time-oriented parameter of solar radiation fall-
ing on a black body by measuring volume of the liquid dis-
tilled in a calibrated tube (Ajayi et al., 2014; McCulloch
and Wangati, 1967). To measure the sunshine duration,
Campbell strokes sunshine recorder were used. Also, mini-
mum and maximum dry bulb thermometers were used to
measure both maximum and minimum air temperatures
at the selected stations. The monthly mean daily data used
for this research work were divided in two sets of training
and testing. For the experiments, 80% (202 data set) for the
period 1987–2003 were used for sample training and the
remaining 20% (50 data set) in the period 2004–2007 are
used for testing.
Fig. 1. Nigeria map showing the locati
The variation of long-term averaged monthly mean
daily horizontal global solar radiation, sunshine duration,
maximum ambient temperature and minimum ambient
temperature is shown in Fig. 2(a–d) for one of the sites con-
sidered in the study (Iseyin). From this figure, it can be seen
that the variation of each parameters are closely related to
solar radiation data. The annual mean solar radiation of
this site is 16.34 MJ/m2/day, while the annual mean bright
day sunshine hour found to be 5.5 h, with highest value
(7 h) observed in November and lowest (3.2 h) in August.
The monthly mean daily maximum temperature ranges
between 27.4 �C in August and 35.5 �C in February, while
the minimum value ranged from 20.3 �C in January to
23.6 �C in March.
2.2. Support Vector Machine (SVM)

Given a set of data points represented by = fxi; dign
i ,

where xi is the input space vector of the data sample, di

is the target value and n is the number of data points.
Support Vector Machine (SVM) equations based on
Vapnik’s theory (Vapnik and Vapnik, 1998; Yang et al.,
2009; Vapnik, 2000) approximates the function as:

f ðxÞ ¼ wuðxÞ þ b ð1Þ
ons of the considered case studies.
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Fig. 2. Mean monthly distribution of (a) solar radiation; (b) sunshine hour; (c) minimum temperature; (d) maximum temperature.
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RSVMsðCÞ ¼
1

2
kwk2 þ C

1

n

Xn

i¼1

Lðxi; diÞ ð2Þ

where u(x) represents high dimensional-space features that
map the input space vector x, w is a normal vector, b is a
scalar, and C 1

n

Pn
i¼1Lðxi; diÞ represents the empirical risk.

The parameters w and b can be estimated by minimization
of regularized risk function after introduction of positive
slack variables ni and n�i that represent upper and lower
excess deviation (Vapnik and Vapnik, 1998).

Minimize RSVMsðw; n�; nÞ ¼
1

2
kwk2 þ C

Xn

i¼1

ðni þ n�i Þ ð3Þ

Subject to

di � wuðxiÞ þ bi 6 eþ ni

wuðxiÞ þ bi � di 6 eþ n�i
ni; n

�
i P 0; i ¼ 1; . . . ; l

8>>><
>>>:

where 1
2
kwk2 represent the regularization term, C is the

error penalty factor used to control the trade-off between
the regularization term and empirical risk, e is the loss
function, which equates to approximation accuracy of the
training data point, and l is the number of elements in
the training data set.

Eq. (1) can be solved with the introduction of Lagrange
multiplier and optimality constraints, hence obtaining a
generic function given by
f ðxÞ ¼
Xl

i¼1

ðbi � b�i ÞKðxi; xjÞ þ b ð4Þ

where K(xi, xj) = u(xi)u(xj) and the term K(xi, xj) is called
the kernel function, which is an inner product of the two
vector xi and xj in the feature space u(xi) and u(xj),
respectively. This inner product space is a vector space with
an additional structure called an inner product. This addi-
tional structure associates each pair of vectors in the space
with a scalar quantity known as the inner product of the
vectors. Inner products allow the rigorous introduction of
intuitive geometrical notions such as the length of a vector
or the angle between two vectors. The main purpose of
SVMs is to carry out data correlation via non-linear
mapping. Kernel methods enables to operate in a high-
dimensional, implicit feature space without ever computing
the coordinates of the data in that space, but rather by
simply computing the inner products between the images
of all pairs of data in the feature space. This operation is
often computationally cheaper than the explicit com-
putation of the coordinates. This approach is known as a
direct computation method of a kernel function, denoted
by K. The results obtained in the higher-dimensional
feature space correspond to the results of the original,
lower-dimensional input space.

There are four basic kernel functions provided by SVM,
namely, lineal, sigmoid, polynomial, and radial basis func-
tions. But over the years, radial basis function (RBF) has
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been proved to be the best kernel function due to its com-
putationally efficiency, simplicity, reliability, ease of adap-
tation to optimization and other adaptive techniques as
well as its adaptability in handling parameters that are very
complex (Yang et al., 2009; Rajasekaran et al., 2008; Wu
and Wang, 2009). RBF kernel function only need the solu-
tion of a set of linear equations instead of the lengthy and
computationally demanding quadratic programming prob-
lem for its training (Shamshirband et al., 2014). The non-
linear radial basis kernel function is defined as:

Kðxi; xjÞ ¼ eckxi�xjk2 ð5Þ

where xi and xj are vectors in the input space, i.e. vectors of
features computed from training or test samples. Parameter
c is represented as c ¼ � 1

2r2, where r denotes Gaussian

noise level of standard deviation.
The three parameters associated to RBF Kernels are c, e

and C. The accuracy of SVM model is principally depen-
dent on model parameter selection. In our scheme, a
default value of e = 0.1 seemed to perform well. To select
user-defined parameters (i.e. c, e and C), a large number
of trials were carried out with different combinations of
C and c for the radial basis function kernel.
Fig. 3. Flow chart of the proposed FFA-based parameter determination
approach for the SVM classifier.
2.3. SVM parameters selection using firefly optimization

algorithm

Firefly Algorithm (FFA) is a metaheuristic search
algorithm, which is based on the social dashing behavior of

fireflies in nature (Łukasik and _Zak, 2009; Yang, 2010a,b).
The two main issues in FFA are the variation of light inten-
sity and formulation of attractiveness. In the case of optimal
design considering maximization of objective function, the
objective function is proportional to the brightness or light
intensity emitted by a firefly. The Gaussian form of the light
intensity I with varying distance can be written as

I ¼ I0e�cr2 ð6Þ

where I is the light intensity at distance r from a firefly, I0

represent initial light intensity, i.e. when r = 0 and c is the
light absorption coefficient which value varies between 0.1
and 10, As a firefly’s attractiveness is proportional to the
light intensity observed by adjacent fireflies, the attractive-
ness x at a distance r from the firefly is given as:

xðrÞ ¼ x0e�cr2

; ð7Þ

where x0 is the attractiveness at r = 0. Cartesian distance
between any two fireflies i and j at xi and xj, respectively,
is represented as:

rij ¼ kxi � xjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
ðxi;k � xj;kÞ

q
; ð8Þ

where n denotes the dimensionality of the problem, xi,k is
the kth component of the spatial coordinate xi of the ith
firefly and xj,k is the kth component of the spatial
coordinate xj of the jth firefly. The movement of firefly I,
attracted to another brighter firefly j can be represented as:

xi ¼ xi þ x0e�cr2ðxj � xiÞ þ aei ð9Þ

where the first term in Eq. (9) is due to the attraction, the
second term represents the randomization with a as ran-
domization coefficient whose value is lies between 0 and
1. And ei the random number vector derived from a
Gaussian distribution. Fig. 3 depicts the flow chart for
obtaining the optimal SVM parameters.

2.4. Input parameters

The capability of the SVM to make good estimations is
dependent on input parameters selection. In this study, the

monthly mean daily values of �n; T min and T max for the period
of 1987 to 2007 were used as inputs to generate the SVM
model. The criteria for choosing these meteorological
parameters as inputs include their high availability in most
areas and their strong correlations with the horizontal glo-
bal solar radiation. Thus, it is anticipated that the developed
models using these inputs provide favorable precision to
predict the global solar radiation. Fig. 4 presents schematic
diagram of the proposed SVM–FFA global solar radiation
model based upon the considered input parameters.

In order to obtain reliable evaluation and comparison,
SVM model are tested with data set that have not been
used during the training process. The statistical parameters
(minimum value, maximum value, mean, standard devia-
tion and variation coefficient) for data sets are calculated
and given in Tables 2. The standard deviation in the table



Fig. 4. Schematic diagram of the proposed SVM–FFA model for global solar radiation prediction.

Table 2
Statistical parameters for data sets.

Statistical parameter Iseyin Maiduguri Jos

�n T min T max �n T min T max �n T min T max

Min 1.30 18.0 22.8 4.40 9.20 28.0 3.10 7.20 22.6
Max 8.40 33.7 37.1 10.8 28.1 42.6 10.7 24.8 33.3
Mean 5.50 21.7 31.6 8.31 20.3 35.2 7.33 15.8 27.8
Std. deviation 1.44 1.31 2.84 1.28 4.72 3.43 1.86 2.98 2.33
Variation coefficient 2.08 1.72 8.067 1.63 11.8 22.3 3.45 8.88 5.41
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indicates the distribution of the data around the mean,
indicating the degree of consistency of the data.
Fig. 5. ANN model use for the validation.
2.5. Artificial Neural Networks (ANN)

Artificial Neural Network (ANN) is a mathematical
model that performs a computational simulation of the
behavior of neuron in the human brain by replicating the
brain’s pattern to produce results based on the learning of
set of training data (Izgi et al., 2012). The multi layer feed-
forward network with a back-propagation learning
algorithm is one of the most popular neural network
architectures. It has been deeply studied and widely used in
many fields (Chen and Jain, 1994; Gardner and Dorling,
1998; Behrang et al., 2010). Typically, a neural network
consists of three layers: (1) an input layer; (2) an output layer;
and (3) an intermediate or hidden layer (Schalkoff, 1997).
The input vectors are e Rn and D = (X1, X2, . . ., Xn)T; the
outputs of q neurons in the hidden layer are
Z = (Z1, Z2, . . ., Zn)T; and the outputs of the output layer
are Y e Rm, Y = (Y1, Y2, . . ., Yn)T. Assuming that the weight
and the threshold between the input layer and the hidden
layer are wij and yj, respectively, and that the weight and
the threshold between the hidden layer and output layer
are wjk and yk respectively, the outputs of each neuron in a
hidden layer and output layer are;

Zj ¼ f
Xn

i¼1

wijX i � hj

 !
ð10Þ

Y k ¼ f
Xq

j¼1

wkjZj � hk

 !
ð11Þ

where f() is a transfer function, which is the rule for map-
ping the neuron’s summed input to its output, and by a
suitable choice it is a means of introducing a non-linearity
into the network design. One of the most commonly used
functions is the sigmoid function, which is monotonic
increasing and ranges from 0 to 1.

For the validation of the performance of the proposed
model, a typical feed forward neural network consisting
of three (3) input, one (1) hidden layer with seven (7) neu-
ron and one (1) output layer were used. The structure of
the neural network is shown in Fig. 5, while Table 3
summarizes the parameters used in the ANN model.
2.6. Genetic Programming (GP)

Genetic Programming (GP) is a systematic and
domain-independent method based on Darwinian theories
of natural selection and survival to approximate the
equation in symbolic form (Koza, 1992). The algorithm
considers an initial population of randomly generated pro-
grams (equations), derived from the random combination
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Table 3
User-defined parameters for ANN.

ANN parameters Activation function

Learning rate Momentum Hidden node Number of iteration

0.2 0.1 3, 6, 10 1000 Continuous log-sigmoid function
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of input variables, random numbers and functions, which
include arithmetic operators (+, �, �, �), mathematical
functions (sin, cos, exp, log), logical/comparison functions,
etc., which have to be appropriately chosen based on some
understanding of the process. This population of potential
solutions is then subjected to an evolutionary process and
the ‘fitness’ of the evolved programs is evaluated.
Individual programs that best fit the data are then selected
from the initial population. The programs that are the best
fit are then selected to exchange part of the information
between them to produce better programs through ‘cross-
over’ and ‘mutation’, which mimics the natural world’s
reproduction process. Exchanging the parts of the best pro-
grams with each other is called crossover, and randomly
changing programs to create new programs is called muta-
tion. The programs that fitted the data less well are dis-
carded. This evolution process is repeated over successive
generations and is driven toward finding symbolic expres-
sions describing the data, which can be scientifically inter-
preted to derive knowledge about the process. The
parameters used per run of GP are summarized in Table 4.

2.7. Model performance evaluation

To assess the success of the SVM models and other
selected techniques, some statistical indicators were exam-
ined as follows:

(1) Root-mean-square error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðP i � OiÞ2

n

s
; ð12Þ
Table 4
Parameters used in GP modeling.

Population size 512

Function set þ;�; �; =;p; x2

Chromosomes 20–30
Head size 5–9
Number of genes 2–3
Linking functions Addition, subt
Fitness function error type RMSE
Mutation rate 91.46
Inversion rate 108.53
Crossover rate 30.56
Homologs crossover rate 98.46
One-point recombination rate 0.2
Two-point recombination rate 0.2
Gene recombination rate 0.1
Gene transposition rate 0.1
(2) Coefficient of determination (R2)

R2 ¼
Pn

i¼1 Oi � Oi

� �
� P i � P i

� �� �2

Pn
i¼1 Oi � Oi

� �
�
Xn

i¼1

P i � P i

� � ð13Þ
; lnðxÞ;

raction
(3) Correlation coefficient (r)

r ¼
Pn

i¼1 Oi � Qi

� �
� P i � P i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Oi � Qi

� �
�
Pn

i¼1 P i � P i

� �q ð14Þ
(4) Mean absolute percentage error (MAPE)

MAPE ¼ 1

n

X x

i¼1

Oi � P i

P i

����
����� 100; ð15Þ
Pi and Oi are known as the experimental and fore-

alues, respectively, while P i and Qi are the mean value
and Oi respectively and n is the total number of test
The RMSE value provides information on the short
performance of the correlation by comparing the

t of deviation of the predicted value from the actual
red value, while R2 and r is a measure that allows

o determine the certainty of the predictions from the
l value. The smaller the value of RMSE and MAPE
e better the performance model and vice versa in
se of R2 and r.
3. Results and discussions

In this study, a hybrid approach by integrating the
Support Vector Machine (SVM) with Firefly Algorithm
(FFA) has been proposed to predict the monthly mean
e x; a x

, arithmetic, trigonometric, multiplication
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Fig. 6. (a) Scatter plots of training data and predicted values using three machine learning models and (b) scatter plots of tested data and predicted values
using three machine learning models.
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global solar radiation on a horizontal surface in three loca-
tions distributed in different parts of Nigeria. Three widely
available meteorological parameters consisting sunshine
duration, maximum and minimum ambient temperatures
have been considered as input elements to simulate the
solar radiation. The suitability level of new hybrid
approach named SVM–FFA is compared to Artificial
Neural Network (ANN) and Genetic Programming (GP).
3.1. SVM model analysis

At the beginning, the SVM network was trained with
measured data by above presented experimental procedure.
After training process the SVM network were tested to
determine the solar radiation. Based on the experiments,
the input parameters (monthly mean value of minimum
temperature, maximum temperature and sunshine dura-
tion) and output (solar radiation) are collected and defined
for the learning techniques. For the experiments, 80% (202
data set) for the period 1987–2003 were used for sample
training and the remaining 20% (50 data set) in the period
2004–2007 are used for testing. We analyzed the SVM
model for solar radiation estimation based on the three
inputs, monthly mean minimum temperature, monthly
mean maximum temperature and monthly mean sunshine
duration hours.

The estimated solar radiation is represented in Fig. 6 in
the form of a scatterplot by three methodologies, SVM–
FFA, ANN and GP. The training data of solar radiation
and predicted values are shown in Fig. 6(a), while
Fig. 6(b) presents testing data of solar radiation and pre-
dicted values by using the three machine learning models.

Finally, Fig. 7(a) and (b) shows comparative forecasting
of solar radiation by SVM–FFA technique with ANN and
GP results. It can be observed that SVM–FFA has better
forecasting abilities for global solar radiation prediction
than ANN and GP methods.
3.2. Performance analysis

In order to evaluate the performance of the proposed
model, experimental work was carried out to determine
the importance of each independent input variable on the
output. Root-mean-square error (RMSE), coefficient of
determination (R2), correlation coefficient (r) and mean
absolute percentage error (MAPE) served to evaluate the
differences between the predicted and actual values for
both SVMs models. Tables 5–7 compares the single
SVM–FFA model with Artificial Neural Network (ANN)
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Fig. 7. Forecasting of solar radiation by SVM–FFA, ANN and GP in (a) training and (b) testing phase.

Table 5
Performance statistics of the SVM–FFA model compares to other methodologies for Iseyin.

RMSE R2 r MAPE

SVM–FFA Training 0.4662 0.8183 0.9046 6.1754
Testing 0.4935 0.7953 0.8918 6.2253

ANN Training 0.4801 0.7895 0.8937 6.6195
Testing 0.5502 0.7457 0.8635 6.9862

GP Training 0.5301 0.7987 0.8885 7.0605
Testing 0.5202 0.7678 0.8762 6.4681

Table 6
Performance statistics of the SVM–FFA model compares to other methodologies for Maiduguri.

RMSE R2 r MAPE

SVM–FFA Training 0.5357 0.8253 0.9084 6.2616
Testing 2.4934 0.2095 0.4577 13.985

ANN Training 0.6317 0.7782 0.8821 6.6821
Testing 2.6083 0.1334 0.3652 16.075

GP Training 0.5522 0.7872 0.8872 6.6035
Testing 2.5498 0.1632 0.4039 15.685
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and Genetic Programming (GP) models for Iseyin,
Maiduguri and Jos site respectively, while Table 8 sum-
marizes the comparison results of the predictions in the
three considered case studies in Nigeria. The results in
Tables 5–8 indicate that the SVM model has the best
capabilities of estimating the solar radiation.

As we can see from Tables 5–7, the performance
capability of our SVM–FFA approach is different between



Table 7
Performance statistics of the SVM–FFA model compares to other methodologies for Jos.

RMSE R2 r MAPE

SVM–FFA Training 1.094 0.7637 0.8739 6.0934
Testing 2.611 0.5852 0.7650 14.347

ANN Training 1.190 0.7112 0.8433 7.0421
Testing 2.979 0.5187 0.7202 17.230

GP Training 1.170 0.6999 0.8366 7.2141
Testing 2.790 0.6233 0.7895 17.474

Table 8
Summary of performance statistics of the SVM–FFA model compares to other methodologies for Nigeria.

RMSE R2 r MAPE

SVM–FFA Training 0.6988 0.8024 0.8956 6.1768
Testing 1.8661 0.5300 0.7280 11.5192

ANN Training 0.7673 0.7596 0.8730 6.7813
Testing 2.0458 0.4659 0.6496 13.4305

GP Training 0.7507 0.7619 0.8708 6.9594
Testing 1.9532 0.5181 0.6899 13.2089

Table 9
Comparison between SVM–FFA models with other models.

Reference Model type Inputs parameters Country of study Coefficient of determination (R2)

Yohanna et al. (2011) Empirical 3 Nigeria 0.608
Ramedani et al. (2014) ANN 7 Iran 0.799
Ramedani et al. (2014) ANFIS 7 Iran 0.801
Ramedani et al. (2014) SVR-rbf 7 Iran 0.790
Present study SVM–FFA 3 Nigeria 0.802
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the three considered sites. In one site the performance is
higher than others. However, the main point is the fact that
the performance of SVM–FFA model was compared to the
ANN and GP models and the achieved results revealed
that SVM–FFA is the superior approach. The accuracy
of the proposed model is also compared with some conven-
tional solar radiation prediction model and several artificial
intelligent (AI) based model as presented in Table 9.
According to the table, the proposed model is seen to give
accurate results than the conventional methods and some
of the previously proposed AI models in terms of
coefficient of determination (R2).

4. Conclusion

In this paper, a new hybrid machine learning approach
for prediction of horizontal global solar radiation is pro-
posed. To achieve this, we combined Support Vector
Machine (SVM) with Firefly Algorithms (FFA) to enhance
the predictions accuracy. The simulation studies using
long-term measured data obtained from Nigerian
meteorological Agency (NIMET) for three sites in different
geopolitical zone of the country have yielded several
conclusions. The main idea of the study centers on
investigation of the feasibility of the proposed hybrid tech-
niques to model the relationship between solar radiation
and some other meteorological parameters. In the pro-
posed model, temperature measurements (minimum and
maximum) as well as sunshine duration serves as the
inputs, and the choice of these input parameters is not
far fetch from the obvious reasons of their high availability
in most areas, their strong correlations with the global
solar radiation, as well as the simplicity and cheapness of
the equipment required for their measurements.

To validate the precision of developed SVM–FFA
approach its capability is compared to Artificial Neural
Network (ANN) and Genetic Programming (GP). It could
be seen from the analysis, the performance of developed
model including the ANN and GP models vary from one
station to another, this is because the model is highly
dependent upon the solar radiation characteristics and
weather conditions of the locations. Basically, solar radia-
tion estimation is totally location dependent; therefore cali-
brating a general model to estimate the solar radiation for
an entire region including several stations would only be
possible option if the climate conditions of the region are
similar. Otherwise, the amount of errors obtained may be
high for some stations with different weather conditions.
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The statistical indicator used for performance evaluation of
the proposed model indicates lower values of RMSE and
MAPE and higher values of R2 and r when compared to
ANN and GP model for all the station considered. The
obtained results by SVM–FFA model were: RMSE of
0.6988, R2 of 0.8024, r of 0.8956 and MAPE of 6.1768 in
training phase while, RMSE value of 1.8661, R2 value of
0.7280, r value of 0.8532 and MAPE value of 11.5192 are
obtained in the testing phase. The achieved results demon-
strated that the proposed hybrid SVM–FFA approach
would be an appealing option to predict global solar radia-
tion since the results were favorable for all considered case
studies despite different climate conditions.

Based on these, the proposed SVM–FFA model can
therefore be adjudged an efficient machine learning
approach for accurate prediction of horizontal global solar
radiation. However, the model is open for further improve-
ments, as several other combinations of meteorological
data such as; air pressure, humidity, sunshine duration,
cloud index and many more can be incorporated into the
model and further analysis of this can be considered as
future study.
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