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Abstract 

A real time control strategy for Fuel Cell Hybrid Vehicles is proposed. The objective is to 

reduce the hydrogen consumption by using an efficient power sharing strategy between the 

fuel cell system (FCS) and the energy buffer (EB). The energy buffer (battery or 

supercapacitor) is charge-sustained (no plug-in capabilities). The real time control strategy is 

derived from a non-causal optimization algorithm based on optimal control theory. The 

strategy is validated experimentally with a Hardware-in-the-Loop (HiL) test bench based on a 

600W fuel cell system. 

 

Keyword: Hybrid vehicle; Fuel Cell System; Optimal Control; Real Time Control; 

Experimental Results; Test Bench 

 

1.  Introduction 

Fuel cell hybrid vehicles are using two energy sources to supply their electric powertrain 

/Dietrich et al. 2003/ /Yamaguchi 2003/. The primary power source is a polymer electrolyte 

fuel cell (PEFC) system where the fuel cell stack converts hydrogen and oxygen into electric 

energy with water and heat as the by-products /Gruber  & al. 2009/ /Wee 2007/. The second 

https://www.researchgate.net/publication/222877612_Design_and_experimental_validation_of_a_constrained_MPC_for_the_air_feed_of_a_fuel_cell?el=1_x_8&enrichId=rgreq-04094682-e3fd-41da-88ec-b4425194f72c&enrichSource=Y292ZXJQYWdlOzIzNTc0MjkwMjtBUzo5OTU4NjUzODQ3NTUyNUAxNDAwNzU0NjkxMTY3
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energy source is the energy buffer which is power reversible. Usually, batteries (lead-acid, Ni-

MH, Li-ion) /Spotnitz 2005/ or supercapacitors /Barrade et Rufer 2004/ are under interest to 

hybridize the fuel cell system /Bauman et Mehrdad 2008/. The two fundamental roles of the 

energy buffer are /Jeong et Oh 2002/ /Markel et al. 2003/: 

- to recover the braking energy; 

- to power-assist the fuel cell system when its rated power is insufficient or its power 

rate capability doesn’t match the transient power demand. 

 

Since the power source is hybrid, a power management strategy is needed to define the power 

sharing between the fuel cell system and the energy buffer. Usually, for hybrid vehicles 

without plug-in capabilities, the power management strategy should reduce the fuel 

consumption while keeping the state of charge (SOC) of the energy buffer within reasonable 

bounds. This paper focuses on the control strategy problem. 

 

For hybrid vehicles, the control strategies are classified into 2 categories /Guezennec et al. 

2003/ /Rodatz et al. 2005/: case 1) non-causal when the future driving cycle is completely 

known and case 2) causal when the future is unknown. In the first case, the strategies may 

provide an optimal solution leading to the lowest fuel consumption, but they are unusable for 

real time applications. Such strategies may be obtained using the minimum principle /Serrao 

et al. 2009/ or dynamic programming approaches /Scordia 2004/. In the latter case, the 

strategies can be used online for vehicle real time control but are necessarily sub-optimal. 

Several approaches have been considered. Let us quote the Losses Minimization Strategy 

/Seiler et Schröder 1998/ minimizes the powertrain losses at each sampling time and an 

adaptive control law /Dalvi & al. 2009/. The family of Equivalent Consumption Minimization 

Strategies (ECMS) consider a criterion composed of the hydrogen consumption and the 
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weighted electric power consumption /Sciarretta et al. 2004/ /Musardo et al. 2005/; the key 

point being the choice of the weighting factor. This paper investigates an approach somehow 

similar to ECMS to derive an efficient real time control strategy (case 2) from the optimal 

solution (case 1). The main point is that weighting factor adaptation is not dependent on the 

time ordered prediction of the future power demand but only on its distribution. This 

important aspect allows adapting this parameter without requiring a complex prediction 

algorithm. 

In the first part of the paper, the optimization problem is formulated. It consists in minimizing 

the hydrogen consumption of the fuel cell system under several constraints (power limits, 

system dynamics, etc.). Based on this problem formulation, control strategies are investigated 

in the second part. Especially, a real time control strategy is derived from an optimal control 

algorithm. Finally in the third part, the real time control strategy proposed is validated 

experimentally on a HiL (Hardware in the Loop) test bench emulating a fuel cell hybrid 

vehicle on a reduced scale. A 600W PEM fuel cell system and a 12V/18Ah lead acid battery 

are used. The conclusions highlight the perspectives launched in the present paper. 

2.  Problem formulation 

In the following, the equations are expressed in discrete time. The sampling time is sT  and k  

the sample number. For simulation purposes, a 1500 kg duty vehicle propelled by a 

75 kW electric machine is considered. Its hybrid energy source is composed by a 40 kW fuel 

cell system coupled with a 120V-28Ah Ni-MH battery. This vehicle is referred to as Vehicle1. 

Two models are used thereinafter. The first one, Model1, is an energetic model used only for 

simulations purposes; it is an “Advisor-like” detailed model /Haraldsson et Wipke 2004/ 

/Boettner et al. 2002/. The second one, Model2, is a simplified model only used to derive the 

control laws. Differences between the models concern mainly the battery modeling. For the 

simulation model Model1, the battery is modeled as a non linear current integrator. For 

https://www.researchgate.net/publication/237740491_A-ECMS_An_Adaptive_Algorithm_for_Hybrid_Electric_Vehicle_Energy_Management?el=1_x_8&enrichId=rgreq-04094682-e3fd-41da-88ec-b4425194f72c&enrichSource=Y292ZXJQYWdlOzIzNTc0MjkwMjtBUzo5OTU4NjUzODQ3NTUyNUAxNDAwNzU0NjkxMTY3
https://www.researchgate.net/publication/3332548_Optimal_Control_of_Parallel_Hybrid_Electric_Vehicles?el=1_x_8&enrichId=rgreq-04094682-e3fd-41da-88ec-b4425194f72c&enrichSource=Y292ZXJQYWdlOzIzNTc0MjkwMjtBUzo5OTU4NjUzODQ3NTUyNUAxNDAwNzU0NjkxMTY3
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Model2, considering the electric bus topology and the power converters, the battery is 

modeled as a power integrator. Therefore the derivation of the control laws is easier. 

Only Model2 is presented here. For more details concerning the models and their validity, the 

reader may refer to /Bernard 2007/. The upper part of fig. 6 provides a comparison between 

Model1 and Model2. 

 Power flows 

Considering the powertrain arrangement of a hybrid fuel cell vehicle, fig. 1, the electric bus 

receives the positive power FCSP  from the fuel cell system and the power EBP  from the energy 

buffer ( 0EBP   in discharge, and 0EBP   in charge). The power demand DEMP  corresponds to 

the power requested by the electric motor to propel the vehicle ( 0DEMP   during traction 

phases and 0DEMP   during kinetic energy recovering). For convenience, the power 

converters are implicitly taken into account in the efficiencies of the fuel cell system, energy 

buffer and electric motor(s). The electric node (Fig. 1) imposes the following equation: 

     FCS EB DEMP k P k P k   (1) 

Since the power demand  DEMP k  in eq. (1) is known for each sample k , it is obvious that it 

is enough to define one power ( FCSP  or EBP ). The fuel cell system power FCSP  is set as the 

decision variable. 

 

 

 
 

 
Fig. 1. Energy flows in the powertrain. 
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The energy buffer is considered as a power integrator: 

      1 EB sX k X k Q P k T     (2) 

with sT  the sampling period and X  the energy stored. The power EBP  is bounded as: 

       EB EB EBP X k P k P X k   (3) 

In eq. (2), Q  expresses the gross (respectively net) power drained from (respectively  

supplied to) the energy buffer. This map may be either measured on a test bench or computed 

using battery and power converter models. It integrates the power losses induced by the 

internal resistance, the faradic efficiency, and eventually the power converter. Some 

approximations may be required to compute the map Q , for example for a battery, an average 

faradic efficiency may be considered. An example of Q  is given fig. 2. 
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Fig. 2. Example of Q map for a 40kW Ni-MH battery. 
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When substituting eq. (1) into eq. (2), X  is expressed as a function of the fuel cell system 

power FCSP : 

        1 DEM FCS sX k X k Q P k P k T      (4) 

 

 Fuel cell system 

The objective is to obtain an efficient power split which minimizes the hydrogen 

consumption. Thus, the quantity to minimize is: 

  
2

0

N

H FCS s
k

J m P k T


    , (5) 

with sN T  the driving cycle duration. In eq. (5), 
2Hm  is the instantaneous hydrogen 

consumption (g/s) which is related to the operating conditions, i.e. pressure, stoichiometry, 

membranes humidity, stack temperature, and the consumption of the auxiliary components. 

An example of 
2Hm  is illustrated in fig. 3 for a 40kW fuel cell system under nominal 

operating conditions; 
2Hm  is a function of the fuel cell system power FCSP , which is bounded: 

 FCS FCS FCSP P k P   (6) 
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Fig. 3. Example of instantaneous hydrogen consumption as function of the fuel cell system power. 

 
 

Considering the power limitation of the energy buffer eq. (3) and the equality constraint eq. 

(1), the set of admissible values for the fuel cell system power FCSP  is defined as: 

     FCSA k P k B k   (7) 

with 

       max ,FCS DEM EBA k P P k P X k   (8) 

       min ,FCS DEM EBB k P P k P X k   (9) 

At last a constraint on the final state of charge is added: 

   0 spX N X X    (10) 

According to (10), the system state should reach a prescribed value  0 spX X   at the end of 

the driving cycle, with spX  being a chosen global state variation. 
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 Problem formulation 

According to the equations describing the fuel cell system and the energy buffer, the problem 

to solve is: 

 Criterion: 

  
2

0

N

H FCS s
k

J m P k T


    (5) 

 System: 

        1 DEM FCS sX k X k Q P k P k T      (4) 

 Constraints: 

     FCSA k P k B k   (11) 

   0 spX N X X    (12) 

3.  Control strategies 

3.1.  Off-line optimal solution 

Off-line optimal solutions are obtained with optimal control algorithms. These algorithms use 

an a priori known driving cycle, so they are referred to as non-causal approaches. However, 

the results obtained should be considered as useful benchmarks for analyzing, evaluating and 

deriving real-time control strategies. For the considered problem, two main optimal control 

approaches have been considered /Scordia 2004/ : 1) the discrete dynamic programming 

provides a numerical solution by considering the Hamilton-Bellman-Jacobi (HBJ) equation 

and a quantified state variable, and 2) the minimum principle  provides a formal expression 

of the necessary optimality conditions /Pontryagin et al. 1962/. The second method is 

considered in this paper. 
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 Minimum principle 

With the classical minimum principle, necessary optimality conditions may be found /Delprat 

et al. 2004/ /Bernard et al. 2006/ /Sciaretta et Guzzella 2007/. The system dynamics equality 

constraint (4) is introduced into criterion (5) using Lagrange parameters  k  to form the 

Hamiltonian H : 

             
2

1H FCS s DEM FCS sH k m P k T k X k Q P k P k T            (13) 

Along the optimal trajectory, the Lagrange parameters  k  verify the following condition:  

 
   H k

k
X k




 


,  0...k N  (14) 

Equation (14) directly leads to    1k k   , which means that the optimal solution is 

achieved for a constant value   0k  . Thus considering   0k   and eq. (13), the 

decision variable FCSP  is obtained by minimizing the Hamiltonian for  0...k N : 

 
     

       
2 0 0arg min ,

FCS

FCS H FCS DEM FCS DEM
A k P k B k

P k m P Q P k P P k 
 

 
 

      
 
 

  (15) 

Therefore, it appears in (15) that the only tuning parameter remaining is the initial value of 

the Lagrange parameter 0 . 
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 Influence of  0  

The power demand DEMP  depends on the vehicle/powertrain specifications and the driving 

cycle. For a given 0 , to satisfy this power demand, the control decision FCSP  is calculated 

with eq. (15). Nevertheless, since 0  , it exists an infinite number of control trajectories 

derived from eq. (15) leading to infinite possible state evolutions. Let us define 

   0X X N X    the overall state variation.  

For instance, for vehicle Vehicle1 driving the outer-urban cycle “R3” /André et al. 2006/, two 

different values of 0  have been considered, fig. 4. The lower value ( 5
0 1.6 10   ) exploits 

few power from the fuel cell system which leads to a progressive discharge of the battery 

( 29%X   ), whereas the higher value ( 5
0 2.1 10   ) makes the fuel cell system more 

active which leads to a gradual recharge of the battery ( 22%X   ). The hydrogen 

consumption is also lower in the first case (0.97 kg/100km) than in the second case (1.83 

kg/100km). 

Thus 0  is the only parameter that may be exploited to reach the final state set point specified 

by (12).  
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Fig. 4. Example of results on the R3 driving cycle for Vehicle1. 

 

 Global constraint SOC  to fix 0  

Equation (2) is a simplified battery model used to derive the optimal control law. In 

simulation, for a given 0 , controls are obtained using (15) and applied to a more detailed 

model (namely Model1). For example, upper part of fig. 6 illustrates the actual variation of 

the battery state of    0SOC N SOC  as a function of 0 . Since Model2, and particularly 

equation (2) is a simplified version of Model1, the constraint should not be added on the 

variable  X k  equation (2), but on the simulated battery state of charge  SOC k  issued from 

Model1. Therefore, in practice constraint (12) is replaced with: 

   0 spSOC N SOC SOC    (16) 

with spSOC  a balance target of the state of charge.  
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Considering the upper part of fig. 6, the corresponding value of 0  satisfying (16) is easily 

obtained through successive simulations using a dichotic search /Delprat et al. 2004/ /Bernard 

et al. 2006/. In this case the power demand (or the driving cycle) is a priori known to perform 

successive iterations. Thus, by fixing the value of spSOC , the approach is non-causal and 

can be only used off-line. For the sake of convenience, this algorithm will be referred to as 

“offline optimization” algorithm. 

 Estimation of  SOC  and 0  

Finding the value of 0  leading to a prescribed spSOC  may require high computational 

efforts due to the necessity of several simulations. The present section explains how to reduce 

the computation time using an approximation SOC  of    0SOC N SOC . First, an 

approximation of the battery state of charge is considered: 


max

XSOC
X

  (17) 

with X  an energy and maxX  the maximal energy level of the battery. 

The energy balance X  can be calculated using (4) and (15): 

     0
0

,
N

s DEM DEM
k

X T Q P k P k 


     (18) 

Considering (17) and (18), an approximation of the variation of the state of charge 

   0SOC N SOC  is: 

  0SOC f    (19) 

with        0 0
0max

,
N

s
DEM DEM

k

Tf Q P k P k
X

 


    

For large values of N , using (19) to find 0  satisfying (16) may still require a lot of 

computational efforts. A simpler but approximated expression of  0f   may be derived 
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considering the power demand histogram. Let in  be the number of power demand values 

 DEMP k , 0..k N , that belongs to the ith bin. Each bin is represented by its average value 

i
DEMP .  

 Therefore the variation of the state of charge is approximated by:  
   0SOC f    (20) 

with      0 0
1max

,
C

i is
i DEM DEM

i

Tf n Q P P
X

 


     and C  the number of bins. 

Fig. 6 represents the actual value of      0,DEM DEMQ P k P k   and the approximation 

used   0,i i
DEM DEMQ P P   for the particular case 5

0 3.7 10    and 33C  . 
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Fig. 5.  Comparison of      0,DEM DEMQ P k P k   and its approximation   0,i i

DEM DEMQ P P   for the 

particular case 5
0 3.7 10    

 

To validate the proposed approximation, SOC  has been estimated according to eq. (20) 

with 33C   and is compared to the actual value    0SOC SOC N SOC    obtained by the 

simulation model Model1 for several values of 0 , fig. 6. Let us recall that for Model1, 
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SOC  is calculated by current integration in a more detailed model, whereas in Model2 

SOC  is estimated using a rather simple model (20). The estimation error remains below 

1 % for the R3 driving cycle. Therefore eq. (20) provides a sufficiently good and fast 

estimation of SOC .  
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Fig. 6. Comparison of SOC  as a function of 0  using Model1 and its approximation using eq. (20)  

 

Table 1 shows the computation time of the dichotic search using the Model1 and the 

simplified version using approximation (20) for different cycles provided by the Artemis 

study /André et al. 2006/. The computer used was a desktop PC with a core 2 duo 3Ghz 

processor and 2Go of RAM. In all cases, the same initial value of 5
0 10   is used in the 

dichotic search. The algorithm is stopped as soon as the desired variation of the state of 

charge is achieved within a 0.1%soc   tolerance. 
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 The computation time for the estimation of 0  using the approximation is significantly 

reduced and remains around 0.4s.  For cycles having similar length, the computation time for 

the dichotic search may vary slightly according to the number of iterations required to reach 

the desired state of charge balance with the desired accuracy. The computation time for the 

estimation of 0  using equation (20) depends mainly on the number of bins in the power 

distribution whereas the cycle length has a minor influence. 

Cycle name NEDC UF3 R3 A1 

Cycle time 1180s 1066s 1000s 733s 

Computation time using Model1 11.3s 11.7s 14.6s 14.1s 

Computation time using equation (20) 0.38s 0.39s 0.39s 0.43s 

 Table 1: Computation time for a dichotic search and an estimation of the parameter λ. 

The real time strategy described in the next section is based on the estimation of SOC  

using equation (20). 

3.2.  On-line real time strategy 

As previously discussed, keeping the Lagrange parameter constant   0k   leads to an 

optimal power split in the powertrain. The counterpart is that the state evolution is not 

controlled. Therefore several iterations are required to achieve a prescribed final state of 

charge, so the driving cycle needs to be a priori known (non causal approach).  

A constant state-of-charge set point spSOC  is considered. The main idea is to periodically 

modify the value of the Lagrange parameter 0  according to the state error and the power 

demand DEMP . The principle is illustrated fig. 7. 
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Fig. 7. Principle of the real time strategy. 
 

Several strategies have been proposed to adapt the controller using past driving information. 

For example, /Jeon et al. 2002/ consider several driving patterns and an optimized controller 

for each pattern. During real time driving condition, the pattern that matches the actual 

driving is recognized using a neural network and the corresponding controller is used. As the 

database is finite, there is no possibility to ensure that it covers the actual driving condition. 

Others strategies use an algorithm similar to the “offline optimization” algorithm with an 

adjustable Lagrange parameter 0 .  Considering non constant 0  leads obviously to a sub-

optimal solution, but this approach allows controlling the state of charge. This kind of control 

strategy is often referred to as Equivalent Consumption Minimization Strategy /Sciaretta et al. 

2004/. In particular, the Adaptive-ECMS /Musardo et al. 2005/ uses a time ordered prediction 

of the future power demand. This prediction is very hard /Bartholomaeus et al. 2008/ due to, 

for example, traffic disturbances or driver’s behavior. In /Musardo et al. 2004/ authors noticed 

that it is difficult to work with a horizon prediction longer than 20 seconds.  

 

The key point with the proposed control strategy is that the time ordered prediction of the 

future power demand is not necessary. According to equation (20) it is clear that only the 

prediction of their distribution is required. Therefore, it is not important to know when a 

specific power demand will be done (it would remain in a very tough prediction to realize for 

more than few seconds), only the future global condition of driving is mandatory. 

0̂  
FCSP  Optimal 
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Estimation 
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Power demand 

Power  
demand 
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According to the available information (GPS with digital map, etc), the prediction may be 

more or less complex. It is assumed that no other information than the past power demand is 

available, therefore the following simple prediction is proposed: the distribution of future 

power demand will be equal to the distribution of the past one over the last adaptN  samples. 

Using the definition introduced in (20), defining ˆin , 1..i C , the distribution of the future 

 DEMP k , 1, adaptk i i N      and in , 1..i C , the distribution of the past power demand 

 DEMP k , ,adaptk i N i    , the proposed assumption is a zero-order estimation updated every 

adaptN  samples: 
ˆi in n  (21) 

Of course, more complex algorithms may be used for the prediction, but this simple and 

computational efficient prediction still provides quite interesting results in terms of fuel 

consumption. 

At the sample i , for a given value of 0̂ , the state of charge estimation at the end of the 
prediction horizon is: 
 
       0̂adaptSOC i N SOC i f     (22) 

With      0 0
1max

ˆ ˆ,
C

i is
i DEM DEM

i

Tf n Q P P
X

 


     and C  the number of bins. 

And finally, the value of 0̂  that allows reaching the state of charge set point spSOC  at the 

end of the prediction horizon is solution of: 

    0̂ spf SOC SOC i    (23) 

Solution of (23) is found using a simple dichotic search. Therefore, the control strategy, called 

adapt , is defined as: 

 
Every adaptN  samples 

1 – Compute the power distribution in  of the last adaptN  samples 

2 – Estimate 0̂  such as     0̂ spf SOC SOC k     

with k  the current sample. 
       end 
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A set of simulation results is shown in fig. 8. It concerns Vehicle1 simulated using the 

simulation model Model1 on the R3 driving cycle. Two control strategies are compared: The 

real time adapt  strategy and the “offline optimization” algorithm. For the adapt  strategy, the 

following parameters were chosen: 60%spSOC  , a time step of 1sT s , and the number of 

samples  120 2minadaptN   . These parameters have been tuned in simulation on different 

driving conditions (urban, outer urban, highway, etc.). They realize a good compromise 

between fuel consumption and battery state of charge regulation. 

It can be observed that the adaptable value 0̂  varies only slightly around the value provided 

by the “offline optimization” algorithm. For the same state of charge balance (+3.5%), the 

hydrogen consumption for adapt  is 
2

1.53 /100Hkg km  and 
2

1.49 /100Hkg km  for the “offline 

optimization” algorithm. The consumption achieved with the real time strategy is only 3.5 % 

higher. 
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Fig. 8. Comparison between the adapt  strategy and the minimum principle results, R3 driving cycle, Vehicle1. 
 

 

In order to emphasize the adaptation of the 0̂  parameter, the adapt  control strategy is tested 

on a mixed driving cycle composed of urban-highway-urban driving conditions, fig. 9, 

keeping the same vehicle and control strategy tuning. The effect of the adaptation appears 

clearly: during the highway driving condition, the control strategy uses higher values of 0̂ . 

Using the adapt  control strategy, the state of charge remains close to its target  60%spSOC  , 

the obtained overall state of charge variation is    0 5.9 %SOC N SOC   and the 

corresponding hydrogen consumption is 1.69 kg /100km . 

Using the “offline optimization” algorithm based on the minimum principle and the a priori 

knowledge of the driving cycle, the solution leading to the same overall state of charge 

variation ( 5.9 % ) has been also computed. It is obtained by choosing 5
0 1.84 10    . The 

hydrogen consumption is 1.63 kg /100km  and the state trajectory is also drawn fig. 9.  
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Fig. 9. Comparison between the adapt  and the optimal strategy, mixed driving cycle, Vehicle1. 

 

The proposed real time on-line control strategy has also been experimentally tested. The 

experiments and results are described in the next section.  

 

4.  Experimental validation 

To experimentally validate power management strategies of fuel cell hybrid vehicles, a low 

cost Hardware-in-the-Loop (HiL) test bench has been designed and realized. It emulates the 

power flows of a reduced scale powertrain of a hybrid fuel cell hybrid vehicle. This test bench 

is only used to compare the influence of the control algorithm on the energetic performances.  

4.1.  The test-bench 

The HiL test bench, shown in Fig. 6, is split into two distinct sets: 

1. Emulation: the vehicle is simulated in a computer and an electronic load reproduces 

the motor power demand.  

2. Hardware: the core is a 600 W fuel cell system /Santis et al. 2004/; the energy buffer 

is either a battery or a super-capacitor. Simulation of “kinetic” energy recovery is also 

possible with the load (electronic load + power supply). A DC/DC converter controls 

the power delivered to the bus by the fuel cell system and the bus voltage is imposed 

by the energy buffer.  
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For the vehicle emulation, the power demand simulated on the computer is scaled according 

to the power capabilities of the hardware. The maximal power of the fuel cell system is 

limited to 600 W. For the 1500 kg light duty vehicle with a 40 kW fuel cell system used in 

simulation, this corresponds to a 66.6 scaling factor. A 12V/18Ah Lead Acid battery was 

employed as the energy buffer, corresponding with the scaling factor to a 14 kWh battery in 

the vehicle. In addition to the vehicle simulation, the computer is also used for system 

monitoring (fuel cell system temperature, stack pressure…), data acquisition and integrates 

high level controls such as the power management strategy.  

 

In all experiments the temperature of the liquid coolant in the fuel cell stack was kept constant 

at 50 °C, i.e. no cold start or load dependent temperature changes were allowed. It should be 

noticed that thermal effects are important in fuel cells, temperature scales down not only with 

power but with size as well. So the obtained fuel consumption may not be exactly the same as 

those obtained with an actual fuel cell vehicle.  

Therefore, the vehicle, namely Vehicle2, emulated with this test bench is similar to Vehicle1 

except for the battery technology and size (Model2 : 14kWh lead acid battery vs Model1: 

3.36 kWh Ni-Mh battery). 
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Fig. 10.  Experimental setup of the hardware in the loop test bench emulating a hybrid electric vehicle. The load 
is bi-directional so also kinetic energy recovery can be simulated.  

 

5.  Results 

As Vehicle2 differs from Vehicle1, the parameters applied for the adapt  strategy are modified: 

70%spSOC  , 1sT s , and  180 3minadaptN   . These parameters were also tuned in 

simulation according to different driving cycles and they correspond to a good compromise 

between fuel consumption and SOC regulation. Fig. 11 shows the experimental results for the 

R3 driving cycle. The vehicle speed, the scaled power demand, the fuel cell system power, the 

state of charge of the battery and the evolution of  0  are shown. The state of charge control is 

achieved by adapting the value of  0 , as shown in the plot at the bottom of fig. 11. The state 

of charge error remains acceptable (below 2 %). 
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Fig. 11.  Hardware in the loop (HiL) results for the adapt  strategy, outer-urban driving cycle, Vehicle2 

 

In order to evaluate the quality of the adapt  strategy in term of hydrogen consumption, it has 

been compared to the Loss Minimization Strategy (LMS) /Seiler et Schröder 1998/. Amongst 

all the existing control algorithms, LMS is interesting since it considers an “unusual” 

criterion. At each sampling time the control value is chosen by minimizing the power losses 

in a hybrid powertrain. For LMS, the SOC regulation is done according to a sensitivity 

analysis. This strategy has been also intensively tuned on the simulation model of the test 

bench to make a comparison of the results as fair as possible, i.e. none of the strategies were 

advantaged during the experiments in term of consumption performances.  

The hydrogen consumption of the adapt , the LMS strategies and the “off line optimization” 

algorithm, were experimentally measured for the outer urban cycle R3. In fig. 12, the results 

are plotted as function of the state of charge balance. For negative SOC balances, the 

difference between the strategies is smaller because the energy mainly originates from the 
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battery and the influence of the strategy is reduced. At zero state of charge balance, the adapt  

strategy provides 6 % better hydrogen consumption. At a positive SOC balance of 10%, the 

adapt  strategy provides 5.7 % better hydrogen consumption. For both driving cycle, the 

obtained results remain close to those obtained using the “offline optimization” algorithm.  
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Fig. 12. Experimental results for outer-urban driving cycle (15.7 km, top) , Vehicle2. 

 

6.  Conclusion 

The power management strategy of fuel cell hybrid vehicles has been investigated. An 

efficient real time control strategy has been derived from an optimal control algorithm. The 

optimization efforts rely on a simple but computationally exploitable powertrain model and 

the minimum principle.  

To validate the proposed adapt  strategy, Hardware-in-the-Loop (HiL) experiments have been 

conducted. The HiL experiments were based on a 600W fuel cell system hybridized with a 

LMS 
λadapt 

Offline optimization 
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lead acid battery. The adapt  strategy achieves a good fuel consumption economy both for 

simulations and experiments. In comparison with the LMS strategy (based on the 

instantaneous minimization of the power losses), the fuel consumption of adapt  is reduced at 

least by 4 %.   

Further improvements of the adapt  strategy could be achieved by considering further 

parameters influencing the hydrogen consumption such as the evolution of the FCS 

temperature. Indeed, the FCS performances strongly depend on its temperature /Markel et 

al. 2003/ /Boettner et al. 2002/. To limit this influence, the HiL experiments were performed 

at a controlled and almost constant temperature of the stack, which actually does not represent 

real operating conditions in an automotive environment (cold start, stack temperature 

variation according to FCS load…). Further improvements of the proposed strategy are 

therefore possible. 
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