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1.1.   Introduction 

It is becoming increasingly recognized that many common diseases, such as cancer, 
asthma and hypertension, are best described as being “complex”. These diseases are 
characterized by multi-factorial etiologies, widely varying prognoses, and frequently 
unclear therapeutic options. Recent history lends equivocal support to the notion that 
many complex diseases will be cured in the foreseeable future. Indeed, some opine that 
the cell and molecular biology revolution of the past two decades has not delivered on 
its initial promise (Macklem 2004). One possible reality of complex diseases is thus 
that they are just complex. That is, they involve innumerable players, assembled 
haphazardly by millions of years of evolution, whose interactions somehow become 
unbalanced. If true, we must resign ourselves to a future in which complex 
pathophysiology is elucidated gradually through the painstaking excavation of disparate 
facts from a vast biological landscape. This is a sobering thought because it means that 
cures will be approached asymptotically. Nevertheless, research into complex diseases 
tends to be sustained by the more optimistic outlook that significant advances will come 
in quantum leaps. The attraction of this outlook derives in large part from the fact that it 
keeps the hope of imminent cure alive. It also promises the intellectual satisfaction of 
progress in the form of novel insights rather than the mere accumulation and 
management of vast quantities of data.  
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It is in the spirit of the optimistic outlook that researchers are turning to the view of 
biological systems as dynamic networks (Kitano 2002; Aldana and Cluzel 2003; Bray 
2003). Now the challenge is to figure out how to take the “dynamic network” concept 
from the level of appealing notion to genuine advance. One avenue of approach is 
based on the notion that living biological systems exhibit emergent behavior that 
depends on certain general organizational principles, but which is independent of the 
system itself beyond a certain level of detail. Uncovering these general principles 
would then constitute a significant step forward, with major implications for the 
understanding of complex diseases. 

1.2   Biological Networks 
1.2.1 “Small World” Networks and Power Laws 

It seems clear that biological behavior, and indeed life itself, represent emergent 
phenomena arising within dynamic networks. A general question that arises concerns 
the topology of such a network, how the nodes are connected to each other Do 
biological networks share some common topological feature, or are they structured 
purely according to their specific functions which may or may not be related?  

An answer to this question is suggested by the substantial amount of recent research 
showing that spontaneously arising networks tend to obey the “small world” principle 
in which every element in the network can be reached from every other element by 
traversing, on average, only a small number of links, even when the total number of 
elements is huge (Barabasi and Albert 1999). This is achieved by having the number of 
links impinging on an arbitrarily chosen node follow a power-law probability 
distribution. In other words, a small number of nodes (called hubs) are highly 
connected, while most nodes connect directly to only a very few other nodes. This 
topology has been demonstrated in networks arising all over the natural world, 
including in biological systems such as protein networks (Ravasz, Somera et al. 2002).  

1.2.2   Homeostasis and Chronic Disease 

Most minor perturbations that a healthy individual experiences in daily life, such as 
receiving a bruise or catching a cold, are transient experiences against which the body 
is able to mount a response that eventually returns things back to normal. By contrast, a 
general characteristic of complex diseases, apart from their resistance to elucidation, is 
that they tend to be chronic (e.g. asthma, hypertension); the homeostatic balance of 
health seems to become disrupted in a way that is resistant to treatment. In light of the 
foregoing, this suggests that minor ailments respresent a small shift away from dynamic 
equilibrium, while in chronic disease a biological network is placed in a permanently 
altered state. We identify three distinct mechanisms by which the state of a dynamic 
network can be permanently altered.  

1. Altered network structure: The most obvious way of changing network behavior is to 
damage it, either by loss of nodes or breakage of links. The causative agent could be 
either some external influence or simply degeneration from within. Treatment of a 
damaged network is presumably a matter of locating and repairing the damage. 
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2. Persistent insult: A living system requires input from the environment, either 
continuously (e.g. oxygen) or periodically (e.g. food), but is also subject to noxious 
inputs. A noxious input applied briefly (e.g. a glass of whisky) may upset the 
homeostatic balance transiently, but this balance is expected to return to normal in time. 
By contrast, if the noxious input is applied persistently, an ongoing disruption of 
homeostasis is expected. The progressive granulomatous lesions caused by particles of 
silica in the lung may be such an example (Davis 2002). Treatment of disease caused by 
a persistent insult is obviously a matter of finding and removing the insult.  

3. Entrapment in a local energy minimum: The third way of altering network behavior 
is the most subtle, and arises because dynamic networks may have more than one 
dynamically stable state defined by the pattern of activities of its nodes and links. 
Transition between different stable states may be elicited by suitable external stimuli. 
Furthermore, once such a state transition has been achieved, removal of the stimulus 
will not necessarily reverse the situation. Chronic disease might then be the result of an 
environmental insult that moves the network from its state of health to one of 
permanently pathology. This would occur with no change in network structure, so there 
would be nothing to repair. Furthermore, searching for the initiating event, which could 
be long gone at the time of diagnosis, would also be futile. The enigmatic nature of a 
pathology of this kind would make its correction especially problematic.  

1.3   A Network Model of Complex Disease 
1.3.1   The nature of nodal interactions 

As we noted above, evidence indicates that biological networks tend to conform to the 
small-world topology. However, this does not tell us how information or energy flows 
along these pathways, which is what determines the way the network actually functions 
and which has thus far received relatively limited attention with respect to biological 
systems (Bar-Yam and Epstein 2004). The simplest possibility is that each node 
dispenses information to its recipient nodes according to first-order linear kinetics. 
However, this would make the network nothing more than a multi-compartment linear 
system. The overall behavior of a system of n such compartments is described by an 
nth-order linear differential equation, which predicts behavior that always converges to 
only a single steady-state solution – hardly the basis for something as interesting and 
varied as biological behavior. 

This suggests that nonlinearities must feature in some important way in the inter-nodal 
connection dynamics of a biological network. Indeed, the seminal importance of 
dynamic nonlinearities is a well-accepted notion amongst theoretical biologists, being a 
key feature of, for example, cellular automata (Wolfram 2002). Nevertheless, simply 
saying that nonlinearities must be present is relatively unhelpful, given the limitless 
possibilities this allows for. What is needed is some insight into the general nature of 
these nonlinearities. One possibility is suggested by a well-studied construct known as 
the artificial neural network (ANN). 

1.3.2   The Essence of Artificial Neural Networks 

The study of ANN’s is now a huge field with many applications (Haykin 1995). The 
essence of the ANN, however, is straightforward; it is a network in which each node is 
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an artificial neuron receiving a number of inputs and producing an output. The 
relationship between the sum of the inputs to and the output from a neuron is a 
saturation-type nonlinearity, which means essentially that the neuron does not “fire” 
(produce an output) until its inputs sum to a certain level. Once this level is achieved 
and the neuron fires, further increases in input have relatively little affect on the level of 
the output. The output of the neuron becomes an input to a number of other neurons 
after having first been multiplied by a weighting factor associated with the 
corresponding link. The precise shape of the saturation nonlinearity associated with 
each artificial neuron does not seem to be critical to the overall function of an ANN. 
What is important is that the neuron does not fire when the inputs are low, it does fire 
when the inputs are high, and it makes a fairly steep transition in between. The many 
interesting properties of ANN’s stem from their various topologies and the values of the 
synaptic weights between individual neurons.  

Probably the most widely studied type of ANN is the multilayer perceptron, which can 
be trained to solve the general pattern recognition problem because it can define an 
arbitrarily complex segmentation of n-dimensional feature space (Haykin 1995). The 
biological significance of the multilayer perceptron was not lost on Bray (Bray 2003), 
who noted it shares a striking formal similarity with the signaling cascade between the 
surface receptors and nucleus of a cell. This suggests the intriguing possibility that 
nuclear transcription of a given protein is induced not by activation of a single receptor, 
but rather by a pattern of activation distributed across multiple receptor types. 
Nevertheless, the multilayer perceptron is not well suited to the modeling of dynamic 
processes because it does not involve cycling patterns of activity. 

We therefore now turn our attention to “re-entrant” types of ANN in which information 
from one neuron is fed back, possibly via a series of links, to neurons that it receives 
input from. The most well-studied re-entrant ANN is the Hopfield net (Hopfield 1984) 
in which every neuron is connected to every other neuron. The output of each neuron 
also goes from quiescent to full firing as soon as the inputs to that neuron sum to a 
certain critical level. Each neuron thus exists in one of two states, on or off. The 
Hopfield net is also symmetric; the synaptic strength of the link from node i to node j is 
the same as that from j to i. It can be shown that if a Hopfield net is given some 
particular configuration of neuron states, and each neuron is then allowed to continually 
process its inputs and recalculate it output, the neuron states will converge toward a 
steady-state pattern. Furthermore, a given Hopfield net can have a number of different 
steady-state patterns, and the pattern to which it converges depends is the one which is 
closest to the initial set of states. This property allows the Hopfield net to perform 
associative memory functions, such as letter recognition, from which stems it 
tremendous practical advantages (Haykin 1995).  

1.3.3   Stability in Re-entrant Networks 

If the synaptic strengths of the Hopfield net are allowed to be asymmetrical, the 
network does always converge toward a single stable state; a variety of other behaviors 
are also possible. For example, the network behavior may converge toward a repeating 
pattern of two or more states that it cycles between indefinitely. Alternatively, it may 
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not converge to any single dynamic pattern at all, but rather may move chaotically 
between different states. The particular pattern of behavior that a re-entrant network 
exhibits depends on its structure, that is, the network topology and the strengths of the 
synaptic connections. What is more significant for biology, however, is that the 
asymptotic dynamic behavior of a network can also depend on its initial conditions. In 
other words, exactly the same network can behave very differently depending on the 
pattern of nodal states it starts with. 

This kind of behavior is illustrated by the following example of a 16-node asymmetric 
network. The network is given the power-law topology described above by having one 
of its nodes provide inputs to all 16 nodes, another two nodes provide inputs to 8 of the 
nodes, a further 4 nodes provide inputs to 4 nodes, and the remainder apply inputs to 
only two nodes. Furthermore, to give the network a biological flavor the nodal 
nonlinearities are described by the Michaelis-Menton equation. In other words, the 
links represent factors that either enhance or suppress the ability of substrate-ligand 
reactions (the nodes) to take place, as might be expected of a network of biochemical 
reactions in the body. The synaptic weights for the non-zero links are chosen randomly 
from a uniform distribution between –1 and 1. Thus, some of the links are excitatory 
and others inhibitory, including any feed back from a node to itself.  

Associated with each node are two constants, V and C, corresponding to the maximum 
reaction rate and the concentration at half maximum rate, respectively, as required to 
define Michaelis-Menton reaction kinetics. The state of node i at time t, xi(t), is thus 
determined by the sum of the weighted inputs it receives from other nodes at time t-1 
processed through the Michaelis-Menton equation, thus 
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The value of Vi is equal set to 1 for all nodes, while the Ci are chosen randomly from a 
uniform distribution between 0 and 1. The network is initiated with the xi also assigned 
random values between 0 and 1. The network is then repeatedly iterated by 
recalculating every xi according to Eq. 1.  

If this network is given different values for its synaptic weights, it will exhibit a variety 
of different types of asympototic behavior, from a regularly repeating pattern of one or 
more states to a sequence of states that seemed to continue chaotically without 
repeating any pattern. However, a given realization of this network can also converge 
toward different behavior patterns depending on its initial configuration, as 
demonstrated in Figs. 1 and 2. Figure 1 shows an example of two different initial 
configurations of the same network that lead to the same stable state. Figure 2 shows 
the result of starting the same network from yet another initial state, but this time it 
converges to a limit cycle that switches at alternate time steps between two fixed states.  

1.3.4   Attractors and Entrapment 

The above example, although highly contrived, demonstrates the potential for 
biological networks to operate around multiple stable states, each acting as an 
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“attractor” for network states that are nearby. Suppose one such state corresponds to 
“health” (i.e. the normal state). Small perturbations away from this state, such as might 
be induced by a modest environmental insult, would then be expected to resolve over 
time back toward the healthy state. (This might correspond to, say, exposure to an 
antigen typically produces an inflammatory reaction that flares up quickly and then 
resolves completely in time.)  

However, as the initial state moves further away from the stable state to which it is 
attracted, there will suddenly come a point where a new stable state assumes the role of 
attractor. When this happens, spontaneous return to the original stable state will no 
longer be possible. The obvious biological analogy suggested by this scenario is that 
chronic disease may correspond to an aberrant dynamic stable state that just happens to 
be closest to whatever state the biological network is placed in following a sufficiently 
severe insult. It remains to be seen whether this entrapment mechanism is behind any 
chronic idiopathic lung diseases. 

1.4   Conclusions 
Complex diseases seem to exhibit characteristics reminiscent of a network that has been 
permanently shifted away from its normal state of dynamic equilibrium. Apart from the 
obvious causes of structural damage and ongoing insult, we note that this may happen 
to nonlinear networks when they become trapped in an alternate stable dynamic state. 
We have shown that a biologically motivated 16-node Hopfield-type network with 
small-world topology and Michaelis-Menton nodal functions is capable of exhibiting 
more than one dynamically stable state or limit cycle. This suggests that some chronic 
diseases may arise when just the right combination of environmental insults occur to 
push a healthy biological network into a pathological state from which spontaneous 
recovery is not possible. 
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Figure 1: The two 
initial network states 
shown at top 
converged to the 
same stable state 
shown at bottom. 
The 16 nodes of the 
network can each 
take values from 0 
to 1. The values of 
the nodes are 
indicated by the 
radii of the filled 
circles. 
 

 

 
 

 

 

 
 

 

Figure 2: The initial 
state shown at the 
top converged to an 
oscillation between 
the two states shown 
at bottom. 
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