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ABSTRACT

We present new exact formulas for calculating bu�er overow probabilities for various

single server queues. We then present the results of a parametric study of the bu�er

size needed to prevent overow or loss in systems where data arrivals are \bursty",

\self-similar", or \fractal". Such erratic behavior can be caused (or adequately

described) by renewal processes whose interarrival distributions are power-tail (or

Pareto, or L�evy, or \long-tail") with in�nite variance. We compare the behavior

of such systems with that of better behaved systems, namely where the interarrival

times, or service times, have hyperexponential-2 or Erlangian distributions. We show

that power tails can cause problems for intermediate values of the utilization param-

eter, �, and become very serious (beyond the usual 1=(1� �) factor) when � is close

to 1, and/or when � approaches 1. Since various researchers have reported data with

� values between 1.1 and 1.5, this may prove to be serious indeed.
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1 Introduction

In recent years there has been an ever increasing interest in the development of systems which

will be able to process incoming tra�c from various communications networks. In the last three

years, numerous papers have appeared indicating that the tra�c to be expected in the future

will have an extraordinary character. For instance, Leland, et.al., [LELA94] have measured

and analyzed the arrival of many millions of packets on ETHERNET networks at Bellcore,

while Beran, et.al., [BERA95] have measured and analyzed several millions of frames from

Variable-Bit-Rate (VBR) video services. The data displayed in both papers (which are typical

of the many appearing lately) show enormous instability of arrival rates. No matter how large

the measurement interval, the number of arrivals per unit time varies widely. This has been

described as \self-similar", \bursty", and \fractal" behavior. These, and other papers, have

argued that r(k), the auto-correlation function lag-k of the number of arrivals per time interval

(not to be confused with the autocorrelation function for the inter-arrival times themselves),

must go to zero so slowly that

P

1

k=1

r(k) = 1. They imply that any realistic model of such

tra�c must include very long-range correlation e�ects.

The data can be explained more simply, however. Lipsky and Fiorini [LIPS95] have shown

that a renewal process (no correlation of interarrival times) where the interarrival times have a
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power-tail (PT) distribution (i.e., distribution functions which behave as 1 � F (x) ) 1=x

�

for

large x) can have such autocorrelations. Furthermore, Van de Liefvoort andWeng have generated

\self-similar" data of the kind described in [LELA94] by simulating a renewal process where the

interarrival times come from a single PT distribution with a �nite mean (but in�nite variance)

[LIEF94]. Many attempts to do the same using various compound Poisson processes (without

power tails, but with built-in burstiness) have not been successful. Greiner, Jobmann and Lipsky

[GREI95] describe in detail the properties of PT distributions, de�ning an analytic class of well-

behaved distributions (a sub-class of which are Phase Distributions which can be used in Markov

Chain models) that have truncated power tails (TPT), and in the limit become PT distributions.

This class was �rst used in [LIPS86] to explain the long-tail behavior of measured CPU times

at Bellcore in 1986 [LELA86]. It was also used to show what might happen in data-retrieval

systems which have power-tail �le sizes [GARG92], and even to explain the distribution of

medical insurance claims [LOWR93]. Greiner, et.al. [GREI95] then used these distributions to

study the behavior of steady-state GI/M/1 queues, as a model for telecommunications networks.

They described the e�ects of di�erent �'s on the geometric parameter, s [LIPS92] as a function

of the utilization parameter, �, where

� := [arrival rate] � [mean service time]: (1)

The variance of a PT distribution is in�nite if � � 2. Their calculations showed that s stays

close to 1 as � decreases from 1, and drops o� ever more slowly for smaller �. Note that the mean

queue length for GI/M/1 queues is proportional to 1=(1� s). Thus steady-state performance of

these queues becomes worse gradually as � drops below 2 with � �xed, becoming disastrous as

� approaches 1 from above (i.e., the mean still exists).

We maintain that the a�ects of noisy/bursty tra�c can be modelled adequately with PT

distributions, and most if not all of the pathological behavior which might occur in real systems

will be reected, at least qualitatively, in an appropriate queueing model where the arrival process

is a renewal process. In this paper, we present new exact formulas for calculating the bu�er size

needed to prevent excessive overow, or loss in steady-state GI/M/1, GI/M/1/N, M/G/1, and

M/G/1/N queueing systems. We also show how PT distributions can be incorporated into

these models. We then present the results of a parametric study of the e�ects of PT and other

distributions on bu�er overow.

We expected to �nd that pathological behavior caused by PT (and other large variance)

distributions would be widespread. Instead, we found that bu�er overow [aside from the 1=(1�

�) factor], though much larger than the M/M/1 queue, can be kept under control unless � is less
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than 1.5. The data of [LELA94] indicated an � of approximately 1.4, so serious bu�er problems

can be expected in the future.

We also found that two-phase hyperexponential distributions with large coe�cients of vari-

ation, C

2

, comparable to an equivalent truncated tail distribution, yielded wildly inconsistent

results. (H

2

distributions are 3-parameter functions, two �xed by the mean and variance. Per-

formance varies drastically on choice of the third parameter.)

Of course, all this was done assuming steady-state behavior. But this may require inordi-

nately many arrivals before such large queue lengths could be seen in reality. Discrete event

simulation models must necessarilly su�er from the same problem. [GREI95] presented an ar-

gument showing that the closer � is to 1, the more arrivals must occur before any system's

steady state can be approached. It remains for the future to yield appropriate descriptions of

transient behavior.

2 The Basic Models

Our system is made up of a single processor receiving data from an arrival stream of variable-

sized packets. The arrival stream may be considered a renewal process. The receiving processor

has a �nite primary memory bu�er which can hold at most N packets. If a no-loss system is

required, then we assume there exists an unbounded secondary or backup-bu�er that will store

the overow (e.g., a disc-array sub-system), and transfer the data to the primary bu�er when

space becomes available. The assumption of (almost) \in�nite bu�er" is not unreasonable, given

the emerging technologies for fairly highspeed massive storage. We will show presently that

for GI/M/1 queues under heavy load, if the primary bu�er is large enough so that only 1% of

arriving packets will have to be placed in the backup, then a backup bu�er that is k times the size

of primary will overow only one time in 10

2k

. Although there may be many problems associated

with the transfer (e.g., loss of �rst-come-�rst-served sequencing, extra processors needed), we

assume that the transfer can be made at least as quickly as it takes to drain the primary bu�er,

so there is no change in e�ective service rate. This is, then, a GI/G/1 open queueing system. If

there is no backup bu�er, then there must be losses, and we have a GI/G/1/N system.

We will assume that either \GI" or \G" is exponential, yielding a total of four di�erent types

of queues. First we will assume that packet arrivals can be considered a general renewal process,

where each packet must be serviced in a time taken from an exponential distribution with mean

time 1=� (a GI/M/1 queue). If no backup bu�er is provided, then we have a GI/M/1/N queue.

In an alternate view (see [LIKH95]) a Poisson process with a \disbursed" batch of packets whose

4



number is distributed by a power tail, can also generate self-similar data. If the packets can be

\reassembled" at the receiving node and counted as one customer whose service time is taken

from a PT distribution then we have an M/G/1 queue, or an M/G/1/N queue if there is no

backup bu�er.

2.1 Properties of Power-tail Distributions

These distributions are thoroughly described in [GREI95]. A summary is given here. A Proba-

bility Distribution Function (PFD), for some random variable, X, is de�ned as:

F (x) := Prob(X � x);

while its Reliability Function is given as

R(x) := Prob(X > x) = 1� F (x):

Also, if it exists, the probability density function (pdf) is de�ned as

f(x) :=

dF (x)

dx

= �

R(x)

dx

:

A Power-tail Distribution can be de�ned by its behavior for very large x. That is, if

R(x) �!

c

x

�

; (2)

then R(x) [or F (x)] is a PT distribution with power �, where � is a positive, real number. From

elementary calculus it is easy to show that if � � 1 then the distribution has an in�nite mean.

If 1 < � � 2 then F (x) has a �nite mean, but an in�nite variance. In general,

E(X

`

) :=

Z

1

0

x

`

f(x) dx =1 8 ` � �: (3)

Such distributions have been known to exist for a very long time. Pareto used them in describing

the distribution of wealth in economics. L�evy showed that all stable distributions with in�nite

variance have power tails. Thus they are also referred to as Pareto-, or L�evy-Pareto-, or simply

L�evy Distributions in the literature for various disciplines. For a more complete discussion,

the reader is referred to William Feller's Book [FELL71], or [GREI95]. These distributions

have been ignored in computer science and related �elds in the past because an extremely large

number of events (a number of the order of 10

7

would not be very large) must occur for the tail

to be felt. What does it mean for a model to predict a steady-state mean queue length of, say

10,000 customers, when there are hardly that many customers in the user community? Only
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now, with the imminent arrival of the information super-highway (and the world-wide web) can

we expect to see so many events (customers - packets) in a relatively short time.

In general, simple PT distributions (the one used by Pareto was of the form: f(x) =

c x

��1

=(1 + x)

�+�

) are di�cult to use for Laplace transforms, and do not have direct matrix

representations. But a most useful sub-class of them is given in [GREI95]. The particular one

we use here is de�ned as:

R

M

(x) =

1� �

1� �

M

M�1

X

n=0

�

n

exp(�x=

n

); (4)

where � and  are parameters satisfying the inequalities: 0 < � < 1 and  > 1. It is not hard to

show that the `

th

moments are given by

E(X

`

M

) =

1� �

1� �

M

�

1� (�

`

)

M

1� �

`

�

1

�

: (5)

Next de�ne their limit function

R(x) := lim

M!1

R

M

(x) = (1� �)

1

X

n=0

�

n

exp(�x=

n

): (6)

Then it can be shown that R(x) satis�es (2), and � is related to � and  by

�

�

= 1 ; or � := �

log(�)

log()

� (7)

It then follows that

E(X) := lim

M!1

E(X

`

M

) =1 for ` � �:

That is, Equation (3) is satis�ed. We refer to the functions, R

M

(x) as truncated power-tail

(TPT) distributions, because, depending on the size of M , they look like their limit function,

the true power-tail, R(x). But for some large x, depending upon M , they drop o� exponentially.

These functions are easy to manipulate algebraically. Furthermore, they are M�dimensional

phase distributions whose vector-matrix representations , < p

M

; B

M

> are given by (using the

notation of [LIPS92]):

B

M

= �

2

6

6

6

6

6

6

6

6

6

4

1 0 0

.

.

.
0

0 � 0

.

.

.
0

0 0 �

2

.

.

.
0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0

.

.

.
�

M�1

3

7

7

7

7

7

7

7

7

7

5

and p

M

=

1� �

1� �

M

[ 1 � �

2

� � � �

M�1

]: (8)
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where � := 1=. We need these matrices to calculate the properties of �nite-bu�er queues. They

generate the functions given above by the relations

R

M

(x) = 	

M

[exp(�xB

M

)]

where for any square matrix, Z

	

M

[Z] := p

M

Z �

0

: (9)

�

0

is the column vector with all 1's. The general method of representing processes by matrix

operators is called Linear Algebraic Queueing Theory (LAQT) by [LIPS92]. We de�ne

V

M

:= B

�1

M

;

then we get

E(X

`

M

) = `! 	

M

[V

`

M

]:

Furthermore, the Laplace transform of F

M

( � ) is

B

�

M

(s) :=

Z

1

0

e

�sx

f

M

(x) dx = 	

M

[(I+ sV

M

)

�1

]

Note that the matrix B, representing R(x), is in�nite dimensional, and has an in�nite set of

eigenvalues, f�

n

g, with an accumulation point at 0. So, in principle, its inverse does not exist.

But with judicious use of limits, all calculations can be carried out.

2.2 GI/M/1 Queues - No Packets Lost

Here we assume that the time to process a packet is exponentially distributed, with mean 1=�,

and the bu�er is unbounded in size (bigger than we'll ever need). The packet arrivals constitute a

renewal process, with interarrival-time distribution F (x). As already discussed, this constitutes

an open GI/M/1 queue. It is well known that the steady-state probability for �nding k customers

in the queue, �(k), is given by [LIPS92]

�(0) = 1� �

�(k) = (1 � s) � � � s

k�1

; k > 0

where s is the geometric parameter satisfying the equation

s = B

�

[�(1� s)]: (10)

B

�

(z) is the Laplace transform of the interarrival distribution. Alternatively, in the LAQT

representation, s is the smallest eigenvalue of the matrix

A := I +

1

�

B�Q: (11)
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Let �x be the mean interarrival time. Then

� =

1

��x

and the mean queue length (including the one being served) for the process is

�q :=

1

X

k=0

k � �(k) =

�

1� s

�

What is needed here is the probability that an arriving packet will �nd exactly k > 0 other

packets already there. The arrival probabilities are given by

a(k) = (1� s) � s

k

= �(k) �

s

�

�

Then the probability that an arriving packet will have to be stored in the backup bu�er is

Pr(N ) =

1

X

k=N

a(k) = (1� s)

1

X

k=N

s

k

= s

N

:

We see that the smaller s is, the less likely overow will occur. Equivalently, the closer s is to 1,

the bigger �q and Pr(N ) will be, giving less desirable performance.

There are some general statements one can make. For instance, when � = 1, so does s. If

R(0) = 1 (a non-defective distribution) then s = 0 when � = 0. Also, only for the M/M/1 queue

does s = � for all �. We say that if s > � then system performance is worse, and if s < � then

system performance is better than one could ask for. It has been shown [LIPS92] that the slope

of the curve, s versus � at � = 0 is �xf(0). So if this is less than (greater than) 1, then for small

�, performance is better (worse) than the equivalent M/M/1 queue. At the other end, at � = 1,

the slope is 2=(C

2

+ 1). If C

2

> 1 (C

2

< 1) then performance is worse (better). It is also known

[LIPS92] that near � = 1 performance depends only on the moments of the interarrival time

distribution, and thus on � and �. In particular, if � � 2 then C

2

=1 and the slope is 0. This

means that s will remain close to 1 even as � decreases.

In general, for small � performance depends only on the behavior of R(x) when x is small.

For instance, in modelling PT distributions using (6) with � = (1 � �)=(1 � �), it follows that

f

M

(0) > 1 for all � and all �. A di�erent function (other than e

��x

) could have been chosen which

would have yielded a smaller s for small � (e.g., �

2

xe

��x

instead of e

��x

). But the performance

for � ! 1 would be the same. This shows the di�culty in selecting test functions in exploring

the general performance of systems. Without more knowledge of a particular system, no model

can be relied upon to give an accurate picture of the performance for small or intermediate �.

However, qualitative behavior can be surmised.
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When � is close to 1, it is better to look at Pr(N ) as a function of t := 1� s, for then

P := Pr(N ) = s

N

= e

N log(s)

= e

N log(1�t)

� e

�tN

for t� 1:

(Remember that t is a function of �.) This formula, and all examples we will examine in the rest

of this paper, can be looked at from a di�erent point of view. For a �xed probability of overow,

say P = 1=10

k

, the bu�er size must be:

N (�) =

log

e

P

(�t)

=

k log

e

(10)

t

:

Clearly, a doubling of the bu�er size (for �xed � and thus �xed t) will reduce the probability of

overow to 1=10

2k

. Therefore we see that inexpensive backup bu�ers can reduce packet loss to

arbitrarily small values if t is not too small.

2.2.1 Some Examples

Our purpose in this paper is to examine the a�ect which PT distributions and their truncated

cousins have upon bu�er sizes. For our \base" function we have chosen � = 1:4 and � = 0:5.

[GREI95] has shown that for �xed �, system behavior is quite insensitive to changes in �, so any

intermediate value will do. On the other hand, performance is very sensitive to �. The value � =

1:4 �ts the data given in [LELA94]. For comparison, we have included the Erlangian-2 function,

E

2

(x) = �

2

xe

��x

, and the hyperexponential-2 function, H

2

(x) = p�

1

e

��

1

x

+(1� p)�

2

e

��

2

x

. In

all cases, the �'s have been chosen to give a mean interarrival time of 1. As always, the Erlangian-

2 has a coe�cient of variation of C

2

= 1=2. The H

2

function, however, is a 3-parameter function,

and even after choosing an appropriate C

2

, one arbitrary parameter remains. For our �rst set

of calculations we chose C

2

= 4:75, the same as the TPT for M = 8, and p = :0001. The results

for P = :01 (1 percent primary bu�er overow probability) are given in Figure 1. As would be

expected, the necessary bu�er size grows unboundedly as � approaches 1. Therefore, in order

to control the variation along the y-axis, N was multiplied by 1 � �. Even so, for large M , C

2

becomes unboundedly large, so we plotted log[(1� �)N ] versus � instead.

It is true that for all distributions with �nite variance (see [LIPS92]),

lim

�!1

t

(1� �)

=

2

C

2

+ 1

�

Therefore,

lim

�!1

[(1� �) �N (�)] = log

e

(1=P )

�

C

2

+ 1

2

�

�
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Figure 1: Primary Bu�er Size Needed in a GI/M/1 Queue for Overow To Be Less

Than 1%, as a Function of � = 1=(� � �x). Because the bu�er size can become very large as �

approaches 1, the function actually plotted is log[(1��)N ]. All curves (except that for M =1)

are �nite at � = 1, as shown by the inset �gure. The curves are discontinuous because N is an

integer function, and have negative slopes for small � because of the factor 1� �.

Except for very largeM , the inset of Figure 1 clearly shows that a limit exists. But since C

2

goes

to in�nity as M does, the PT distribution itself must yield an in�nite limit. This is certainly

true. [GREI95] has shown that as � approaches 1

t(�) �! (1� �)

1

��1

�

Therefore,

(1� �) �N (�) �!

1

(1� �)

2��

��1

�!1:

Put di�erently, for PT distributions with 1 < � � 2,

lim

�!1

(1� �)

1

��1

�N (�)

is �nite and greater than 0.

While these limits are interesting in their own right, and show that the calculations are

consistent with theory, they are not of much use for practical performance analysis. Most of the

extreme behavior occurs for � > :9, where almost any system would be expected to behave badly.

Of more interest is the range 0:5 < � < 0:9. In this range it is clear that E

2

and Poisson renewal

processes cause no great bu�er problems. Even the H

2

distribution gives results very similar to

that of the M/M/1 queue except above � = :9 where it �nally rises abruptly to approach the

same limit as the curve for the TPT with M = 8, as it must, since they have the same C

2

. The
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Figure 2: Comparison of Primary Bu�er Sizes between a TPT with M = 32 and

various H

2

distributions with the same C

2

, as a Function of � = 1=(� � �x). Bu�er

size*(1 � �) is plotted on a logarithmic scale. For the H

2

's, p = 10

�k

; for k = 4; 5; 6; 7. The

M/M/1 queue is included for reference.

implication is strong here that C

2

is not as signi�cant as it is, say in the mean queue length of

the steady-state M/G/1 queue. To explore this further we compared the TPT with M = 32, and

C

2

= 5033:44 � � �with variousH

2

distributions with approximately the same mean and coe�cient

of variation (C

2

= 5033). For the di�erent H

2

's we selected p = :0001; :00001 :000001; and

.0000001 (p must be smaller than .0004 order to get such a big C

2

). The results are given in

Figure 2.

Recall that all the bu�er sizes grow unboundedly as � approaches 1, so we once again plot

(1 � �) � N (�) on a logarithmic scale. It is clear from the �gure that none of the curves have

anything in common, except near � = 0 and at � = 1. The inset shows they have the same

asymptotic value as � approaches 1. The TPT increases smoothly throughout the range, but the

others behave as would an M/M/1 queue for small �, and at di�erent values of � jump rapidly

to a higher level. We expect that this is an artifact of the H

2

distributions. They can each

be thought of as generating a Poisson stream of packets, interspersed infrequently (p) with an

extremely long pause (1=�

1

). When � is small, the pause is long enough for the queue to drain.

As � increases, enough packets arrive during the busy times to back up the queue su�ciently so

that it cannot drain duing the quiet time. The smaller p is, the closer �

2

is to 1, so the queue

cannot build up even during the busy times unless � is very close to 1. Clearly, this describes such

specialized behavior that H

2

functions cannot be used to describe a general behavior pattern,

at least not for bu�er problems. We see as a general rule that in the range of interest, C

2

does
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Figure 3: Primary Bu�er Size of a GI/M/1 Queue for the PT and Various TPT

distributions as a Function of �, With � = 1=(� � �x) = 0:8. The M/M/1 queue is included

for reference.

not tell the whole story (or even a good part of it).

In the previous �gures we chose the power parameter to be � = 1:4, matching the experi-

mental value that appeared in [LELA94]. We now describe how performance varies over the

critical range of 1 < � � 2 for intermediate 0:7 � � � 0:9. In Figure 3 we see how the degree

of truncation of the power tail a�ects performance when � = 0:8. The M/M/1 queue (M = 1)

is again included as reference. We see that even for an M as little as 16, the TPT and PT

distributions yield comparable results for � � 1:4. But below that value, the bu�er sizes become

extraordinately large, and below � = 1:1 di�erent truncations yield very di�erent results. Even

M = 64 does not come close to the full PT distribution. In this region, the bu�er sizes are so

big that they become meaningless for a real-world situation. In the near future, at least, can

we expect a host to process 10

12

packets in a single hour, let alone store them? Thus we must

conclude that systems experiencing PT arrivals with � < 1:1 never reach a steady state. Another

modelling procedure must be found.

Figure 4 Shows that for � � 2 PT distributions and their truncated cousins behave like other

distributions. Their unusual behavior only becomes signi�cant when � goes below 1.4. System

behavior seems to vary smoothly with increasing �. But keep in mind that bu�er size is given

as a log scale. There is a factor of 2 di�erence between the � = 0:7 and the � = 0:9 curves.

12
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Figure 4: Primary Bu�er Size in A GI/M/1 Queue for the TPT Distribution With

M = 64 as a function of �, with � = 1=(� � �x) = 0:7; 0:8 and 0:9.

2.3 GI/M/1/N Queues - Finite Bu�er

An explicit steady-state expression for the probability of �nding k customers in a GI/M/1/N

queue is only known in terms of LAQT and is given in [LIPS92]. They are

�(0 jN ) = �g(N )	[U

N

V]

�(k jN ) = g(N )	[U

N+1�k

]

The arrival probabilities (i.e., the probability that an arriving packet will see k packets already

in the bu�er) are di�erent. Let N be the size of the bu�er, then

a(k jN ) = K(N )	[U

N�k

] for 0 � k � N;

where U := A

�1

, 	[ � ] is de�ned in (9) and A is given by (11). K(N ) is the normallizing factor

making the sum of the probabilities equal to 1. That is,

N

X

k=0

a(k jN ) = 1 =)

1

K(N )

= 	[U

N

+U

N�1

+ � � �+U

2

+U+ I] = 	[(I �U)

�1

(I�U

N+1

)]:

Details of how to compute this are given in [LIPS92]. The probability that a packet will be

lost is the same as the probability that an arriving packet will see a full bu�er, and is given by

a(N jN ). Thus

Pr(N ) = K(N ):
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Figure 5: Bu�er Size For 1% Loss in A GI/M/1/N Queue for Various Distributions

as a function of � = 1=(� � �x). The distributions included are: TPT with M = 1; 8; 16; 32, E

2

and H

2

(C

2

= 4:75).

Figure 5 is similar to Figure 1 except that N (�) is not multiplied by (1� �), since N (� = 1)

itself is �nite (the functions blow up at � = 1 + P ). The same pattern occers here. The

H

2

/M/1/N system behaves no di�erently than the M/M/1/N until � > 0:9, even though it has

the same C

2

value as the curve labelled M = 8. So we see again that C

2

does not tell the story,

certainly not in the range of primary interest.

2.4 M/G/1 Queues - In�nite Bu�er

Irratic tra�c may be caused by �les whose sizes are distributed according to a power-tail law,

but are broken up into numerous smaller packets which then disburse upon transmission, giving

an appearance of burstiness. If we imagine that they are reassembled at the server and stored

as one packet, then this could be adequately described as an M/G/1 system. But now we are

faced with an obvious problem. The Pollaczek-Khinchin formula states clearly that a service

distribution with in�nite variance must produce an in�nite mean queue length for the steady-

state M/G/1 queue, for all �. If the time to process a packet is proportional to the size of the

packet, then the amount of bu�er space needed to hold waiting packets must be proportional

to the waiting time, which over a long time must grow unboundedly if C

2

=1. However, if an

entire reassembled packet can be stored in a single slot, then the steady-state probability that

an arriving packet will �nd that N or more slots are already bu�er taken, is not in�nite, even

though the mean queue length is in�nite. We hypothesize without proof, that the steady-state
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Figure 6: Primary Bu�er Size Needed for Overow of an M/G/1 Queue To Be Less

Than 1%, as a Function of � = � � �x. Because bu�er size can become very large as �

approaches 1, the function actually plotted is log[(1 � �)N ]. All curves appear to be �nite at

� = 1, as shown by the inset �gure.

(and arrival) probabilities for PT distributions satisfy, for large n

a(n) = �(n) �! (1� �)

const

n

�

�

Then, if � > 1

lim

N!1

Pr(N ) = lim

N!1

1

X

n=N

a(n) = 0

where now (and hereafter), � = ��x. � is the Poisson arrival rate, and �x is the mean service time.

This says that there exists a �nite N for which Pr(N ) = � for all 1 > � > 0, however small � is.

Notice that this would be true even though �q is in�nite if � � 2, for then

�q :=

1

X

n=1

na(n) � (1� �) � const

1

X

n=1

n

n

�

= (1� �) � const

1

X

n=1

1

n

��1

=1:

(Note that if � � 1 then there can be no steady state.) We assume here, then, that each

reconstituted packet takes up one slot.

The steady-state and arrival probabilities are the same for an M/G/1 queue, and are given

in LAQT form by:

a(n) = �(n) = (1� �)	[U

n

]:

The probability that an arriving packet will �nd N or more slots full is given by:

Pr(N ) = (1� �)

1

X

n=N

	[U

n

] = (1 � �)	[U

N

(I�U)

�1

]:
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Figure 7: Primary Bu�er Size of an M/G/1/N Queue for Various TPT distributions

as a Function of � = � � �x. The M/M/1/N, M/H

2

/1/N and M/E

2

/1/N queues are also

included.

We have calculated these probabilities for the usual collection of distributions, and present the

results in Figure 6. The behavior is similar to that of the GI/M/1 queue (Figure 1), but the

primary bu�er sizes are somewhat bigger here. However we see that these curves are concave

downward (that is, the bu�er size needed grows somewhat more slowly than 1=(1 � �)). Also,

the H

2

system behaves peculiarly, even for the relatively small C

2

= 4:75. But it does approach

the same value as the TPT system for M = 8 as � approaches 1. The inset shows a slight upturn

for this curve very close to 1, but this is almost surely due to numerical instability.

2.5 M/G/1/N Queues - Finite Bu�er

Finally we reach our last system, and last �gure. As with the open M/G/1 system the

arrival probabilities and the steady-state probabilities are equal. (This is not true for GI/M/1

and GI/M/1/N queues.) Therefore, from [LIPS92]

a(n; N ) = �(n; N ) = G(N )

�

	[U

n

] for 0 � n < N

�	[U

N�1

V] for n = N:

where

[G(N )]

�1

= 	[(I�U)

�1

(I �U

N

)] + �	[U

N�1

V]:

The probability that an arriving packet will be rejected is a(N ; N ). Therefore,

Pr(N ) =

�	[U

N�1

V]

	[(I�U)

�1

(I �U

N

)] + �	[U

N�1

V]

�

Figure 7 shows the result of our calculations for 1:0% rejection. It is not clear how the true PT
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would behave, but it will be �nite. As with the GI/M/1/N queue, N (� = 1) is �nite but should

grow unboundedly as � approaches 1 + P , which is 1.01 throughout this paper.

We have not calculated the behavior of the full PT system yet because it requires manip-

ulating extremely large matrices, or �nding a large number of the eigenvalues of A. For PT

distributions, A has an in�nite number of eigenvalues, with an accumulation point at 1. There-

fore in principle, (I�U) doesn't have an inverse. However, by using the Spectral Decomposition

Theorem, [LIPS95] has derived an expression by which any function of A can be computed. It

is:

	[f(A)] =

X

i

f(�

i

)

	 [f(1� �

i

)I + 1=�Bg

�2

]

�

The sum is over all eigenvalues of A, f�

i

g. We have worked out a numerical procedure which

allows any number of eigenvalues, together with evaluation of the 	[ � ] expression, to be computed

automatically, but haven't yet performed the sum. The sum converges geometrically, so there

should be no numerical instability.

3 Conclusion

We have shown how to integrate power-tail distributions and their truncated children into

the analysis of communications networks using various GI/G/1 queues with-and-without �nite

bu�ers. Other types of test functions (e.g., H

2

(x)) must surely be inadequate. On the other

hand, more complicated processes which hueristically build in correlations, may well be unnec-

essary. The models given here, though relatively simple, can be used by researchers who use

discrete event simulations. The reason why this could be very important is that statistics for PT

distributions converge to their mean much more slowly than any other distibutions [GREI95].

Our simple analytic model and results could serve as base-line comparisons to see if an equiva-

lent simulation is anywhere near convergence, before the researcher attempts a more complicated

simulation model.

Whereas for most processes the average for a set of data converges to its mean as 1=

p

(n) (n

is the number of data points), data generated by PT distributions with 1 < � < 2 converge as

1=n

�

, where � = 1� 1=�. If � � 1, the data doesn't converge at all! In fact, if one were to try

to test to see if a given set of data was generated by a PT distribution with � < 2, the �

2

test

would fail even if the hypothesis were true.

If it turns out that PT distributions play a signi�cant role in communications systems, then

much more research will have to be carried out on the statistical convergence in simulations. It

17



will probably be necessary to �nd new tools for analysis, based on transient systems, because the

number of events needed to bring a PT system to its steady state may exceed the lifetime of that

system. It is interesting to note that while there are several theories as to why PT distributions

occur (all of which probably have some truth in them), there are no ideas or hunches or suggestions

as to why a particular system should have a particular �. Since the behavior of any PT system

very strongly depends upon its characteristic �, any ideas in this direction deserve a serious

hearing.
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