Algorithm Animation: Using algorithm codeto drive an animation

John Morris

School of Electrical and Electronics Engineering,
Chung-Ang University, Seoul 156-756, Korea
and

Department of Computer Science,
The University of Auckland
Email: j.morrris@auckland.ac.nz

Abstract

Computer algorithms commonly involve creation, reorga-
nization or destruction of relations between objects. This
means that they are generally excellent candidates for vi-
sualization for teaching purposes. For a student to com-
prehend all the ramifications of certain operations, several
different concurrent displays are often required: as well
as a visualization of the objects being manipulated by the
algorithm, commentary, highlighted source code and var-
ious statistics are commonly required.

This paper describes a strategy for rapidly building anima-
tions of algorithms: animations are driven from the source
code of the algorithm itself by the addition of animation
directives. These directives invoke routines from a toolkit
which provides operations commonly needed to display
objects and structures. By providing a standard approach
to the creation of an animation, creating a new one be-
comes a straightforward process: many animations in the
current collection have been produced by students in one
semester courses.

The supporting toolkit contains classes which, in addition
to animating basic structure, provide many subsidiary dis-
plays - histograms, graphs, etc. which are updated as the
algorithm runs. This toolkit has evolved following critical
analysis of the features needed to allow easy comprehen-
sion of the animated algorithms, for example, a separate
commentary area has been abandoned in favour of labels
on the animation and “history’ panels have been added to
permit simultaneous display of several steps in the algo-
rithm. smaller improvements. Over several years, we have
implemented a set of widely referenced algorithm anima-
tions commonly taught in data structures and algorithms
courses available on the web.

Keywords: Algorithm animation, algorithms, data struc-
tures

1 Introduction

Computer science and software engineering courses gen-
erally include a core course on discrete data structures
and algorithms to manipulate them. These courses, which
are usually found in the second year with optional ad-
vanced courses in third and later years, aim to show stu-
dents efficient ways to solve common problems. The dis-
crete nature of the structures makes the visualization of
the algorithms operating on them relatively easy to de-
sign: algorithm steps generally add or delete objects or

Copyright (©2003, Australian Computer Society, Inc. This paper ap-
peared at the Australasian Computing Education Conference 2005, New-
castle, Australia. Conferences in Research and Practice in Information
Technology, Vol. 42. Alison Young and Denise Tolhurst, Eds. Repro-
duction for academic, not-for profi t purposes permitted provided thistext
isincluded.

rearrange an existing structure in some way. Many of
the algorithms involve novel ideas that present concep-
tual difficulties to students and thus visualization rep-
resents a valuable additional pathway to understanding.
Many algorithm animations have been written: they range
from custom-coded animations of a single algorithm -
usually available on Web sites in support of individual
courses(Kitchen 2004, Mitra 1999, Burgiel & Raymond
2004) - to complex systems to support generation of al-
gorithm animations(Roessling & Freisleben 2001, Rodger
2002, Brown & Najork 1996). The present work describes
a technique based on adding animation directives to the
source code of the algorithm being animated. A toolkit of
commonly used objects and methods to manipulate them
is an essential part of this technique. This strategy has
been used to generate a collection of animations to sup-
port a second year course in data structures and algorithms
for engineers. The system described here includes direct
support for a number of novel features which have been
found useful to support the teaching goals: this paper’s
purpose is to highlight a different approach to generating
algorithm animations and several other features of the un-
derlying animation toolkit and framework.

2 Background

A full set of Web notes for a broad data structures and al-
gorithms course which included searching and sorting as
well as simple graph algorithms and hard problems pre-
ceded the animation exercise. This course was designed

for software engineers rather than computer scientists?,
so the emphasis was on understanding the choice of data
structure and algorithm to solve any particular problem
rather than, for example, details of the code for any par-
ticular algorithm. The existing HTML notes meant that
the animations should be incorporated as seamlessly as
possible into the existing notes. Java applets satisfied this
aim as well as providing portability. The first applets were
written for this project using the original Java AWT graph-
ics package because Java’s Swing graphics package had
not been released at that time. However, when Swing be-
came available, a decision was made to ensure portability
by continuing to use the original AWT package. Some mi-
nor benefits could be obtained by switching to Swing now,
but in deference to users who have never seen a need to
upgrade their browsers, the project continues to use AWT
only. This has not significantly hampered attempts to ex-
tend the package into other areas (control, statistics, com-
puter architecture etc.), so, while AWT continues to be
supported by new releases of the Java Virtual Machine, it
is unlikely that the original decision will be changed.

In order to allow general instructions, commentary, the-
oretical considerations, etc. to be readily available while

Ln this context, the distinction is between users of algorithms and designers of
new ones.

M Bin Sort E@

Select Animation View About

Q@ step | skip
siop run

Ml Scurce Code Q@EJ

publicvoid binsort{int] &, IntList]] bin) {
£} empty all bing
for {inti = 0; i < bindength; i++) {
bini] = new IntListg);

*

14 putafilinto binf afi]]
far (inti = 0: i < alength: i+4) {
bin afi]].putiafil);:

{f retrieve iterns from bin
inti=0:
fior {int] = 0;] < bindength; j++) {
far (intk = 0 k < hin[j] size(; ke=) {
ali++] = hin[jl.astk);

F
hinfj] = new IntListl):

¥
+/4 binsort{)

3 4 5 6 7 8 9
Stop button pressed...

Warning: Applet Windou

WWarning: Applet Window

Figure 1: Bin Sort Animation: left - main drawing canvas; right - source code

the animation is running, the animation does not use up
screen space in a web page: it is activated from a sim-
ple button embedded in a web page and a separate ani-
mation window is created, see figures 1, 3, 4 and 5. A
standard screen format has evolved with several menu op-
tions for selecting data sets, setting animation parameters,
viewing source code and the obligatory ‘About’ option and
tape-recorder style buttons for controlling the animation.
The major part of the window is the algorithm canvas. A
small text area for commentary (discussed later, cf. Sec-
tion 4.2) appears at the bottom. Using a separate frame
for the animations obviated the need to provide facilities
within the animation subsystem for help and documenta-
tion: web pages are an excellent medium for the text (and
images if necessary) needed for this purpose. This also
reduces the learning curve for an animation writer: it is
assumed that he or she can already write HTML pages, so
this knowledge is leveraged and no other documentation
system needs to be learnt. Two threads are created - one
to monitor the control buttons and a second to actually run
the code (plus animation directives) of the algorithm.

2.1 Algorithm code

Firstly, an animator must write or obtain working Java
code for the algorithm itself. The animation tasks can now
be split into several subtasks: drawing the basic data struc-
tures, deciding where to “break’ the animation and display
an updated structure and determining whether auxillary
structures (graphs, etc.) are needed.

Invocations of methods on the class modelling the data
structure(s) being animated are inserted into a standard
framework. Animation directives are then added to the
source code of the algorithm being animated. A common
and useful feature of algorithm animations is the simulta-
neous highlighting of the line(s) of code being executed
as the algorithm progresses. Adding the animation direc-
tives to actual working code makes realization of this aim
simple, but the animation directives are ‘noise’ to a stu-
dent wishing to understand the implementation of the al-
gorithm. In order to allow the executing code to be high-
lighted without this noise, the animation directives fol-
low an easily parsed symbol (actually a legal comment
/*-x/) inserted into the code: see the example in Fig-
ure 2. The module which displays source code performs a
simple parse of the animated code, stripping out the direc-
tives following the special symbol and displaying the core
algorithm code only.

This makes the animator’s task considerably easier: there
is no major animation design phase - the standard frame-
work and the toolkit takes care of that. Once a working
algorithm is coded following some simple design rules
that would usually be followed by well engineered code,
the animator focusses on how best to illustrate the trans-
formations of the various structures as the algorithm pro-
gresses. This mainly involves deciding where to insert the
‘update’ directives (which will draw updated structures)
into the code. Provision is also made for minor and ma-
jor steps within the code: this allows a student who has
understood some of the basic steps to skip over them (per-
haps in a re-run of the same animation) until a new op-
eration is encountered. Classes for critical structures are
extended with draw methods so as to implement the de-
fined DrawingObj interface. For some commonly used
structures such as tree and graph nodes, the toolkit already
provides suitable classes which may be sub-classed if nec-
essary for a particular algorithm. For example, a basic tree
node (and tree drawing methods) is provided which was
sub-classed to produce nodes suitable for red-black and
AVL trees.

2.2 Toolkit

The supporting toolkit is the real key to efficient and fast
generation of new animations; it has grown as animations
were written and now contains classes for handling trees,
graphs, matrices, histograms, labels, legends, arrows, ta-
bles, etc.To support the dynamic visualization of structure
rearrangements, it allows a Trajectory to be specified
- allowing, for example, animation of the path ‘followed’
by a node being added to a binary tree. Almost all the
existing animations use this class in some way.

Methods are also provided to mark step boundaries at var-
ious levels. The thread controlling the animation progress
‘advances’ the animation from step boundary to step
boundary at a rate set by the user. A student may request a
“fast forward’ to the next major step boundary to speed up
animation over uninteresting or well understood segments.

3 Animation Framework

A standard framework, the A1gAnimFrame class, provides
most of the basic drawing and animation control struc-
tures: it produces the standard window seen in figure

/* Rotate node x to left */

private void RotateLeft(RBNode x, Graphics g) {
/*-x/ Color origColour = x.getColour(); x.Highlight(g, Color.yellow);
/*—*/ AlgAnimFrame.showText(3, "Rotate Left about " + x.getWeight());
/*-*/ addLabelNear(rot_left, x); drawRBTree(); AlgAnimFrame.pauseStep();

RBNode y = (RBNode)x.getRight();

/* establish x.right link */
x.setRight (y.getLeft());

if ((RBNode)y.getLeft() != sentinel)

((RBNode)y.getLeft()).SetParent(x); /*-*/ tl.relink(y, y.getLeft(), x, y.getLeft());

Figure 2: Fragment of code from red-black tree animation showing animation directives following /*-*/ symbols

52. The animation is set up by writing a specialization
of the AlgThread class - usually by editing any one of
several existing specializations, e.g. RBTreeAlgThread.
This class contains lists of example data sets, invocations
of constructors for the major structures and invocations of
the methods being animated. In the case of interactive an-
imations, user input is controlled by the A1gThread spe-
cialization.

In addition to speeding animation generation, the standard
framework, with its common operation modes, avoids the
need for elaborate user documentation: once operation
of one animation is understood, the remainder follow the
same pattern. In fact, the animations have been extremely
popular despite a lack of any real effort by myself and oth-
ers who wrote animations to write any user documentation
at all!

4 Experience

The animations have been in use for several years now
so there has been ample opportunity to observe their use
and collect feedback. They have been extremely popular:
there are known links to them on dozens of other web sites
and many local copies of all or parts of the original UWA
PLSD210 course notes are kept in universities throughout
the world. Hundreds of unsolicited emails have been re-
ceived from grateful students who gained from the notes
and the accompanying animations.

Curiously, despite the large volume of email, very few
suggestions for change have been received: the most per-
sistent one is a request to allow user input of sample data
sets. This was introduced as a trial into the animation of
red-black trees(Morris 2002) to allow nodes to be added
to or deleted from a basic tree. Although many other an-
imations provide this capability, it was deemed of rela-
tively low importance for the animation of computer sci-
ence algorithms. It was considered more important to en-
sure that all the important cases were demonstrated by
test data. The danger with user input, in common with all
software testing, is that users may unwittingly input repre-
sentatives of the same equivalence class each time they run
an animation - and thus not see many of the cases which
it is important to observe. For example, the handling of
sorted data is important to understanding the properties of
quick sort and the enhancements that are needed to the
basic algorithm to maintain its good performance. With-
out prompting, how likely is it that a casual experimenter
would enter already sorted data into a sorting algorithm?
There is some probability that a curious student will try
a data set in reverse order - lucky for one learning quick
sort’s behaviour because it has the same pathological be-
haviour as sorted data. However, for insertion sort, sorted
and reverse sorted data have quite different performances,

2The other fi gures show earlier versions of the framework that has now been
adopted. Those animations will be trivially updated to use the new framework as
soon as any maintenance is performed on them!

so this phenomenon might easily be missed. Thus the ap-
proach with the current set of animations has been to pro-
vide a selection of data sets which exercise all the cases
which an algorithm may have to process. It is felt that
this is more likely to result in complete understanding of
an algorithm’s behaviour: as long as the student tries ev-
ery provided data set, then he or she will be exposed to
all the nuances of an algorithm. Whilst it is highly likely
that a thorough student will explore each provided data
set, we would be relying on a student’s fortuitous combi-

nation of luck, prior knowledge or reading ahead® or ex-
perience with similar problem to ‘discover’ all the rele-
vant cases. With some algorithms, e.g. the balanced tree
algorithms such as red-black trees, the ‘path’ to some of
the interesting cases is quite difficult to discover, making
it further unlikely that it will be observed through ran-
dom experimentation. Whereas a single data set found in
Cormen’s text(Cormen, Leiserson & Rivest 1993) and in-
corporated in the animation will exercise all the different
cases for the red-black tree algorithm. Presenting this data
set as the first one that a student should try ensures that
all balancing cases are seen. However, as this position is
at odds with some educational theories about learning by
self-discovery, it will remain contentious!

4.1 History Panels

Many algorithms involve complex rearrangements of re-
lationships between objects in a single step, e.g. red-
black tree re-balancing requires addition of a node, colour
changes and one or more rotations. The animator has a
number of choices:

1. Slow the process down so that each ‘step’ is repre-
sented as a new image - allowing each microstep to
be displayed individually,

2. Try a composite approach in which arrows, labels,
etc.are added to highlight each of the micro-steps,

3. Allow stepping backwards or

4. Present the progress of the algorithm in a number of
panels - allowing the student to see ‘before’ and ‘af-
ter’ images.

Approach 1 is the ‘standard’ approach: most systems per-
mit the update rate to be varied by the user by either con-
trolling the rate in a continuous fashion or by an action
which steps to the next significant event. This approach
can leave a user confused when a non-obvious step was
taken - an ability to ‘rewind’ is needed. With simple struc-
ture changes, approach 2 may solve the problem, but com-
plex rearrangements will require too much clutter in the
form of added labels, arrows, etc. for this to be effective.

SFeedback from studentsin class suggeststhat the animations are best presented
fi rst! The informal understanding of concepts gained from viewing the animation
aids the formal study that follows.

M Building Hash Tables

Hashing Freq Stats

concentrate on understanding the nater PSR

mumiber of keys
4an
30 7 |bockshop j
& |can =t
Collision! Re-Hashing... i 2 viced
i 10 [his
BT iy
12 Jcopy
- L5 Jiectures j
Collision Stats
mmber of collisions during insertions
o 5 10 10
mumber of hashes
Address F
0 25 50 5 100 I
oo | (I ATHRL DN Ll s PR I A
Bergent Keys Placed in Table Gz gecy 0 10 20 ad
full k(th) items
Funning Building Hash Tables Bun Mest Step| ! Linear Proking 5
This demo reads words from a text file and Anim OFF | |Delay 200mse = it
stores them into a hash table... |Smp bution pressed
Warning: Applet Window

Figure 3: Hash Table Animation: A large complement of tools may be seen in this animation!

M Huffman Encoding,

BE

{4 perorm greedy algarithm
while (sortedNodes.size() > 1){
{ form a node fram the firsttwo nodes
Natle comhlade = newNade((Nade)sortedNarles first
(Node)sortedhodes.elementAt1);
{1 remove the first wa nodes from sortedModes
sortedNodes removeElementi(D);
sortedNades removeElementt(D):

1{ place the combined node atthe sppropriate posn [|
boolean insered = false:
for (inti = 0 < sortedNodes size(); i+ {
if (comiode getweight) <
((Node)sortadNodes elemeantAt) getweight()
soredNodes inserElementaticomiade, i)
inseried = te;
break;
i

1
if (linserted) {
sortedNodes addElement(comNods):
i
i

{1 sssignree
if (sartedNodes.size() < 1)

return;
tree = (Node)sortedNodes firstElement);

{1 encoding table
table = new Hashtable():

String code = new String(:
encodingHashtabla(tee. table. code):

Pertorm Greedy Algorithm

encoding_decoding_example('HELLO"): #
Run Huffman Encoding | NextStep | {7771 [Flet ~

Combining the two lowest frequency nodes..

Delay 200msec -

Subtree movement completed

[+ mheavp

Lctures, £ Huffman Encodi..

Figure 4: Huffman Encoding Animation - probably the most popular in this set!

ANIMAL’s player provides the ability to return to the pre-
vious step or to start again(RéRling & Naps 2002). Again,
this approach will work with simple changes: but as soon
as a major processing step is composed of several smaller
steps, the animator is faced with a difficult design deci-
sion: skip over smaller (or amalgamate) small steps so that
the major step is visualized or focus on the micro-steps at
the expense of visualizing the major step. The approach
taken here allows the animator to specify the number of
history panels - each displaying a previous step in the al-
gorithm - to be displayed, see Figure 5. This allows the
animator to arrange displayed steps so that the left panel
shows the state before a major step commenced, inter-
mediate panels show the micro-steps and the right panel
shows the state after the major step has completed.

4.2 Commentary

Initially, a text area with an adjustable number of lines was
placed below the animation canvas to provide a running

commentary: original commentary is still visible in Figure
3, 4 and 5. User feedback soon showed that this was not
effective: it was difficult to associate a new text message
at the bottom of the screen with events on the main canvas
while the animation was running. Thus a ShadowLabel
class was written to allow text comments to be placed on
the animation canvas - right next to the object to which the
comment referred, see Figure 3 and 5. An addLabelNear
method avoids the need for the animator to deal with the
painful and trivial tasks of adjusting the fine position of
these labels - they follow the object with which they’re
associated as needed.

This seemingly simple change has had a dramatic effect on
the on the usefulness of animations built once the problem
was discovered and was a valuable lesson in animation
design.

Select Animation View Opfions Actions About

eoee

Il RBTree EEJKJ

Adding & Adding 5

Rotate Left

Adding 8

Final Red-Black Tree

Rotate Left

Animation delay now set to 800 msec
Final Red-Black Tree

Varning: Applet Window

Figure 5: Red-Black Tree Animation showing a set of history panels which enable the student to study complex trans-

formations of relationships between individual objects.

5 Other Domains

The basic framework and toolkit has been used in several
projects to produce animations outside the original do-
main of computer science algorithms: these have included
- animation of control algorithms, animation of data set
descriptors (for statistics teaching) and processor simu-
lation. In all cases, the basic framework was used with
no alteration: animation programmers simply replaced the
animation thread itself. Various display objects from the
existing toolkit (labels, trajectory animation, etc.) were
used as the individual animations required. New classes
were written in standard Java as necessary and added to
the toolkit if they were considered to have some general
applicability: thus the power of the system has grown
incrementally with new capabilities being readily added.
One advantage of the common framework is that new ca-
pabilities such as the “history’ panels are readily added to
older animations.

6 Conclusion

The benefits of algorithm animations as an adjunct
to more traditional teaching methods has been clearly
established(Naps, Rossling, Almstrum, Dunn, Fleischer,
Hundhausen, Korhonen, Malmi, McNally, Rodger &
Velazquez-Iturbide 2003). The algorithms produced by
this system have proved extremely popular with students
around the world: entering ‘data structures and algo-
rithms’ into a search engine routinely returns links to the
pages in which they are embedded at the top of the hit
list. (It also generates a large number of requests to solve
homework problems from this international class!)

Three factors in the design of the system have been key to
the rapid production of a family of animations:

e Driving the animations from source code of the algo-
rithm itself makes designing the animation straight-
forward and fast.

e The toolkit approach provides a low learning curve
for an animator: there is no new language or system
to learn.

e The standard framework allows a programmer to pro-
duce a prototype rapidly.

The last point is a significant one: ideas about presenta-
tion of the algorithms evolved over the life of the project
(and will almost certainly continue to evolve). Evolutions
fall into two groups. The first is applicable to animations
generally: for example the original (obvious!?) require-
ment for a commentary area turned out to be a bad idea
and, although it is still available, has tended to be used
less and less. Similarly, adjustment of the rate of anima-
tion and the provision of a step capability were found to
be inadequate for effective presentation of more complex
scenarios and the history panels have been added. The
second group is algorithm specific: for example the origi-
nal quick sort animation used a conventional partition-in-
place algorithm, which has a confusing display. A discus-
sion with Jeff Rohl led to the much more easily compre-
hended dataflow-style partition into low and high groups
in the current quicksort animation(Ang & Morris 1997).
The basic framework and toolkit has also shown its versa-
tility by being used in some domains outside its original
target: control systems, statistics and processor simula-
tion.

7 Acknowledgements

John Morris was supported by the Foreign Professors In-
vitation Program of The Korean IT Industry Promotion
Agency at Chung Ang University in 2003-4.

A large number of the animations currently available on
the web were programmed by Woi Ang who also wrote
much of the current infrastructure. Many students have
now contributed to individual animations: their names ap-
pear in the Web pages(Morris 2004) beside the buttons
activating animations to which they have made contribu-
tions.

References

Ang, W. & Morris, J. (1997), Quick sort animation,
www.cs.auckland.ac.nz/software/AlgAnim/
gsort.html.

Brown, M. H. & Najork, M. A. (1996), Collaborative
active textbooks: A web-based algorithm anima-
tion system for an electronic classroom, in ‘Pro-
ceedings of the IEEE Symposium on Visual Lan-

guages’, IEEE Computer Society Press, Washington,
pp. 266-275.

Burgiel, H. & Raymond, M. (2004), Smple N-gon
Counter, www.math.uiuc.edu/ burgiel/Java/
Ngons/, (accessed Nov 2004).

Cormen, T. H., Leiserson, C. E. & Rivest, R. L. (1993),
An Introduction to Algorithms, The MIT Press.

Kitchen, A. (2004), Sorting algorithms, www.cs.
rit.edu/"atk/Java/Sorting/sorting.html
(accessed Nov 2004).

Mitra, S. (1999), Animation of Sorting Algorithms,
www.cs.brockport.edu/cs/javasort.html
(accessed Nov 2004).

Morris, J. (2002), Red-black Tree Animation,
www.cs.auckland.ac.nz/software/AlgAnim/
red_black.html.

Morris, J. (2004), Algorithm Animations,
www.cs.auckland.ac.nz/software/AlgAnim/
alg_anim.html.

Naps, T. L., Rossling, G., Almstrum, V., Dunn, W., Fleis-
cher, R., Hundhausen, C., Korhonen, A., Malmi, L.,
McNally, M., Rodger, S. & Velazquez-Iturbide, J. A.
(2003), Exploring the role of visualization and en-
gagement in computer science education, in ‘inroads
- Paving the Way Towards Excellence in Computing
Education’, ACM Press, pp. 131-152.

Rodger, S. H. (2002), Using hands-on visualizations to
teach computer science from beginning courses to
advanced courses, in “‘Second Program Visualization
Workshop’.

Roessling, G. & Freisleben, B. (2001), ANIMALSCRIPT:
An extensible scripting language for algorithm ani-
mation, in ‘Proceeding of the Thirty-second SIGCSE
Technical Symposium on Computer Sciense Educa-
tion (SIGCSE-01)’, Vol. 33 of ACM Sgcse Bulletin,
ACMPress, New York, pp. 70-74.

RoRling, G. & Naps, T. L. (2002), A testbed for ped-
agogical requirements in algorithm visualizations,
in D. Finkel, ed., ‘Proceedings of the 7th Annual
SIGCSE Conference on Innovation and Technol-
ogy in Computer Science Education (ITiCSE-02)’,
\ol. 34 of SGCSE Bulletin, ACM Press, New York,
pp. 96-100.

