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1. Introduction

State space models, also termed dynamic models, relate observations yt;

t = 1; 2; :::, on a response variable Y to unobserved "states" or "parameters" �t, t=1,2,...,
by an observation model for yt given �t. The states are assumed to follow a Markovian transi-
tion model. Gaussian linear state space models are de�ned by a linear observation model and
a linear Markovian transition equation

yt = z0
t
�t + �t; t = 1; 2; :::(1)

�t = Ft�t�1 + �t; t = 1; 2; :::(2)

with independent i.i.d. sequences �t � N(0; �2), �t � N(0; Q), and an independent initial value
�0 � N(a0; Q0).

State space models have their origin in systems theory, and famous early applications in
the Apollo and Polaris aerospace programs, see, e.g., Hutchinson(1984). In this context, the
observation equation (1) describes radar observations yt, disturbed by noise, on the state vector
�t (position, velocity,...) of a spacecraft, ship or vehicle, and the transition equation (2) is a
linearized and discretized version of motion in space. Given the observations y = (y1; :::yt),
on-line estimation or �ltering of �t for t=1,2,..., and prediction of �s, s>t, are of primary
interest. Related problems arise in on-line monitoring of patients or in ecological processes
(Smith and West, 1983; Fr�uhwirth-Schnatter, 1994a). The main applications in statistics are
structural time series and dynamic regression models of the form yt = �t + 
t + x0

t
�t + �t, with

a trend function �t, a seasonal component 
t and possibly time-varying e�ects of covariates
xt. Gathering �t; 
t and �t into a state vector and de�ning appropriate transition models (2),
these models can be written in state space form, see, e.g., Harvey(1989). Given observations
y = (y1; :::; yt; :::; yT ), estimation or smoothing of the whole sequence � = (�1; :::; �t; :::; �T ) is
of interest.

Under quadratic loss functions, posterior mean �lters �tjt = E(�tjy1; :::; yt) or smoothers

�tjT = E(�tjy = (y1; :::; yT )) are optimal estimators. If zt and Ft in (1),(2), as well as �2,Q and
a0, Q0 are known, the famous Kalman �lter and smoother (KFS) provides an analytical solu-
tion: It computes the �lter estimates �tjt, t=1,2,...,T, in forward recursions and the smoother
�tjT , t=T-1,...,1, in backward steps. Moreover, due to linearity and normality assumptions,
marginal and joint posterior distributions are Gaussian.

2. Function estimation via Gaussian models

In the following, we sketch the lines of arguments that correspond to the historically �rst
derivation of a special KFS by Thiele in 1880 and show the close relationship to nonparametric
function estimation. Consider �rst the classical smoothing problem, where observations y =
(y1; :::; yT ) are assumed to be the sum

yt = �t + �t; t = 1; :::; T(3)



of a smooth regression curve f�tg, evaluated at equally spaced design points t, and i.i.d.
errors �t � N(0; �2). In a state space approach for estimating f�tg,(3) is supplemented by
Gaussian random walk models of �rst (RW(1)) or second (RW(2)) order:

�t = �t�1 + �t or �t = 2�t�1 � �t�2 + �t; �t � N(0; q2):(4)

From a Bayesian point of view, these random walk models de�ne smoothness priors on
�rst and second di�erences, r1�t = �t � �t�1 and r

2�t = �t � 2�t�1 + �t�2, respectively, that
help to regularize the estimation problem by putting a penalty on deviations from horizontal
or straight lines. Since (3) and (4) can be put in state space form, the KFS can be applied for
given variances �2 and q2 to compute posterior means �tjT = E(�tjy) as optimal smoothers,
together with posterior variances. Since the posterior is Gaussian, mean and mode coincide, so
that �tjT , t=1,...,T, can also be obtained by maximizing the posterior. Assuming di�use initial
priors for �1; �2 and taking logarithms, this is equivalent to the classical optimal smoothing
problem already considered by Whittaker(1923): Choose �̂ = (�1jT ; :::; �T jT ) as the minimizer
of the penalized least squares criteria

TX

t=1

(yt � �t)
2 +

�2

q2

TX

t=k+1

(rk�t)
2; k = 1; 2;(5)

for a RW(1) resp. a RW(2) prior. From (5), the close correspondence to spline smoothing
becomes clear: The penalty terms are discretized versions of corresponding roughness penalties
for quadratic or cubic smoothing splines, and the variance ratio � = �2=q2 acts as a smoothness
parameter. This equivalence remains also valid for general Gaussian state space models (1),(2),
see e.g. Fahrmeir and Tutz (1994, ch.8.1). Adopting the Bayesian smoothness priors approach
o�ers additional possibilities for data driven choice of the smoothing parameter � = �2=q2 by
estimating the variances via the ML principle or, in a fully Bayesian approach, by Markov chain
Monte Carlo (Fr�uhwirth-Schnatter, 1994; Carter and Kohn, 1994). We also note that the whole
approach can be extended for unequally spaced observations. With such modi�cations, the
state space approach can be used for Bayesian nonparametric function estimation in a regres-
sion model yi = �(xi)+ �i, i=1,...,n, with Gaussian errors. Here x can be any metrical covariate
instead of time t, and the ordered covariate observations x(1) < ::: < x(i) < ::: < x(n) correspond
to unequally space time points. Extensions to additive models yi = �1(xi1) + ::: + �p(xip) + �i
with several covariates x1; :::; xp are not straightforward, however, because state space models
and the KFS can only deal with one time scale or covariate. Therefore, additive models ei-
ther require "Bayesian back�tting" (Hastie and Tibshirani, 1998) via Gibbs sampling, or other
MCMC approaches based on state space models as in Fahrmeir and Lang (1998).

3. Function estimation via non-Gaussian models

Non-Gaussian and nonlinear state space models are obtained by dropping normality and
linearity assumptions in (1) or (2). Although general �ltering and smoothing integral recur-
sions can be obtained in principle, exact calculations as with the KFS are no longer possible.
Apart from comparably crude approximations like the extended Kalman �lter, several methods
have been proposed more recently: numerical (Kitagawa, 1987, for low-dimensional �t's) or
Monte Carlo �lters (Kitagawa, 1998; Huerzeler and Kuensch, 1998; Pitt and Shephard, 1998),
posterior mode estimation (Fahrmeir and Wagenpfeil, 1997; Fahrmeir and Tutz, 1994, ch.8)
and fully Bayesian smoothing using Markov chain Monte Carlo simulation (Knorr-Held, 1998;
Shephard and Pitt, 1997).

An important subclass are dynamic generalized linear models (e.g. Fahrmeir and Tutz,
1994, ch.8). They are obtained by assuming that observations yt given �t come from an expo-
nential family density with mean

�t = E(ytj�t) = h(z0t�t);



where h is some link function. If we retain the Gaussian transition model(2), the posterior
mode estimate �̂ = (�̂1; :::; �̂T ) can be shown to maximize the penalized likelihood criterion
P

lt(�t)+PEN(�), where lt(�t) is the likelihood contribution of ytj�t, and PEN(�) is a rough-
ness penalty as for example in (5). The posterior mode smoother can still be obtained by an
iterative KFS, but it is no longer equivalent to the posterior mean obtained from MCMC output
or other Monte Carlo methods. The smoothness priors approach based on dynamic general-
ized linear models can be used for fully Bayesian function estimation in generalized additive

regression models for non-Gaussian responses yi, covariate observations xi1 ; :::; xip , and predic-
tor �i = f1(xi1) + ::: + fp(xip), i=1,...,n, see Fahrmeir and Lang (1998). This approach is also
tailored for incorporation of exchangeable or spatial random e�ects to account for unobserved
individual or spatial heterogeneity.

A simple modi�cation of (4) or (5) allows for estimation of unsmooth functions f�tg,
such as the stylized functions Blocks, Bumps, Heavy Sine and Doppler constructed for wavelet
shrinkage by Donoho and Johnstone (1994). The basic idea is to replace the constant variance
q2=var(�t) in (4) or (5) by locally varying variances q2t , thereby replacing the global smoothing
parameter � = �2=q2 by a local smoothing parameter �t = �2=q2t . To estimate the variance func-
tion fq2t g together with the unknown regression curve f�tg, we reparametrize by ht = log(q2t )
and add a second RW(1) or RW(2) Gaussian smoothness prior for fhtg. Thus, the model
consists of (3), (4) with q2 replaced by q2t = exp(ht) and smoothness priors for fhtg. A fully
Bayesian implementation with inverse Gamma priors for �2

� and MCMC inference is given in
Fronk and Fahrmeir (1998) for Gaussian observation models. Extensions for non-Gaussian
observation models, such as generalized additive regression models with unsmooth regression
functions will be considered in future research.
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R�ESUM�E

Les mod�eles �a espaces d'�etats et le �ltre de Kalman sont un cadre naturel pour estimer

des e�ets dependant du temps. Ici, nous consid�erons ces mod�eles comme une approche semi-

parametrique Bay�esienne pour la regression generalis�ee, et nous montrons des relations avec la

methode de vraisemblance penalis�ee.


