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Systems biology offers the potential to provide new insights into our understanding of the

pathogenesis of complex diseases such as atherosclerosis. It seeks to comprehend the system

properties of the non-linear interactions of the multiple biomolecular components that characterize

a living organism. An important component of this research approach is identifying the biological

networks that connect the differing elements of a system and in the process describe the

characteristics that define a shift in equilibrium from a healthy to a diseased state. The utility of this

method becomes clear when applied to multifactorial diseases with complex etiologies such as

inflammatory-related diseases, herein exemplified by cardiovascular disease. In this study, the

application of network theory to systems biology is described in detail and an example is provided

using data from a clinical biobank database of carotid endarterectomies from the Karolinska

University Hospital (Biobank of Karolinska Endarterectomies, BiKE). Data from 47 microarrays

were examined using a combination of Bioconductor modules and the Cytoscape resource with

several associated plugins to analyze the transcriptomics data and create a combined gene

association and correlation network of atherosclerosis. The methodology and workflow are described

in detail, with a total of 43 genes found to be differentially expressed on a gender-specific basis, of

which 15 were not directly linked to the sex chromosomes. In particular, the APOC1 gene was

2.1-fold down-regulated in plaques in women relative to men and was selected for further analysis

based upon a purported role in cardiovascular disease. The resulting network was identified as a

scale-free network that contained specific sub-networks related to immune function and lipid

biosynthesis. These sub-networks link atherosclerotic-related genes to other genes that may not have

previously known roles in disease etiology and only evidence small alterations, which are challenging

to find by statistical and comparison-based methods. A number of Gene Ontology (GO), BioCarta

and KEGG pathways involved in the atherosclerotic process were identified in the constructed

sub-network, with 19 GO pathways related to APOC1 of which ‘phospholipid efflux’ evidenced the

strongest association. The utility and functionality of network analysis and the different Cytoscape

plugins employed are discussed. Lastly, the applications of these methods to cardiovascular disease

are discussed with focus on the current limitations and future visions of this emerging field.

Introduction

Systems biology approaches to investigating

cardiovascular disease

Systems biology seeks to understand how system properties

emerge from the non-linear interactions of multiple

components.1–3 The connections and interactions between

individual constituents including genes, proteins, and metabolites

are examined at the level of the cell, tissue, and organ to

ultimately describe the entire organism or system.1,4–6 The intent

is to identify the biological networks that connect the differing

system elements, thereby defining the characteristics that

describe the overall system.4 This information can then be used

to derive mechanistic information on biological processes as

well as identify potential target sites for therapeutic

intervention.7–9 The utility of this approach becomes clear when

applied to multifactorial diseases with complex etiologies.
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Cardiovascular disease, diabetes, metabolic syndrome,

chronic obstructive pulmonary disease (COPD) and asthma

all involve complicated etiologies that resist efforts to identify

a single gene or pathway responsible for disease onset and

progression. Much effort has been made to develop biological

networks to describe cardiovascular disease;10–19 however, any

comprehensive model must account for the variety of systemic

influences on the disease including lifestyle, diet, body mass

index, (epi)genetics, hypertension, dyslipidemia, inflammation

and environment. The current research paradigm addresses

these individual risk factors in isolation, even though they are

known to concomitantly contribute to disease pathogenesis.

This problem is further confounded by the fact that discrete

biological functions can only rarely be attributed to an

individual molecule, and that small defects in many genes

rather than large defects in a few genes are most likely

responsible for the observed pathology.20–24 Accordingly, an

integrative systems approach involving investigations of the

corresponding biological networks is required to address the

complex issues of these multifactorial pathologies. However,

current network approaches focus on the system properties of

individual sub-systems (e.g., the gene regulatory network, or

the protein–protein interaction network) and integration is a

challenge that requires understanding how the elements in one

network affect those in other networks. This review provides

an overview of network theory and the computer-assisted

generation of biological networks, then presents an example

of an atherosclerosis-specific biological network generated

from microarray data using the program Cytoscape and

associated plugins. The applications and utility of these

plugins are presented followed by a discussion on the future

directions of this research approach.

Network biology

What is a network?

The accumulation of large amounts of biological data from

omics projects is providing the foundation for the development

of systems biology. Accordingly, the new challenge is to

combine information from multiple high-throughput experiments

involving multiple platforms and formats and extract the
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relevant system properties.25–27 A common approach to the

visualization and examination of omics data involves the

generation of a network of all the individual components of

a given set of experiments.28–30 These approaches are not

novel and methods for analyzing systems and networks have

already been developed in other fields, for example social and

information networks.31,32 Network theory is widely used to

analyze and visualize systems level relationships without losing

detailed relations between components of the system.33

Network theory, or more generally graph theory, is a branch

of mathematics devoted to the study of networks (graphs),

which are mathematical structures used to model pairwise

relations between objects from a ‘‘collection’’.34–36 This repre-

sentation is suitable for different kinds of complex data

including technological networks (e.g., the Internet, GPS,

WiFi, etc.)37,38 and social networks (e.g., Facebook, MySpace,

WoW, etc.)39,40 as well as biological networks.4,41 In a bio-

logical context, a collection could be the proteome of a cell and

the relations are defined by their interactions.42 A network is

usually represented as a set of nodes, connected to each other

with links or edges (Fig. 1). A node represents an element of

the collection and the edge connecting two nodes represents

the relation (e.g., the node is a protein and the edge connecting

two proteins is their interaction). This relation can be either

symmetric or asymmetric, depending upon if the relation in

one direction implies a relation in the opposite direction. For

example, a protein–protein interaction (PPI) network is a

symmetric network where nodes represent proteins and edges

represent interactions between them (Fig. 2C).43 Conversely, a

gene regulatory network (GRN) is an asymmetric network,

where nodes represent genes and edges the relationships

between genes (e.g., ‘‘gene A activates gene B’’ or ‘‘gene D

represses gene C’’; Fig. 1, directed network).41

Although network theory was developed for mathematical

applications, the use of network representation is widespread

in molecular biology and biochemistry to represent cellular

signaling and metabolic pathways.44,45 For example, the

MAPK pathway is a signal transduction pathway that couples

growth factor binding to plasma membrane receptors to

changes in gene expression that control cell proliferation,

differentiation and survival.46 The signal is transduced to the

nucleus by tyrosine and serine/threonine kinases (Raf1, MEK

and ERK, also known as MAPKKK, MAPKK and MAPK,

respectively) that ultimately activate transcription factors,

which regulate the expression of target genes (Fig. 2). Ras

proteins play a major role in the regulation of the pathway’s

homeostasis by alternating between active GTP-bound and

inactive GDP-bound states. Ras must be in its active form in

order to interact with downstream effector proteins that

transduce the signal. Guanine nucleotide exchange factors

(GEFs; e.g., SOS, RasGRF, RasGRP) and GTPase activator

proteins (GAPs; e.g., p120GAP, NF1, Gap1m) regulate the

activity of Ras, and hence, modulate the entire pathway.

These protein interactions and dependencies can be

represented in a number of ways, as illustrated in Fig. 2. The

classical representation of cellular signaling pathways uses

circles and boxes to symbolize proteins (e.g., PKA, PKC,

hemoglobin) and metabolites (e.g., ATP, DAG).47 Interacting

proteins are drawn in proximity to their partners, and proteins

affecting the activity of other proteins are indicated with

directional arrows (Fig. 2A). Although not a network sensu

stricto, this depiction resembles the representation used in

network theory. In a more advanced representation, the

arrows represent interactions detailing the type of effect they

have on the partner. For example, signaling and metabolic

pathways in the Kyoto Encyclopedia of Genes and Genomes

(KEGG) are constructed in this fashion (Fig. 2B), enabling

some automatic manipulation exemplified with the software

KegArray48 and others tools (e.g., the Bioconductor packages

KEGGSOAP49 and keggorth50). While this representation is

useful for providing an overview of all existing interactions, it

is quite limited. KEGG pathways appear to be networks, but

are actually quasi-static images with restricted flexibility

(however, a new Bioconductor package called KEGGgraph is

capable of converting KGML files representing KEGG

pathways into a network structure51). The pathways are

snapshots of the state of the system in a hypothetical controlled

situation and do not contain any quantitative information

regarding the interactions and activities of the elements

involved. Furthermore, the pathways do not indicate the
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relative importance of the different elements of the network.

Network theory places this kind of representation into a

framework where the biologically significant key components

of the system can be identified. For example, if a network of

the interacting proteins found in the KEGG MAPK pathway

is constructed, some highly connected proteins are observed

(e.g., Ras, Grb2), whereas other proteins are only sparsely

connected (Fig. 2C). An analysis of this network’s connectivity

shows that Ras is a hub node (further discussed below),

suggesting that Ras has an important role in the regulation

and stability of this network and the subsequent processes that

the network regulates. This finding has been thoroughly

demonstrated by years of experimental analysis and the fact

that Ras is mutated and constitutively activated in B20% of

cancers.52,53

Network properties

An important component of network analysis is the generation

of meaningful graphical output. Data visualization using

network representation is not new to biology and has been

used for years to represent elements and relations in metabolic

and signaling pathways (e.g., KEGG54,55), GRNs, etc.

However, instead of a simple representation tool, network

theory provides a framework for the quantitative representation

of the general properties of the system.56–59 The network

characteristics are defined by a series of topological

parameters that summarize the behavior and the importance

of specific nodes, as well as the entire network.60 An under-

standing of this terminology and its application to deciphering

a network is vital for interpreting the results of systems

biology studies.61 First of all, it should be stressed that a

biological network is a quantifiable structure, enabling direct

comparisons of different networks.4 The primary components

of a network are nodes and the edges that define their

relationships. The concept of a node comes from graph theory,

where a node (also called a vertex) is the fundamental unit

from which graphs are formed. The definition of a node is a

point on which the graph is defined, which may in turn be

connected by graph edges or links.34,35 The most fundamental

characteristic of a node is its degree, which is defined as the

number of edges incident to the node (i.e., how many links a

given node has to other nodes in the network, denoted as the

variable k). For example, according to the undirected network

in Fig. 1, node A has degree k = 1 and node B has degree

k = 2. The degree distribution is the probability that a node

has a specific number of links (k) over the entire network and

is given by the function P(k). The node degree distribution can

be used to distinguish between scale-free and random

networks (discussed below).4 The relative importance of any

given node within a network is determined by the centrality

(i.e., how important is a specific gene within a disease

network), which can be described in terms of the degree,

betweenness and closeness centrality as well as other centrality

terms.62 The degree centrality is the number of edges that a

node possesses or the number of links incident upon a node

(sometimes a normalized degree centrality is used, in which the

number of edges that a node possesses is divided by the total

number of edges minus one). The betweenness centrality is the

fraction of shortest paths (discussed below), counted over all

pairs of nodes, that pass through that node, and reflects the

amount of control that this node exerts over the interactions

of other nodes in the network, with nodes that occur on

many shortest paths between other nodes having higher

betweenness.63,64 In other words, nodes that participate in

denser sub-networks evidence a greater betweenness centrality.

Closeness centrality is a measure of how fast information

spreads from a given node to other reachable nodes in the

network and is defined as the inverse of the mean geodesic

distance (i.e., the shortest path) between a node and all other

reachable nodes. An example of the importance of centrality

was demonstrated by Jeong et al.,65 who showed that in a

Saccharomyces cerevisiae protein network, highly connected

proteins with a central role in the network’s architecture were

three times more likely to be essential than proteins with only a

small number of links to other proteins.

There are a number of distances that can be measured in a

network, including the network diameter, radius and path

length, all of which give important information on the

network. For a given path, the path length provides the

number of links between two nodes in the network of which

there are usually multiple path alternatives. The shortest path

is the one with the smallest number of links connecting two

selected nodes. The mean path length is the average over the

shortest path of all nodes in the network and is a measure of

the general navigability of the network. There are multiple

algorithms for calculating distance measures, which can

profoundly affect the outcome of the analysis. Accordingly,

this choice should be based upon what is appropriate for the

Fig. 1 The upper panel shows four nodes involved in two different

networks. The left network is undirected or symmetric; all connected

nodes have bidirectional relations. Protein–protein interaction net-

works are an example of symmetric networks. If protein A interacts

with protein B, then protein B also interacts with protein A. The

directed network in the right is asymmetric (the arrows indicate

activation and the ‘‘>’’ indicates inhibition). Regulatory networks

are asymmetric; in this example if the network was a gene regulatory

network, gene A activates gene B, but gene B does not activate gene A.

Gene C is activated by gene B and inactivated by D. The lower panel

shows two different network motifs found in biological networks. In

the feedforward motif, gene A activates gene B, which activates gene

C. Likewise, gene A activates gene C directly. The negative feedback

motif shows an example of autoregulation. Gene A activates gene B

which activates gene C. Gene C inhibits its own expression through the

inhibition of A.
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biological question of interest.36 Finally, the clustering coeffi-

cient provides information on how a specific node is included

in a densely connected sub-network. If a node has a high

clustering coefficient, many nodes that have connections to

that node also have connections to each other. This value is

then averaged over the whole network and is a measure

of compactness and modularity. These different network

characteristics and properties enable the quantitative analysis

and comparison of multiple complex network structures and

provide a means for estimating the importance of any node

within a given network. Accordingly, there are multiple

parameters that describe node/network behavior and an un-

derstanding of their meaning and relative importance will

greatly assist the reader in deciphering network analyses.

Biological networks were initially studied in model

organisms such as bacteria, yeast and nematodes,56,66–71 from

which important general properties have been derived. These

analyses are now gradually being applied to the understanding

of complex human diseases, including inflammation and

cardiovascular disease.10,72–75 For example, one important

aspect derived from the analysis of biological networks is that

the degree distribution follows a power-law, which is any

polynomial relationship that exhibits the property of scale

invariance where P(k) E k�g.76 One of the main features of a

power-law is the scale invariance such that scaling by a

constant simply multiplies the original power-law relation by

the constant.77 Accordingly, a log–log plot of the connectivity

distribution will give a linear slope of �g (where g is the degree
exponent). The value of g gives information on the type of

network model, with 2 o g o 3 commonly observed for most

biological as well as non-biological networks (these values of g
indicate that the network is ultra-small78,79).4 As a consequence,

Fig. 2 (A) BioCarta representation of the MAPK pathway. Proteins (e.g., Grb2, SOS, Ras) and metabolites (e.g., GTP, GDP, phosphate) are

described with globular shapes. Interacting proteins are drawn close to each other. Chemical activities like phosphorylation are indicated with

arrows. (B) KEGG representation of the MAPK pathway in humans. Proteins are described as squares and metabolites (e.g., Ca2+, cAMP, DAG)

as circles. Interactions are described as arrows, and special activities like phosphorylation are indicated with ‘‘+p’’ over the corresponding arrow.

These images can be manipulated. For example, proteins absent (or not yet annotated) in specific organisms are shown as clear squares instead of

green. (C) Protein–protein interaction network derived from the KEGG map. Ras is the most highly connected node with 9 edges, suggesting that

it is a hub in the interaction network and therefore most likely has an important role in the functionality of the network.

This journal is �c The Royal Society of Chemistry 2010 Mol. BioSyst., 2010, 6, 289–304 | 293
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these networks maintain the same structure over different

scales and are accordingly called scale-free networks.4,80–82

The scale-free property is common in other networks derived

from complex systems, such as social networks or the

Internet.83–85 In a scale-free network the majority of nodes

have few edges, whereas some nodes (termed hubs or nexus

nodes) are highly connected and contain many edges. In

biological terms, a hub node is a protein, gene or metabolite

that is connected to many other proteins, genes or metabolites.

In a scale-free network, the ratio of hub nodes to nodes in the

rest of the network remains constant as the network changes in

size. Hub nodes are of particular interest as they are poten-

tially involved in critical regulatory processes that maintain

the structure of the network, and therefore, the homeostasis of

the system. For example, in Fig. 2C the small protein Ras

appears as a hub node, in concordance with the fact that this

protein has a key role in the regulation of the signaling

processes that lead to cell differentiation and proliferation.

An alteration in this function, through for example a point

mutation, modifies the regulatory network, leading to

cancer.52 Another characteristic of scale-free networks is the

high level of redundancy, where different paths can result in

the same outcome. This quality combined with the fact that

most nodes have only a few edges renders these networks very

robust to random elimination of nodes (e.g., these networks

evidence increased stability).81,86,87

Although network analysis can help explain the behavior of

the system as a whole, the importance of individual elements is

not lost in this global view. The study of biological networks

shows that complex networks are constructed of recurrent

simple motifs.67,68,88 For example, a feedforward motif is

composed of three genes A, B and C (Fig. 1). In one of its

simplest forms, gene A interacts with gene B, which interacts

with gene C. Gene A also interacts with gene C, thus augmenting

the signal on gene C. For example, a transcription factor X

regulates the expression of another transcription factor Y, and

both control the expression of a third gene Z. An example of

this is the L-arabinose system in Escherichia coli, where the

transcription factor crp regulates the expression of transcription

factor araC and these two transcription factors control the

expression of the operon araBAD.89 Another example is that

of negative and positive feedback motifs. In a negative

feedback motif, gene A activates gene B, which activates

gene C, while gene C on the other hand inhibits gene A, thus

autoregulating its own expression (Fig. 1). For example, in the

hypothalamic–pituitary–thyroid axis, thyroid hormone

autoregulates its own synthesis using a negative feedback

mechanism, by negatively regulating the secretion of TRH

(thyrotropin releasing hormone) and TSH (thyroid stimulating

hormone), two hormones that regulate the secretion of thyroid

hormone.90 Initially described in simple bacteria, these motifs

are also found in the regulatory networks of higher eukaryotes

and are fundamental to understanding the behavior of

complex networks, including biological networks.

Modularity is a key concept in biology that assumes

that cellular functionality can be divided into independent

self-autonomousmodules.91 These modules can perform functions

without being affected by external components. Although

widely recognized in biology, modularity directly conflicts

with scale-free networks. This is because in a scale-free

topology, a few nodes contain many links implying that they

participate in a lot of interactions in the network, thus helping

to integrate the information across the network. This situation,

however, explicitly prohibits the existence of separated

modules. This dichotomy is solved by the definition of a

higher network topology structure, termed a hierarchical

network.56,92 The existence of hierarchical networks was

derived by the realization that the metabolic networks of

several organisms, including all three domains of life, have a

cluster coefficient that is two times larger than that expected

for a scale-free network of the same size.66 The proper

understanding of how modularity is integrated into the

network topology is an important step in understanding how

biological networks are organized.

Our understanding of specific biological networks is

increased rapidly as more data accumulate. For example, the

advancements in identification of cis- and trans-regulatory

elements are pushing the development of models to disentangle

the transcriptional regulatory networks of genes.93 Using such

models, when sufficient resolution is achieved, we could

predict the expression level of a gene under a given condition.

Moreover, disagreement with expected expression levels might

be an indicator of unknown regulatory processes, helping to

better understand the structure of the real network.94 Finally,

the mathematical models used to generate the network itself

can be used to predict the behavior of the network when

specific elements are altered. For example, what are the effects

if a specific node of a GRN is removed by a knockout

mutation? How does this change affect the global stability

and robustness of the network, and eventually, the phenotype

of the studied system? How would a drug targeted to a specific

protein product of the network affect disease phenotype as

well as other associated up- or downstream processes?95

Systems biology seeks to answer these and other questions

by modeling the relationship between the individual components.

Accordingly, network analysis can aid in elucidating if

therapeutic intervention shifts the individual directly from a

disease to healthy state or whether the individual goes through

a novel pharmacological state before returning to equilibrium

(e.g., healthy). This type of information would increase our

understanding of the concept of a ‘‘healthy’’ individual

and provide significant insight into disease and resolution

processes.

Network analysis for the study of atherosclerosis

The analysis of biological networks has enabled the discovery

of the general properties of biological systems, including the

scale-free structure of biological networks and the hierarchical

structure of modular networks.4 However, network analysis

can also be used to extract new biological information such as

identifying unknown modules (based upon the clustering

coefficient or other network parameters) or finding previously

unknown associations between elements in large-scale analysis.

A number of research groups have successfully used this

approach to examine networks in cardiovascular disease,10–18

which has been extensively reviewed elsewhere.96–98 To serve

as an example of the utility of network analysis in examining
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these large datasets, we performed analyses on a microarray

study combining literature mining and correlation analysis to

provide information on biological associations in cardio-

vascular disease.

This approach was employed to analyze atherosclerotic

plaques in order to identify gender-specific relationships that

correlated with gene transcripts. Clinical samples from a

biobank database of endarterectomies at the Karolinska

Institute (Biobank of Karolinska Endarterectomies, BiKE)

were utilized in the analysis. BiKE contains samples from

patients who have undergone stroke-preventive carotid

endarterectomy for asymptomatic or symptomatic carotid

stenosis. Microarray analyses on global gene expression

patterns were performed previously with the individual patient

endarterectomies using Affymetrix GeneChips Technology

with Affymetrix platform HGU133-plus2. This platform

consists of 54 675 probe sets corresponding to approximately

20 326 known human genes. A subset of the BiKE microarray

data was utilized for the network analyses (n = 47; females,

n = 8; males, n = 39). Probe intensities were background

corrected, normalized and summarized using the robust

multichip average (RMA) method.99 Statistical analyses were

performed probe set-wise using the limma package (linear

models for microarray data) for Bioconductor.100 The limma

package fits linear models, and can be used to extract information

about differential expression between different contrasts. Here,

a linear model was fitted for each probe set based on a

specified experimental design using the factor ‘‘gender’’

(male/female levels). Subsequently, the gene-wise expression

levels were estimated by calculating the average of all probe

sets corresponding to the same gene, based on the Entrez Gene

annotation, and exported in a format suitable for use with

Cytoscape (discussed below).

Statistical analysis revealed 43 differentially expressed (DE)

genes, with 23 down-regulated and 20 up-regulated in females

relative to males (the complete list of DE genes and probes

with the corresponding p- and q-values is provided in Tables

S1 and S2, respectively).w Of these 43 DE genes, 28 are located

on X or Y chromosomes. Although we cannot exclude the

possibility that genes linked to sexual chromosomes are related

to atherosclerosis, for the purpose of this study we focused on

non-sexual chromosome genes. Of the remaining genes,

APOC1 was selected for further analysis based upon an

observed 2.1-fold lower expression level in females and a

reported potential role in atherosclerosis and coronary

artery disease.101,102 APOC1 is the major plasma inhibitor of

cholesteryl ester transfer protein (CETP), inhibits lipoprotein

binding to the LDL and VLDL receptors, and appears to

interfere directly with fatty acid uptake,102,103 suggesting that

further investigation into its biological activity is warranted.

Because atherosclerosis is more prevalent in males than

females of the same age, sample availability is highly unbalanced

reflecting the clinical reality of working with this disease.

To estimate the effect of the unbalance on these results, a

bootstrapping approach was performed in which all 8 female

samples were compared against 8 male samples randomly

selected from the total pool of males (n = 39), using the same

statistical model described above. The process was repeated

1000 times, and each male sample was selected on average

228 � 12 times in any experiment. The bootstrap analysis

indicated that APOC1 was significantly DE on average

937.5 � 17 out of the 1000 iterations (925 times for probe

set 204 416_x_at and 950 times for probe set 213 553_x_at),

indicating that the results are robust in spite of the discrepancy

between the number of female and male subjects included in

the study. The robustness against differences in group size was

further confirmed with both supervised (orthogonal partial

least square of latent structure [OPLS]) and unsupervised

(principal component analysis [PCA]) multivariate statistics

using SIMCA-P+ (Umetrics AB, Umeå, Sweden). The OPLS

analysis did, however, reveal four weak outliers among the

male subjects (Fig. S1, ESIw). These four subjects were

over-represented among the bootstrap iterations where

APOC1 failed to produce a significantly DE between men

and women. Furthermore, exclusion of these four subjects

resulted in a drastic improvement in the separation between

genders in the OPLS analysis (Fig. S1, ESIw). Overall, the

OPLS analysis confirmed the importance of the two APOC1

probe sets in driving the separation between genders, an effect

that was further pronounced following exclusion of the four

outliers. This observation is important for application in

studies where the sample sets are significantly unbalanced.

In omics studies, the high false positive rate resulting from

multiple univariate testing is often adjusted using p-value

correction (e.g., the false discovery rate [FDR] method of

Benjamini and Hochberg104). However, the risk of detecting

false positives and the ability to detect true positives

(i.e., statistical power) are inversely related. Even so, the

drastic decrease in statistical power that is inevitable when a

p-value correction is utilized on datasets with a large number

of variables, e.g. microarray data, is seldom discussed. To

address the issue in this study, we compared the statistical

Fig. 3 The statistical power to detect true positives (i.e., differential

expression between men and women in an atherosclerotic plaque) at

the respective fold-change level is displayed. The graphs are based on a

0.05 significance level (solid line) or false discovery rate (FDR, dashed

line), and a variance level corresponding to the coefficient of variance

(CV) of the 84th percentile (mean + 2S.D.). Using the conventional

significance level of 0.05 (p-value) resulted in a 95% statistical

power to detect a 1.8-fold increase in expression at the probe level.

Controlling the FDR by means of Benjamini and Hochberg104 method

resulted in a drop of the statistical power to 9.3%.
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power when using both p-values and q-values for the current

data (Fig. 3). Conventional statistical methods (p o 0.05)

resulted in a statistical power of 0.95 to detect a 1.8-fold

increase in expression levels. Application of the p-value

correction method of Benjamini and Hochberg104 with a

FDR of 5% (q o 0.05) resulted in a decrease in the statistical

power to 0.093. Furthermore, use of the FDR approach

decreased the number of significant changes from 4304 to

72. While the 72 probe sets found to be significantly altered

using the FDR approach have a 95% probability of being true

positives, an additional 700 true positives evade the discovery

process due to the lower power. For example, the use of FDR

resulted in one of the two probe sets representing the APOC1

gene falling outside of the significance cutoff (Fig. 4), even

though its relevance for gender differences was confirmed by

the bootstrap and OPLS analyses (Fig. S1, ESIw). In contrast,

the conventional p-value approach by definition results in 3734

false positives (5% of 54 675 probe sets). Accordingly, 87% of

the 4304 probe sets found to be significantly altered when

using the p-value approach can be expected to be false

positives. Both approaches indicate that the number of true

positives, here defined as probe sets differentially expressed

between men and women in atherosclerotic plaques, is in the

range of 570–770. The appropriate method largely depends on

whether the goal of the study is to achieve a high stringency in

terms of avoiding false positives, or a high statistical power to

detect true positives. In contrast, you do not have to ‘‘mind

your p’s and q’s’’ in network analysis or multivariate

approaches, since the encompassing nature of these unbiased

approaches does not require any pre-selection based on

significance level. The fact that all variables are considered

in extracting global trends from the data represents one of

the main strengths of network and multivariate statistical

analyses.

Software tools employed in network analysis

A plethora of tools designed for the construction and analysis

of networks have been developed in the last few years and it is

not the intention of the current review to describe all of them

(see Ng et al.105 and Bauer-Mehren et al.106 for a comprehensive

list). Instead, we will focus on one popular tool and the

accompanying plugins to demonstrate how network analysis

can be applied to the study of cardiovascular disease. Cytoscape

is free software developed for the visualization, manipulation

and analysis of biological networks. It is available for most

common computer platforms, is easy to use, and comes with

extensive documentation.107–110 The main strength of this

software is the ability to extend its functionality through the

addition of plugins, which can be used for diverse tasks

ranging from network inference to network analysis and

visualization (Table 1).

The study was initiated by loading the expression data into

Cytoscape using a tabular format, and the ExpressionCorrela-

tion plugin111 was then used to compute the correlation net-

work. This plugin enables the construction of a network from

microarray data, by computing the Spearman correlation

coefficient for all pairwise comparisons. The plugin visualizes

a histogram of all calculated correlations, and a lower and

upper cutoff can be selected (e.g., a correlation cutoff of

�0.9/0.9 was used in this analysis), after which a network is

generated from all the nodes that meet the specified criteria.

This functionality enables the identification of correlated

groups of genes or modules. Next, an association network

was constructed from a list of DE genes (see Table S1 (ESIw)
for a list of the genes used) using the AgilentLiteratureSearch

plugin,112 which is a user-friendly literature mining tool. This

software accepts as input a list of gene symbols and associated

aliases, and then performs a search for each symbol in several

databases, including Pubmed (by default), OMIM (Online

Mendelian Inheritance in Man, NCBI) and USPTO (The US

patents and trademark office). The number of hits per symbol

can be defined (default 10), but there is a 1000 record limitation

on the number of hits per analysis to avoid overloading search

engines. Some context keywords as well as organism limitations

can be added to restrict the analysis. The use of relaxed

relationships can be specified in order to increase the number

of results obtained, although the strength of the subsequently

detected relations may be weak. The software searches for

association keywords (e.g., ‘‘gene A activates gene B’’ or ‘‘gene

C is repressed by gene A’’), then constructs a network based on

these associations. The network can be further extended by

querying individual genes for more associations. In this

analysis 50 queries were allowed per gene and aliases were

used with no context limitations, giving a total of 948 papers

to be analyzed. Based upon interest, these papers can be

individually queried to examine for direct biological evidence

of identified associations. We performed a manual curation for

the 24 nodes linked directly to APOC1 (Fig. S2 and Table S3,

ESIw). Of these 24 nodes, we found 5 direct associations

(20.8%), 14 primary associations (58.3%), two secondary

associations (8.3%), and 3 incorrect associations (12.5%). A

few clear mismatches were identified, due to incorrect gene

name and/or association detection; however, these mismatches

Fig. 4 Bar graph showing the expression levels (mean + S.D.) of the

two probe sets representing the APOC1 gene (213 553_x_at; white

bars, 204 416_x_at; black bars). When using a p-value, both probe sets

are defined as statistically significantly altered between genders

(p o 0.001). In contrast when FDR is applied, only one of the probes

is defined as significantly altered (q = 0.049 and 0.087, respectively).

This discrepancy is likely to be a consequence of the low statistical

power resulting from p-value correction of datasets consisting of a very

large number of variables.
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evidenced very few associations in the overall network.

Accordingly, the impact of these errors in the network is very

limited. Overall, these results highlight the utility of this

approach to discover associations between genes, but demonstrate

the need to verify the most important associations to avoid the

impact of false positives.

The expression correlation and the association network

were then merged into a single undirected network using the

set operations available in Cytoscape (Fig. 5). Next, the network

parameters were computed using NetworkAnalyzer,113 another

plugin that computes and displays a comprehensive set of

topological parameters, including the degree of nodes and

degree distribution, the network diameter, the centrality and

clustering coefficient, etc. A linear or power-law model can be

fitted to examine whether the parameters follow a scale-free

topology. The degree distribution for this network was shown

to follow a power-law with R2 = 0.905 and g = 1.6 indicating

that the network behaves like a scale-free network (Fig. 6). All

the computed parameters can be mapped to the network for

visualization and can be used to detect putative modules. For

example, the jActiveModules plugin114 enables the discovery

of modules or sub-networks based on specific topological

parameters. A sub-network can be created from the detected

modules, enabling in-depth analyses of the components. For

this analysis, active modules were identified based on the

closeness centrality (with default parameters) and a sub-network

was generated based on one of the detected modules (Fig. 5,

right panel). Lastly, the BiNGO plugin115 was used to determine

whether specific sub-networks contained over-represented

Gene Ontology (GO) terms. This application enables the

identification of functionally distinct modules. The plugin

allows the specification of several parameters, including the

type of statistical test to perform (default hypergeometric), the

multiple testing correction method (default Benjamini and

Hochberg104), whether to test for over-represented categories

(default), under-represented or both, the ontology to use and

the organism. In this analysis, the sub-network was analyzed

to detect functional categories of GO over-represented as

shown in Fig. 7 (selecting human as the organism and otherwise

default parameters). ClueGO116 is another tool designed to

find (under)over-represented ontology terms and pathways

from GO and pathway databases such as KEGG or BioCarta.

In addition to the options available in BiNGO, further

parameters can be selected, such as restricting the analysis to

specific evidence codes. ClueGO also performs a clustering

of the detected ontology terms, and hence, the clustering

parameters can be tuned. Both BiNGO and ClueGO can make

use of GOlorize,117 a plugin designed to visualize overlapping

GO terms present in the same nodes. These additional plugins

were subsequently used to examine the sub-network from

Fig. 7 to generate the GO and pathway information in

Fig. 8 as well as Fig. S3 and S4 (ESIw).
The sub-network in Fig. 7 is composed of three different

clusters (clusters A–C). Cluster A is mainly composed of genes

from the associative network, although a few genes correlated

to them (either positively or negatively) are included (CAPG,

DDR2, C16ORF14 and ITGAX). The composition of cluster

A is enriched in GO categories for ‘lipid homeostasis’ and

visual inspection of the node composition shows that many of

the genes are relevant to atherosclerosis (LDLR, VLDLR and

SOAT1). In particular, a number of apoliprotein genes are

present, most noticeable APOC1, which is expected as

this gene was used to create the network due to its 2.1-fold

down-regulation in females relative to males. Cluster B is

composed exclusively of genes found via literature mining

(associative network), with the majority belonging to the

superfamily of small GTPases Ras (GO category ‘small

GTPase signaling’). Cluster C is composed only of genes

Table 1 Cytoscape plugins for applications in network analyses of transcriptomics dataa

Software Description

Cytoscape
http://www.cytoscape.org

Manipulation of networks

ExpressionCorrelation
http://www.baderlab.org/Software/ExpressionCorrelation

Network inference from microarray data

AgilentLiteratureSearch
http://www.agilent.com/labs/research/litsearch.html

Text mining

NetworkAnalyzer
http://med.bioinf.mpi-inf.mpg.de/netanalyzer

Compute topological parameters

jActiveModules
http://www.cytoscape.org/plugins/index.php

Detect modules based on topological parameters

ClueGO
http://www.ici.upmc.fr/cluego

Functional enrichment

MONET
http://delsol.kaist.ac.kr/Bmonet/home/index.html

Network inference from microarray data

MCODE
http://baderlab.org/Software/MCODE

Network motif identification

Cerebral
http://www.pathogenomics.ca/cerebral

Visualization of omics data using cellular compartments

OmicsViz
http://metnet.vrac.iastate.edu/MetNet_fcmodeler.htm

Visualization of omics data across species

BiNGO
http://www.psb.ugent.be/cbd/papers/BiNGO

Gene ontology enrichment

GOlorize
http://www.pasteur.fr/recherche/unites/Biolsys/GOlorize

Coloring of nodes

a This list is non-exhaustive and is solely provided to give an example of some of the available resources. See http://www.cytoscape.org/plugins/ for

a complete list of available Cytoscape plugins.
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extracted from the correlation network, with an over-

representation of GO categories in ‘immune response’. This

information is summarized in Fig. 7 (right panel). Accordingly,

this sub-network whose topological features were recognized

via the jActiveModules plugin links together the functions

‘small GTPase signaling’, ‘immune response’ and ‘lipid

homeostasis’ via a few hub nodes, specifically RAB10 and

SOAT1. RAB10 belongs to the RAS superfamily of small

GTPases, to the exocytic and endocytic compartments, and is

involved in regulating intracellular vesicle trafficking. There

are suggestions that it is involved in glucose transport

via intracellular retention of the glucose transporter 4

(GLUT4).118 SOAT1 is acyl-coenzyme A:cholesterol acyl-

transferase (ACAT; EC 2.3.1.26), which is an intracellular

protein located in the endoplasmic reticulum that esterifies free

cholesterol119 and is a potential target for the control of

atherosclerosis.120 The accumulation of cholesterol esters as

lipid droplets within macrophages and smooth muscle cells is a

characteristic feature of the early stages of atherosclerotic

plaques.121 Interestingly, SOAT1 and RAB10 are linked in

the network by correlation, meaning that both genes evidence

similar expression profiles and potentially may be involved in

related processes. Accordingly, this sub-network links together

functions in cholesterol biosynthesis with glucose transport

and immune function, providing interesting information on

potential interactions between multiple biological categories in

disease etiology.

ClueGO was used to further investigate whether specific

ontologies or pathways were over-represented in this

sub-network. An examination using KEGG pathways revealed

several pathways to be over-represented, including ‘PPAR

signaling pathway’ (APOA1, APOC3, CD36 and LPL) and

‘B cell receptor signaling pathway’ (BTK, GSK3B, LYN,

RAC2 and SYK). An analysis with BioCarta revealed ‘PPAR

signaling pathway’ (APOA1 and LPL), ‘B cell receptor

signaling pathway’ (BTK, LYN and SYK) and ‘low-density

lipoprotein (LDL) pathway during atherogenesis’ (LSLR,

LPL and SOAT1). An examination with Immunome showed

that ‘macrophage cells’ (APOA, BCAT1, GM2A, MS4A4A,

MSR1 and SCARB2) and ‘Th1’ (APBB2, APOD and LRP8)

were over-represented. This information supports what was

observed above for the individual hubs in that there is an

overall interaction between lipid transport/biosynthesis and

Fig. 5 Gene correlation and association network for gender-dependency in atherosclerosis. In network A, nodes from the expression correlation

are colored in cyan. Orange nodes exhibited gender-dependent differential expression (DE). Dark yellow-green nodes were identified via the

literature mining step in association with the DE nodes. Edges colored in red indicate negative correlations, whereas blue edges show positive

correlations. Black edges correspond to relations derived from the literature association alone. Network B shows in bright yellow the nodes

detected in one active module by the analysis with jActiveModules and is displayed in greater detail in Fig. 7.

Fig. 6 Degree distribution for the expression correlation and the

association network shown in Fig. 5. The linear slope illustrates that

this network follows a power-law P(k) E k�g, where the scale

parameter g = 1.6, demonstrating that the network has scale-free

behavior.

298 | Mol. BioSyst., 2010, 6, 289–304 This journal is �c The Royal Society of Chemistry 2010

Pu
bl

is
he

d 
on

 1
6 

O
ct

ob
er

 2
00

9.
 D

ow
nl

oa
de

d 
by

 P
en

ns
yl

va
ni

a 
St

at
e 

U
ni

ve
rs

ity
 o

n 
12

/0
5/

20
16

 1
1:

47
:3

6.
 

View Article Online

http://dx.doi.org/10.1039/b912078e


immune function in the plaques, further suggesting that the

nodes involved in these interactions should be examined in

detail.

A GO analysis (category: biological processes) of the

sub-network from Fig. 7 using all information inferred from

electronic annotations terms (IEA) resulted in 102 different

groups of clustered GO terms (Fig. S3, ESIw). Each cluster was

mapped to the nodes of the sub-network (Fig. S4, ESIw) from
which a detail of cluster A is shown in Fig. 8. It can be

challenging to extract data from this type of analysis due to

the sheer volume of information as demonstrated by the

complexity of Fig. S3 (ESIw). However, it is possible to sort

the network into sub-networks and individual components of

interest. For example, some of the main groups relevant

to atherosclerosis identified in Fig. 8 include: ‘cholesterol

transport’, which contains many terms related to lipid

homeostasis, transport and metabolism; ‘regulator of immune

system process’, which contains terms related to the immune

response; ‘regulation of mast cell activation’, with terms

related to leukocyte migration, activation and cytokine

production; ‘lipoprotein particle clearance’, with terms involved

in lipoprotein metabolism, etc. The node of interest identified

via statistical analysis, APOC1, is present in 19 different GO

categories as shown in the inset in Fig. 8 including: ‘cholesterol

homeostasis’, ‘cholesterol metabolic process’, ‘cholesterol

transport’, ‘innate immune response’, ‘lipoprotein particle

clearance’, ‘melanocyte differentiation’, ‘membrane protein

ectodomain proteolysis’, ‘negative regulation of blood vessel

endothelial cell migration’, ‘Notch receptor processing’,

‘phospholipid efflux’, ‘regulation of exocytosis’, ‘regulation

of immune response’, ‘regulation of immune system process’,

‘regulation of lipid transport’, ‘regulation of mast cell activation’,

‘reverse cholesterol transport’, ‘secretion by cell’, and ‘triacyl-

glycerol metabolic process’. This level of information can still

be challenging to analyze; however, when IEA GO terms are

excluded from the ClueGO analysis, only six groups are

retained from the original 102 groups, of which only one

group is present in the APOC1 node (‘phospholipid efflux’).

Accordingly, by changing the stringency of the analysis, the

level of output can be controlled. Taken together, this analysis

shows that a node which was identified to be differentially

expressed in plaques contains a number of GO categories that

are of interest in disease mechanism and etiology. In addition,

the main biological features identified within the different

clusters are all represented in this node, further suggesting

that it plays an important role in plaque biology and patho-

genesis. Accordingly, the genes in this sub-network could be

treated as putative candidates for further investigating their

relation to gender-specific differences in disease.

A review of the literature on APOC1 suggests that this gene

has a potential role in atherosclerosis and cardiovascular

disease. For example, APOC1 has been shown to increase

Fig. 7 Sub-network extracted from the analysis in Fig. 5 with jActiveModules. The left panel shows the network using the same coloring scheme as

described in Fig. 5. This sub-network contains three distinct clusters (named A, B and C). The right panel shows the same sub-network colored

according to the analysis of enriched gene ontology (GO) terms, performed with BiNGO.115 Green nodes are over-represented in the ‘immune

response’ category that includes the terms ‘immune system process’, ‘cytokine production’ and ‘regulation of cytokine biosynthesis’. Violet nodes

are enriched in ‘lipid homeostasis’ including the terms ‘lipid transport’, ‘cholesterol metabolism’ and ‘lipoprotein metabolism’. Light orange nodes

are genes involved in ‘small GTPase signaling’ pathways. An analysis performed with ClueGO116 to find over-represented KEGG pathways

revealed ‘PPAR signaling pathway’ (shown with red nodes) and ‘B cell receptor signaling pathway’ (shown with black nodes) genes in the network.

Overall, this example shows how networks can be used to discover non-evident relations between genes.
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hyperlipidemia in APOE�/� mice by stimulating VLDL

production and inhibiting lipoprotein lipase (LPL).122 How-

ever, the localization of APOC1 appears to be important, with

atherosclerosis development increasing with systemic APOC1,

but remaining unchanged with local macrophage production

in the arterial wall.123APOC1 was also shown to be involved

in lipopolysaccharide (LPS)-induced atherosclerosis in

APOE�/� mice, suggesting that plasma levels of APOC1

can contribute to accelerated atherosclerosis development in

individuals with chronic infection.124 These trends have been

further observed in human studies with, for example, the

number of APOC1 molecules on small chylomicron remnants

strongly associating with the degree of atherosclerosis in

normolipidemic men.125 There is also a potential role of

APOC1 in plaque stability, with APOC1 and APOC1-enriched

HDL being shown to activate the N-SMase–ceramide signaling

pathway, leading to apoptosis in human aortic smooth muscle

cells—an effect that may promote plaque rupture in vivo.126

The APOC1 content of VLDL particles has been shown

to be associated with plaque size in patients with carotid

atherosclerosis,127 and to evidence a postprandial increase in

APOC1-containing VLDL in normolipidemic patients with

coronary artery disease.128 Subsequently, the APOC1 content

of postprandial triglyceride-rich lipoproteins has been proposed

as an independent risk factor for early atherosclerosis and

coronary artery disease risk.125,129 An interesting gender

component was observed with male transgenic mice with

high APOC1 expression in the liver showing elevated levels

of serum cholesterol and triglycerides in the VLDL fraction

compared with control mice, while females showed less

pronounced elevated serum levels.130 Accordingly, the

identification of the APOC1-centric network as potentially

important in atherosclerosis is supported by the published

literature and suggests that experimental validation should be

pursued.

The tools presented in this review enabled us to combine

information from three sources: expression correlation,

differential expression and literature association. This information

was integrated in a network, enabling the extraction of

modules or sub-networks evidencing specific topological

properties. Using this methodology a sub-network enriched

in genes relevant to atherosclerosis was identified. In addition

to containing one gene explicitly found to be down-regulated

in females, the linked genes provided an important source of

additional genes that will enable hypothesis generation. Taken

together, this network analysis shows that many of the genes

in the selected sub-network are involved in processes related to

lipid homeostasis, immune response and atherosclerosis-

related pathways. A number of specific processes potentially

related to atherosclerosis were identified and provided suggestions

for further investigations into the disease mechanism.

Discussion of the tools

We have shown how using freely available tools, a plethora of

new analysis techniques can be used to analyze complex data,

extracting information that may otherwise be difficult to

uncover using classical analysis techniques. Although this

methodology is useful, there are several caveats that need to

be understood before extracting relevant biological conclusions.

For example, although the ExpressionCorrelation plugin

allows flexible selection of cutoffs, it lacks the ability to

determine statistically whether the correlation cutoff selected

is significantly different from the observed distribution. In

other words, it would be desirable to have a way to detect

outliers that will be used in generating the corresponding

network. This should increase the probability that the

observed correlations correspond to real relations. The

AgilentLiteratureSearch plugin enables the straightforward

extraction of information from the literature that may correspond

to experimentally verified relationships. However, it lacks the

ability to check the reliability of these associations, or to

extract directional information from the analysis. Although

manual checking of the literature sources can be performed,

this task is time-consuming (Table S3 and Fig. S2, ESIw). The
plugin enables the use of gene aliases, but it is unclear from

where this information is obtained and how it is updated.

Since gene definition and annotation is a dynamic process,

with information constantly changing, it would be desirable if

the user could have more control over this step. Accordingly,

while useful, this approach is solely based upon perceived

associations from a parsing of the literature that need to be

confirmed with additional evidence. Therefore, the results

derived from this analysis should be validated before deriving

Fig. 8 Detail of cluster A from Fig. 7 in the selected sub-network

following GO analysis with ClueGO,116 using all evidence codes. White

nodes indicate genes without significant ontology terms. ClueGO

enables (through the use of the plugin GOlorize117) the representation

of genes with overlapping GO categories. An example is shown with

the inset node APOC1, which contains 19 different GO categories

including: ‘cholesterol homeostasis’, ‘cholesterol metabolic process’,

‘cholesterol transport’, ‘innate immune response’, ‘lipoprotein particle

clearance’, ‘melanocyte differentiation’, ‘membrane protein ectodo-

main proteolysis’, ‘negative regulation of blood vessel endothelial cell

migration’, ‘Notch receptor processing’, ‘phospholipid efflux’, ‘regula-

tion of exocytosis’, ‘regulation of immune response’, ‘regulation of

immune system process’, ‘regulation of lipid transport’, ‘regulation of

mast cell activation’, ‘reverse cholesterol transport’, ‘secretion by cell’,

and ‘triacylglycerol metabolic process’.
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conclusions. Interested readers are directed to the literature

to learn more about this approach.131–134 The example of

literature mining provided here was conducted with gene data,

but it is also possible to perform this type of analysis with

proteins and metabolites.43,135–137 The analysis of GO term

enrichment is an established methodology to find functional

associations in lists of genes.138 The BiNGO and ClueGO

plugins provide a convenient interface to perform this

kind of analysis in Cytoscape. However, one problem with

enrichment analyses is that the results depend heavily on the

quality of the annotations. Whereas some well-studied genes

are richly annotated, others contain annotations only derived

from electronic sources or even lack any annotation at all,

reducing the significance of the test.

To perform this analysis, several Cytoscape plugins were

used. However, there are a plethora of alternative plugins that

can be used to carry out similar or different tasks. For

example, another tool that enables the inference of GRNs

from gene expression data is the MONET plugin.139

This method generates a Bayesian network by using prior

knowledge about the modeled genes. The MCODE plugin,140

on the other hand, is a very flexible tool that can be used to

obtain motifs of highly interconnected nodes. Other plugins

like Cerebral141 enable the visualization of omics data from

multiple experiments using cellular compartment information.

OmicsViz142 enables the visualization of omics data across

different species. A list of all available plugins with a

brief description of their functionality can be found at the

Cytoscape web site (http://www.cytoscape.org).

To summarize, as in any other experimental study, these

tools are useful to the extent that they provide information to

organize and probe the tremendous amount of data derived

from omics experiments. Accordingly, these tools can be

useful for obtaining results when classical analysis tools fail

to find significant associations, something that is especially

important in the study of complex diseases like atherosclerosis.

It is the responsibility of the user to check the different steps

that drive the experiment from hypothesis generation to the

derived conclusions in order to minimize misinterpretations of

the results. However, as these tools further evolve, it is

expected that they will become increasingly integrated and

automatic, which should increase their utility to a wider

audience. Nonetheless, it will remain important to manually

curate and validate important findings as demonstrated by the

incorrect associated genes in Fig. S2 (ESIw).

Conclusions and future directions

The analysis of biological networks is still in its infancy.

Although general properties such as scale-free topology or

hierarchical networks are capable of explaining some of

the properties of living systems, there are many unsolved

questions. It is necessary to understand why some metabolites

dramatically affect the stability of the system, whereas drastic

alterations of other system components such as knocking

down a gene can sometimes have little effect. More in-depth

knowledge regarding the general properties inherent to

biological networks will come from the integration of all data

already available, and should facilitate the development of

specific drugs targeting a desired effect in the network.

The ultimate goal from a clinical perspective is an increase

in our understanding of disease etiology and pathogenesis

leading to concomitant increase in the development of new

therapies. A translational systems biology approach may be a

feasible option to solve crucial clinical issues. With respect to

atherosclerosis, one of the most important current clinical

problems is determining if and when a patient will develop a

symptomatic disease, as well as identification or imaging of

vulnerable lesions. A systems biology approach as described

for carotid disease may be capable of identifying molecular

pathways and targets that operate in plaque instability and

help to develop molecular tools that can be applied to imaging

modalities such as MRI or PET CT to identify vulnerable

lesions, improve patient selection or monitoring of stroke-

preventive intervention. Accordingly, a systems approach

could provide concrete clinical applications to address the

needs of the medical community. In particular, a systems

biology analytical approach may provide the opportunity to

identify medications with a desirable ‘‘network’’ effect rather

than the traditional approach of seeking treatments targeting

single-gene effects, and therefore enable more holistic targeted

treatments—the promise of personalized medicine.

Systems biology is rapidly changing the way we examine

living organisms. Biological network construction is a useful

tool, but to realize the ultimate goal of systems biology, i.e. the

understanding of the organisms as a whole, the next major

challenge is to combine and analyze data from multiple

sources.143 Currently, individual networks are examined as

independent entities, which is an oversimplification. Each

network is integrated into the entire system, which works

together and the system cannot be understood without

considering all individual components to eventually generate

a ‘‘network of networks’’. For example, GRNs, PPI networks,

protein–DNA interaction networks and metabolic networks

are all integrated into a single compartment that comprises the

cell. Cells in turn constitute a network in which different cell

types evidence specific interactions, which are then networked

into the organ and finally the whole organism level. These

effects will be further complicated by interactions with

microbiota and the environment, which can have profound

effects upon disease.144–147 Therefore it is not only a problem

of integrating different networks at a given scale (e.g., the cell)

but to integrate the information at different scales (e.g., how a

mutation in a gene affects the overall state of the whole

organism). Some initial steps in that direction have already

been made,148 but increased integration of heterogeneous data

and networks is non-trivial. The virtual physiological human

(VPH) is an exciting step in this direction and aims to ‘‘enable’’

collaborative investigation of the human body as a single

complex system.149 This approach to quantitatively studying

human physiology can be combined with phenotypic information

such as that provided in the Phenotypic Disease Network

(PDN150) to link together dynamic networks, physiology and

phenotype towards the goal of complete system understanding.

The potential of combining the knowledge from different

networks and the accumulation of high-throughput data

will move us one step further towards an unprecedented
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understanding of a living organism. The rapid advances in

computer sciences coupled with advances in high-throughput

technologies are moving the field into new areas. However,

even more important are the paradigm shifts in the way that

clinicians, computer scientists, engineers and laboratory-based

scientists approach research. A realization has come that in

order to develop accurate models of living systems; a truly

interdisciplinary approach is required.
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