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Discrete singular convolution for the sine-Gordon equation
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Abstract

This paper explores the utility of a discrete singular convolution (DSC) algorithm for the integration of the sine-Gordon
equation. The initial values are chosen close to a homoclinic manifold for which previous methods have encountered significant
numerical difficulties such as numerically induced spatial and temporal chaos. A number of new initial values are considered,
including a case where the initial value is “exactly” on the homoclinic orbit. The present algorithm performs extremely well
in terms of accuracy, efficiency, simplicity, stability and reliability. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent work by Ablowitz et al. [1,2] has pointed out
the problem of numerically induced spatial and tem-
poral chaos in numerical solutions of nonlinear wave
equations such as the sine-Gordon equation [1], the
nonlinear Schrödinger equation [3–5] and the modi-
fied Korteweg–de Vries (KdV) equation [6]. A seri-
ous implication is that at least some previous reports
of chaos, in fact, are numerical artifacts. This problem
might affect the mathematical modeling of many real
problems in physics, chemistry, biology and engineer-
ing. Mathematically, for an integrable system, such
numerical instability is associated with singularities in
so-called phase space action–angle variables, which
produce homoclinic orbits in the related phase space
geometry [1–5,7–9]. The numerical solution near the
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homoclinic orbits can be exponentially unstable [1]
due to the frequent visiting of two solutions on “op-
posite sides” of the homoclinic orbit. This visiting or
homoclinic orbit crossing can result from extremely
small perturbations in the numerical parameters and/or
from numerical errors in the calculated solution.

Conceptually, such “visiting” differs very much
from the Gibbs’ oscillations occurring in spectral
method approximations of a step function or in the
numerical solution of Burgers’ equation with a high
Reynolds number. The Gibbs’ oscillations are usu-
ally very regular but the homoclinic orbit crossing is,
in general, very irregular. Moreover, the homoclinic
orbit crossing is induced by the presence of phase
space singularities, whereas Gibbs’ oscillations are
caused by the sharp spatial changes inreal space
solutions over a small region such as a boundary
layer. There, however, is a universal feature of these
instabilities from the point of view of numerical inte-
gration. Essentially, instabilities typically occur when
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the numerical algorithm with the given space and
time meshes is not adequate for describing the ac-
tual solution. In many cases, the rate of convergence
of a given method simply cannot match the rate of
divergence of a solution near the singularity.

Recent analysis by Ablowitz et al. [2] found that
pseudo-spectral methods perform significantly bet-
ter for the Sine-Gordon equation than lattice type,
symplectic schemes. From this result they concluded
that numerical accuracy for approximating the spa-
tial derivatives is more important than the symplectic
schemes for the numerical integration of a general
class of nonlinear wave equations. The importance
of this result is obvious. However, computation-
ally, for nonlinear equations, the global spectral and
pseudo-spectral methods are not nearly as simple
and robust to implement as various local methods.
Moreover, global methods can only be directly used
in structured grids. For unstructured grids, which
are required for the case of complex geometry and
boundary, only local methods can be directly imple-
mented. Therefore, it would be extremely desirable
to have accurate, efficient, and robust approaches for
solving the various nonlinear wave equations which
play an important role in modern science and tech-
nology. Wavelet theory has been expected to fulfill
this task and has been extensively studied recently for
this purpose [10–13], including the recently reported
adaptive wavelet algorithms [14,15]. However, these
efforts have been hindered either by the technical dif-
ficulties of incorporating multiresolution analysis into
the treatment of boundary conditions or by the lack
of accurate and efficient wavelets for solving linear
and nonlinear partial differential equations (PDEs).
For example, Beylkin and Keiser [14] reported the
difficulty of handling the KdV equation by using a
sophisticated wavelet algorithm.

Discrete singular convolution (DSC) [16] is a po-
tential approach for numerically solving a few classes
of problems, including Hilbert transform, processing
of analytic signals, computational electromagnetics,
computational tomography, and linear and nonlinear
dynamics. In fact, underlying mathematical structure
of DSC is the theory of distributions. One of the dis-
tributions used in the aforementioned applications is

the Dirac delta function which is a generalized func-
tion following from the fact that it is an integrable
function inside a particular interval but it need not
have a value. Heaviside introduced both the unit step
Heaviside function and the Dirac delta function as its
derivative, and referred to the latter as the unit im-
pulse. Dirac, for the first time, explicitly discussed the
properties ofδ in his classic text on quantum mechan-
ics; for this reasonδ is often called Dirac delta func-
tion. However, delta distribution has a history which
antedates both Heaviside and Dirac. It appeared in
explicit form as early as 1822, in Fourier’sThéorie
Analytique de la Chaleur. The work of Heaviside, and
subsequently of Dirac, in the systematic but informal
exploitation of the step function and delta function has
made delta distribution familiar to physicists and engi-
neers before Sobolev, Schwartz [17], Korevaar [18,19]
and others put it into a rigorous mathematical form.
In particular, the Hermite function expansion of Dirac
delta function was proposed by Schwartz [17] and
Korevaar [20] over 40 years ago and was used by Hoff-
man et. al. [21] for numerical simulations. General
orthogonal series analyses of the delta distribution
have been subsequentially studied by Walter [22] and
others [23–25]. The use of many delta sequences as
probability density estimators was discussed by Walter
and Blum [25] and others [24,26,27].

The purpose of the present paper is to demonstrate
that the discrete singular convolution (DSC) algorithm
provides a powerful tool for solving the sine-Gordon
equation. This paper is organized as follows. Section
2 is devoted to a brief review of the discrete singular
convolution algorithm. Numerical integration of the
sine-Gordon equation is given in Section 3. Particular
attention is paid to those initial values which are close
to the homoclinic orbits and have previously led
to numerically induced spatial and temporal chaos.
Conclusional remarks are given in Section 4.

2. Discrete singular convolution

Singular convolutions appear in many science and
engineering problems, such as Hilbert transform, Abel
transform and Radon transform. Discrete singular
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convolution is a unified approach for numerically
solving singular convolution problems. The simplest
way to introduce the theory ofsingular convolution
(SC) is to work in the context of distributions. Let
T be a distribution andη(t) be an element of the
space of test functions (e.g.,η(t) ∈ D). A singular
convolution is defined as

F(t) = (T ∗ η)(t) =
∫ ∞

−∞
T (t − x)η(x) dx. (1)

HereT (t − x) is a singular kernel. Depending on the
form of the kernelT , the singular convolution is the
central issue for a wide range of science and engi-
neering problems. For example, singular kernels of the
Hilbert typehave a general form

T (x) = 1

xn
(n > 0). (2)

Here, kernelsT (x) = 1/xa (0 < a < 1) define
the Abel transformwhich is closely connected with
a generalization of the tautochrone problem. Kernel
T (x) = 1/x is commonly encountered in electrody-
namics, theory of linear response, signal processing,
theory of analytic functions, and the Hilbert transform.
Kernel T (x) = 1/x2 is widely used in tomography.
Other interesting examples are singular kernels of the
delta type

T (x) = δ(n)(x) (n = 0, 1, 2, . . . ). (3)

Here, kernelT (x) = δ(x) is important for the interpo-
lation of surfaces and curves (including atomic, molec-
ular and biological potential energy surfaces, aircraft
and missile surfaces), andT (x) = δ(n)(x) (n =
1, 2, . . . ) are essential for obtaining weak solutions
of partial differential equations. However, since these
kernels are singular, they cannot be directly digital-
ized in computer. Hence, the singular convolution,
(1), is of little numerical merit. To avoid the difficulty
of using singular expressions directly in computer,
sequences of approximations{Tα} of the distribution
T can be constructed

lim
α→α0

Tα(x) → T (x), (4)

where α0 is a generalized limit. Obviously, in the
case ofT (x) = δ(x), the sequence,Tα(x), is a delta

sequence. Furthermore, with a sufficiently smooth
approximation, it makes sense to consider adiscrete
singular convolution(DSC)

Fα(t) =
∑

k

Tα(t − xk)f (xk), (5)

whereFα(t) is an approximation toF(t) and{xk} is
an appropriate set of discrete points on which the DSC
(5) is well defined. Note that the original test function
η(x) has been replaced byf (x). The mathematical
property or requirement off (x) is determined by the
approximate kernelTα. In general, the convolution is
required being Lebesgue integrable.

A sequence of approximation can be improved by
a regularizer [28,29]:

lim
σ→∞Rσ (x) = 1. (6)

The regularizer is designed to increase the regularity of
convolution kernels. For the delta sequence, it follows
from Eq. (4) that∫

lim
α→α0

Tα(x)Rσ (x) dx = Rσ (0) = 1, (7)

whereRσ (0) = 1 is the special requirement for adelta
regularizer.

As an interesting example, Shannon’s kernel
sinαx/πx is a delta sequence kernel

lim
α→∞

〈
sinαx

πx
, η(x)

〉
= η(0). (8)

Other important examples include the Dirichlet kernel

sin [(l + 1
2)(x − x)]

2π sin [1
2(x − x′)]

,

the modified Dirichlet kernel

sin [(l + 1
2)(x − x′)]

2π tan [12(x − x′)]
,

and the de la Vallée Poussin kernel

1

πα

cos [α(x − x′)] − cos [2α(x − x′)]
(x − x′)2

.

For sequences of both the delta type and the
Hilbert type, an interpolating (or quasi interpolating)
algorithm sampling atNyquist frequency, α = π/∆,
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has a great advantage over a non-interpolating dis-
cretization

sin [α(x − x′)]
π(x − x′)

→ sin(π/∆)(x − xk)

(π/∆)(x − xk)
. (9)

The interpolating nature not only guarantees the high-
est accuracy on the set of grid points but also pro-
vides the highest possible computational efficiency of
a grid. This is because theNyquist intervalgiven by
[−π/∆, π/∆] is the largest possible sampling inter-
val that is free of alias whenever theL2 functionf (x)

under study satisfies theNyquist condition:

suppf̂ (k) ⊂
{
−π

∆
,
π

∆

}
. (10)

This fact can be formally given by Shannon’s sampling
theorem

f (x) =
∞∑

k=−∞
f (xk)

sin(π/∆)(x − xk)

(π/∆)(x − xk)
. (11)

The significance of Shannon’s sampling theorem is
that by a discrete but infinite set of sampling data
{f (xk)}, one can actually recover a bandlimitedL2

function on the real line. Shannon’s sampling theo-
rem has great impact on information theory, signal
and image processing because the Fourier transform
of Shannon’s kernel is an ideal low-pass filter for sig-
nals bandlimited to [−π/∆, π/∆].

The uniform, Nyquist rate, interpolating discretiza-
tion is also used for the Dirichlet kernel:

sin [(l + 1
2)(x − x′)]

2π sin [1
2(x − x′)]

→ sin((π/∆)(x − xk))

(2M + 1) sin((π/∆)((x − xk)/(2M + 1)))
.

(12)

In a comparison to Shannon’s kernel, the Dirichlet ker-
nel has one more parameterM which can be optimized
to achieve better results in computations. Usually, we
set a sufficiently largeM for various numerical ap-
plications. Obviously, the Dirichlet kernel converts to
Shannon’s kernel at the limitM → ∞. This uni-
form interpolating discretization will also be used for
discretizing the modified Dirichlet kernels

sin [(l + 1
2)(x − x′)]

2π tan [12(x − x′)]

→ sin((π/∆)(x − xk))

(2M + 1) tan((π/∆)((x − xk)/(2M + 1)))
,

(13)

and for the de la Vallée Poussin kernels

1

πα

cos [α(x − x′)] − cos [2α(x − x′)]
(x − x′)2

→ 2

3

cos(π/∆̄)(x − xk) − cos(2π/∆̄)(x − xk)

[(π/∆̄)(x − xk)]2
,

(14)

where ∆̄ = 3
2∆. Sinceπ/∆ is proportional to the

highest frequency which can be reached in the Fourier
representation, the∆ should be very small for a given
problem involving very oscillatory functions or very
high frequency components.

We use a symmetrically (or antisymmetrically) trun-
cated, translationally invariant singular kernel

f (n)(x) ≈
W∑

k=−W

δ(n)
α (x − xk)f (xk)

(n = 0, 1, 2, . . . ), (15)

where{xk} are centered aroundx and 2W + 1 is the
computational bandwidth, or effective kernel support,
which is usually smaller than the whole computational
domain [a, b]. Hereδ

(n)
α (x−xk) is a collective symbol

for thenth derivative of any of the right-hand side of
Eqs. (9) and (12)–(14).

In the DSC approach, it is convenient to discretize
an operator on a grid of the coordinate representation.
This is illustrated by using a Hamiltonian. As such, the
potential part,V (x), of the Hamiltonian is diagonal.
Hence, its discretization is simply given by a direct
interpolation on the grid

V (x) → V (xk)δm,k. (16)

The differentiation matrix of an operator or the Hamil-
tonian on the coordinate grid is then given in terms of
functional derivatives

− ~
2

2µ

d2

dx2
→ − ~

2

2µ
δ(2)
α (xm − xk), (17)
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whereµ is the mass of the Hamiltonian system and
δ
(2)
α (xm − xk) areanalyticallygiven by

δ(2)
α (xm − xk) =

[(
d

dx

)2

δα(x − xk)

]
x=xm

. (18)

Thus, the full DSC grid representation for the Hamil-
tonian operator,H , is given by

H(xm, xk) = − ~
2

2µ
δ(2)
α (xm − xk) + V (xm)δm,k. (19)

All other operators which consist of a non-diagonal
differentiation part and/or a diagonal part can be
treated similarly.

In the present study we limit our attention to the
singular kernels of Shannon (Shannon), the de la
Vallée Poussin (DLVP), Dirichlet (Dirichlet) and the
modified Dirichlet (MD). Nevertheless, various other
delta sequence kernels can be similarly employed. It
is noted that the singular kernels of Shannon (Shan-
non) and de la Vallée Poussin (DLVP) are parameter
free, which is convenient for applications. The 2M +1
parameter used for the other two kernels is chosen as
71 for all calculations. We note that as long as the
2M + 1 value is chosen sufficiently large (2M + 1 >

W , where 2W + 1 is the matrix bandwidth), the nu-
merical results are not sensitive to the specific values
used. The time discretization is obtained by using the
fourth order Runge–Kutta scheme.

3. Application and results

The sine-Gordon equation is one of the most im-
portant nonlinear wave equations that can be used to
model the soliton waves in nature. Although Stokes
[30] described in detail the Stokes waves in 1847,
the formal development of soliton theory was in
1960s [31–33]. Benjamin studied the instability of
Stokes waves in deep water. Such an instability is
also described by the nonlinear Schrödinger equation.
Zabusky and Kruskal [32] pioneeringly studied the
instability in the Korteweg–de Vries (KdV) equation
describing nonlinear waves in shallow water [34,35].
A variety of other natural phenomena can be modeled

by the sine-Gordon equation. These include the ro-
tator phase dynamics of then-heneicosane (C22H44)
polymer [36], H–D exchange in DNA [37,38] and
r.f. radiation from a Josephson junction [39]. The
numerical instability of nonlinear wave equations,
including numerically induced spatial and temporal
chaos of these equations, has been carefully investi-
gated by Ablowitz et al. [1–4] recently. The purpose
of this section is both to test the accuracy and relia-
bility of the DSC algorithm for temporal integration
of nonlinear wave equations and to numerically study
the waveforms of the sine-Gordon equation when
the initial values are either exponentially close to or
“exactly” on the most unstable homoclinic orbit.

The sine-Gordon equation is given by

∂2u(x, t)

∂t2
− ∂2u(x, t)

∂x2
+ sin [u(x, t)] = 0 (20)

with periodic boundary conditions

u(x, t) = u(x + L, t). (21)

It is a completely integrable Hamiltonian system [1,7]
and the associated Hamiltonian can be defined as

H =
∫ L

0

[
1

2
v2 + 1

2

(
∂u

∂x

)2

+ 1 − cos(u)

]
dx. (22)

The sine-Gordon Hamiltonian operator maps from the
infinite dimensional phase space

F (L) =
{

u(x) =
(

u(x)

v(x)

)
, eiu(x+L) = eiu(x),

v(x + L) = v(x)

}
(23)

to the real lineR. Herev = ut andu are related to the
phase space variable(q, p) according toq = u and
p = v. It is noted that Hamilton’s equations hold as

∂q

∂t
= δH

δp
,

∂p

∂t
= −δH

δq
. (24)

Ercolani et al. [7] analyzed the sine-Gordon phase
space geometry. In particular, homoclinic orbits were
shown to be associated with numerical instabilities
[1,7] and even chaos. The simplest homoclinic orbit
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can be obtained by examining the spatially homoge-
neous sine-Gordon equation, i.e., the periodic pendu-
lum equation

∂2u

∂t2
+ sin(u) = 0. (25)

The pendulum equation is integrable and has a
well-known homoclinic orbit

u(x, t) = π − 4 tan−1[e(t+t0)] (26)

corresponding to the phase space separatrix at (π, 0).
A family of homoclinic orbits can be constructed [1,6]
by using the sine-Gordon symmetry

(x, t, u) → (t, x, u + π). (27)

By doing this one starts with a breather solution

u(x, t) = 4 tan−1
[

tan(ν) cos [ cos(ν)t ]

cosh [ sin(ν)x]

]
, (28)

where the parameterν satisfies

|ν| � 1. (29)

This breather can be viewed as a kink–antikink
bounded pair in space with a 2π/ cos(ν) periodic
oscillation in time. The sine-Gordon space–time sym-
metry (27) leads to a family of real valued homoclinic
orbits

u(x, t) = π + 4 tan−1
[

tan(ν) cos [ cos(ν)x]

cosh [ sin(ν)t ]

]
. (30)

In contrast to the spatially homogeneous homoclinic
orbit, Eq. (26), this family of homoclinic orbits also
has a 2π/ cos(ν) periodic spatial structure, i.e., a tan-
gent cone associated with the phase space limit point
(π, 0). We refer the reader to Ref. [7] for the construc-
tion of more general homoclinic states and a detailed
spectral analysis.

For numerical purpose, the sine-Gordon equation
(20) is rewritten as a pair of coupled equations

∂u(x, t)

∂t
= v(x, t),

∂v(x, t)

∂t
= ∂2u(x, t)

∂x2
− sinu(x, t). (31)

Two types of initial conditions are used in the present
computations: one is chosen to be extremely close to or

even “exactly” on the homoclinic orbits and the other
corresponds to a case where there is a breather-kink
and antikink transition. Both cases were used previ-
ously by Ablowitz et al. [1] to demonstrate the possi-
ble appearance of numerical chaos. However, they did
not provide stable numerical waveforms of the system.

3.1. Near homoclinic orbit states

We first consider the numerical solution of Eq. (20)
with the initial values [1]

u(x, 0) = π + ε cos(µx), ut (x, 0) = 0, (32)

with µ = 2π/L andL = 2
√

2π . It is noted that the
value of π is numerically generated as cos−1(−1)

to the normal double precision. For this reason we
use the quotation marks for the wordexactly when
we say exactly on the homoclinic orbit. The periodic
boundary condition, Eq. (21), is numerically imple-
mented. Ablowitz et al. [1] showed that for smallε’s,
these initial values are exponentially close to the ho-
moclinic manifold and produce numerical instability
when one uses the Hirota algorithm [40], which is a
doubly discrete, integrable discretization scheme stan-
dardly used in numerical integration of nonlinear wave
equations. Whenε was chosen to be small, both spa-
tial and temporal chaos were easily excited by very
small perturbations, even on the order of round-off
error. These authors found a more troubling aspect
that these numerical instabilities persisted as the mesh
were refined and cannot be detected by monitoring the
conserved quantities of the equation. In other words,
the temporal evolution of the numerical solution re-
mained unstable even if all the conserved quantities
were well preserved (by employing a very fine grid).
They showed that the chaos persists even if a spatially
completely integrable scheme is employed.

To demonstrate the numerical stability of the DSC
algorithm, we first consider those twoε values (ε =
0.05, 0.1) that have previously been used by Ablowitz
et al. [1]. In the case ofε = 0.05, Ablowitz et al. [1]
found numerically induced chaos in a very early time
of the integration by using 64 grid points. As plotted in
Fig. 1, the DSC algorithm produces stable wave forms
even if a small number of grid points is chosen as
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Fig. 1. The DSC solution of the sine-Gordon equation (ε = 0.05, N = 32, τ = 0.02): (a) betweent = 100 andt = 200; (b) between
t = 10 000 andt = 10 020.

N = 32. Obviously no irregular oscillation occurred
in our results. Actually, no trace of any numerical in-
stability has been detected even when the waveforms
are integrated up to 10 020 time units.

The case ofε = 0.1 was also studied by Ablowitz
et al. [1]. In particular, they found that this initial value
led to numerically induced spatial and temporal chaos
after a relatively longer time integration (t ≥ 300 time
units). In the present study, we still choose a relatively
large grid mesh (N = 32) for the delta sequence ker-
nels. As plotted in Fig. 2, there is no trace of numerical
instability in our results. In fact, our DSC solution is

regular and stable even if the wave form is propagated
to 10 020 time units (see Fig. 2b).

To verify our results, we further consider a largeε

value (ε = 1000). This value is far from the low order
homoclinic manifold. As expected, our results are still
very stable even up to 10 020 time units. These are
depicted in Fig. 3. It is noted that when largeε values
are used, the corresponding sine-Gordon waveforms
are highly oscillative in the spatial domain.

For the last test, we chooseε = 0 so that the initial
values for the sine-Gordon equation is “exactly” on the
most unstable homoclinic manifold. Surprisingly, we
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Fig. 2. The DSC solution of the sine-Gordon equation (ε = 0.1, N = 32, τ = 0.02): (a) betweent = 100 andt = 200; (b) between
t = 10 000 andt = 10 020.

obtain another set of stable waveforms for this initial
value as given in Fig. 4, which is free from any trace
of numerical instability.

By a comparison of waveforms for variousε val-
ues from 0 to 1000, we conclude that all of the results
are consistent with each other and sound. All results
in these figures are obtained by using 32 grid points
and a time mesh ofτ = 0.02. Note that we have fixed
the number of plots as 100 in all figures. To confirm
our results further, we have also tested a number of
different initial values (ε = 0.001, 1, and 100), a num-
ber of different (even and odd) grid points and some

very small or large time meshes, such asτ = 0.00001,
0.25. We have also changed the number of plots and
integration time units. All of these results are stable,
and consistent with regard to these variations.

Our results are completely regular and free of nu-
merical instability for all four delta sequence kernels
numerically tested in this work. We noted that graph-
ically, there was no difference between the results ob-
tained by employing any of the delta sequence kernels
of Shannon, Dirichlet and modified Dirichlet. We have
also obtained the same type of results by means of
the de la Vallée Poussin delta sequence kernel using
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Fig. 3. The DSC solution of the sine-Gordon equation (ε = 1000.0, N = 32, τ = 0.02): (a) betweent = 100 andt = 200; (b) between
t = 10 000 andt = 10 020.

slightly more grid points. These results provide very
strong evidence that the DSC algorithm is very reliable
and robust for integrating nonlinear wave equations
with low-lying unstable homoclinic orbits. As is well
known, the low-lying homoclinic orbits are most eas-
ily excited by extremely small perturbations, even the
computer round-off errors for the sine-Gordon equa-
tion. Ablowitz et al. [1] pointed out that occurrence of
numerical chaos is primarily the result of inaccurate
approximation of the spatial derivatives in discretizing
the partial differential equation [2]. Hence, the present
DSC algorithm must provide very high accuracy for

approximating the spatial derivatives. This is consis-
tent with our results on eigenvalue problems of the
Schrödinger equation and the Fokker–Planck equation
where the second order derivative is required.

3.2. Breather-kink and antikink transition

To explore the accuracy and reliability of the DSC
algorithm for the integration of the sine-Gordon equa-
tion further, we consider different initial values where
previous work indicates the occurrence of a differ-
ent type of numerical instability [1]. The analytical
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Fig. 4. The DSC solution of the sine-Gordon equation (ε = 0.0, N = 32, τ = 0.02): (a) betweent = 100 andt = 200; (b) between
t = 10 000 andt = 10 020.

solution represents a breather-kink and antikink tran-
sition associated with a double point in the nonlinear
spectrum of the sine-Gordon equation [1]:

u(x, t) = 4 tan−1 [sech(x)t ] , −∞ < x < ∞, (33)

with initial values

u(x, 0) = 0, ut (x, 0) = 4 sech(x), (34)

and periodic boundary conditions. In this case the
solution is far away from the unstable homoclinic
manifolds. Using the doubly discrete, integrable dis-
cretization scheme [40], Ablowitz et al. [1] found that

numerically induced chaos occurred for 64 grid points
after a number of integrations. However, unlike the
previous examples of their calculations, the chaos dis-
appeared when a refined grid mesh(N = 128) was
employed. A careful examination of their results in-
dicates that the breather-kink and antikink transition
occurred much earlier than it should in their refined
calculation. This phenomena can be characterized as
numerical catalyzed breather-kink and antikink tran-
sition. In our calculation, a total of 64 grid points
(N = 64) is used in the interval [−20, 20] for the delta
sequence kernels of Shannon, Dirichlet and modified
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Fig. 5. Numerical and exact solution of the sine-Gordon equation with initial values (34) describing a breather-kink and antikink transition
(betweent = 0.05 andt = 100, N = 64, τ = 0.05).

Dirichlet. To achieve the same level of accuracy, as
many as 1.5 times of grid points (N = 96) are used for
the de la Vallée Poussin delta sequence kernel. Both
the exact results and the Dirichlet delta sequence ker-
nel calculations obtained by using 64 grid points are
plotted in Fig. 5. There is no visible difference in the
two solutions. The computational results obtained by
using other delta sequence kernels are graphically the
same as that in Fig. 5. Actually, the present method
provides smooth, stable numerical solutions by using
40 or even fewer grid points. The accuracy of the
DSC algorithm for the sine-Gordon equation is con-
trollable and theL∞ andL2 errors are very small with
the present choice of spatial and temporal mesh sizes.
These results are listed in Table 1. It is seen that the
DSC algorithm achieves an accuracy of four or five

Table 1
L∞ andL2 errors of the numerical solutions for the sine-Gordon equation

t Shannon Dirichlet MD DLVP

L2 L∞ L2 L∞ L2 L∞ L2 L∞

1.0 1.55(−4) 8.87(−5) 1.55(−4) 8.87(−5) 1.55(−4) 8.87(−5) 1.71(−4) 1.01(−4)
2.0 1.04(−3) 5.61(−4) 1.03(−3) 5.61(−4) 1.03(−3) 5.61(−4) 1.19(−4) 5.51(−5)
4.0 1.21(−3) 6.11(−4) 1.20(−3) 6.11(−4) 1.21(−3) 6.11(−4) 1.00(−4) 4.20(−5)
6.0 9.05(−4) 4.02(−4) 9.05(−4) 4.02(−4) 9.05(−4) 4.02(−4) 1.25(−4) 4.40(−5)
8.0 1.35(−3) 6.37(−4) 1.35(−3) 6.37(−4) 1.35(−3) 6.37(−4) 1.14(−4) 3.82(−5)

10.0 1.88(−3) 7.63(−4) 1.88(−3) 7.63(−4) 1.88(−3) 7.63(−4) 1.32(−4) 4.91(−5)

significant figures for the sine-Gordon equation using
a reasonably small number of grid points and rela-
tively large time increment.

4. Conclusion

By focusing on the delta sequence kernels of Shan-
non, Dirichlet, modified Dirichlet and the de la Vallée
Poussin, the utility of the DSC algorithm is explored
for the nonlinear dynamics of the sine-Gordon equa-
tion, which is a challenging case when the initial
values are close to the homoclinic orbits. The DSC
algorithm is used for spatial discretization which is
in association with the fourth order Runge–Kutta
scheme for time integration. We have chosen the
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sine-Gordon equation because Ablowitz et al. [2]
have recently called attention to the numerical dif-
ficulties of this problem. They showed that when
initial values are chosen to be close to the homoclinic
manifolds, previous integrable discretization schemes
encountered difficulties, including numerically in-
duced spatiotemporal chaos [1]. There is no report
on the numerical method which is totally free from
homoclinic-orbit-crossing in the literature.

A number of new initial values are considered, in-
cluding a case where the initial value is “exactly”
on the homoclinic orbit. Important numerical issues
examined in this paper are the accuracy of approx-
imation, the speed of convergence, the simplicity of
implementation, the stability of integration and the re-
liability of application. The DSC algorithm performs
extremely well for all issues.

For two troubling initial values which are close
to the sine-Gordon homoclinic orbit and have been
used previously by Ablowitz et al. [2], the DSC al-
gorithm provides stable, smooth, chaos free and even
homoclinic-orbit-crossing free results by using a small
number of grid points(N = 32). In both cases we
actually integrate the waveforms up to 10 020 time
units without encountering any trace of numerical in-
stability. To verify our results, we considerε values
as large as 1000. There is still no trace of numerical
instability in our solution for this case. In a dramat-
ical case, the initial value is chosen to be “exactly”
on the homoclinic orbit (ε = 0). Our DSC results
remain smooth, stable, and consistent with those ob-
tained with non-zeroε values. Our results are verified
by using a variety of different time meshes, number of
grid points, number of plots and integrating time units.
The complete dynamical behavior of the sine-Gordon
equation with this set of initial values can be under-
stood from our numerical simulations.

The other type of initial values considered in this
work is the situation where a solitary transition from a
breather to a kink and antikink occurs during the time
evolution of the sine-Gordon soliton. Numerically in-
duced spatial chaos was also reported in the literature
for this problem [1] when the number of grid points
is chosen asN = 64 in the interval of [−20, 20]. The
DSC algorithm provides stable results by using only

40 grid points in the same interval. Our DSC results
are accurate up to five significant figures for this ini-
tial value using a slightly larger number of grid point
(N = 64) in the interval of [−20, 20] and a relatively
large time increment of 0.05.

Since the symplectic numerical schemes are de-
signed to preserve the phase space structures of
Hamiltonian systems, they have been the main fo-
cus of enormous research in the past and have been
regarded as superior to explicit methods such as
the Runge–Kutta scheme. Only very recently after a
systematical comparison of a number of numerical
schemes have Ablowitz et al. [2] pointed out that the
accuracy of the spatial discretization is more impor-
tant than the symplectic property. The superior results
obtained in this work indicate that the DSC algorithm
provides highly accurate spatial discretizations for
integrating nonlinear partial differential equations.
However, it is our experience that not only the ac-
curacy but also the implementation of a numerical
algorithm that determine the numerical stability for
integration of nonlinear wave equations. This point
will be formally explored in our future work.
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