
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 7, JULY 2012 1235

High-Throughput Soft-Output MIMO Detector Based
on Path-Preserving Trellis-Search Algorithm

Yang Sun, Student Member, IEEE, and Joseph R. Cavallaro, Senior Member, IEEE

Abstract—In this paper, we propose a novel path-preserving
trellis-search (PPTS) algorithm and its high-speed VLSI archi-
tecture for soft-output multiple-input-multiple-output (MIMO)
detection. We represent the search space of the MIMO signal
with an unconstrained trellis, where each node in stage of the
trellis maps to a possible complex-valued symbol transmitted by
antenna . Based on the trellis model, we convert the soft-output
MIMO detection problem into a multiple shortest paths problem
subject to the constraint that every trellis node must be covered
in this set of paths. The PPTS detector is guaranteed to have
soft information for every possible symbol transmitted on every
antenna so that the log-likelihood ratio (LLR) for each trans-
mitted data bit can be more accurately formed. Simulation results
show that the PPTS algorithm can achieve near-optimal error
performance with a low search complexity. The PPTS algorithm
is a hardware-friendly data-parallel algorithm because the search
operations are evenly distributed among multiple trellis nodes
for parallel processing. As a case study, we have designed and
synthesized a fully-parallel systolic-array detector and two folded
detectors for a 4 4 16-QAM system using a 1.08 V TSMC 65-nm
CMOS technology. With a 1.18 mm� core area, the folded detector
can achieve a throughput of 2.1 Gbps. With a 3.19 mm� core area,
the fully-parallel systolic-array detector can achieve a throughput
of 6.4 Gbps.

Index Terms—Application-specific integrated circuit (ASIC),
multiple-input-multiple-output (MIMO) detection, shortest path
algorithm, soft-output MIMO detector, VLSI architecture.

I. INTRODUCTION

M ULTIPLE-INPUT-MULTIPLE-OUTPUT (MIMO)
systems have great potential to increase spectral

efficiency by transmitting independent data streams on mul-
tiple antennas. As an example, the Vertical Bell Laboratories
Layered Space-Time (V-BLAST) system has been shown
to achieve very high spectral efficiency [1]. MIMO tech-
nologies have been adopted in many new wireless standards
such as 3GPP LTE/LTE-Advanced, IEEE 802.16e/802.16m
WiMAX, and IEEE 802.11n/802.11ac WLAN. There is an
increasing demand for Gbps wireless systems. For example,
3GPP LTE-Advanced, IEEE 802.16m WiMAX, IEEE 802.11ac
WLAN, and WIGWAM [2] target for Gbps throughput

Manuscript received September 01, 2010; revised February 16, 2011; ac-
cepted April 12, 2011. Date of publication May 27, 2011; date of current ver-
sion June 01, 2012. This work was supported in part by Nokia, Nokia Siemens
Networks (NSN), by Xilinx, and by US National Science Foundation (under
Grant CCF-0541363, Grant CNS-0551692, Grant CNS-0619767, Grant EECS-
0925942, and Grant CNS-0923479).

The authors are with the Department of Electrical and Computer Engineering,
Rice University, Houston, TX 77005 USA (e-mail: ysun@rice.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2011.2147811

with MIMO technology. Soft-output MIMO detection poses
significant challenges to the MIMO receiver design as the com-
putational complexity increases exponentially with the number
of antennas. However, the optimal soft-decision detector, the
maximum a posteriori (MAP) detector, will consume enor-
mous computing power and require tremendous computational
resources which makes it infeasible to be used in a practical
MIMO receiver. As such, researchers are seeking efficient
algorithms to reduce the MIMO detection complexity.

A. Related Work

Traditionally, the MIMO detection problem is usually tackled
based on tree-search algorithms. The tree-search algorithms can
be often categorized into the depth-first search algorithm and the
breadth-first search algorithm. The sphere detection algorithm
[3]–[7] is a depth-first tree-search algorithm to find the closest
lattice point. To provide soft information for outer channel de-
coders, a modified version of the sphere detection algorithm, or
soft sphere detection algorithm, is introduced in [8]. There are
many implementations of sphere detectors, such as [9]–[18].
However, the sphere detector suffers from non-deterministic
complexity and variable-time throughput. The sequential nature
of the depth-first tree-search process significantly limits the
throughput of the sphere detector especially when the SNR is
low. The -Best algorithm is a fixed-complexity algorithm
based on the breadth-first tree-search algorithm [19]–[24]. But
this algorithm tends to have a high sorting complexity to find
and retain the best candidates, which limits the throughput of
the detector especially when is large. There are some other
variations of the -Best algorithm, which require less sorting
than the regular -best algorithm, e.g., [25]–[29], but it is
still very difficult for the -Best detectors to achieve 1+ Gbps
throughput because of the high sorting complexity.

Generally, to make a soft decision for a bit , a maximum-
likelihood (ML) hypothesis and a counter-hypothesis of this bit
are both required to form the LLR. A major problem for almost
all the “conventional” tree-search algorithms is that the counter-
hypotheses for certain bits are missing due to tree pruning. As a
consequence of missing counter-hypotheses, the magnitude of
the LLRs for certain bits cannot be determined, which will lead
to performance degradation.

B. Proposed MIMO Detection Algorithm

To avoid the missing counter-hypothesis problem and to re-
duce the search complexity, we investigate high performance
MIMO detection algorithms and high-speed VLSI architectures.
In our earlier work [30], we have presented a 600 Mbps soft-
output MIMO detector based on a greedy graph algorithm. In

1063-8210/$26.00 © 2011 IEEE

1236 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 7, JULY 2012

this paper, we significantly improve that algorithm and archi-
tecture, and we propose a high-performance detection scheme
based on a path-preserving trellis-search (PPTS) algorithm.

We use an unconstrained trellis structure as an alternative to
the tree structure to represent the search space of the MIMO
signal. It should be noted that the terminology “trellis” in this
paper has a different meaning than the typical “trellis” used in
the optimal sequence detection algorithm in communication
theory. We only use the data structure of the unconstrained
trellis to represent the connections of the nodes. In the trellis
graph, a path maps to a symbol vector so that the path weight
is the Euclidian distance between the received signal and the
product of the symbol vector and the channel matrix. Because
each node maps to a possible transmitted symbol in a constella-
tion so that a path weight is an indicator of the soft probability
for nodes (or symbols) on this path. The PPTS algorithm is a
multiple shortest paths algorithm on the condition that every
trellis node must be included at least once in this set of paths so
that the soft information for every possible symbol transmitted
on every antenna is always available. When computing the
LLR for every transmitted bit , we can guarantee that a ML
hypothesis and a counter-hypothesis of are both available.
We will discuss this important feature in Section III. On the
other hand, the -Best algorithm or the sphere algorithm may
not preserve enough soft information for every bit . Thus the
missing counter-hypothesis problem may occur, which will
lead to some performance loss.

From the implementation point of view, the advantage of
the PPTS algorithm is that it is a very data-parallel algorithm
because the searching operations at multiple trellis nodes
can be performed simultaneously. Moreover, the local search
complexity at each trellis node is kept very low to reduce
the processing time. For very high data rate applications, we
propose a pipelined, fully-parallel, systolic-array VLSI archi-
tecture. In this architecture, nodes in the same stage of the
trellis are processed in parallel, and nodes in different stages
of the trellis are processed in a pipelined manner. As a result,
the systolic-array detector can process one MIMO symbol per
clock cycle, leading to multiple Gbps throughput performance.
For a lower data rate scalable system, we propose a folded
architecture to save area.

The rest of this paper is organized as follows. Section II sum-
marizes the MIMO system model. Section III introduces the
PPTS algorithm. Section IV evaluates the error performance
and analyzes the sorting complexity of the PPTS algorithm.
Section V describes the VLSI architecture. Section VI summa-
rizes the VLSI implementation results. Finally, Section VII con-
cludes this paper.

II. SYSTEM MODEL

We consider a spatial-multiplexing MIMO system with
transmit antennas and receive antennas . The
MIMO transmission can be modeled as

(1)

where is a complex matrix and is assumed to be
known perfectly at the receiver, is a transmit symbol

vector , is a received vector
, and is a vector of independent zero-mean

complex Gaussian noise entries with variance per real com-
ponent. A real bit-level vector
is mapped to the complex symbol , where the th bit of is
denoted as and is the number of bits per constellation
point. Throughout this paper, the complex symbol and its as-
sociated bit vector will be used interchangeably.

The optimal MAP detector is to compute the log-likelihood
ratio (LLR) value for the a posteriori probability (APP) of each
transmitted bit. Assuming there is no a priori information for the
transmitted bit, the LLR APP of each bit can be computed
as [8]

(2)

With the Max-Log approximation [8], (2) is simplified to

(3)

Note that to form LLR for bit , both the ML hypothesis and
the counter-hypothesis of bit are required. Otherwise, the
magnitude of the LLR will be undetermined. If a (sorted) QR
decomposition of the channel matrix according to is
used, where and refer to an unitary matrix and
an upper triangular matrix, respectively, then (3) is
changed to

(4)

where the Euclidean distance, , is defined as

(5)

In the equation above, , and denotes the -th
element of a vector.

III. PATH-PRESERVING TRELLIS-SEARCH ALGORITHM

Computing the bit LLR in (4) requires searching for a ML hy-
pothesis and a counter-hypothesis of this bit over a large search
space. To reduce the search complexity and avoid the missing
counter-hypothesis problem, we introduce a path-preserving
trellis-search (PPTS) algorithm for soft MIMO detection.

A. Unconstrained Trellis Model

The Euclidean distance in (5) can be computed recursively.
To visualize the recursion, we create a graph model, which re-
sembles an unconstrained “trellis”. As an example, Fig. 1 shows
the trellis graph for the 4 4 4-QAM system. In this graph,
nodes are ordered into vertical slices or stages, where stage

corresponds to symbol transmitted by antenna . The trellis
starts with a root node and ends with a dummy sink node. The
stages are labeled in descending order. In each stage, there are

SUN AND CAVALLARO: HIGH-THROUGHPUT SOFT-OUTPUT MIMO DETECTOR 1237

Fig. 1. Trellis graph for the 4 � 4 4-QAM system. Each stage of the trellis
corresponds to a transmit antenna. There are � � � nodes in each stage,
where each node maps to a constellation point that belongs to a known alphabet.

different nodes, where each node maps to a con-
stellation point that belongs to a known alphabet. Thus, each
transmitted symbol vector is a path from root to sink. The trellis
is fully connected, so there are number of different paths
from root to sink. The nodes in stage are denoted as ,
where . The edge between nodes and

has a weight of

(6)

where is the partial symbol vector
, and is the complex-valued symbol

. Throughout this paper, the complex-valued
symbol and its associated real-valued number will be
used interchangeably. We define the path weight as the sum
of the edge weights along this path. Then the weight of a path
from root to sink is an Euclidean distance . Define
a (partial) path metric as the sum of the edge weights along
this (partial) path. Then the path weight is computed recursively
as

(7)

where is initialized to 0, and is the path weight (or
Euclidean distance).

B. Multiple Shortest Paths Problem

We transform the soft MIMO detection problem into a mul-
tiple shortest paths problem. In the trellis graph, each trellis node

maps to a complex symbol such that each path from
root to sink maps to a symbol vector . A path weight is a mea-
surement of the soft probability for nodes (symbols)
on this path. To make a soft decision for every transmitted bit

, finding one shortest path is not enough. We want to find

Fig. 2. Flow of the path reduction algorithm, where each node evaluates all its
incoming paths and selects the best� paths.

multiple paths which cover every node in the trellis graph. The
multiple shortest paths problem is defined as follows. For each
node in the trellis graph, find a shortest path from root to
sink that must visit this node . The corresponding shortest
path weight is related to the symbol probability . If
we can find such a conditional shortest path for each node in the
trellis, we will then have one soft information value for every
possible symbol transmitted on every antenna. As a result, we
will have sufficient soft information values to avoid the missing
counter-hypothesis problem. Thus, the LLR for every data bit
can be formed accurately based on these soft information values.

C. Trellis Traversal Strategies

Because of the unconstrained trellis structure, there are
different paths from root to sink that need to be evaluated. In
order to reduce the search complexity, we propose a greedy al-
gorithm that approximately solves the multiple shortest paths
problem defined above. In this search algorithm, the trellis is
pruned by removing the unlikely paths. However, we always
preserve a predefined number of paths at each trellis node so that
there is enough soft information to compute LLRs. We refer to
it as the path-preserving trellis-search (PPTS) algorithm. It is a
two-step algorithm which is summarized as follows.

1) Step 1—Path Reduction: The path reduction algorithm is
used to prune the unlikely paths in the trellis by applying the

-algorithm [31] locally at each node. Fig. 2 illustrates the
basic flow of the path reduction algorithm. In this algorithm,
each node evaluates all its incoming paths and only preserves a
predefined number of paths that go through this node. We
define the following notation to help explain the algorithm. Let

denote the incoming path candidates for node
, and denote the surviving path metrics se-

lected by node . The indices and represent the trellis
node number, where . The superscript
represents the th surviving path, where . In

1238 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 7, JULY 2012

Fig. 3. Path reduction example for a 4 � 4 4-QAM trellis, where � � �

incoming paths are preserved at each node.

Fig. 2, the stages of the trellis are labeled in descending order,
starting from and ending with 0. In stage , each node

evaluates its incoming path candidates
and selects the best paths from , where the th
best path metric is . Note that in the edge weight func-
tion of , denotes the partial symbol vector and
the superscript represents the edge weights corresponding
to the th surviving path. The metrics are sorted so that

. Next, each of the sur-
viving paths is fully extended for the next stage so that there are

outgoing paths leaving from each node , which are
. This search process repeats for every stage of the

trellis. The details of the path reduction algorithm are summa-
rized in Algorithm 1.

Algorithm 1 Path Reduction Algorithm

0) Initialization: Set loop variable . For each node
, initialize

1) Main Loop:

1.a) Path Selection: For each node , select the best
paths from the path candidates .

1.b) Path Calculation:

for

for

for

,

where is the edge weight as defined in (6).

1.c) Loop Update: Set . If , goto 1.a).

2) Final Selection: For each node , select the best
paths from the path candidates .

As an example, Fig. 3 shows the result graph after applying
the path reduction algorithm to a 4 4 4-QAM trellis, where

each node preserves the best incoming paths. After the
path reduction, we can see that every node in the last stage, i.e.,
stage 0, has shortest paths that go through this
node. Recall that each trellis node in stage maps to a pos-
sible symbol in a constellation. Thus, we have obtained a
soft information value for every possible symbol , the symbol
transmitted by antenna 0. This is sufficient to guarantee that both
the ML hypothesis and the counter-hypothesis in the Max-Log
LLR calculation of (4) are available for every data bit trans-
mitted by antenna 0. Then, the LLRs for data bits ,

, can be computed as

(8)

where .
However, aside from stage 0, not every node in stage
is included in a path from root to sink. For example, in Fig. 3,

nodes and have uncompleted paths. Thus, we may
not have enough soft information values to calculate the LLRs
for data bits transmitted by antenna because the
counter-hypotheses for these bits can be missing. Although we
can use LLR clipping [8] to saturate the LLR values, there will
be some performance loss. To preserve enough soft information
values for each data bit, we next introduce a path extension al-
gorithm to find paths for every trellis node.

2) Step 2—Path Extension: To obtain soft information for
every possible symbol , we need to make sure every node
in stage is included in a path from root to sink. To extend
node , we start to travel the trellis from this node and try
to find the most likely paths from this node to the sink node.
This is achieved by extending the paths stage by stage, where
the best extended paths are selected in every stage. Fig. 4
shows an example data flow for the path extension for one node

. Note that instead of waiting for the entire path reduction
operation to finish, we will start the path extension operation for
antenna as soon as the path reduction algorithm has finished
processing stage of the trellis. In Fig. 4 for example, to detect
antenna , we first perform path reduction from stage
to stage , and next we perform path extension from stage

to stage 0. Note that only one node’s path extension
process is shown in this figure. In fact, we will extend all the
nodes in stage simultaneously.

We define the following notation to help explain the algo-
rithm. Let denote the extended path candi-
dates from node to nodes , where
and . Let denote the sur-
viving paths selected in stage , where .
To extend node , we first retrieve data com-
puted in the path reduction algorithm, and use it to initialize

, where . Next, the best
extended paths are selected from .
Then, are fully extended for the next stage to
form . Again, the best extended paths

are selected from . This
process repeats. Finally, are the result extended

SUN AND CAVALLARO: HIGH-THROUGHPUT SOFT-OUTPUT MIMO DETECTOR 1239

Fig. 4. Example data flow of the path extension algorithm for extending one node ��� ��, where � paths are extended from this node to each of the following
stages (�� � � �� � � � � �, where � � � � �). All the nodes ��� ��, � � �� �� � � � � �� �, can be extended in parallel.

paths from node to the sink node. The path extension
algorithm is summarized in Algorithm 2.

Algorithm 2 Path Extension Algorithm for Antenna ,

0) Initialization: Set loop variable . For each node
, initialize .

1) Main Loop:

1.a) Path Selection: For each node , select the best
paths from the path candidates

.

1.b) Path Calculation:

for

for

for

,

where is the edge weight as defined in (6).

1.c) Loop Update: Set . If goto 1.a).

2) Final Selection: For each node , select the best paths
from the path candidates .

Fig. 5 shows an example to extend node in a 4 4
4-QAM trellis. We can see that paths are extended
from this node to the sink node. It should be noted that nodes

can be extended in parallel since
there is no data dependency between them. After the path exten-
sion is finished, every node in stage will be included in a path
from root to sink. Thus, we have obtained a soft information

Fig. 5. Path extension example for one node ��� ��, where � � � paths are
extended from this node to the sink node.

value for every possible symbol , the symbol transmitted by
antenna . This is sufficient to guarantee that both the ML hy-
pothesis and the counter-hypothesis are available for every data
bit . Then, the LLRs for data bits transmitted by antenna

can be computed as

(9)

where .
Note that although we keep paths for each node in

every extension step, we only use the final smallest path weight
for each node, i.e., , in (9) to compute the
LLR. However, keeping multiple paths in the intermediate steps
helps to improve the accuracy of the LLR values.

IV. SIMULATION RESULT AND COMPLEXITY ANALYSIS

In this section, we evaluate the error performance of the
proposed PPTS detector through computer simulations. The

1240 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 7, JULY 2012

Fig. 6. Error performance of a coded 4 � 4 16-QAM MIMO system using
the PPTS detection algorithm with different� values. Outer channel code is a
WiMax LDPC code with rate 1/2 and length 2304.

Fig. 7. Error performance of a coded 4 � 4 64-QAM MIMO system using
the PPTS detection algorithm with different� values. Outer channel code is a
WiMax LDPC code with rate 1/2 and length 2304.

floating-point simulations are carried out for 4 4 16-QAM
and 4 4 64-QAM systems where the channel matrices are
assumed to have independent random Gaussian distributions.
A sorted QR decomposition of the channel matrix is used.
The soft-output of the detector is fed to a length 2304, rate
1/2 WiMax layered LDPC decoder, which performs up to 20
LDPC inner iterations. Figs. 6 and 7 show the frame error
rate (FER) performance of the PPTS detectors for different
values. As a reference, we also show the error performance of
a Max-Log MAP detector with exhaustive search criterion, and

a soft -Best detector with . In the error performance
comparison, the Max-Log MAP detector with exhaustive search
criterion is considered as the baseline reference.

For a 4 4 16-QAM system, when , the PPTS de-
tector shows about 1 dB performance loss at FER com-
pared to the baseline reference. When , the PPTS de-
tector shows about 0.35 dB performance degradation. When

, the PPTS detector shows only 0.15 dB performance
degradation. When , the PPTS detector achieves a per-
formance almost the same as the baseline reference. Compared
to the -Best detector with , the PPTS detectors with

significantly outperform the -Best detector. For
a 4 4 64-QAM system, when , the PPTS detector
shows about 0.75 dB performance loss at FER compared
to the baseline reference. When , the PPTS detector
shows about 0.3 dB performance degradation. When ,
the PPTS detector achieves a performance that is very close to
the baseline reference. Compared to the -Best detector with

, the PPTS detectors with outperform the
-Best detector.
Now we discuss the complexity of the PPTS algorithm. The

sorting complexity and the partial Euclidian distance (PED)
computation complexity are two major contributors to the
overall complexity. In terms of the sorting complexity, the
PPTS detector need to carry out a sorting operation:
find the smallest values out of candidates. Generally, to
find the smallest values from candidates requires at least

pair-wise comparisons [32]. This
bound is only achievable for . In the proposed PPTS
algorithm, we employ concurrent small sorters at
each stage of the trellis. Because the PPTS detector can achieve
good performance with a small value, e.g. , such
a small sorting operation can be done quickly and efficiently.
For example, when using for a 16-QAM system, each
sorter needs to perform a (2,32) sorting operation, which only
needs to perform 35 pairwise comparisons. Therefore, the
sorting complexity of the PPTS algorithm is significantly lower
than the traditional -best algorithm, which needs to perform
a larger global sorting operation at each level of the tree. The
proposed PPTS algorithm can achieve a near-optimal detection
performance with a very low sorting complexity.

In terms of the PED computation complexity, the PPTS de-
tector needs to evaluate the number PEDs in each stage
of the trellis. To have a fair comparison between a PPTS de-
tector and a K-Best detector, we need to consider the error per-
formance when choosing parameters and . From the per-
formance comparison in Fig. 6 and Fig. 7, we can see that the
PPTS detector with outperforms the K-Best detector
with for both a 4 4 16-QAM system and a 4
4 64-QAM system. For a K-best detector with , the
number of PEDs that need to be computed at each level of the
tree is . Thus, the PED complexities of PPTS detectors and
K-Best detectors will both likely grow quadratically with the
constellation size . However, if we compare the sorting com-
plexity, the advantage of the PPTS detector will be more signif-
icant for large size constellations because sorting is performed
in a distributed manner as opposed to a larger global sorting re-
quired by the K-Best detector.

SUN AND CAVALLARO: HIGH-THROUGHPUT SOFT-OUTPUT MIMO DETECTOR 1241

Fig. 8. Pipelined fully-parallel “systolic” architecture for the PPTS detector,
where each PRU/PEU/PSU is a cluster of� path reduction/path extension/path
selection processors.

The PPTS algorithm is a highly parallel algorithm such that
the number of trellis nodes in a stage can be processed in
parallel, which leads to a very high throughput. This is a very
important feature that the detector will not be a bottleneck in a
system given that the computation resources are not constrained.
Although the algorithm has a quadratic complexity with the con-
stellation size , we can design a scalable architecture that can
be tailored for different throughput requirements. To achieve the
highest throughput, we can develop a fully parallel architecture
where each of the trellis nodes has a dedicated node processor.
If the computation resources are limited, as a balanced tradeoff,
we can develop a partial-parallel architecture where a certain
number of the trellis nodes share a common node processor to
save area while still maintaining the throughput requirement.
Nevertheless, with the advance of VLSI technology, the PPTS
algorithm has a great potential to be applied in a practical MIMO
system.

V. VLSI ARCHITECTURE

In this section, we describe VLSI architectures for the pro-
posed PPTS detector. We introduce a fully-parallel “systolic”
architecture to achieve the maximum throughput performance,
and a “folded” architecture to reduce area for lower throughput
applications. For the sake of clarity, we describe a PPTS de-
tector architecture with for the 4 4 16-QAM system.
It should be noted that the architecture described can be easily
scaled for other values of and other MIMO configurations.

A. Fully-Parallel Systolic Architecture

Fig. 8 shows the fully-parallel “systolic” architecture for a
antenna system. This architecture is fully pipelined so

that it can process one MIMO symbol in every clock cycle. In
this architecture, the main processing elements include three
path reduction units (PRUs), three path extension units (PEUs),
four path selection units (PSUs), and four LLR calculation
(LLRC) units. The detailed structures of these processing
elements will be described in the following subsections.

In Fig. 8, three PRUs and one PSU are
employed to implement the path reduction algorithm. The main

Fig. 9. Block diagram for the PRU, which contains � � �� path reduction
processors.

diagonal of the systolic array is related to the path reduction
data flow shown in Fig. 2. The PRU implements one main iter-
ation loop of Algorithm 1 by employing path reduction pro-
cessors to simultaneously process nodes in a certain stage (cf.
Fig. 2). implements the final selection step of Algorithm
1 by using search units. The data flow for the path reduction
is as follows. First, receives , , and the precomputed

, and it computes all the path candidates
in parallel, which are fed to the next PRU, i.e., . Then,

computes , which are fed to , and so
forth. Finally, receives from and com-
putes , which are fed to to compute
based on (8).

In Fig. 8, three PEUs and three PSUs are employed
to implement the path extension algorithm. Each row (but the
last) of the systolic array is related to the path extension data
flow shown in Fig. 4. The PEU implements one main iteration
loop of Algorithm 2 by employing path extension processors
to simultaneously extend nodes in a certain stage (cf. Fig. 4).
The PSU is used to implement the final selection step of Al-
gorithm 2. The data flow for the path extension is as follows.
To detect antenna , number of the PEUs and 1
PSU are used. Let . First, receives
from and it computes , which are fed
to . Next, computes ,
which are fed to , and so forth. Finally, receives

from and computes , which
are fed to to compute based on (9). Note
that to detect antenna 1, only one PSU is required.

B. PRU

The structure of the PRU is shown in Fig. 9. The PRU is
used to implement the path reduction algorithm (cf. Algorithm
1: main loop). The PRU employs path reduction proces-
sors to process all the nodes in a certain stage in parallel. Each
path reduction processor contains one minimum (min) finder
unit (MFU) and one path calculation unit (PCU), where the
MFU is used to select the best paths from the
incoming path candidates (cf. Algorithm 1-1.a), and
the PCU is used to compute the new extended path candi-
dates (cf. Algorithm 1-1.b).

1242 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 7, JULY 2012

Fig. 10. Block diagram for the MFU, which uses 16 CMP units, 15 variable size C-S (compare and select) units, and 1 MIN unit to implement the (2,32) sorting.

Fig. 11. Block diagram for the CMP unit, the 4:3 C-S unit, and the 6:4 C-S
unit.

1) MFU: The MFU is used to select the best paths
from path candidates. Fig. 10 shows the block dia-
gram for the MFU unit which finds the minimum value and
the second minimum value from its 32 data inputs (to).

Fig. 12. Block diagram for the PCU, which employs� � � PEDC units.

The MFU is comprised of 16 CMP (comparison) units, 15 vari-
able size C-S (compare and select) units, and one
MIN unit. The structure of the CMP unit is shown in Fig. 11(a).
The CMP unit compares two data inputs and , and outputs
the smaller one (or the “winner”): , and the
larger one (or the “loser”): , and the sign:

. The variable size C-S unit has in-
puts and

outputs . The different values of for
the variable size C-S unit are . Output
of the C-S unit is the smallest data among all the inputs. Out-
puts of the C-S unit are candidates for the
second smallest data among all the inputs. Fig. 11(b) and (c)
show the structure of the 4:3 C-S unit and the 6:4 C-S unit. The
structure of the larger size C-S units, e.g., 8:5 C-S unit and 10:6
C-S unit, are omitted in this paper because they have very sim-
ilar structure as the 6:4 C-S unit.

The MFU functions as follows. As shown in Fig. 10, the MFU
takes data inputs and feeds them to 16 CMP units,

SUN AND CAVALLARO: HIGH-THROUGHPUT SOFT-OUTPUT MIMO DETECTOR 1243

Fig. 13. Block diagram for the PEDC unit, which computes 16 PEDs in parallel.

where each CMP unit generates the winner and the loser of its
two data inputs. The connection of the computational blocks in
the MFU resembles a tree-like structure. Every two CMP units
are connected to one 4:3 C-S unit, where the outputs of the 4:3
C-S unit are the winner of its four data inputs, and two
candidates for the second winner. Every two 4:3 C-S
units are connected to one 6:4 C-S unit, where the outputs of the
6:4 C-S unit are the smallest data among its 6 data inputs,
and three candidates for the second smallest data.
Similarly, every two 6:4 C-S units are connected to one 8:5 C-S
unit, and two 8:5 C-S units are connected to a final 10:6 C-S unit.
Finally, output of the 10:6 C-S unit is the smallest data
among the 32 data . Outputs of
the 10:6 C-S unit are the five candidates for the second smallest
data among the 32 data inputs. A MIN unit is used to generate
the second smallest data .

2) PCU: Fig. 12 shows the PCU architecture which employs
partial Euclidean distance calculation (PEDC) units to

compute path metrics in parallel. The partial Eu-
clidean distance (PED) is computed recursively as

(10)

The metric increment [cf. (6)] is computed as follows:

(11)

where

(12)

For a given PED , we need to compute new PEDs
. Instead of computing each new PED separately, we can

compute new PEDs in a group by knowing that symbol
is drawn from a known alphabet:

, and is a real value if using a certain QR
decomposition method, e.g., Gram-Schmidt QR decomposition
[33]. Let , , denote the complex
symbol for the th constellation point in the alphabet. Then (11)
is re-expressed as

(13)

We precompute for different and save
them in registers. Fig. 13 shows the architecture for the PEDC
unit, which computes PEDs in parallel. In this archi-
tecture, a shift and add (SHAD) unit is used to implement the
constant multiplication , a multiplier (MULT) is used to
implement , and a CPX (complex) NORM unit is
used to compute the L2 norm of the complex signal .

C. PEU

The PEU implements the path extension algorithm (cf. Algo-
rithm 2: main loop). The PEU has a very similar architecture to
the PRU. Fig. 14 shows the block diagram for the PEU, which
employs path extension processors to extend nodes in
a certain stage in parallel. Each path extension processor con-
tains one MFU and one PCU, where the MFU is used to se-
lect the best paths from path candidates

(cf. Algorithm 2-1.a), and the PCU is used to cal-
culate the new extended path candidates
(cf. Algorithm 2-1.b)

1244 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 7, JULY 2012

Fig. 14. Block diagram for the PEU, which contains � � �� path extension
processors.

Fig. 15. Block diagram for the PSU, which contains � � �� MFUs.

Fig. 16. Block diagram for the LLRC unit.

D. PSU

The PSU implements the final selection step in Algorithm 1
or Algorithm 2. As shown in Fig. 15, the PSU contains only
MFUs to realize concurrent sorting .

E. LLR Computation Unit (LLRC)

The LLRC is used to compute LLRs based on (8) or (9).
Fig. 16 shows the block diagram for the LLRC unit. To compute

LLRs for antenna in parallel, we need four sets
of hardware blocks shown in Fig. 16 to compute ,

, for our example 16-QAM system. It
should be noted that the multiplier in Fig. 16 may not be re-
quired if the outer channel decoder uses a linear decoding algo-
rithm such as the Min-Sum algorithm [34] in LDPC decoding
or the Max-Log-MAP algorithm [35] in Turbo decoding. In that
case, the multiplier can be replaced by a simpler normalizer.

F. Throughput Performance of the Systolic Architecture

The proposed systolic MIMO detector architecture (cf. Fig. 8)
can provide very high throughput performance. This architec-

Fig. 17. Folded architecture for the PPTS detector.

Fig. 18. Detection timing diagram for a four antenna system using the folded
architecture.

ture is fully pipelined so that it can process one MIMO symbol
in every clock cycle. Generally, if we let the clock frequency be

MHz, then the throughput (Mbps) for a -QAM
system can be expressed as

(14)

As an example, assuming a system clock of 400 MHz, the sys-
tolic architecture can provide a throughput of 6.4 Gbps for a 4

4 16-QAM system.

G. Folded Architecture

For system applications that may require less throughput, we
can fold the fully-parallel systolic architecture to reduce the
parallelism and hence the hardware complexity. Fig. 17 shows
the folded architecture where only one PRU and one PEU are
instantiated to save area. Note that the PRU/PEU is the most
area-consuming block in the PPTS detector.

Because we only have one PRU and one PEU, we need to
schedule them sequentially. Fig. 18 illustrates the detection
timing diagram using the folded architecture for a four antenna
system. In this diagram, the PRU is scheduled to run the path
reduction (PR) operations from to , and the PEU
is scheduled to run the path extension (PE) operations from

to . Note that the subscripts of the PRs and PEs
in this diagram have the same meaning as that in Fig. 8. For
simplicity, the final path selection operations (executed in PSU)
and the LLR calculation operations are omitted in this diagram.
Furthermore, as the pipeline stages for the PRU and PEU are 4
clock cycles, we can feed four back-to-back MIMO symbols in
four consecutive cycles, e.g at to fully utilize
the hardware. We can feed the next four back-to-back MIMO

SUN AND CAVALLARO: HIGH-THROUGHPUT SOFT-OUTPUT MIMO DETECTOR 1245

TABLE I
FIXED POINT DESIGN PARAMETERS FOR THE 4 � 4 16-QAM SYSTEM

symbols at into the pipeline, and
so forth. The throughput of the folded architecture for a four
antenna system is given as

(15)

For a larger MIMO system with transmit antennas, if
we still use one PRU and one PEU, the throughput for a
antenna system is estimated as

(16)
Note that for larger MIMO systems , the throughput is
limited by the number of path extension operations. However,
we can employ more than one PEU in the folded architecture to
match with the processing speed of the PRU.

VI. VLSI IMPLEMENTATION RESULT

A. Fixed-Point Detector Design for 4 4 16-QAM System

In a 4 4 16-QAM MIMO transmission, typically the QAM
symbol is scaled by in the transmitter
for the transmitted symbol to have unit energy. In the PPTS
MIMO detector, instead of using the scaled signal, we scale
each element in the matrix [cf. (5)] by
and use the original QAM symbol in the computation. We
use the notation to represent a fixed point number
with number of integer bits and number of fractional
bits so that the total word length is . Table I summarizes
the fixed point design parameters for the scaled , received ,
PED, and LLR, where the PED is rounded to 10 bits between
computational blocks. Based on the same simulation parameters
as described in Section IV, this fixed-point detector has shown
about 0.1 dB performance loss compared to the floating-point
detector. Fig. 19 shows the fixed-point simulation result for the
proposed PPTS detector.

B. ASIC Synthesis Result and Architecture Comparison

As a proof of concept, we have implemented a systolic PPTS
detector with , and two folded PPTS detectors with

and for a 4 4 16-QAM system. The three de-
tectors have been described using Verilog HDL, and have been
synthesized for a 1.08 V TSMC 65-nm CMOS technology using
the Synopsys Design Compiler tool. The designs are placed
and routed using the Cadence SoC Encounter tool. The power
consumption is estimated using the Synopsys PrimePower tool.
Table II compares the throughput and the hardware complexity
of the proposed detectors with two detectors from the literature:
a depth-first soft sphere detector from [16], and a soft -Best
detector from [22]. Because different technologies are used in
these designs, to have a fair comparison, we scale the clock
frequency and the area [16] and [22] to a common standard,

Fig. 19. Fixed-point simulation result for the proposed PPTS detector.

where the scaling factor for area is 65 nm/Feature size and
the scaling factor for frequency is Feature size/65 nm [36].
To compare the hardware efficiency, we define an area metric
as Gate Count/Scaled Throughput.

The depth-first detector from [16] has a variable throughput
of 10-95 Mbps because the number of visited nodes will change
for different SNR levels. The sequential nature of the depth-
first algorithm makes it hard to achieve very high throughput.
The K-Best detector from [22] has a fixed throughput that will
not change with the SNR level. The K-Best detector from [22]
can achieve a 106 Mbps throughput when running at 200 MHz.
After scaling the clocks of these two reference designs to 65-nm
technology, the scaled throughputs of detector [16] and detector
[22] become 38-365 and 212 Mbps, respectively.

The proposed systolic PPTS detector with can
achieve a 6.4 Gbps throughput when running at 400 MHz.
As can be seen from the table, the proposed detectors achieve
very high data throughput while still maintaining a low area
requirement. Compared to the K-Best detector from [22], the
PPTS detectors with have a better area efficiency
based on the area metric defined in Table II. The PPTS detector
with achieves a balanced tradeoff between hardware
complexity and error performance (0.3 dB loss). The PPTS
detector with achieves a close-to-optimal error perfor-
mance (cf. Fig. 6) with a reasonable hardware cost. Therefore,
the proposed detector is a viable solution for the Gbps MIMO
detection problem as it achieves both high throughput perfor-
mance and good error performance.

VII. CONCLUSION

We propose a novel soft-output MIMO detector architecture
based on the PPTS algorithm. The PPTS algorithm is a search-
efficient algorithm based on a path-preserving trellis search ap-
proach. We introduce a path reduction and a path extension al-
gorithm to reduce the search complexity while still maintaining
sufficient soft information values to form the LLRs. We avoid
the missing counter-hypothesis problem by keeping multiple
paths during the trellis search process. Simulation results show

1246 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 7, JULY 2012

TABLE II
ARCHITECTURE COMPARISON

Frequency, throughput, and area are all scaled to 65-nm technology.
This power was reported for a 53.3 Mbps hard-output K-Best detector at 100 MHz clock frequency and 2.8 V supply in a 350-nm technology.

that the PPTS algorithm can achieve very good error perfor-
mance with a small value. The PPTS algorithm is a data-par-
allel algorithm and is very suitable for high speed VLSI imple-
mentation. Based on the PPTS algorithm, we have synthesized a
systolic detector and two folded detectors for a 4 4 16-QAM
system. Compared with tree-search based detectors, the pro-
posed detectors have a significant improvement in terms of de-
tection throughput and area efficiency. The proposed MIMO de-
tector has great potential for application in the next generation
Gbps wireless systems by achieving very high throughput and
good error performance.

REFERENCES

[1] G. J. Foschini, “Layered space-time architecture for wireless commu-
nication in a fading environment when using multi-element antennas,”
Bell Labs Techn. J., vol. 1, no. 2, pp. 41–59, 1996.

[2] G. Fettweis, T. Hentschel, and E. Zimmermann, “WIGWAM—A wire-
less gigabit system with advanced multimedia support,” in Proc. VDE
Kongress, 2004, pp. 18–20.

[3] U. Fincke and M. Pohst, “Improved methods for calculating vectors
of short length in a lattice, including a complexity analysis,” Math.
Comput., vol. 44, no. 170, pp. 463–471, Apr. 1985.

[4] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading
channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1639–1642, Jul.
1999.

[5] M. O. Damen, H. E. Gamal, and G. Caire, “On maximum-likelihood
detection and the search for the closest lattice point,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2389–2402, Oct. 2003.

[6] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Ex-
pected complexity,” IEEE Trans. Signal Process., vol. 53, no. 8-1, pp.
2806–2818, Aug. 2005.

[7] H. Vikalo and B. Hassibi, “On the sphere-decoding algorithm II. Gen-
eralizations, second-order statistics, and applications to communica-
tions,” IEEE Trans. Signal Process., vol. 53, no. 8-1, pp. 2819–2834,
Aug. 2005.

[8] B. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-
antenna channel,” IEEE Trans. Commun., vol. 51, no. 3, pp. 389–399,
Mar. 2003.

[9] B. Widdup, G. Woodward, and G. Knagge, “A highly-parallel VLSI ar-
chitecture for a list sphere detector,” in Proc. IEEE Int. Conf. Commun.,
2004, pp. 2720–2725.

[10] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H.
Bölcskei, “VLSI implementation of MIMO detection using the sphere
decoding algorithm,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp.
1566–1577, Jul. 2005.

[11] D. Garrett, L. Davis, S. ten Brink, B. Hochwald, and G. Knagge, “Sil-
icon complexity for maximum likelihood MIMO detection using spher-
ical decoding,” IEEE J. Solid-State Circuits, vol. 39, pp. 1544–1552,
Sep. 2004.

[12] Y. Zhang, J. Tang, and K. K. Parhi, “Low complexity list updating cir-
cuits for list sphere decoders,” in Proc. IEEE Workshop Signal Process.
Design Implement., 2006, pp. 28–33.

[13] J. Antikainen, P. Salmela, O. Silven, M. Juntti, J. Takala, and M. Myl-
lyla, “Application-specific instruction set processor implementation of
list sphere detector,” EURASIP J. Embed. Syst., vol. 2007, no. 3, pp.
1–14, 2007.

[14] Q. Qi and C. Chakrabarti, “Sphere decoding for multiprocessor archi-
tectures,” in Proc. IEEE Workshop Signal Process. Design Implem.,
2007, pp. 50–55.

[15] X.-M. Huang, C. Liang, and J. Ma, “System architecture and
implementation of MIMO sphere decoders on FPGA,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 2, pp. 188–197, Feb.
2008.

[16] C. Studer, A. Burg, and H. Bolcskei, “Soft-output sphere decoding:
Algorithms and VLSI implementation,” IEEE J. Sel. Areas Commun.,
vol. 26, no. 2, pp. 290–300, Feb. 2008.

[17] M. Myllyla, M. Juntti, and J. R. Cavallaro, “Architecture design and im-
plementation of the increasing radius—List sphere detector algorithm,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2009, pp.
553–556.

[18] J. W. Choi, B. Shim, A. C. Singer, and N. I. Cho, “Low-complexity
decoding via reduced dimension maximum-likelihood search,” IEEE
Trans. Signal Process., vol. 58, no. 3, pp. 1780–1793, Mar. 2010.

[19] K. Wong, C. Tsui, R. Cheng, and W. Mow, “A VLSI architecture of a
K-best lattice decoding algorithm for MIMO channels,” in Proc. IEEE
Int. Symp. Circuits Syst., 2002, pp. 273–276.

[20] K. Higuchi, H. Kawai, N. Maeda, M. Sawahashi, T. Itoh, Y. Kakura,
A. Ushirokawa, and H. Seki, “Likelihood function for QRM-MLD suit-
able for soft-decision turbo decoding and its performance for OFCDM
MIMO multiplexing in multipath fading channel,” in Proc. IEEE Int.
Symp. Personal, Indoor, Mobile Radio Commun. (PIMRC), 2004, pp.
1142–1148.

[21] Y. L. C. de Jong and T. J. Willink, “Iterative tree search detection for
MIMO wireless systems,” IEEE Trans. Commun., vol. 53, no. 6, pp.
930–935, Jun. 2005.

[22] Z. Guo and P. Nilsson, “Algorithm and implementation of the K-best
sphere decoding for MIMO detection,” IEEE J. Sel. Areas Commun.,
vol. 24, no. 3, pp. 491–503, Mar. 2006.

[23] M. Wenk, M. Zellweger, A. Burg, N. Felber, and W. Fichtner, “K-best
MIMO detection VLSI architectures achieving up to 424 Mbps,” in
Proc. IEEE Int. Symp. Circuits Syst., 2006, pp. 1151–1154.

[24] Q. Li and Z. Wang, “Improved K-best sphere decoding algorithms for
MIMO systems,” in Proc. IEEE Int. Symp. Circuits Syst., 2006, pp.
1159–1162.

[25] S. Chen, T. Zhang, and Y. Xin, “Relaxed K-Best MIMO Signal
Detector Design and VLSI Implementation,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 15, no. 3, pp. 328–337, Mar. 2007.

[26] M. Shabany, K. Su, and P. G. Gulak, “A pipelined scalable
high-throughput implementation of a near-ML K-best complex
lattice decoder,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2008, pp. 3173–3176.

SUN AND CAVALLARO: HIGH-THROUGHPUT SOFT-OUTPUT MIMO DETECTOR 1247

[27] R. Fasthuber, M. Li, D. Novo, P. Raghavan, L. Van Der Perre, and
F. Catthoor, “Novel energy-efficient scalable soft-output SSFE MIMO
detector architectures,” in Proc. IEEE Int. Symp. Syst., Arch., Model.,
Simulation, 2009, pp. 20–23.

[28] S. Mondal, A. Eltawil, C.-A. Shen, and K. N. Salama, “Design and
Implementation of a Sort-Free K-Best Sphere Decoder,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 10, pp. 1497–1501,
Nov. 2009.

[29] T. Cupaiuolo, M. Siti, and A. Tomasoni, “Low-complexity high
throughput VLSI architecture of soft-output ML MIMO detector,”
in Proc. Des., Autom. Test Eur. Conf. Exhib. (DATE), 2010, pp.
1396–1401.

[30] Y. Sun and J. R. Cavallaro, “High throughput VLSI architecture for
soft-output MIMO detection based on a greedy graph algorithm,” in
Proc. ACM Great Lakes Symp. VLSI Design, 2009, pp. 445–450.

[31] J. Anderson and S. Mohan, “Sequential coding algorithms: A survey
and cost analysis,” IEEE Trans. Commun., vol. 32, no. 2, pp. 169–176,
Feb. 1984.

[32] D. E. Knuth, Art of Computer Programming Volume 3: Sorting and
Searching. Boston, MA: Addison-Wesley, 1998.

[33] P. Luethi, C. Studer, S. Duetsch, E. Zgraggen, H. Kaeslin, N. Felber,
and W. Fichtner, “Gram-Schmidt-based QR decomposition for MIMO
detection: VLSI implementation and comparison,” in Proc. IEEE Asia
Pacific Conf. Circuits Syst., 2008, pp. 830–833.

[34] J. Chen, A. Dholakai, E. Eleftheriou, M. Fossorier, and X. Hu, “Re-
duced-complexity decoding of LDPC codes,” IEEE Trans. Commun.,
vol. 53, no. 8, pp. 1288–1299, Aug. 2005.

[35] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal
and sub-optimal MAP decoding algorithm operating in the log do-
main,” in Proc. IEEE Int. Conf. Commun., 1995, pp. 1009–1013.

[36] J. R. Hauser, “MOSFET device scaling,” in Handbook of Semi-
conductor Manufacturing Technology, R. Doering and Y. Nishi, Eds.
Boca Raton, FL: CRC Press, 2008, ch. 1.3, pp. 8–21.

Yang Sun (S’07) received the B.S. degree in testing
technology and instrumentation and the M.S. degree
in instrument science and technology from Zhejiang
University, Hangzhou, China, in 2000 and 2003,
respectively, and the Ph.D. degree in electrical
and computer engineering from Rice University,
Houston, TX, in 2010.

His research interests include parallel algorithms
and VLSI architectures for wireless communication
systems, digital signal processing systems, mul-
timedia systems, and general purpose computing

systems.
Dr. Sun was a recipient of the 2008 IEEE SoC Conference Best Paper Award,

the 2008 IEEE Workshop on Signal Processing Systems Best Paper Award (Bob
Owens Memory Paper Award), and the 2009 ACM GLSVLSI Best Student
Paper Award.

Joseph R. Cavallaro (S’78–M’82–SM’05) received
the B.S. degree from the University of Pennsyl-
vania, Philadelphia, in 1981, the M.S. degree from
Princeton University, Princeton, NJ, in 1982, and the
Ph.D. degree from Cornell University, Ithaca, NY, in
1988, all in electrical engineering.

From 1981 to 1983, he was with AT&T Bell
Laboratories, Holmdel, NJ. In 1988, he joined the
faculty of Rice University, Houston, TX, where he
is currently a Professor of electrical and computer
engineering. His research interests include computer

arithmetic, VLSI design and microlithography, and DSP and VLSI archi-
tectures for applications in wireless communications. During the 1996-1997
academic year, he served at the National Science Foundation as Director of
the Prototyping Tools and Methodology Program. He was a Nokia Foundation
Fellow and a Visiting Professor with the University of Oulu, Finland, in 2005
and continues his affiliation there as an Adjunct Professor. He is currently the
Director of the Center for Multimedia Communication at Rice University.

Dr. Cavallaro was Co-chair of the 2004 Signal Processing for Communica-
tions Symposium at the IEEE Global Communications Conference and Gen-
eral/Program Co-chair of the 2003, 2004, and 2011 IEEE International Confer-
ence on Application-Specific Systems, Architectures, and Processors (ASAP).

