
Uppsala Master’s Theses in
Computing Science 229

Examensarbete TF3
2002-10-22
ISSN 1100–1836

Compilation of Floating Point Arithmetic
in the High Performance ERLANG Compiler.

Tobias Lindahl

Information Technology
Computing Science Department

Uppsala University
Box 311

S-751 05 Uppsala
Sweden

Supervisor and examiner: Konstantinos Sagonas

Passed:



Abstract. In the context of the dynamically typed concurrent functional pro-
gramming language ERLANG, we describe a simple static analysis for identifying
variables containing floating point numbers, how this information is used by the
BEAM compiler, and a scheme for efficient (just-in-time) compilation of floating
point bytecode instructions to native code. The attractiveness of the scheme lies
in its implementation simplicity, it has been fully incorporated in Erlang/OTP R9,
and improves the performance of ERLANG programs manipulating floats consid-
erably. We also show that by using this scheme, Erlang/OTP, despite being an
implementation of a dynamically typed language, achieves performance which is
competitive with that of state-of-the-art implementations of strongly typed strict
functional languages on floating point intensive programs.



1 Introduction

In dynamically typed languages the implementation of built-in arithmetic typically in-
volves runtime type tests to ensure that the calculations which are performed are mean-
ingful, i.e., that one does not succeed in dividing atoms by lists. Some of these tests are
strictly necessary to ensure correctness, but the same variable can be repeatedly tested
because the type information is typically lost after an operation has been performed.
Removing these redundant tests improves execution time both by avoiding their run-
time cost and by simplifying the task of the compiler (removing conditional branches
simplifies the control flow graphs and allows the compiler to work with bigger basic
blocks).

Of course, one way of attempting to solve this problem is to attack it at its root: im-
pose a type system to the language and do (inter-modular) type inference. However, do-
ing so is most often not trivial, might significantly slow down compilation, and hamper
rapid prototyping. More importantly, type systems and powerful static analyses might
not necessarily be in accordance with certain features deemed important for intended
application domains (e.g., on-the-fly selective code updates that might invalidate the
results of previous analyses), design decisions of the underlying implementation (e.g.,
the ability to selectively compile a single function at a time in a just-in-time fashion),
or the overall philosophy of the language.

In this report, rather than addressing philosophical issues of programming language
design, a more pragmatic approach to alleviating the downsides that absence of type
information has for a native code compiler is taken. Specifically, a simple scheme for
using local type analysis (i.e., the analysis is restricted to a single function) to iden-
tify variables containing floating point values is described. Moreover, this scheme has
been fully incorporated in an industrial-strength implementation of a functional pro-
gramming language (the Erlang/OTP system) and the performance gains that it offers
is extensively quantified both in execution of virtual machine bytecode and of native
code.

To make this report relatively self-contained, it starts with a brief presentation of
ERLANG’s characteristics (Section 2) followed by a brief description of the architecture
of the HiPE just-in-time native code compiler (Section 3). In Section 4 a simple scheme
to identify variables containing floating point values is presented, and the floating point
aware translation of built-in arithmetic in the BEAM virtual machine instruction set
is compared to its older translation. Section 5 contains a detailed account of how the
HiPE compiler translates floating point instructions of the BEAM from its intermediate
representation all the way down to both its SPARC and x86 back-ends, and how the fea-
tures of the corresponding architectures are effectively utilized. The report ends with an
evaluation of the performance of using the presented scheme both within different im-
plementations of ERLANG and when compared with a state-of-the-art implementation
of a strict statically typed functional language.

2 The Erlang Language and Erlang/OTP

ERLANG is a dynamically typed, strict, concurrent functional language. The basic data
types include atoms, numbers, and process identifiers; compound data types are lists and



tuples. There are no assignments or mutable data structures. Functions are defined as
sets of guarded clauses, and clause selection is done by pattern matching. Iterations are
expressed as tail-recursive function calls, and ERLANG consequently requires tailcall
optimization. ERLANG also has a catch/throw-style exception mechanism. ERLANG

processes are created dynamically, and applications tend to use many of them. Processes
communicate through asynchronous message passing: each process has a mailbox in
which incoming messages are stored, and messages are retrieved from the mailbox by
pattern matching. Messages can be arbitrary ERLANG values. ERLANG implementa-
tions must provide automatic memory management, and the soft real-time nature of the
language calls for bounded-time garbage collection techniques.

Erlang/OTP is the standard implementation of the language. It combines ERLANG

with the Open Telecom Platform (OTP) middleware, a library with standard compo-
nents for telecommunications applications. Erlang/OTP is currently used industrially
by Ericsson Telecom and other software and telecommunications companies around
the world for the development of high-availability servers and networking equipment.
Additional information about ERLANG can be found at www.erlang.org.

3 HiPE: Brief System Overview

HiPE is included as an optional extension in the open source Erlang/OTP system. It
consists of a compiler from BEAM virtual machine bytecode to native machine code
(currently UltraSPARC or x86), and extensions to the runtime system to support mixing
interpreted and native code execution, at the granularity of individual functions.

BEAM. The BEAM intermediate representation is a symbolic version of the BEAM
virtual machine bytecode, and is produced by disassembling the functions or module
being compiled. BEAM is a register-based virtual machine which operates on a largely
implicit heap and call-stack, a set of global registers for values that do not survive
function calls (X-registers), and a set of slots in the current stack frame (Y-registers).
BEAM is semi-functional: composite values are immutable, but registers and stack slots
can be assigned freely.

BEAM to Icode. Icode is an idealized Erlang assembly language. The stack is im-
plicit, any number of temporaries may be used, and all temporaries survive function
calls. Most computations are expressed as function calls. All bookkeeping operations,
including memory management and process scheduling, are implicit.

BEAM is translated to Icode mostly one instruction at a time. However, function
calls and the creation of tuples are sequences of instructions in BEAM but single in-
structions in Icode, requiring the translator to recognize those sequences. The Icode
form is then improved by application of constant propagation, constant folding, and
dead-code elimination [5]. Temporaries are also renamed through conversion to a static
single assignment form [1], to avoid false dependencies between different live ranges.

Icode to RTL. RTL is a generic three-address register transfer language. RTL itself
is target-independent, but the code is target-specific, due to references to target-specific
registers and primitive procedures. RTL has tagged registers for proper Erlang values,
and untagged registers for arbitrary machine values. To simplify the garbage collector
interface, function calls only preserve live tagged registers.



In the translation from Icode to RTL, many operations (e.g., arithmetic, data con-
struction, or tests) are inlined. Data tagging operations are made explicit, data accesses
and initializations are turned into loads and stores, etc. Optimizations applied to RTL in-
clude common subexpression elimination, constant propagation and folding, and merg-
ing of heap overflow tests.

The final step in the compilation is translation from RTL to native machine code of
the target back-end (as mentioned, currently SPARC V8+ or IA-32).

4 Identification and Handling of Floats in the BEAM Interpreter

In this report, no formal definition of the static analysis that is used, but instead its basic
ideas and how the analysis information is used in the BEAM interpreter are explained
with the following example.

Example 1. Consider the ERLANG code shown in Fig. 1(a). Its translation to BEAM
code without taking advantage of the fact that certain operands to arithmetic expressions
are floating point numbers is shown in Fig. 1(b). Note that the code uses the general
arithmetic instructions of the BEAM. These instructions have to test at runtime that their
operands (constants and X-registers in this case) contain numbers, untag and possibly
unbox these operands, perform the corresponding arithmetic operation, tag and possibly
box the result storing it in the X-register shown on the left hand side of the arrow.
Note that if such an arithmetic operation results in either a type error or an arithmetic
exception, execution will continue at the fail label denoted by Le.

-module(example).

-export([f/3]).

f(A,B,C) when is float(C) ->

X = A + 3.14,

Y = B / 2,

R = C * X - Y.

(a) ERLANG code.

is float x2 Lc

x0 ← arith ’+’ x0 {float,3.14} Le

x1 ← arith ’/’ x1 {integer,2} Le

x2 ← arith ’*’ x2 x0 Le

x0 ← arith ’-’ x2 x1 Le

return

(b) BEAM instructions for f/3.

Fig. 1. Naive translation of floating point arithmetic to BEAM bytecode.

Note however that even though ERLANG is a dynamically typed language, there
is enough information in the above ERLANG code to deduce through a simple static
analysis that certain arithmetic operations take floating point numbers as operands and
return floating point numbers as results. For example, after the type test guard succeeds,
it is known that variable C (argument register x2) contains a floating point number.
Because of the floating point constant 3.14, if the addition will not result in either a type
error or an exception, it is clear that variable X will also be bound to a float. Similarly,
because of the use of the floating point division operator, variable Y will also be bound
to a float if successful, etc. Using the results of such an analysis could allow generation
of the more efficient BEAM code shown in Fig. 2. Note that a new set of floating point
registers (F-registers) has been introduced. These registers contain untagged floats.



is float x2 Lc

f0 ← fconv x0

f1 ← fmove {float,3.14}
fclearerror
f0 ← fadd f0 f1 Le

f2 ← fconv x1

f3 ← fconv {integer,2}
f2 ← fdiv f2 f3 Le

f4 ← fmove x2

f4 ← fmul f4 f0 Le

f0 ← fsub f4 f2 Le

fcheckerror Le

x0 ← fmove f0
return

Fig. 2. Floating-point aware translation of f/3 to BEAM bytecode.

As shown in this example, in recent versions of the BEAM, a separate set of in-
structions for handling floating point arithmetic has been introduced. Whenever it can
be determined that the type of a variable is indeed a float, a block of floating point op-
erations is created limited by fclearerror and fcheckerror instructions. Inside this block
no type tests are needed for the variables marked as floats. The complete set of BEAM
instructions for handling floats is shown in Table 1.

Table 1. BEAM floating point instructions.

Instruction Description
fclearerror Clear any earlier floating point exceptions.

fcheckerror Check for floating point exception.
fconv Convert a number to a floating point.
fadd Floating point addition.
fsub Floating point subtraction.
fdiv Floating point division.
fmul Floating point multiplication.

fnegate Negate a floating point number.
fmove Move between floating point registers and ordinary registers.

5 Handling of Floats in the HiPE Native Code Compiler

In the BEAM, whenever it is not known that a particular virtual machine register con-
tains a floating point number, the float value is boxed, i.e., stored on the heap with a
header word pointed to by the address kept in the register representing the number. Fur-
thermore the address is tagged to show that the register is bound to a boxed value; see
Fig. 3.



DOUBLE

FLOAT
PRECISION

HEADER WORD
X

X + 4

X + 8

TAG

HEAPSTACK OR REGISTER

Fig. 3. A boxed float in the BEAM.

Whenever the float is used, the address has to be untagged, the header word has to
be examined to find out the type of the variable (because e.g. tuples and bignums are
boxed in the same manner), and finally the actual number can be used. Depending on
the target architecture, the float is placed in the SPARC’s floating point registers or on
the x87 floating point stack, the computation takes place and then the result is boxed
again and put on the heap. If the result is to be used again, which is typically the case,
it has to be unboxed again prior to its use just as described above.

However, inside a basic block that is known to consist of floating point computa-
tions, all floating point numbers can be kept unboxed in the F-registers which are loaded
either in the floating point unit (e.g., on the SPARC) or on the floating point stack of the
machine (e.g., on the x86), thus removing the need of type testing each time the value is
used. Furthermore, if a result of a computation is to be used again it can simply remain
unboxed instead of being put on the heap and then read into the FPU again.

5.1 Translation to Icode

In the translation from BEAM bytecode to Icode most of the instructions are more or
less kept unchanged and just passed on to RTL. The exception is fmove that either moves
a value from an ordinary X-register to a floating point one (in which case it corresponds
to an untagging operation), or vice versa (in which case it corresponds to a tagging oper-
ation). To handle the first case, Icode introduces the operation unsafe untag float and in
the second unsafe tag float. These Icode operations will be expanded on the RTL-level
as described below.

5.2 Translation to RTL

Translation of boxing and unboxing. When translating the unsafe untag float instruc-
tion, since it is known that the X-register contains a float, there is no need to examine
the header word. The untagging operation can be performed by simply subtracting the
float tag which currently is 2; see [6]. As can be seen in Fig. 3 the actual floating point
value is stored at an offset of 4 from the untagged address, so instead of being translated
to a subtraction of 2 and a fload with offset 4, unsafe untag float is translated to fload

with offset 2, thus eliminating the actual untagging.
The unsafe tag float instruction writes the value to the heap, places a header word

showing that this is a float, and finally tags the pointer with 2 to show that the value is
boxed. Normally the garbage collection test that should be done to ensure that there is
space on the heap is handled by a coalesced heap test, but otherwise one is added here.



Translation of floating point conversion. On converting an ERLANG number to its
floating point representation it is essential to find out what the old representation was.
The legal conversions are from integers, bignums, and possibly other floats. The reason
the last case can occur is that the static analysis currently used does not discover all
variables containing floats. These do not, of course, need to be converted but implicit in
the fconv instruction is also the request to untag the value so this case is turned into an
unsafe untag float.

The conversion from an integer is supported in both back-ends so this operation is
kept as an fconv-instruction, but when the value is a bignum the operation is not inlined.
Instead the instruction is turned into a call to the conv big to float primary operation
(primop) that returns a boxed float that needs to be untagged before further processing.

The separate handling of different types of conversion constitutes the only branches
in the control flow graph (CFG) where there can be unboxed floats in registers. All
functions can branch to a fail label but as discussed below all unboxed floats must be
saved on the stack on function calls. Furthermore, if there is a comparison of floats the
computational block is ended and the comparison is made on boxed values. Currently,
there is no support for unboxed comparison.

Translation of error handling. The instructions fclearerror and fcheckerror are just
setting and reading a variable in a C structure of the runtime system. Because HiPE
currently does not support accessing information from C, they are implemented as calls
to primops which is suboptimal in more than one aspect. Not only is a call to a primop
not as cheap as reading the variable, but it also affects the spilling behavior. As men-
tioned all floats are spilled on the stack on function calls. A typical (extended) basic
block of floating point computations has the following structure (in BEAM code):

f0 ← fmove x0

f1 ← fmove {float,3.14}
· · ·
fclearerror
f2 ← fadd f0 f1 Le

· · ·
fcheckerror Le

x1 ← fmove f2
x1 ← fmove f3
· · ·

The above will result in floats first being unboxed and put in floating point registers
by the fmove instructions and then immediately being spilled since fclearerror is not
inlined and requires a function call. The translation of the code around the fcheckerror

instruction is similar. (In addition to the reading of the exception flag, fcheckerror also
expands into the actual check whether there has been an exception or not.)

Translation of floating point arithmetic. fadd, fsub, fdiv, and fmul do not have to
be treated in any special way. They are just propagated to the back-end. In the SPARC
back-end the fmov SPARC instruction has a flag telling the processor if the value is to



be negated in addition to being moved. The fnegate instruction is therefore translated
to a fmov which sets that flag.

5.3 Handling of floats in the SPARC back-end

Use of the SPARC floating point registers. The SPARC has 32 double precision
floating point registers, half of which can instead be used as single precision registers in
which case there are 32 single precision and 16 double precision floating point registers.
On loading or storing double precision floats the address must be double word aligned,
or the operation will result in a fault. Since there is no guarantee of such an alignment
in neither BEAM nor HiPE, the fact that a double precision register is made up of
two single precision ones is used and the instruction is turned into two single precision
loads.

If the exclusive double precision registers need to be used, the only way to safely
load to them would be to use two scratch single precision registers and then move the
double precision value. This is not done, so these 16 registers are not being used.

The register allocation of the pseudo floating point variables to the real registers is
handled by the linear scan register allocation algorithm in a slightly variated implemen-
tation (i.e., mapping to floating point spill slots with double word size) of the one which
handles the general purpose registers in HiPE [7, 3].

Floating point numbers on the native stack. Floats are spilled to the stack when too
many of them are live at the same time, but also whenever they are live over a function
call. Since there are no guarantees that the called function does not use the floating point
registers, their contents must be saved on the stack and then restored on return from the
function. Currently, an extra pass through the CFG removes any redundant stores and
loads.

On spilling floats to the native stack it must be ensured that the stack slots are
marked as dead since the values are not tagged. If a float would be marked as live the
garbage collector would try to follow the address it thought the stack slot pointed to and
get a meaningless result.

There is one more case where untagged values are put on the stack. When convert-
ing a single word integer to a float the value typically resides in an ordinary register.
SPARC handles the conversion by loading the integer value into a single precision float-
ing point register and then converting it into the corresponding double precision register.
However, the load instruction cannot use a register as source or it would interpret the
value as an address, so the value is stored on the stack first.

Performing the operations. When a floating point operation is called all three of its
operands must be in floating point registers. The SPARC, unlike the x86, has no support
for letting one or more of the operands be a memory reference so two registers need to
be available for the case when the two operands reside in memory.

A design decision of the HiPE compiler is to preserve the observable behavior of
ERLANG programs. This includes preserving side-effects of arithmetic operations such
as floating point exceptions; in ERLANG these can be caught by a catch statement.



Therefore, even in cases were the result of a floating point arithmetic operation is not
needed, the operation can be eliminated only if it can be proved that it will not raise
an exception. However, note that when a floating point operation is performed only for
its side effects and its result is never used, the latter can safely be left in the register
since SPARC does not demand the registers to be empty on leaving a function. If the
result is to be used and the pseudo variable tied to the float is spilled, the result is stored
in a stack slot. Currently, no test is made to see if the result is the operand of the next
floating point operation that needs the scratch registers since this would require another
pass through the code. (This would interfere with the JIT nature of the HiPE compiler.)

5.4 Handling of floats in the x86 back-end

Use of the x87 floating point unit. On the x86, all floating point operations are per-
formed in the x87 floating point unit. The x87 is used as a stack with eight slots repre-
sented by %st(i), 0 ≤ i ≤ 7. In this section, whenever the stack is mentioned the x87
floating point stack is what is meant unless otherwise stated.

On the SPARC the pseudo variables can be globally mapped to floating point reg-
isters but because of the stack representation of the x87 the bindings between pseudo
variables and stack slots are local to each program point.

Mapping to the x87. The approach of the mapping is based on the algorithm proposed
in [4].

1. As in the SPARC back-end, using a variation of the linear scan register alloca-
tion algorithm, the floating point variables are mapped to seven pseudo stack slots.
These do not represent the actual slots but this mapping is a way to ensure that at
all times the unspilled values and a scratch value fit on the stack.

2. The CFG is traversed trace-wise: by starting from the beginning each successor is
handled until the trace either merges with a trace already handled or reaches its
end. In each basic block the instructions are transformed to operate on the actual
stack positions and to add the pushing and popping behaviours. The mapping from
pseudo variables to stack positions is propagated to the next basic block.

3. Whenever two traces are merged their mappings are compared. If they differ the
adjoining trace is altered since the basic block and its successors already have been
handled. This is done by adding a basic block containing stack shuffling code that
synchronizes the mappings.

4. If a floating point instruction branches to a fail label the mapping that is kept at
compile time may be corrupt since there is no way of knowing where the error
occurred. The stack must then be completely freed so as to assure that it contains no
garbage. This is done in the same basic block as the fail code since these operations
are independent of the predecessor.

Translating the instructions. The top of the stack is represented by %st(0) and this
slot is the only one that can interact with memory on loads and stores but also when
using a memory cell as an operand. This can at times be inconvenient but an instruction



to switch places between the top and an arbitrary position i is available, fxch %st(i).
When used in conjunction with another floating point operation this instruction is very
cheap. Only the source operand (src) of a floating point instruction can be a memory
reference, so a spilled src is not pushed prior to its use. The destination operand (dst)
must be on the stack so a spilled value can already be on the stack if it has been used as
dst in an earlier instruction.

The liveness of each value is known at each point. A value that is not live out is
immediately popped, but as described above a value that is live out is not necessarily
pushed. A spilled value is not written back to its spill position unless it has to be popped.
This means that there can be several spilled values on the stack at the same time. When
a value is to be pushed and the stack is full a spilled value is popped and written back.

The instructions that work on the x87 allow pushing, popping, or simply working
on the existing elements on the stack. Most instructions have both an ordinary and a
popping version making it possible to both perform an operation and then pop one of
the operands with one single instruction.

Example 2. Suppose the following calculation is to be performed.

X = A ∗ B(A + C) + D

Using the pseudo variables %fi, i ∈ N, the calculation corresponds to the following
sequence of pseudo RTL instructions:

fmov A %f0

fmov B %f1

fmov C %f2

fmov D %f3

fadd %f0 %f2 %f4

fmul %f0 %f1 %f5

fmul %f4 %f5 %f6

fadd %f6 %f3 %f7

fmov %f7 X

After register allocation (where the index of %fi has been limited to 0 ≤ i ≤ 7) and
translation to the two address code that the x86 uses, the above sequence becomes:

fmov A, %f0

fmov B, %f1

fmov C, %f2

fmov D, %f3

fadd %f0, %f2

fmul %f0, %f1

fmul %f1, %f2

fadd %f3, %f2

fmov %f2, X

Transforming this into real code for the x87:



Instruction Stack
fld A [A]

fld B [B,A]

fld C [C,B,A]

fld D [D,C,B,A]

fxch %st(3) [A,C,B,D]

fadd %st(1), %st(0) [A,A+C,B,D]

fmulp %st(2), %st(0) [A+C,A*B,D]

fmulp %st(1), %st(0) [A*B(A+C),D]

faddp %st(1), %st(0) [A*B(A+C)+D]

fstp X []

Example 3. Again suppose that the calculation X = A ∗ B(A + C) + D is to be
performed, but for illustration purposes let us now assume that the floating point stack
only has three slots. This means only two pseudo variables, %f0 and %f1 can be used
since there might be need of a scratch slot. Instead spill slots denoted by %sp(i) are
used where i is limited by the size of the native stack.

fmov A, %f0

fmov B, %f1

fmov C, %sp(0)

fmov D, %sp(1)

fadd %f0, %sp(0)

fmul %f0, %f1

fmul %f1, %sp(0)

fadd %sp(1), %sp(0)

fmov %sp(0), X

The strategy is to leave spill positions that are live out at a certain point on the stack
and hope that the new value will not have to leave the stack on account of another spilled
value wanting to take its place.

Instruction Stack
fld A [A]

fld B [B,A]

fld C [C,B,A]

fstp %sp(0) [B,A]

fld D [D,B,A]

fstp %sp(1) [B,A]

fld %sp(0) [C,A,B]

fadd %st(0), %st(1) [A+C,A,B]

fxch %st(1) [A,A+C,B]

fmulp %st(2), %st(0) [A+C,A*B]

fmulp %st(1), %st(0) [A*B(A+C)]

fadd %sp(1) [A*B(A+C)+D]

fstp X []



Some notes on precision. The standard precision of floating point values in ERLANG

is, as mentioned above, the IEEE double precision. On the x87, however, the precision
is 80 bit double extended precision and whenever a floating point value of another type
is loaded on the stack it is also converted to this precision.

When the bytecode is interpreted one instruction at a time, as it is in the BEAM
interpreter, the operands are pushed to the stack and converted, the operation is per-
formed, and finally the result is popped. The popping involves conversion back to the
double precision by rounding the value on the stack.

When using the scheme described above, the results are kept on the x87 stack as
long as possible if they are to be used again, which leads to a higher precision in the
subsequent computations since no rounding is taking place in between computing an
(intermediate) result and using it. This difference in precision can lead to different an-
swers to the same sequence of FP computations depending on which scheme is used.
The bigger the block of floating point instructions, the bigger the chance of getting dif-
ferent results. Note however that since less rounding leads to smaller accumulated error,
the longer a value stays on the x87 stack, the better the FP precision that is obtained.

6 Performance Evaluation

Two points of interest are considered when evaluating the performance of floating point
handling in ERLANG.

– How much does the compilation scheme described in this report affect the perfor-
mance of ERLANG programs both when running in the BEAM interpreter and in
native code?

– Does this scheme make Erlang/OTP competitive with state-of-the-art implementa-
tions of other strict functional languages in handling floating point arithmetic? Is
the resulting performance as good as that of statically typed languages?

These questions are addressed below: In Section 6.1 the performance of the BEAM
interpreter, HiPE, and SML/NJ are compared, followed by Section 6.2 which contains
a performance comparison of different ERLANG implementations. The platforms used
were a SUN Ultra 30 with a 296 MHz Sun UltraSPARC-II processor and 256 MB of
RAM running Solaris 2.7, and a dual processor Intel Xeon 2.4 GHz machine with 1 GB
of RAM and 512 KB of cache per processor running Red Hat Linux. Information about
the ERLANG programs used as benchmarks can be found in Table 2.

6.1 Comparing floating point arithmetic in SML/NJ and Erlang/OTP

We have chosen to compare the resulting system against SML since it belongs to the
same category of functional languages (strict) as ERLANG, it is known to have efficient
implementations, and is statically typed so it can be seen how well the presented scheme
performs against a system whose compiler has exact information about types and abso-
lutely no type tests are performed during runtime. Note that this not restricted to floats
but extends to all types. As such, it gives SML/NJ an advantage over Erlang/OTP, but



Table 2. Description of benchmark programs.

Benchmark Lines Description
float bm 100 A small synthetic benchmark that tests

all arithmetic floating point instructions;
floating point variables have small live ranges.

float bm spill 100 Same as above but variables in the program
are kept alive and spilling occurs.

barnes-hut 171 A floating point intensive multi-body simulator
fft 257 An implementation of the fast Fourier transform

raytracer 2898 A ray tracer that traces a scene with 11
objects (2 of them with textures)

pseudoknot 3310 Computes the 3D structure of a nucleic acid;
programs are from [2]

provided that the benchmark programs are floating point intensive, one can expect that
the manifestation of this advantage is not so profound.

Two versions if SML/NJ are being used. Version 110.0.7 is a stable, official realease
of the compiler, but it is also a bit old. Thus the comparison has been extended to use
a working version (110.41) of the compiler. Information about the SML/NJ compilers
can be found at cm.bell-labs.com/cm/cs/what/smlnj/

Since SML/NJ generates native code, only a performance comparison against HiPE,
which compiles floating point operations to native code using the scheme described
in the previous sections, is presented. Table 3 contains the results of the compari-
son in three of the benchmarks. 1 float bm shows the same picture on both SPARC
and x86: SML/NJ version 110.41 is about 50% faster than HiPE on this program. On
float bm spill the results are dependent on the platform: on the SPARC the difference
is still about 50% but on the x86 the difference is down to 20%, something that speaks
for the algorithm for mapping to the x87 stack. (Note is that this scheme is based on
the same algorithm that SML/NJ version 110.41 is using.) We believe that this also val-
idates the choice of the algorithm sketched in Example 3 for choosing which values to
leave on the x87 floating point stack.

When it comes to barnes-hut it can be seen that the performance of SML/NJ has
been improved in version 110.41. Compared to the older version, HiPE was only a few
percent slower, but now the difference is a factor of up to 2.8 in the case of x86. As
for pseudoknot the comparison is limited to the older version and there HiPE is even
better on the x86 while 2.5 times worse on SPARC.

1 Both versions of float bm are small programs and so equivalent SML versions were written
by the author; raytracer was too big a program to also be rewritten. pseudoknot and barnes-

hut are standard benchmark programs of the SML distribution. The fft program typically used
as an SML benchmark uses destructive updates and thus does not have the same complexity
as the ERLANG one. pseudoknot could not be compiled by SML/NJ version 110.41.



Table 3. Performance comparison between HiPE and SML/NJ (times in ms).

Benchmark HiPE 110.0.7 110.41
float bm 4680 2660 2860
float bm spill 6320 4140 4190
barnes-hut 4540 4280 2180
pseudoknot 1530 610 —

(a) Performance on SPARC.

Benchmark HiPE 110.0.7 110.41
float bm 850 790 550
float bm spill 1620 1670 1360
barnes-hut 880 870 310
pseudoknot 140 190 —

(b) Performance on the x86.

6.2 Performance of float handling in implementations of ERLANG

In Erlang/OTP R9 the analysis described in this report and the floating point instructions
are part of the BEAM compiler and interpreter. However, the compiler can be instructed
not to use these so that all floating point arithmetic is performed using generic BEAM
instructions operating on boxed values that have to be type tested and unboxed each
time the value is used.

To study the performance of the presented scheme a comparison is made using
Erlang/OTP R9 both with and without the floating point optimisations and finally using
the HiPE compiler .

The results of the comparison are shown in Table 4. One can see that the perfor-
mance of floating point manipulation in Erlang/OTP has improved considerably both
as a result of using the analysis in the BEAM interpreter and due to the use of this in-
formation by the HiPE compiler. Note that the performance of e.g., float bm spill has
improved up to 4.7 times by using the floating point instructions and the performance
improvement due to native code compilation of floating point operations ranges from
a few percent up to a factor of 3.6, again in the float bm spill program. It should be
clear that the scheme described in this report is worth its while.

6.3 Performance of the static analysis in BEAM R9.

As can be seen in Table 5 the static analysis succeds in finding most of the floating point
arithmetic instructions, but one thing to note is that this demands that the programmer
is aware of the effect of guards. By adding guards in just a few of the functions in
barnes-hut the percentage of discovered floating point arithmetic operations increased
from 27% to 67%, wich in turn gave a speed-up of 25% on the x86. The performance
on the different versions of float bm is not surprising since they are of a synthethic



Table 4. Performance comparison between BEAM R7, R9, and HiPE (times in ms).

Benchmark No fp opts BEAM R9 HiPE
float bm 39120 14800 4680
float bm spill 76640 23110 6320
barnes-hut 10890 10050 4540
pseudoknot 4850 2970 1530
raytracer 9260 9050 8290
fft 19600 16740 8890

(a) Performance on SPARC.

Benchmark No fp opts BEAM R9 HiPE
float bm 9570 2460 850
float bm spill 17820 3750 1620
barnes-hut 2300 1860 940
pseudoknot 930 530 140
raytracer 1840 1750 1410
fft 3740 3120 1680

(b) Performance on x86.

nature, but considering that pseudoknot is a more realistic program, it is noteworthy
that the analysis found all of the floating point arithmethics.

One current limitation when using guards to rise the use of floating point instruc-
tions is that no type information is propagated over basic blocks in BEAM. This means
that if an argument is proved to be a float by a guard in the function head but is not
used until after a branch (i.e., an if-statement) the operation will be treated as a general
arithmetic operation after all.

Table 5. Performance of the static analysis for finding floating point arithmetic operations.

Benchmark FP-operations Discovered
float bm 1× 10

8 100%
float bm spill 2× 10

9 100%
barnes-hut 1× 10

8 67%
pseudoknot 8× 10

7 100%
raytracer 3× 10

7 79%
fft 8× 10

7 94%



Acknowledgments

This research has been supported in part by the ASTEC (Advanced Software Technol-
ogy) competence center with matching funds by Ericsson Development.

References

1. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently computing
static single assignment form and the control dependence graph. ACM Trans. Prog. Lang.
Syst., 13(4):451–490, Oct. 1991.

2. P. H. Hartel et al. Benchmarking imlementations of functional languages with “pseudoknot”,
a float intensive program. Journal of Functional Programming, 6(4):621–655, July 1996.

3. E. Johansson and K. Sagonas. Linear scan register allocation in a high performance Erlang
compiler. In Practical Applications of Declarative Languages: Proceedings of the PADL’2002
Symposium, number 2257 in LNCS, pages 299–317. Springer, Jan. 2002.

4. A. Leung and L. George. Some notes on the new MLRISC x86 floating point
code generator (draft). Unpublished technical report available from: http://cm.bell-
labs.com/cm/cs/what/smlnj/compiler-notes/.

5. S. S. Muchnick. Advanced Compiler Design & Implementation. Morgan Kaufman Publishers,
San Fransisco, CA, 1997.

6. M. Pettersson. A staged tag scheme for Erlang. Technical Report 029, Information Technol-
ogy Department, Uppsala University, Nov. 2000.

7. M. Poletto and V. Sarkar. Linear scan register allocation. ACM Trans. Prog. Lang. Syst.,
21(5):895–913, Sept. 1999.


