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ABSTRACT 

Data analysis is an important functionality in cloud computing 

which allows a huge amount of data to be processed over very 

large clusters. Hadoop is a software framework for large data 

analysis. It provide a Hadoop distributed file system for the 

analysis and transformation of very large data sets is 

performed using the MapReduce paradigm. MapReduce is 

known as a popular way to hold data in the cloud environment 

due to its excellent scalability and good fault tolerance. Map 

Reduce is a programming model widely used for processing 

large data sets. Hadoop Distributed File System is designed to 

stream those data sets. The Hadoop MapReduce system was 

often unfair in its allocation and a dramatic improvement is 

achieved through the Mapper Reducer System. The proposed 

Mapper Reducer function using the mean shift clustering 

based algorithm allows us to analyze the data set and achieve 

better performance in executing the job by using optimal 

configuration of mappers and reducers based on the size of the  

data sets and also helps the users to view the status of the job 

and to find the error localization of scheduled jobs.  This will 

efficiently utilize the performance tuning properties of 

optimized scheduled jobs. So, the efficiency of the system 

will result in substantially lowered system cost, energy usage, 

management complexity and increases the performance of the 

system. 
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1. INTRODUCTION 

Cloud computing provides massive clusters for efficient large 

scale computation and data analysis. MapReduce [3] is a well 

known programming model which designed for improving the 

performance of large batch jobs on cloud computing systems. 

However, there is growing interest in employing MapReduce 

and its open-source implementation, called Hadoop, for 
various types of jobs. This leads to sharing a single Hadoop 

cluster between various users, which run a merge of lengthy  

group jobs and short interactive queries on a shared dataset. 

Data analysis is an important functionality in cloud computing 

which allows a huge amount of data to be processed over very 

large clusters. Cloud computing provides massive clusters for 

well-organized data analysis and the huge amount of 

computation. When hadoop clusters shared with multiple 

users it provides several advantages such as fairness, Data 

Locality, increases the utilization of the resources.  

 In this model, processing of large data is efficient, 

easy to use, it splits the tasks and executes on the various 

nodes in parallel. Thus it will speed up the computation and 

retrieve the required data from a huge data set in a faster 

manner and also the performance of the mapreduce system 

greatly increased by executing the process in a distributed or 

in parallel manner by implementing Fair scheduling in Map 

Reduce paradigm. In this paper we parallelize a data mining 

algorithm , and scheduling of multiple jobs , performance 

tuning of Map Reduce and evaluate all the parameters for the 

optimizing the Map Reduce paradigm across multiple nodes 

of a Cloud Environment.  

The Hadoop scheduler is the centrepiece of a 

Hadoop system. Desired performance levels can be achieved 

by proper submission of jobs to resources. Primary Hadoop 

scheduling algorithms, like the FIFO algorithm and the Fair-

sharing algorithm, are simple algorithms which use small 

amounts of system information to make quick scheduling 

decisions.   

Here mean shift clustering based algorithm is used. 

It is non-parametric mode of clustering procedure. It does not 

require prior knowledge of the [2] number of clusters, and 

does not constrict the figure of the clusters. It will produce 

arbitrarily shaped clusters that depend upon the topology of 

the data. In Mean Shift Mapper Reducer function random 

points is generated based on the probability density function. 

Mode value is used to calculate density function value and it 

runs multiple iterations. Centroid points change frequently 

and on one particular point it will attain the threshold value. 

By this mode value we can able to find the location of the data 

i.e. in the data node or particular cluster. Mean shift are 

automatically generate the random value based on the density 

function. Here mean shift is used as a multithread. So this will 

increases resource utilization, 

The remainder of this paper is structured as follows. In 

Section 2 we give a brief summary of a Hadoop system. 

Current Hadoop scheduling algorithms are given in Section 3. 

Our Hadoop system model is described and formally 

introduced in Section 3. Then, in Section 4, we formally 

present the performance metrics of interest. Our proposed 
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Hadoop mean shift clustering scheduling algorithm is 

introduced in Section 5. In Section 6, details of the 

environment in which we study our algorithm are 

provided,and some advantages of the work is explained and 

we study the performance of our algorithm in various Hadoop 

systems. Finally, we provide some concluding remarks and 

discuss possible future work in the last section. 

2. HADOOP SYSTEM MODEL 

Hadoop is a free ,Java based programming framework that 

supports the processing of large data sets in a distributed 

computing environment. It is part of apache project sponsored 

by the Apache Software Foundation.  

 

              Fig 1: Map Reduce System Model 

The above figure1 show the mapreduce system model which 

allow us to create 5 datanodes in the cloud infrastructure. This 

AWS cloud is created in amazon web server this can be 

accessed by any where across the world. It consists on 1 

Namenode and 4 Datanodes and together forms a cluster like 

infrastructure and all the nodes are interconnected. Thus the 

client send a query to namenode and searches the required 

datas with the namenode,this will perform the mapreduce 

operation using hadoop. All the files are stored in the hadoop 

distributed file system by Client. Thus the Hadoop system 

consists of HDFS and MapReduce. HDFS is highly fault  

Thus  mean shift clustering states that in the map phase the 

algorithm "select a point as the center and compute distances 

from the center to all the data points, and assign a label to the 

points within the bandwidth" and in reducer phase "collect 

data points of the same label and compute the center of mass 

of them". 

3.IMPLEMENTATION OF MAPREDUCE 

PARADIGM 

This topic consists of detailed description of each and every 

module with its advantages and data and execution flow of 

each module with algorithm. It helps to understand each and 

every module of the project more deeply and clearly. Each 

description consists of the basic concept of the module, input 

and also the excepted output. 

2.1 Modules 

The project has been divided into various modules and each 

module has been completed within a scheduled time line. The 

following are the modules of the project are cluster Hadoop 

Ecosystem ,Cloud Computing - IAAS (Amazom web 

services), set up a cluster of 3 nodes, using Mean shift Based 

clustering the map and reduce operations are performed.  

Machines are typically dual-processor x86 processors running 

Linux, with 2-4 GB of memory per machine. Commodity 

networking hardware is used  typically either 100 

megabits/second or 1 gigabit/second at the machine level, but 

averaging considerably less in overall bisection bandwidth. A 

cluster consists of hundreds or thousands of machines, and 

therefore machine failures are common .Here we have 

considered 5 node homogeneous cluster in the amazon web 

services. Storage is provided by inexpensive IDE disks 

attached directly to individual machines. A distributed file 

system [3] developed in-house is used to manage the data 

stored on these disks. The file system uses duplication to 

afford availability and reliability on top of unreliable 

hardware.Users submit jobs to a setting up system. Each work 

consists of a set of everyday job, [4] and is mapped by the 

scheduler to a set of available machines within a cluster. 

2.2  Data Pipelining 

Client writes the input files as a block to the first data node. 

The first DataNode forwards the data to the next DataNode in 

the Pipeline and the next DataNode forward to all other 

DataNode in the cluster, and so on.  

2.3 Description of Data sets 

Here we have considered the health care data set and customer 

care detail data set. Also we selected wide range of data sets 

with varying sizes from kilobytes to gigabytes and that  are 

used in our experiments. The health care data set comprises of 

health details of the customer such as name of the pills and so 

on. The customer care detail data set comprises of network 

details.  

2.4 Execution Overview 

 The Map invocations are distributed across multiple 

machines by automatically partitioning the input data into a 

set of M splits. The input splits can be processed in 

corresponding by dissimilar machines. Reduce invocations are 

disseminated by partition the intermediary key space into R 

pieces using a partitioning function (e.g.,hash (key) mod R). 

The number of partitions (R) and the partitioning function are 

specified by the user. When the user program calls the 

MapReduce function, the following series of actions occurs  

1. The MapReduce documentation in the customer 

program first splits the input files into M pieces of typically 16 

megabytes to 64 megabytes (MB) per piece (controllable by 

the user via an optional parameter). [4] It then starts up many 

copies of the program on a cluster of machines. 
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2. One of the copy of the program is individual to the 

master. The rest are workers that are [4] assigned work by the 

master. [4] There are M map tasks and R reduce tasks to 

assign. The master picks [12, 4] idle workers and assigns each 

one a map task or a reduce task. 

3. A member of staff who is assigned a map task reads the  

stuffing of the corresponding input split. [4] It parses 

key/value pairs out of the input data and passes each pair 

to the user defined Map function.[4]  The intermediate 

key/value pairs produced by the Map function are    

buffered in memory. 

4. Occasionally, the buffered pairs are written to local 

disk, partitioned into R regions by the partitioning 

function. [4] The locations of these buffered pairs on the 

local disk are passed back to the master, who is in charge 

for forwarding these locations to the reduce workers. 

5. When a reduce worker is notice by the master about 

these location, it uses isolated method calls to read the 

buffered data from the limited disks of the map workers. 

When a reduce worker has read all in-between data, it 

sorts it by the intermediate keys so that all occurrence of 

the same key are grouped collectively. The sorting is 

needed because typically many dissimilar keys map to the 

same reduce task6. The reduce hand iterates over the 

sorted in-between data and for each distinctive in-

between[4]  key encounter, it pass the key and the parallel 

set of intermediary values to the user’s Reduce function. 

The productivity of the Reduce function is append to a 

final output file for  this reduce partition. 

6. When all map tasks and reduce tasks have been 

completed, the master wakes up the user program. [4] At 

this point, the MapReduce call in the user program returns 

back to the user code. After [4] successful completion, the 

output of the mapreduce execution is available in the R 

output files [4] (one per reduce task, with file names as 

specified by the user). 

2.5 Node Configuration 

 EC2 small instances 

 Need 1.75 memory 

 One EC2 complete unit (1 virtual core) 

 64 bit Amazon Linux 

 160 GB instance storage 

          

            Table I Performance of MapReduce jobs 

 

3. MEAN SHIFT ALGORITHM 

MS(Mean shift) is a nonparametric, iterative method for 

unsupervised clustering and global/local optimization. It has a 

wide range of applications in clustering and data analysis. For 

this the following steps has been followed 

 Choose a search window size 

 Choose the initial location of the search window 

 Compute the mean location(centroid of the data)in 

the search window 

 Center the search window at the mean location 

computed in step 3 

 Repeat step 3 and 4 until convergence 

 Block Size Execution 

Time 

 

Number of Input  

Block size 

64MB 

128 MB 

256 MB 

512MB 

3Hrs 27 Min 

3Hrs 5 Min 

2Hrs 42 Min 

2Hrs 29 Min 

 

DFS Block size 

64 MB 

Replication factor=1 

Replication factor=3 

 

 

4 Hrs 13Min 

3Hrs 27 Min 

 

Compression 

64MB 

With 

Without  

 

3 Hrs 6 Min 

3 Hrs 27 Min 

 

JVM 

64MB 

With Reuse= -1 

Without Reuse=0 

 

-3 Hrs 8 Min 

3 Hrs 27 Min 

 

 

Reducers 

64MB 

One  

Three  

 

3 Hrs 27 Min 

3 Hrs 27 Min 

(Because of 

using three 

unique keys 

only) 

 

Combiner 

64MB 

With 

Without 

 

      3 Hrs  

3 Hrs 27 Min 

Scalability  

(default 

configuration) 

1 node  

2 node 

3 node 

4 node 

10 Hrs 8 Min 

7 Hrs 21 Min 

5 Hrs 34 Min 

3 Hrs 27 Min 

 

 

 

 

 

io.sort.mb 

64MB 

          100 MB 

          200 MB 

128 MB 

          100 MB 

          200 MB 

256 MB 

         100 MB 

         200 MB 

512MB 

         100 MB 

         200 MB 

 

3 Hrs 27 Min 

3 Hrs 27 Min 

 

3 Hrs 27 Min 

3 Hrs 27 Min 

 

3 Hrs 27 Min 

3 Hrs 27 Min 

 

3 Hrs 10 Min 

3 Hrs 5 Min 
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4. TUNNING MAPREDUCE JOBS 

Each map or reduce task finishes in less than 30-40 seconds. 

A large job does not utilize all available slots in the cluster. 

After most mappers or reducers are scheduled, single or 

multiple leftovers awaiting and then run all alone. 

 

Fig 2: Overview of MapReduce Jobs 

       In the above figure 2 overview of mapreduce jobs are 

described. It has two phases. Map phase takes the input and 

flow to the buffer for storage and it will split the tasks and 

partition to the disk. All the partitions on the disk fetches the 

result and send to the reduce phase. This will mix the memory 

content and disk on the data to produce the reduce output. The 

cluster specification includes   

 Datanodes+tasktrackers = 4 machines 

 Namenode+jobtracker = 1 machine 

Each machine has 4GB main memory,8 core CPU, 5 TB Hard 

drive Cloudera Hadoop 0.18.3. 

5. MAPREDUCE IMPLEMENTATION 

To simplify deployment on the cluster, the JAR-file was built 

to include any libraries it uses in it's build path. This provides 

a relatively large file compared to without these libraries. This 

does however remove the need to include libraries on launch 

from the MapReduce framework itself. The largeness of the 

files fits the HDFS, but with XML files there is a slight 

problem of tags existing outside of file splits. When splitting 

files, HDFS and MapReduce does not account to any specific 

split locations by default, so This utilizes the MapReduce 

Record Reader's ability to read outside of the split given, so 

the InputFormat can read from a tag start to a tag end. To 

process the data following steps has to be done 

 Start a specific amount of Hadoop VMs. 

 Configue them accordingly. 

 Upload the data and the JARfile to the master VM. 

 Put the data onto HDFS. 

 Run the job 5 times, making sure to remove the      

output folder between runs. 

 Go to the JobTracker Web Service and analyse the 

time. 

 

Table II Parameter received by MapReduce Jobs 

Parameter 

Received 

Map 

(Bytes) 

Reduce 

           (Bytes) 

File Bytes Read 0 543 

HDFS Bytes Read  433 0 

File Bytes Written 22,265 22,234 

HDFS Bytes Read  0 365 

CPU Time(ms) 200 980 

 

Each of the jobs scheduled and produces a job id. This shows 

the status and the information parameters that are received 

from the TaskTracker. Thus, optimal configuration of Mapper 

Reducer gives some parameter such as Bytes read, Bytes 

written, CPU time, Memory limit, Dead nodes, Live nodes, 

Data size, Communication delay etc..,This will also show the 

status of the Namenode ang gives the information about the 

Heap size, Capacity of the node and also details of the Live 

nodes and Dead nodes. 

6. ADVANTAGES 

The performance tuning Mapper Reducer is achieved by using 

the optimal configuration by scheduled jobs. It provides the 

fine grain fault tolerance, so only the tasks on the failed nodes 

have to be restarted. Mapper Reducer function allows us to 

analyse the metadata set and achieve better performance in 

executing the job by using optimal number of mappers and 

reducer based on the size of the data sets and also helps the 

users to view the status of the job and to find the error 

localization of scheduled jobs. This will efficiently utilize the 

performance properties of optimized scheduled jobs. So, the 

efficiency of the system will result in substantially lowered 

system cost, energy usage, and management complexity it 

increases the performance of the system. 

7. CONCLUSION 

MapReduce programming model is performed efficiently for 

processing complex data sets. Thus optimal configuration of 

Mappers and Reducers are Performed based on the size of the 

data sets. This provides the information about the parameters 

that are received from the scheduled jobs.  

So, the efficiency of the system will result in substantially 

lowered system cost, energy usage, and management 

complexity it increases the performance of the system. This 

improves the overall system performance, efficiency and 

scalability. If any one of those jobs fails, it reallocates the job 

to another node and process the data in efficient Manner. This 

will increases the synchronization and parallel computing 

process. 

8. FUTURE WORK 

This MapReduce model can be used efficiently in the hadoop 

version 1 and the proper autoscaling for a Hadoop cluster can 

be done more efficiently using the later version of hadoop. 
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MapReduce system will be deployed in cloud as a service 

which can be used by the user across the world. 
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