
International Journal of Computer Applications (0975 – 8887)

Volume 70– No.21, May 2013

37

Performance Tuning and Scheduling of Large Data Set
Analysis in Map Reduce Paradigm by Optimal

Configuration using Hadoop

Sasiniveda. G

PG Scholar, Sri Venkateswara

College of Engineering,

Pennalur,

Chennai-602105,Tamil Nadu

Revathi N

Asst.Prof, Sri Venkateswara

College of Engineering,

Pennalur,

Chennai-602105,Tamil Nadu

ABSTRACT

Data analysis is an important functionality in cloud computing

which allows a huge amount of data to be processed over very

large clusters. Hadoop is a software framework for large data

analysis. It provide a Hadoop distributed file system for the

analysis and transformation of very large data sets is

performed using the MapReduce paradigm. MapReduce is

known as a popular way to hold data in the cloud environment

due to its excellent scalability and good fault tolerance. Map

Reduce is a programming model widely used for processing

large data sets. Hadoop Distributed File System is designed to

stream those data sets. The Hadoop MapReduce system was

often unfair in its allocation and a dramatic improvement is

achieved through the Mapper Reducer System. The proposed

Mapper Reducer function using the mean shift clustering

based algorithm allows us to analyze the data set and achieve

better performance in executing the job by using optimal

configuration of mappers and reducers based on the size of the

data sets and also helps the users to view the status of the job

and to find the error localization of scheduled jobs. This will

efficiently utilize the performance tuning properties of

optimized scheduled jobs. So, the efficiency of the system

will result in substantially lowered system cost, energy usage,

management complexity and increases the performance of the

system.

General Terms

Data analysis, Hadoop, HDFS, MapReduce Paradigm.

Keywords

Cloud Computing, Hadoop Distributed file System,

Performance Tuning, Mean shift Clustering, Amazon web

services.

1. INTRODUCTION

Cloud computing provides massive clusters for efficient large

scale computation and data analysis. MapReduce [3] is a well

known programming model which designed for improving the

performance of large batch jobs on cloud computing systems.

However, there is growing interest in employing MapReduce

and its open-source implementation, called Hadoop, for
various types of jobs. This leads to sharing a single Hadoop

cluster between various users, which run a merge of lengthy

group jobs and short interactive queries on a shared dataset.

Data analysis is an important functionality in cloud computing

which allows a huge amount of data to be processed over very

large clusters. Cloud computing provides massive clusters for

well-organized data analysis and the huge amount of

computation. When hadoop clusters shared with multiple

users it provides several advantages such as fairness, Data

Locality, increases the utilization of the resources.

 In this model, processing of large data is efficient,

easy to use, it splits the tasks and executes on the various

nodes in parallel. Thus it will speed up the computation and

retrieve the required data from a huge data set in a faster

manner and also the performance of the mapreduce system

greatly increased by executing the process in a distributed or

in parallel manner by implementing Fair scheduling in Map

Reduce paradigm. In this paper we parallelize a data mining

algorithm , and scheduling of multiple jobs , performance

tuning of Map Reduce and evaluate all the parameters for the

optimizing the Map Reduce paradigm across multiple nodes

of a Cloud Environment.

The Hadoop scheduler is the centrepiece of a

Hadoop system. Desired performance levels can be achieved

by proper submission of jobs to resources. Primary Hadoop

scheduling algorithms, like the FIFO algorithm and the Fair-

sharing algorithm, are simple algorithms which use small

amounts of system information to make quick scheduling

decisions.

Here mean shift clustering based algorithm is used.

It is non-parametric mode of clustering procedure. It does not

require prior knowledge of the [2] number of clusters, and

does not constrict the figure of the clusters. It will produce

arbitrarily shaped clusters that depend upon the topology of

the data. In Mean Shift Mapper Reducer function random

points is generated based on the probability density function.

Mode value is used to calculate density function value and it

runs multiple iterations. Centroid points change frequently

and on one particular point it will attain the threshold value.

By this mode value we can able to find the location of the data

i.e. in the data node or particular cluster. Mean shift are

automatically generate the random value based on the density

function. Here mean shift is used as a multithread. So this will

increases resource utilization,

The remainder of this paper is structured as follows. In

Section 2 we give a brief summary of a Hadoop system.

Current Hadoop scheduling algorithms are given in Section 3.

Our Hadoop system model is described and formally

introduced in Section 3. Then, in Section 4, we formally

present the performance metrics of interest. Our proposed

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.21, May 2013

38

Hadoop mean shift clustering scheduling algorithm is

introduced in Section 5. In Section 6, details of the

environment in which we study our algorithm are

provided,and some advantages of the work is explained and

we study the performance of our algorithm in various Hadoop

systems. Finally, we provide some concluding remarks and

discuss possible future work in the last section.

2. HADOOP SYSTEM MODEL

Hadoop is a free ,Java based programming framework that

supports the processing of large data sets in a distributed

computing environment. It is part of apache project sponsored

by the Apache Software Foundation.

 Fig 1: Map Reduce System Model

The above figure1 show the mapreduce system model which

allow us to create 5 datanodes in the cloud infrastructure. This

AWS cloud is created in amazon web server this can be

accessed by any where across the world. It consists on 1

Namenode and 4 Datanodes and together forms a cluster like

infrastructure and all the nodes are interconnected. Thus the

client send a query to namenode and searches the required

datas with the namenode,this will perform the mapreduce

operation using hadoop. All the files are stored in the hadoop

distributed file system by Client. Thus the Hadoop system

consists of HDFS and MapReduce. HDFS is highly fault

Thus mean shift clustering states that in the map phase the

algorithm "select a point as the center and compute distances

from the center to all the data points, and assign a label to the

points within the bandwidth" and in reducer phase "collect

data points of the same label and compute the center of mass

of them".

3.IMPLEMENTATION OF MAPREDUCE

PARADIGM

This topic consists of detailed description of each and every

module with its advantages and data and execution flow of

each module with algorithm. It helps to understand each and

every module of the project more deeply and clearly. Each

description consists of the basic concept of the module, input

and also the excepted output.

2.1 Modules

The project has been divided into various modules and each

module has been completed within a scheduled time line. The

following are the modules of the project are cluster Hadoop

Ecosystem ,Cloud Computing - IAAS (Amazom web

services), set up a cluster of 3 nodes, using Mean shift Based

clustering the map and reduce operations are performed.

Machines are typically dual-processor x86 processors running

Linux, with 2-4 GB of memory per machine. Commodity

networking hardware is used typically either 100

megabits/second or 1 gigabit/second at the machine level, but

averaging considerably less in overall bisection bandwidth. A

cluster consists of hundreds or thousands of machines, and

therefore machine failures are common .Here we have

considered 5 node homogeneous cluster in the amazon web

services. Storage is provided by inexpensive IDE disks

attached directly to individual machines. A distributed file

system [3] developed in-house is used to manage the data

stored on these disks. The file system uses duplication to

afford availability and reliability on top of unreliable

hardware.Users submit jobs to a setting up system. Each work

consists of a set of everyday job, [4] and is mapped by the

scheduler to a set of available machines within a cluster.

2.2 Data Pipelining

Client writes the input files as a block to the first data node.

The first DataNode forwards the data to the next DataNode in

the Pipeline and the next DataNode forward to all other

DataNode in the cluster, and so on.

2.3 Description of Data sets

Here we have considered the health care data set and customer

care detail data set. Also we selected wide range of data sets

with varying sizes from kilobytes to gigabytes and that are

used in our experiments. The health care data set comprises of

health details of the customer such as name of the pills and so

on. The customer care detail data set comprises of network

details.

2.4 Execution Overview

 The Map invocations are distributed across multiple

machines by automatically partitioning the input data into a

set of M splits. The input splits can be processed in

corresponding by dissimilar machines. Reduce invocations are

disseminated by partition the intermediary key space into R

pieces using a partitioning function (e.g.,hash (key) mod R).

The number of partitions (R) and the partitioning function are

specified by the user. When the user program calls the

MapReduce function, the following series of actions occurs

1. The MapReduce documentation in the customer

program first splits the input files into M pieces of typically 16

megabytes to 64 megabytes (MB) per piece (controllable by

the user via an optional parameter). [4] It then starts up many

copies of the program on a cluster of machines.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.21, May 2013

39

2. One of the copy of the program is individual to the

master. The rest are workers that are [4] assigned work by the

master. [4] There are M map tasks and R reduce tasks to

assign. The master picks [12, 4] idle workers and assigns each

one a map task or a reduce task.

3. A member of staff who is assigned a map task reads the

stuffing of the corresponding input split. [4] It parses

key/value pairs out of the input data and passes each pair

to the user defined Map function.[4] The intermediate

key/value pairs produced by the Map function are

buffered in memory.

4. Occasionally, the buffered pairs are written to local

disk, partitioned into R regions by the partitioning

function. [4] The locations of these buffered pairs on the

local disk are passed back to the master, who is in charge

for forwarding these locations to the reduce workers.

5. When a reduce worker is notice by the master about

these location, it uses isolated method calls to read the

buffered data from the limited disks of the map workers.

When a reduce worker has read all in-between data, it

sorts it by the intermediate keys so that all occurrence of

the same key are grouped collectively. The sorting is

needed because typically many dissimilar keys map to the

same reduce task6. The reduce hand iterates over the

sorted in-between data and for each distinctive in-

between[4] key encounter, it pass the key and the parallel

set of intermediary values to the user’s Reduce function.

The productivity of the Reduce function is append to a

final output file for this reduce partition.

6. When all map tasks and reduce tasks have been

completed, the master wakes up the user program. [4] At

this point, the MapReduce call in the user program returns

back to the user code. After [4] successful completion, the

output of the mapreduce execution is available in the R

output files [4] (one per reduce task, with file names as

specified by the user).

2.5 Node Configuration

 EC2 small instances

 Need 1.75 memory

 One EC2 complete unit (1 virtual core)

 64 bit Amazon Linux

 160 GB instance storage

 Table I Performance of MapReduce jobs

3. MEAN SHIFT ALGORITHM

MS(Mean shift) is a nonparametric, iterative method for

unsupervised clustering and global/local optimization. It has a

wide range of applications in clustering and data analysis. For

this the following steps has been followed

 Choose a search window size

 Choose the initial location of the search window

 Compute the mean location(centroid of the data)in

the search window

 Center the search window at the mean location

computed in step 3

 Repeat step 3 and 4 until convergence

 Block Size Execution

Time

Number of Input

Block size

64MB

128 MB

256 MB

512MB

3Hrs 27 Min

3Hrs 5 Min

2Hrs 42 Min

2Hrs 29 Min

DFS Block size

64 MB

Replication factor=1

Replication factor=3

4 Hrs 13Min

3Hrs 27 Min

Compression

64MB

With

Without

3 Hrs 6 Min

3 Hrs 27 Min

JVM

64MB

With Reuse= -1

Without Reuse=0

-3 Hrs 8 Min

3 Hrs 27 Min

Reducers

64MB

One

Three

3 Hrs 27 Min

3 Hrs 27 Min

(Because of

using three

unique keys

only)

Combiner

64MB

With

Without

 3 Hrs

3 Hrs 27 Min

Scalability

(default

configuration)

1 node

2 node

3 node

4 node

10 Hrs 8 Min

7 Hrs 21 Min

5 Hrs 34 Min

3 Hrs 27 Min

io.sort.mb

64MB

 100 MB

 200 MB

128 MB

 100 MB

 200 MB

256 MB

 100 MB

 200 MB

512MB

 100 MB

 200 MB

3 Hrs 27 Min

3 Hrs 27 Min

3 Hrs 27 Min

3 Hrs 27 Min

3 Hrs 27 Min

3 Hrs 27 Min

3 Hrs 10 Min

3 Hrs 5 Min

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.21, May 2013

40

4. TUNNING MAPREDUCE JOBS

Each map or reduce task finishes in less than 30-40 seconds.

A large job does not utilize all available slots in the cluster.

After most mappers or reducers are scheduled, single or

multiple leftovers awaiting and then run all alone.

Fig 2: Overview of MapReduce Jobs

 In the above figure 2 overview of mapreduce jobs are

described. It has two phases. Map phase takes the input and

flow to the buffer for storage and it will split the tasks and

partition to the disk. All the partitions on the disk fetches the

result and send to the reduce phase. This will mix the memory

content and disk on the data to produce the reduce output. The

cluster specification includes

 Datanodes+tasktrackers = 4 machines

 Namenode+jobtracker = 1 machine

Each machine has 4GB main memory,8 core CPU, 5 TB Hard

drive Cloudera Hadoop 0.18.3.

5. MAPREDUCE IMPLEMENTATION

To simplify deployment on the cluster, the JAR-file was built

to include any libraries it uses in it's build path. This provides

a relatively large file compared to without these libraries. This

does however remove the need to include libraries on launch

from the MapReduce framework itself. The largeness of the

files fits the HDFS, but with XML files there is a slight

problem of tags existing outside of file splits. When splitting

files, HDFS and MapReduce does not account to any specific

split locations by default, so This utilizes the MapReduce

Record Reader's ability to read outside of the split given, so

the InputFormat can read from a tag start to a tag end. To

process the data following steps has to be done

 Start a specific amount of Hadoop VMs.

 Configue them accordingly.

 Upload the data and the JARfile to the master VM.

 Put the data onto HDFS.

 Run the job 5 times, making sure to remove the

output folder between runs.

 Go to the JobTracker Web Service and analyse the

time.

Table II Parameter received by MapReduce Jobs

Parameter

Received

Map

(Bytes)

Reduce

 (Bytes)

File Bytes Read 0 543

HDFS Bytes Read 433 0

File Bytes Written 22,265 22,234

HDFS Bytes Read 0 365

CPU Time(ms) 200 980

Each of the jobs scheduled and produces a job id. This shows

the status and the information parameters that are received

from the TaskTracker. Thus, optimal configuration of Mapper

Reducer gives some parameter such as Bytes read, Bytes

written, CPU time, Memory limit, Dead nodes, Live nodes,

Data size, Communication delay etc..,This will also show the

status of the Namenode ang gives the information about the

Heap size, Capacity of the node and also details of the Live

nodes and Dead nodes.

6. ADVANTAGES

The performance tuning Mapper Reducer is achieved by using

the optimal configuration by scheduled jobs. It provides the

fine grain fault tolerance, so only the tasks on the failed nodes

have to be restarted. Mapper Reducer function allows us to

analyse the metadata set and achieve better performance in

executing the job by using optimal number of mappers and

reducer based on the size of the data sets and also helps the

users to view the status of the job and to find the error

localization of scheduled jobs. This will efficiently utilize the

performance properties of optimized scheduled jobs. So, the

efficiency of the system will result in substantially lowered

system cost, energy usage, and management complexity it

increases the performance of the system.

7. CONCLUSION

MapReduce programming model is performed efficiently for

processing complex data sets. Thus optimal configuration of

Mappers and Reducers are Performed based on the size of the

data sets. This provides the information about the parameters

that are received from the scheduled jobs.

So, the efficiency of the system will result in substantially

lowered system cost, energy usage, and management

complexity it increases the performance of the system. This

improves the overall system performance, efficiency and

scalability. If any one of those jobs fails, it reallocates the job

to another node and process the data in efficient Manner. This

will increases the synchronization and parallel computing

process.

8. FUTURE WORK

This MapReduce model can be used efficiently in the hadoop

version 1 and the proper autoscaling for a Hadoop cluster can

be done more efficiently using the later version of hadoop.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.21, May 2013

41

MapReduce system will be deployed in cloud as a service

which can be used by the user across the world.

9. REFERENCES

[1] Apache,“Hadoop,http://hadoop.apache.org/docs/r0.20.2/

hdfs_design.html”

[2] D. Comaniciu and P. Meer. Mean shift: A robust

approach toward feature space analysis. IEEE

Trans.Pattern Anal. Machine Intell., 24:603–619, 2002.

[3] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak

Leung. The Google file system. In 19th Symposium on

Operating Systems Principles, pages 29–43, Lake

George, New York, 2003.

[4] Jeffrey Dean and Sanjay Ghemawat “Map Reduce:

Simplified Data Processing on Large Clusters”

International Journal of Engineering Research and

Applications ISSN: 1 – 13, July 2004.

[5] Matei Zaharias, Andy Konwinski, et al “Improving Map

Reduce Performance in Heterogeneous Environments”

IEEE Transactions on Parallel and distributed

processing, Vol. 23, No. 19, April 2010.

[6] Quan Chen, Daqiang Zhang, et al. “SAMR: A Self-

adaptive Map Reduce Scheduling Algorithm In

Heterogeneous Environment” International Journal of

Engineering Research and Applications ISSN: 2736-

2743, July 2010.

[7] Mohammad Farhan Husain, James Mc Glothlin, et.al

“Heuristics-Based Query Processing for Large RDF

Graphs Using Cloud Computing” IEEE Transactions on

knowledge and data Engineering, Vol. 23, No. 9,

September 2011.

[8] Hadoop, http://lucene.apache.org/hadoop

[9] Amazon Elastic Compute Cloud,

http://aws.amazon.com/ec2

[10] Kyong -Ha Lee, Hyunsik Choi “Parallel Data Processing

with MapReduce: A Survey” International Journal of

Engineering Research and Applications Vol. 40, No. 4

December 2011.

[11] Nikzad Babaii Rizvandi1,Albert Y. Zomaya , et.al “ On

Modeling Dependency between Map Reduce

Configuration Parameters and Total Execution Time ”

IEEE Transactions on Distributed, Parallel, and Cluster

Computing , Vol. 23, No. 9, March 2012.

[12] Gabriel G. Casta, Alberto Nunez, et al.“Dimensioning

Scientific Computing systems to improve performance

of Map-Reduce based applications” International Journal

of Engineering Research and Applications ISSN: 226 –

235, July 2012.

[13] D. Jiang et al. Map-join-reduce: Towards scalable and

efficient data analysis on large clusters. IEEE

Transactions on Knowledge and Data Engineering, 2010.

[14] D. Jiang et al . The performance of mapreduce: An in-

depth study. Proceedings of the VLDB Endowment,3(1-

2):pp 472–483, 2010.

[15] M. Elteir, H. Lin, W. chun Feng, Enhancing mapreduce

via asynchronous data processing, in: ICPADS’10: IEEE

16th International Conference on Parallel and Distributed

Systems, 2010, pp. 397-405.

[16] Mr. Yogesh Pingle, Vaibhav Kohli, Shruti Kamat,

Nimesh Poladia Big Data Processing using Apache

Hadoop in Cloud System International Journal of

Engineering Research and Applications (IJERA) ISSN:

2248-9622.

[17] F.N. Afrati and J.D. Ullman, Optimizing Joins in a Map-

Reduce Environment, Proc. 13th Int’l Conf. Extending

Database Technology (EDBT ’10), 2010.

[18] Y. Bu, B. Howe, M. Balazinska, and M. Ernst, “Hadoop:

Efficient Iterative Data Processing on Large Clusters,”

Proc. VLDB Endowment, vol. 3, no. 1/2, pp. 285-296,

2010.

[19] Foto N. Afrati and Jeffrey D. Ullman, Optimizing

Multiway Joins in a Map-Reduce Environment IEEE

Transactions on knowledge and data Engineering, VOL.

23, NO. 9, September 2011.

[20] Indranil Palit and Chandan K. Reddy, Scalable and

Parallel Boosting with MapReduce IEEE Transactions on

knowledge and data Engineering, VOL. 24, NO. 10,

October 2012.

http://lucene.apache.org/hadoop
http://aws.amazon.com/ec2

