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Abstract. After a decade of research into the area of Artificial Immune
Systems, it is worthwhile to take a step back and reflect on the contribu-
tions that the paradigm has brought to the application areas to which it
has been applied. Undeniably, there have been a lot of successful stories —
however, if the field is to advance in the future and really carve out its own
distinctive niche, then it is necessary to be able to illustrate that there are
clear benefits to be obtained by applying this paradigm rather than oth-
ers. This paper attempts to take stock of the application areas that have
been tackled in the past, and ask the difficult question “was it worth it
?”. We then attempt to suggest a set of problem features that we believe
will allow the true potential of the immunological system to be exploited
in computational systems, and define a unique niche for AIS.

1 Introduction

The AIS community has been vibrant and active for a number of years now, pro-
ducing a prolific amount of research ranging from modelling the natural immune
system, solving artificial or bench-mark problems, to tackling real-world applica-
tions, using an equally diverse set of immune-inspired algorithms. Whilst it is nat-
ural, and indeed healthy, for a somewhat scattergun approach to be taken in the
early days of developing any new paradigm, in the sense that high-level, often naive
metaphors are selected and applied to problem areas that have often been tackled
with other paradigms, there comes a point at which research effort needs to have
a more coherent focus in order to more clearly define the field, and allow it to go
forward and be fully exploited. We argue that this point has now been reached in
the AIS world — with a solid foundation of published work to build on, the time
has come to try and define the role that AIS can play and the type of applications
that will really allow its potential to be realised.

Without a doubt there have been a lot of successful applications of AIS, and
these shouldnot be ignored.However, at this point, there are still no exemplars that
really stand out as instances of successfully applying an AIS to a hard, real-world
problems, or of AIS being used in industry. This is in contrast for example to the
field of Evolutionary Algorithms, where at the most recent flagship conference in
the field, GECCO 2004 [5], there were 38 papers describing the applications of EAs
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to real-world problems, and the EVONET repository [3] is able to list 39 examples
of Evolution at Work, i.e practical applications of EAs. On the one hand, this is
somewhat of an unfair comparison, given the relative time-periods that the two
fields have been active, however it illustrates the importance of focussing research
effort in the next few years in order to provide hard evidence of a distinctive niche
for AIS.

For any new paradigm to prove itself is always a difficult task — there is a
lot of good competition from existing tried and tested algorithms. There has per-
haps been a natural tendency for AIS to be compared to other biologically inspired
paradigms such as Evolutionary Algorithms, Neural-networks, and to other more
traditional classification or clustering algorithms. Scientifically, it is essential that
such comparisons to be made; however, we argue that it is not sufficient for AIS
simply to outperform other algorithms on any given set of problem instances to
be declared useful. For a start, test instances (particularly benchmarks) are not
necessarily difficult, and any number of other problem instances can be generated
on which performance will be unknown. Secondly, in the light of the no-free lunch
theorem [47], we cannot expect any one algorithm to outperform all others given
all possible problem instances. We argue that for a paradigm to be truly success-
ful, it should contain features that are not present in other paradigms and thus
make it distinctive. In this position paper, we hope to extract some general fea-
tures of problems that we believe will allow AIS to really bring some benefit, and
thus distinguish it from other techniques. We suggest that the way forward for AIS
is in part a focussed attempt to carefully select application areas based on mapping
problem features to mechanisms exhibited by the IS, taking the problem-oriented
perspective outlined by example in [38,22,10], and discussed further in section 4.2.
However, we emphasise that application development needs to be under-pinned
with a continuing line of research into the theoretical basis of AIS and with the
overriding need for extraction of novel and accurate metaphors from immunology.

2 Survey of Existing Application Areas

In order to place the following discussions in context, we first present a general
review of application areas to which AIS has currently been applied. The follow-
ing brief summary is based in part on a bibliography produced by De Castro [14],
used in a tutorial at ICARIS 2004 [15] on Engineering Application of AIS. The in-
formation contained in this tutorial has been expanded to include references from
ICARIS 2004 [4] and is available from [1]. A useful summary of application areas
can also be found in [16] though as this was produced in 2000 it is slightly outdated.
Whilst we stress that it does not represent all publications in the AIS domain, we
believe it is reflective of the general picture. Note that this section does not de-
scribe in detail the application areas that AIS has been applied to. The reader is
referred to the above publications for further information — the section is intended
to provide an overview of the field as a whole and provide a basis for the following
discussion.
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Figure 1 therefore shows a summary of 97 papers which have been classified
into 12 headings. Note that the categories are chosen simply to reflect the natural
grouping of papers and in some cases are rather broad, and in others very narrow.
For example, computer security and virus detection could be classified as examples
of anomaly detection, and the majority of the bio-informatics papers are essentially
performing classification or clustering. However, where more than one paper has
been written on a particular application area, these papers have been grouped to-
gether. Also, in several cases there are multiple papers published over a period of
time by the same authors on the same application; in this case, only one paper per
author is included in the list, as the intention is to reflect the diversity of appli-
cations and give some indication of the effort being directed towards a particular
application area.

In brief, papers falling under the heading Anomaly Detection include a diverse
range of topic areas, ranging for example from detection of temperature fluctua-
tions in refrigeration units [41] to aircraft fault detection [13]. As previously men-
tioned, computer security and virus detection applications could also be classified
under this heading; these sub-headings speak for themselves as to the type of ap-
plication covered. Some specific features of anomaly detection applications are dis-
cussed in more detail in section 3.1.

Avery large number of papers fall under the general heading ofLearning. Learn-
ing can generally be understood to be the process of acquiring knowledge from
experience and being able to re-apply that knowledge to previously unseen prob-
lem instances — this generic title applies to a variety of sub-topics such as pattern
recognition, concept-learning, and supervised and unsupervised versions of clus-
tering data and classifying data. Papers relating to clustering and classification
have been separated out from the general learning topic as a sub-topic where they
relate specifically to clustering or classifying a particular data-set and have been
compared to conventional classification techniques, and have been benchmarked
used the standard accepted quality tests in data-mining such as classification ac-
curacy. Almost all clustering applications which have gone beyond the conceptual
stage focus on benchmark sets of data such as those available from the UCI reposi-
tory which are static in nature, although there are few attempts to apply immune-
based algorithms to dynamic data, e.g [26,33].

As previouslymentioned, papers relating to bio-informatics have also been sep-
arated a distinct topic, as these form a natural group; however, it is important to
realise that this topic essentially is just another set of applications of clustering
algorithms — again the data being clustered is static in nature.

Combinatoric Optimisation covers a number of real-world application areas
such as travelling salesmanproblems, scheduling (including inventoryand job-shop
scheduling), and routing problems. Typically, the publications report results on
benchmark problem instances rather than real-world problem instances.

Robotic applications tend to be based on controlling simulated robots around
small, artificial environments, generally addressing the problem of behaviour arbi-
tration and autonomous navigation, although work by [28] attempts to lay a foun-
dation for using an AIS to provide the basis of an architecture for a robot to acquire
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Fig. 1. Summary of Application Areas of AIS

new, more complex skills throughout its lifetime. Adaptive control systems form a
related category of papers, for example pertaining to controlling a robotic arm [32].
The small topics of Image Processing and Web-Mining are self-evident.

2.1 Summary of Application Areas

Having presented the above categorisations of application areas, it seems that
application areas that have been addressed by AIS techniques can be broadly
summarised as (1) Learning (2) Anomaly Detection and (3) Optimisation. Thus,
learning includes clustering, classification and pattern recognition, robotic and
control applications; Anomaly Detection includes fault detection and computer
and network security applications, and Optimisation includes real-world problems
which essentially boil down to combinatoric and also numeric function optimisa-
tion. To some extent, the fact that applications of AIS have fallen into the above
categories is somewhat an accident of history. Early immune-based algorithms,
proposed in the main by computer scientists with little if any immunological back-
ground, seized on what appeared to be be the obvious functions of the immune
system as a defensive system, able to perform pattern recognition and learn over
time. Hence, although very early work in the area was performed from an interdis-
ciplinary slant, e.g. [9], there has been a tendency to reason by metaphor [38], and
apply simplistic models such as clonal selection, immune-networks and negative-
selection in isolation to problems which appear at first glance to be amenable to
such techniques. Furthermore, again perhaps by accident, many of the AIS practi-
tioners arrive in the field by way of working in other biologically inspired fields such
as Evolutionary Computing, and thus there is a tendency to apply AIS algorithms
to the same problems as have been tackled in other domains (e.g. optimisation),
which often results in un-natural problem representations, and rather contrived
mechanisms for mapping a problem to an AIS algorithm.
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3 “Was ItWorth It “ - ALook at the Added Value of theAIS

It is nowpertinent to re-evaluate the application of immune algorithms to the above
application areas, and question whether there is really any added value in applying
AIS to the three areas listed above. Again we re-iterate that there is no doubt that
AIS has been successful in these areas; however, we question as to whether they
AIS brings any benefits that could not have been gained from applying a differ-
ent sort of algorithm. Recall the seminal list of features of an AIS, originally due
to Dasgupta in [12] and so often quoted in AIS publications. This defines the fea-
tures of an immune system that are relevant from a computational perspective as:
recognition, feature extraction, diversity, learning, memory, distributed detection,
self-regulation, thresholds, co-stimulation, dynamic protection and probabilistic
detection. Although later in we question as to whether the features on this list re-
ally distinguish an AIS from many other paradigms, it is useful to bear in mind
during the following analysis of the three application areas.

3.1 Anomaly Detection

Anomaly detection has been an area of application that has found favor with the
AIS practitioner. Such techniques are required to decide whether an unknown test
sample is produced by the underlying probability distribution that corresponds to
the training set of normal examples. Typically, only a single class is available on
which to train the system. The goal of these immune inspired system was to take
examples from one class (usually what was considered to be normal operational
data) and generate a set of detectors that was capable of identifying when the nor-
mal or known system had changed, thus indicating a possible intrusion.

The early pioneering work of Forrest et al [21] led to a great deal of research and
proposal of immune inspired anomaly detection systems [20]. Results reported in
these works, did hint at the possibility that the immune approach was useful to
some degree as both known and novel intrusions could be detected. This was ex-
tended by work of [31], who combined the clonal selection algorithm with a nega-
tive selection algorithm to help reduce the false positive rates. The interest of this
immune approach was in part, due to the fact that it appeared possible to train a
system with only a single class of examples and the intuitive link between the role
of the natural immune system as the ”great protector” and the development of in-
trusion detection systems. Notable work in [8] proposed the r-chunk matching rule
which was to replace the computational expensive r-contiguous bits matching rule
that had dogged the approaches to date. The r-chunk rule made it computation-
ally more efficient to generate a set of detectors of the non-self space (in hamming
shape space) and later computationally more efficient methods were developed in
real-valued shape space [25,29], again based on only a single class of examples. This
potentially made the use of the immune approach more attractive, as the main is-
sue that had been raised to date was one of scalability with respect to the size of
the normal data.

Recent work in [19], proposed a formal framework for the negative selection
approach, and when one examines this work, it is possible to see hints that the
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r-chunk may well suffer certain scaling problems. Indeed, this has now been con-
firmed by [39,40] who present an in-depth theoretical analysis of the negative se-
lection algorithm over real and hamming shape spaces. The investigations reveal
that defined over the hamming shape-space, the approach is not well suited for
real-world anomaly detection problems. Problems arise with the generated detec-
tor set which under-fits exponentially for small values of r (where r is the size of the
chunk. They suggest that in order avoid this under-fitting behavior, the matching
threshold value r must lie near l (the length of the string). However, they point out
that this has a consequence. This is that the detector generation process is once
again infeasible, since all proposed detector generating algorithms have a runtime
complexity which is exponential in r. In addition to their theoretical arguments,
they undertook a simple study of comparison between the negative selection ap-
proaches on a one-class support vector machine (SVM) [34]. When comparing the
work of [29], (the real-valued negative selection algorithm with variable-sized de-
tectors) results revealed, that the classificationperformance of themethodnot only
crucially depended on the size of the variable region, but results from the one-class
SVM provides as good, if not better results. In addition, they noted that in order
to tune the parameters of the system by [29] it was necessary to have the second
class, as the probability distribution of this class impacted a great deal on the over-
all performance of the system.

So, from a ”value added” perspective, at present it is not clear from the litera-
ture that the immune approach offers anything. It is necessary to use two classes
of data to train and tune the system, a high false positive rate seems to blight sys-
tems and the computational complexity of generating detectors seems prohibitive
in large dimensional data sets. In order to overcome some of these shortfalls, work
proposed in [6] and later expanded on in [7] proposes the adoption of the danger
theory approach. The authors claim that it should be possible to move away from
the need to define what is normal for a system, and dynamically identify normal
through the adoption of danger signals and context dependent responses, however
these ideas have yet to be proven in practice. Therefore, despite that the fact that
at first glance, anomaly detection does appear to map to many of the features in
the list given at the start of this section; i.e the problems are often distributed in
nature, require feature extraction, recognition, memory and continuous learning,
immunology has not yet provided all the answers.

3.2 Optimisation

A number of publications relate to to function optimisation problems, often declar-
ing some success when compared against other state-of-the-art algorithms. The
majority of these publications are based on the application of the clonal selection
principle, resulting in a number of algorithms such as Clonalg algorithm [17], opt-
AINET [18] and the B-Cell algorithm [42]. Thus, for example, [11] applies Clonalg
with a variety of modified hyper-mutation operators to solving static ‘trap func-
tions” — complex but toy problems often used in evolutionary algorithm trap in-
vestigations, and [42] compare versions of opt-AINET and the B-Cell algorithm to
a variety of optimisation functions of various dimensions found in the literature.
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All of these algorithms essentially evolve solutions to problems via repeated
application of a cloning, mutation and selection cycle to a population of candidate
solutions (B Cells). A single antigen represents some function to be optimised, and
good solutions are allowed to remain in the population, mimicking the memory
cell mechanisms believed to exists in the natural immune system. The authors of
optAINET state that it is characterised by the following features; it performs ex-
ploitation and exploration of the search space, it can determine the locations of
multiple optima, it maintains many optimal solutions, and has defined stopping
criteria. The main differences between this and Clonalg or the B-Cell algorithm
lie in whether or not they maintain a static or adaptive population size, whether
or not they include elitist mechanisms and in type of mutation operators they use.
Anyone familiar with the EA literaturewill recognise all of these features as equally
applicable to an EA, and even the differences between the immune algorithms are
recognisable as differences between the various flavours of EA. We further con-
jecture that the only two features of Dasgupta’s list that recommended immune-
algorithms as a mechanism for performing function optimisation are that the algo-
rithms require a diversity mechanism and a memory mechanism — however, these
features are common components of many other algorithms. Therefore, we con-
jecture that there is no added value in applying an immune algorithm to static
function optimisation problems. Admittedly, the B-Cell algorithm described has
been found to use significantly fewer evaluations than a hybrid GA on some prob-
lems [42], however, we hypothesise that static function optimisation will not prove
to be the Holy Grail of immune algorithms. Similar arguments apply to the use
of AIS in Combinatorial Optimisation Problems. Thus, although AIS algorithms
have provided superior results on benchmark job-shop scheduling problems when
compared to other state-of-the art optimisation algorithms such as GRASP, these
are again static problems, in which there is no obvious benefit to be gained from
applying an AIS.

Perhaps a more obvious optimisation area is that of dynamic function optimi-
sation. In these problems, the goal is to find and track a continuouslymoving target
— this at least fits better with the view of the immune system as a dynamic, and
continuously adapting system. Gaspar and Collard [23] used a network-based AIS
to perform dynamic function optimisation. Walker et al [45] have applied a version
of Clonalg to a number of dynamic optimisation problems which they compare to
an evolutionary strategy and find that generally an evolutionary strategy can op-
timise more quickly than the clonal selection algorithm. Recently, Kelsey et al [30]
have adapted the B-Cell algorithm to perform dynamic optimisation, and found
that the fast adaptable nature of the algorithm enabled the tracking of multiple
moving optima. Although there is little other work in this area, we also hypothe-
sise that continuing research effort will reveal little of value; the immune system is
not a natural model for extracting metaphors to perform optimisation.

There is perhaps a caveat to the above statements. We are aware of work by
Clark et al who have produced a theoretical analysis of the B-Cell algorithm dis-
cussed above. We believe this paper is in review for ICARIS 2005. This work pro-
vides a complete and exact model of the B-cell algorithm with a proof of conver-
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gence. In addition, from their model, it would appear that it is possible to locate
the optimum mutation rate for a given function. In addition, work by [44] provides
a complete proof for their multi-objective immune inspired algorithm. Thus, as
there have been no convincing theoretical analyses that enable performance pre-
diction in the EA world, there is perhaps value in applying a properly understood
algorithm to a problem, regardless of the nature of the problem.

3.3 Clustering and Classification

Immune-based algorithms which perform clustering make up a large number of
the application areas shown in figure 1. These range from supervised algorithms
such as AIRS [46] and Carter, to aiNET [18] and algorithms based on idiotypic
network models such as those of Neal and Timmis [33]. However, as already stated,
the application areas to which these models are to clustering or classifying static
data sets, where comparable or improved performance is achieved on many data-
sets, when compared to traditional algorithms. Classification/clustering require
feature extraction, recognition and learning — key features of the AIS — however,
we conjecture that these are also key features of any machine-learning algorithms,
and that there are no unique features of the problem domain that indicate an AIS
based algorithm can offer anything over and above the more traditional machine
learning algorithms. One potential distinguishing feature of the IS which has been
exploited in classification is its distributed nature, which is used to advantage by
Watkins [46] in a parallel version of AIRS.

A more promising application area for AIS may lie in the area of dynamic clus-
tering or classification. Advances in technology now make it incredibly straightfor-
ward for huge amounts of data to be collected and stored cheaply and easily, and
hence many companies and researchers now routinely collect data on a daily or
even hourly basis. By tracking patterns and trends in the data, companies may be
able to gain a competitive advantage. There are some existing learning algorithms
which can cluster dynamic data — however, in an era of ever increasing computa-
tional processing power coupled with continually decreasing costs, it is pertinent
to question why dynamic algorithms need even to be considered for time-varying
problems. It is trivial for example to re-apply established “static” algorithms at
each time-instant in a dynamic problem to the data in-hand; however, this type of
approach totally disregards any information captured in either the current infor-
mation or in previous time-series, thereforemay miss vital clues. Therefore,we pro-
pose that AIS algorithms by definition, incorporate some form of memory, and can
therefore outperform other state-of-the-art learning systems which are purely re-
active. Most learning systems have very limited memory and hence no mechanism
to balance the need to keep a record of currently under-used knowledge acquired
in the past against the need to store newly-acquired knowledge that is valuable in
the current climate.

Note that there is some existing, although limited, work in this area. Neals al-
gorithm [33] is meta-stable in that it can in theory be continuously applied to a
data-set. The work of Hart [26] models a self-organising system which is able to dy-
namically cluster moving data, whilst maintaining some memory of the past, but
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has only been tested with artificial data-sets. Work by Secker et al [35] developed
a dynamic supervised learning algorithm for the filter of emails, and work by Kim
and Bentley [31] a dynamic classification algorithm for use in intrusion detection.

4 A New Approach to AIS

The above discussion has shed a rather gloomy light on future ofAIS in solving real-
world applications. Perhaps this is a suitable point to take a step backwards and
first re-evaluate our approach to designing AIS algorithms, as well as attempting
to define what kind of applications they may be suitable for. With this in mind, we
take brief look at both sides of the coin and take first an algorithm-oriented and
then a problem-oriented view of the situation.

4.1 A Conceptual Framework for Algorithm Development

Work by Stepney el. al [38] proposes a conceptual framework that allows for the
development of more biologically grounded AIS, through the adoption of an inter-
disciplinary approach. Metaphors employed have typically been simple, but some-
what effective. However, as proposed in [38], through greater interaction between
computer scientists, engineers, biologists and mathematicians, better insights into
the workings of the immune system, and the applicability (or otherwise) of the AIS
paradigm will be gained. These interactions should be rooted in a sound methodol-
ogy in order to fully exploit the synergy.The basic outline of the approachproposed
by Stepney et al. is to first probe the biological system in question.When one probes
such a system, one has to bear in mind what it is you want to extract or observe.
For example, you may be interested in initiation of danger signals, so one would
undertake experimentation to observe that. This process is then followed by the
development of suitable mathematical models. Properties of the system can then
be modelled at a mathematical level, which allows for possible insights into the bi-
ological model that are not possible with ”wet lab” experiments. From this, it is
thenpossible to construct a computationmodel, based on themathematicalmodel.
The creation of the computational model allows for the execution of the model, to
observe and gain insight into the workings of the model. This model can then more
easily be abstracted into an algorithm, or set of algorithms for deployment in an
application area. Clearly, this is an iterative process, that allows for a great deal
of interaction between all stages. Arising from this may be various computational
frameworks that are suitable for instantiation into applications.

Stepney et al then go onto propose that once such frameworks are developed,
it is possible to ask suitably posed meta-questions about the framework, that may
give attention to interesting properties. The questions are concernedwith openness
(e.g. how much continual growth or development is requiredwithin the system), di-
versity (e.g howmanyagents are required), interaction (e.g. level of communication
between agents), structure (e.g are the different levels required between agents)
and scale (e.g how many agents are required). These are known as the ODISS ques-
tions. The potential benefit of adopting this approach is clear not only do all dis-
ciplines benefit from such work, but the immune algorithms developed at the end
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of the process will, all being well, be more grounded in the immunology than the
simple observe, implement approach so dominant in the AIS literature today.

4.2 A Problem Oriented Perspective

Freitas and Timmis [22] outline the need to consider carefully the application do-
main when developing AIS. They review the role AIS have played in the develop-
ment of a number of machine learning tasks, including that of classification. How-
ever, Freitas and Timmis point out that there is a lack of appreciation for possible
inductive bias within algorithms and positional bias within the choice of represen-
tation and affinity measures. Indeed, this observation is reinforced by the work of
Hart and Ross [27] with the development of their simple immune network simula-
tor with various affinity metrics. They make the argument that seemingly generic
AIS algorithms, are maybe not so generic after all, and each has to be tailored to
specific application areas. This may be facilitated by the development of more the-
oretical aspects of AIS, which will help us to understand how, when and where to
apply various AIS techniques.

It should be noted that there have been some previous attempts at providing
design principles for immune systems, such as work by Segal et al. [36], Bersini
and Varela [10] and Somayaji et al [37] (which was specifically focussed on design
of computer immune systems). However, work by Segal, whilst extremely interest-
ing, focussed primarily on network signalling, and did not provide a comprehensive
set of general design principles, or provide any test application areas for those prin-
ciples. Work by Bersini, focussed on the immune network and self assertion ideas of
the immune system to create his design principles and whilst being more concrete,
are still quite high level. We assert that these potentially useful principles need to
be tested in various application areas, and refined to allow for the creation of not
only a generic set of AIS design principles that are useful to the community, but
also specific ones for specific application areas. With this, may come a better un-
derstanding of how to apply AIS, and not fall into the traps highlighted by Freitas
and Timmis.

5 Suggestions as to the Way Forward

We have outlined what we believe to be the problems with the current applica-
tions to which AIS has been applied, from the perspective that although reason-
ably successful on a narrow range of problems, they do not add sufficient value
over and above that which is offered by other paradigms to make them anything
other than another tool in the engineers application tool-box. Although from some
points of view, any tool is a worthwhile addition, we believe there is still a wealth
of unexploited potential in the AIS domain. Adopting the methodology and prob-
lem oriented perspectives outlined above rather than the scatter gun approaches
taken to date will surely help us tap into this potential. However, there are some
crucial missing ingredients in our current perspectives in AIS that limit our cur-
rent progress. Here we suggest three of the areas that we feel will play some part in
defining the future of AIS — note that there will of course be several others.
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The Innate Immune System. The natural immune system is known to comprise of
two sub-systems, working in tandem with each other; the innate immune system,
and the adaptive immune system. Almost without exception, the AIS community
has chosen to model the adaptive immune system. This may partially reflect the
historical interest in the adaptive immune system in the immunological commu-
nity, which over a period of years, dismissed the innate system as the minor part-
ner in the functioning of the immune system. Recently however there has been a
resurgence of interest in the innate immune system in immunological circles — wit-
ness for example the work described in [24], and the influence it may have on the
adaptive system. Directing some attention therefore towards understanding and
modelling the innate system maybe prove fruitful in producing better immune-
models. For example, we may choose to focus on a certain aspect such as signalling
mechanisms within the innate immune system and apply the conceptual frame-
work model to abstract useful mechanisms based on this.

Strikingly, one of the key problems identified in section 3 with optimisation
and clustering applications is that immune algorithms are applied to static sys-
tems without any justification. Yet, the inspiration behind the algorithms applied
to such systems is the adaptive immune system, where we model clonal selection
and learning on relatively fast time-scales. Perhaps such applications areas should
be re-evaluated in the light of what we can learn from modelling the innate immune
system. Many creatures, e.g. the nematode worm have only an innate immune sys-
tem and yet function perfectly well — perhaps in many cases we have been too am-
bitious by trying to model the complete immune system and could achieve equally
impressive results by abstracting mechanisms from a more simplistic yet still in-
credible system.

The immune system does not operate in isolation. Living organisms show a re-
markable ability to maintain homeostasis, that is, achieve a steady-state of internal
body function in a varying environment. This is precisely what we wish to achieve
in many practical anomaly detection systems, for example in maintaining a secure
computing environment. In nature, this is made possible via the —em interaction
of both a number of systems, for including the immune system, neural system and
endocrine system, and via multiple components within each of these systems. Any
one of these systems cannot and does not operate in isolation — this suggests that
perhaps the true potential of modelling immune systems might only be achieved
via combining them with other sub-systems. This is clearly an exciting new area of
research to which attention should be paid. There has been some exploratory work
in this area — [43] — yet much remains unknown. Furthermore, the fact that the
immune system does not act in isolation gives us yet another important pointer;
the immune system must be embodied. This fact has been acknowledged in robotic
research for a long time, where it is well known that “there can be no intelligence
without embodiment”, however it is largely ignored in AIS research.

Life-long learning. Although many application papers allude to this aspect of the
immune system in their introductory text, few systems have really attempted to
capture this feature of the IS, and those that have exhibit only a weak version of
this. For instance, some optimisation and clustering algorithms have been applied
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in dynamic environments. However, there has been no published work on problems
which naturally require a system to improve its own performance over the course of
a life-time, as a result of its own experience. As this feature of the IS clearly distin-
guishes it from most other biologically inspired paradigms such as EAs or neural-
nets which produce a fixed solution (or solutions) to a problem and then terminate,
choice of application areas should focus on those problems which naturally require
continuous learning.

6 Conclusions: Features of AIS Applications

We summarise by proposing a list of features that draw together some of the pre-
ceding discussion and that we believe point to the way forward for AIS. Some of
these features are currently absent in any of the AIS literature. Others, such as life-
long learning, have been modelled in a limited sense. We emphasise that it is by the
combination of these principles that a distinctive niche is carved for AIS.

1. They will exhibit homeostasis
2. They will benefit from interactions between innate and adaptive immune

models
3. They will consists of multiple, interacting, communicating components
4. Components can be easily and naturally distributed
5. They will be required to perform life-long learning

An exciting example which represents a step forward in this direction is work
currently in progress at the University of Kent, which proposes a technique that
aims to prevent system down-timebydetecting states that are precursorsof system
failure in Automated Teller Machines (ATM). This is achieved through the devel-
opment of an immune inspired continuous learning approach for updating the set
of error detectors in a system. Unlike the typical anomaly detection techniques dis-
cussed in section 3.1, this technique relies on the existence of sequences of states
that represent the operational status of an ATM when errors are occurring (so not
when the ATM is operating within normal bounds). The adaptable error detection
process is able to identify those sequences that might contain fatal states and iden-
tify potential sequences that might lead to system failure. The system is embodied,
distributed, has multiple components and its purpose is to maintain homeostasis
in a distributed ATM network, therefore must exhibit life-long learning, and there-
fore exactly encapsulates the principles just outlined.

Acknowledgements. Many of the ideas in this paper have evolved from useful
and stimulating discussions at the ICARIS conferences with many people in the
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