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Abstract— One of the main advantages of the cloud computing
paradigm is that it simplifies the time-consuming processes
of hardware provisioning, hardware purchasing and software
deployment. Currently, we are witnessing a proliferation in the
number of cloud-hosted applications with a tremendous increase
in the scale of the data generated as well as being consumed by
such applications. Cloud-hosted database systems powering these
applications form a critical component in the software stack of
these applications. Service Level Agreements (SLA) represent the
contract which captures the agreed upon guarantees between a
service provider and its customers. The specifications of existing
service level agreements (SLA) for cloud services are not designed
to flexibly handle even relatively straightforward performance
and technical requirements of consumer applications. In this
article, we present a novel approach for SLA-based management
of cloud-hosted databases from the consumer perspective. We
present an end-to-end framework for consumer-centric SLA man-
agement of cloud-hosted databases. The framework facilitates
adaptive and dynamic provisioning of the database tier of the
software applications based on application-defined policies for
satisfying their own SLA performance requirements, avoiding
the cost of any SLA violation and controlling the monetary cost
of the allocated computing resources. In this framework, the
SLA of the consumer applications are declaratively defined in
terms of goals which are subjected to a number of constraints
that are specific to the application requirements. The framework
continuously monitors the application-defined SLA and auto-
matically triggers the execution of necessary corrective actions
(scaling out/in the database tier) when required. The framework
is database platform-agnostic, uses virtualization-based database
replication mechanisms and requires zero source code changes of
the cloud-hosted software applications. The experimental results
demonstrate the effectiveness of our SLA-based framework in
providing the consumer applications with the required flexibility
for achieving their SLA requirements.

Index Terms— Service Level Agreements (SLA), Cloud
Databases, NoSQL Systems, Database-as-a-Service.

I. INTRODUCTION

Cloud computing technology represents a new paradigm for
the provisioning of computing infrastructure. This paradigm
shifts the location of this infrastructure to the network to
reduce the costs associated with the management of hardware
and software resources. It represents the long-held dream of
envisioning computing as a utility [1] where the economy
of scale principles help to effectively drive down the cost
of computing infrastructure. Cloud computing simplifies the
time-consuming processes of hardware provisioning, hardware
purchasing and software deployment. Therefore, it promises a
number of advantages for the deployment of data-intensive

applications such as elasticity of resources, pay-per-use cost
model, low time to market, and the perception of (virtually)
unlimited resources and infinite scalability. Hence, it becomes
possible, at least theoretically, to achieve unlimited throughput
by continuously adding computing resources (e.g. database
servers) if the workload increases.

In practice, the advantages of the cloud computing paradigm
opens up new avenues for deploying novel applications which
were not economically feasible in a traditional enterprise
infrastructure setting. Therefore, the cloud has become an
increasingly popular platform for hosting software applications
in a variety of domains such as e-retail, finance, news and
social networking. Thus, we are witnessing a proliferation in
the number of applications with a tremendous increase in the
scale of the data generated as well as being consumed by such
applications. Cloud-hosted database systems powering these
applications form a critical component in the software stack
of these applications.

Cloud computing is by its nature a fast changing environ-
ment which is designed to provide services to unpredictably
diverse sets of clients and heterogenous workloads. Several
studies have also reported that the variation of the performance
of cloud computing resources is high [2], [3]. These char-
acteristics raise serious concerns from the cloud consumers’
perspective regarding the manner in which the SLA of their
application can be managed. According to a Gartner market
report released in November 2010, SaaS is forecast to have
a 15.8% growth rate through 2014 which makes SaaS and
cloud very interesting to the services industry, but the viability
of the business models depends on the practicality and the
success of the terms and conditions (SLAs) being offered by
the service provider(s) in addition to their satisfaction to the
service consumers. Therefore, successful SLA management
is a critical factor to be considered by both providers and
consumers alike. Existing service level agreements (SLAs) of
cloud providers are not designed for supporting the straight-
forward requirements and restrictions under which SLA of
consumers’ applications need to be handled. Particularly, most
providers guarantee only the availability (but not the perfor-
mance) of their services [4]. Therefore, consumer concerns
on SLA handling for their cloud-hosted databases along with
the limitations of existing SLA frameworks to express and
enforce SLA requirements in an automated manner creates the
need for SLA-based management techniques for cloud-hosted
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databases. In this article, we present a novel approach for
SLA-based management of cloud-hosted databases from the
consumer perspective. In particular, we summarize the main
contributions of this article as follows:
• We present an overview of the different options of hosting

the database tier of software applications in cloud envi-
ronments. In addition, we provide a detailed discussion
for the main challenges for managing and achieving the
SLA requirements of cloud-hosted database services.

• We present the design and implementation details of an
end-to-end framework that enables the cloud consumer
applications to declaratively define and manage their SLA
for the cloud-hosted database tiers in terms of goals
which are subjected to a number of constraints that are
specific to their application requirements. The presented
framework is database platform-agnostic and relies on
virtualization-based database replication mechanism.

• We present consumer-centric dynamic provisioning
mechanisms for cloud-hosted databases based on adaptive
application requirements for two significant SLA metrics,
namely, data freshness and transactions response times.

• We conduct an extensive set of experiments that demon-
strate the effectiveness of our framework in providing the
cloud consumer applications with the required flexibility
for achieving their SLA requirements of the cloud-hosted
databases.

To the best of our knowledge, our approach is the first
that tackles the problem of SLA management for cloud-hosted
databases from the perspective of the consumer applications.
The remainder of this article is structured as follows. Section II
provides an overview of the different options of deploying
the database tier of software applications on cloud platforms.
Section III discusses the main challenges of SLA Management
for cloud-hosted databases. Section IV presents an overview
of our framework architecture for consumer-centric SLA
management. The main challenges of database replication
management in cloud environments are discussed in Section V.
An experimental evaluation for the performance characteristics
of database replication in virtualized cloud environments is
presented in Section VI. Our mechanism for provisioning the
database tier based on the consumer-centric SLA metric of
data freshness is presented in Section VII and for the SLA
metric of the response times of application transactions is
presented in Section VIII. Section IX summarizes the related
work before we conclude the article in Section X.

II. OPTIONS OF HOSTING CLOUD DATABASES

Over the past decade, rapidly growing Internet-based ser-
vices such as e-mail, blogging, social networking, search and
e-commerce have substantially redefined the way consumers
communicate, access contents, share information and purchase
products. In principle, the main goal of cloud-based data
management systems is to facilitate the job of implement-
ing every application as a distributed, scalable and widely-
accessible service on the Web. In practice, there are three
different approaches for hosting the database tier of software
applications in cloud platforms, namely, the platform storage
services (NoSQL systems), the relational database as a service

(DaaS) and virtualized database servers. In the following
subsections, we discuss the capabilities and limitations of each
of these approaches.

A. The platform storage services

This approach relies on a new wave of storage platforms
named as key-value stores or NoSQL (Not Only SQL) sys-
tems. These systems are designed to achieve high throughput
and high availability by giving up some functionalities that
traditional database systems offer such as joins and ACID
transactions [5]. For example, most of the NoSQL systems
provide simple call level data access interfaces (in contrast to
a SQL binding) and rely on weaker consistency management
protocols (e.g. eventual consistency [6]). Commercial cloud
offerings of this approach include Amazon SimpleDB and
Microsoft Azure Table Storage. In addition, there is a large
number of open source projects that have been introduced
which follow the same principles of NoSQL systems [7]
such as HBase and Cassandra. In practice, migrating existing
software application that uses relational database to NoSQL
offerings would require substantial changes in the software
code due to the differences in the data model, query interface
and transaction management support. In addition, developing
applications on top of an eventually consistent NoSQL datas-
tore requires a higher effort compared to traditional databases
because they hinder important factors such as data indepen-
dence, reliable transactions, and other cornerstone characteris-
tics often required by applications that are fundamental to the
database industry [8], [9]. In practice, the majority of today’s
platform storage systems are more more suitable for OLAP
applications than for OLTP applications [10].

B. Relational Database as a Service (DaaS)

In this approach, a third party service provider hosts a
relational database as a service [11]. Such services alleviate
the need for their users to purchase expensive hardware and
software, deal with software upgrades and hire professionals
for administrative and maintenance tasks. Cloud offerings of
this approach include Amazon RDS and Microsoft SQL Azure.
For example, Amazon RDS provides access to the capabilities
of MySQL or Oracle database while Microsoft SQL Azure
has been built on Microsoft SQL Server technologies. As
such, users of these services can leverage the capabilities of
traditional relational database systems such as creating, ac-
cessing and manipulating tables, views, indexes, roles, stored
procedures, triggers and functions. It can also execute complex
queries and joins across multiple tables. The migration of
the database tier of any software application to a relational
database service is supposed to require minimal effort if the
underlying RDBMS of the existing software application is
compatible with the offered service. However, many relational
database systems are, as yet, not supported by the DaaS
paradigm (e.g. DB2, Postgres). In addition, some limitations
or restrictions might be introduced by the service provider
for different reasons1. Moreover, the consumer applications
do not have sufficient flexibility in controlling the allocated

1http://msdn.microsoft.com/en-us/library/windowsazure/ee336245.aspx
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resources of their applications (e.g. dynamically allocating
more resources for dealing with increasing workload or dy-
namically reducing the allocated resources in order to reduce
the operational cost). The whole resource management and
allocation process is controlled at the provider side which
limits the ability of the consumer applications to maximize
their benefits from the elasticity and scalability features of the
cloud environment.
C. Virtualized Database Server

Virtualization is a key technology of the cloud computing
paradigm. Virtual machine technologies are increasingly being
used to improve the manageability of software systems and
lower their total cost of ownership. They allow resources to
be allocated to different applications on demand and hide
the complexity of resource sharing from cloud users by
providing a powerful abstraction for application and resource
provisioning. In particular, resource virtualization technologies
add a flexible and programmable layer of software between
applications and the resources used by these applications.
The virtualized database server approach takes an existing
application that has been designed to be used in a conventional
data center, and then port it to virtual machines in the
public cloud. Such migration process usually requires minimal
changes in the architecture or the code of the deployed
application. In this approach, database servers, like any other
software components, are migrated to run in virtual machines.
Our work presented in this article belongs to this approach.
In principle, one of the major advantages of the virtualized
database server approach is that the application can have full
control in dynamically allocating and configuring the physical
resources of the database tier (database servers) as needed [12],
[13], [14]. Hence, software applications can fully utilize the
elasticity feature of the cloud environment to achieve their
defined and customized scalability or cost reduction goals.
However, achieving these goals requires the existence of an
admission control component which is responsible for moni-
toring the system state and taking the corresponding actions
(e.g. allocating more/less computing resources) according to
the defined application requirements and strategies. Several
approaches have been proposed for building admission control
components which are based on the efficiency of utilization of
the allocated resources [13], [14]. In our approach, we focus
on building an SLA-based admission control component as a
more practical and consumer-centric view for achieving the
requirements of their applications.

III. CHALLENGES OF SLA MANAGEMENT FOR
CLOUD-HOSTED DATABASES

An SLA is a contract between a service provider and
its customers. Service Level Agreements (SLAs) capture the
agreed upon guarantees between a service provider and its
customer. They define the characteristics of the provided ser-
vice including service level objectives (SLOs) (e.g. maximum
response times, minimum throughput rates, data freshness) and
define penalties if these objectives are not met by the service
provider. In general, SLA management is a common general
problem for the different types of software systems which are
hosted in cloud environments for different reasons such as

Cloud Service 
Provides 

(CSP) 

Cloud 
ConsumersEnd Users

I-SLAA-SLA

e.g. Amazon , Microsoft, 
Google, Rackspace

e.g. Software-as-a-Service (SaaS)

Cloud-hosted software applications

Fig. 1: SLA Parties in Cloud Environments

the unpredictable and bursty workloads from various users in
addition to the performance variability in the underlying cloud
resources. In particular, there are three typical parties in the
cloud. To keep a consistent terminology through out the rest
of the article, these parties are defined as follows:
• Cloud Service Providers (CSP): They offer client-

provisioned and metered computing resources (e.g.
CPU, storage, memory, network) that can be rented
for flexible time durations. In particular, they include:
Infrastructure-as-a-Service providers (IaaS), Platform-as-
a-Service providers (PaaS) and Database-as-a-Service
(DaaS). Examples are: Amazon, Microsoft and Google.

• Cloud Consumers: They represent the cloud-hosted soft-
ware applications that utilize the services of CSP and are
financially responsible for their resource consumptions.

• End Users: They represent the legitimate users for the ser-
vices (applications) that are offered by cloud consumers.

While cloud service providers charge cloud consumers for
renting computing resources to deploy their applications, cloud
consumers may charge their end users for processing their
workloads (e.g. SaaS) or may process the user requests for free
(cloud-hosted business application). In both cases, the cloud
consumers need to guarantee their users’ SLA. Penalties are
applied in the case of SaaS and reputation loss is incurred in
the case of cloud-hosted business applications. For example,
Amazon found that every 100ms of latency costs them 1% in
sales and Google found that an extra 500ms in search page
generation time dropped traffic by 20%2. In addition, large
enterprise web applications (e.g., eBay and Facebook) need
to provide high assurances in terms of SLA metrics such as
response times and service availability to their users. Without
such assurances, service providers of these applications stand
to lose their user base, and hence their revenues.

In practice, resource management and SLA guarantee falls
into two layers: the cloud service providers and the cloud
consumers. In particular, the cloud service provider is re-
sponsible for the efficient utilization of the physical resources
and guarantee their availability for their customers (cloud
consumers). The cloud consumers are responsible for the
efficient utilization of their allocated resources in order to
satisfy the SLA of their customers (end users) and achieve
their business goals. Therefore, we distinguish between two
types of service level agreements (SLAs):

1) Cloud Infrastructure SLA (I-SLA): These SLA are offered
by cloud providers to cloud consumers to assure the
quality levels of their cloud computing resources (e.g.,

2http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
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server performance, network speed, resources availability,
storage capacity).

2) Cloud-hosted Application SLA (A-SLA): These guarantees
relate to the levels of quality for the software applications
which are deployed on a cloud infrastructure. In particu-
lar, cloud consumers often offer such guarantees to their
application’s end users in order to assure the quality of
services that are offered such as the application’s response
time and data freshness.

Figure 1 illustrates the relationship between I-SLA and
A-SLA in the software stack of cloud-hosted applications.
In practice, traditional cloud monitoring technologies (e.g.
Amazon CloudWatch focus on low-level computing resources
(e.g. CPU speed, CPU utilization, disk speed). In principle,
translating the SLAs of applications’ transactions to the thresh-
olds of utilization for low-level computing resources is a very
challenging task and is usually done in an ad-hoc manner due
to the complexity and dynamism inherent in the interaction
between the different tiers and components of the system. In
particular, meeting SLAs which are agreed with end-users by
consumer applications of cloud resources using the traditional
techniques for resource provisioning is a very challenging task
due to many reasons such as:
• Highly dynamic workload: An application service can be

used by large numbers of end-users and highly variable
load spikes in demand can occur depending on the day
and the time of year, and the popularity of the appli-
cation. In addition, the characteristic of workload could
vary significantly from one application type to another
and possible fluctuations on the workload characteristics
which could be of several orders of magnitude on the
same business day may occur [15]. Therefore, predicting
the workload behavior (e.g. arrival pattern, I/O behav-
ior, service time distribution) and consequently accurate
planning of the computing resource requirements are very
challenging tasks.

• Performance variability of cloud resources: Several stud-
ies have reported that the variation of the performance
of cloud computing resources is high [2], [3]. As a
result, currently, cloud service providers do not provide
adequate SLAs for their service offerings. Particularly,
most providers guarantee only the availability (but not
the performance) of their services [1], [16].

• Uncertain behavior: one complexity that arises with the
virtualization technology is that it becomes harder to pro-
vide performance guarantees and to reason about a partic-
ular application’s performance because the performance
of an application hosted on a virtual machine becomes a
function of applications running in other virtual machines
hosted on the same physical machine. In addition, it
may be challenging to harness the full performance of
the underlying hardware, given the additional layers of
indirection in virtualized resource management [17].

In practice, it is a very challenging goal to delegate the
management of the SLA requirements of the consumer ap-
plications to the side of the cloud service provider due to
the wide heterogeneity in the workload characteristics, details
and granularity of SLA requirements, and cost management

objectives of the very large number of consumer applications
(tenants) that can be simultaneously running in a cloud envi-
ronment. Therefore, it becomes a significant issue for the cloud
consumers to be able to monitor and adjust the deployment
of their systems if they intend to offer viable service level
agreements (SLAs) to their customers (end users) [12]. Failing
to achieve these goals will jeopardize the sustainable growth
of cloud computing in the future and may result in valuable
applications move away from the cloud. In the following sec-
tions, we present our consumer-centric approach for managing
the SLA requirements of cloud-hosted databases.

IV. FRAMEWORK ARCHITECTURE

In this section, we present an overview of our consumer-
centric framework that enables the cloud consumer applica-
tions to declaratively define and manage their SLA for the
cloud-hosted database tiers in terms of goals which are sub-
jected to a number of constraints that are specific to their appli-
cation requirements. The framework also enables the consumer
applications to declaratively define a set of application-specific
rules (action rules) where the admission control component of
the database tier needs to take corresponding actions in order
to meet the expected system performance or to reduce the cost
of the allocated cloud resources when they are not efficiently
utilized. The framework continuously monitors the database
workload, tracks the satisfaction of the application-defined
SLA, evaluates the condition of the action rules and takes
the necessary actions when required. The design principles of
our framework architecture are to be application-independent
and to require no code modification on the consumer software
applications that the framework will support. In addition,
the framework is database platform-agnostic and relies on
virtualization-based database replication mechanism. In or-
der to achieve these goals, we rely on a database proxying
mechanism which provides the ability to forward database
requests to the underlying databases using an intermediate
piece of software, the proxy, and to return the results from
those request transparently to the client program without the
need of having any database drivers installed. In particular, a
database proxy software is a simple program that sits between
the client application and the database server that can monitor,
analyze or transform their communications. Such flexibility
allows for a wide variety of uses such as load balancing, query
analysis and query filtering.

In general, there exist many forms of SLAs with different
metrics. In this article, we focus on the following two main
consumer-centric SLA metrics:
• Data freshness: which represents the tolerated window of

data staleness for each database replica. In other words, it
represents the time between a committed update operation
on the master database and the time when the operation
is propagated and committed to the database replica
(Section VII).

• Transaction response time: which represents the time
between a transaction is presented to the database system
and the time when the transaction execution is completed
(Section VIII).

Figure 2 shows an overview of our framework architecture
which consists of three main modules: the monitor module, the



5

Action 

Module

Load balancer actions

Database actions

...

Control

Module

Replication delay control

Response time control

...

Fe
ed

Monitor 

Module

Replication delay monitor

Response time monitor

...

Tr
ig
ge
r

Slave1

Slave...

Slavek

Database

Proxy

Master

Configurations

Application

Define

Fig. 2: Framework Architecture

control module and the action module. In this architecture,
the consumer application is only responsible of configuring
the control module of the framework by declaratively defining
(using an XML dialect) the specifications of the SLA metrics
of their application. In addition, the consumer application
declaratively defines (using another XML dialect) a set of
rules that specify the actions that should be taken (when a
set of conditions are satisfied) in order to meet the expected
system performance or to reduce the cost of the allocated
cloud resources when they are not efficiently utilized. More
details and examples about the declarative definitions of the
application-specific SLA metrics and action rules will be
presented in Section VII and Section VIII. The control mod-
ule also maintains the information about the configurations
of the load balancer (e.g. proxy address, proxy script), the
access information of each database replica (e.g. host address,
port number) and the location information of each database
replica (e.g. us-east, us-west, eu-west). On the runtime, the
monitor module is responsible of continuously tracking the
application-defined SLAs and feeding the control module with
the collected information. The control module is responsible
for continuously checking the monitored SLA values against
their associated application-defined SLAs and triggers the
action module to scale out/in the database according to the
application-defined action rules.

In general, dynamic provisioning at the database-tier in-
volves increasing or decreasing the number of database servers
allocated to an application in response to workload changes.
Data replication is a well-known strategy to achieve the
availability, scalability and performance improvement goals in
the data management world. In particular, when the application
load increases and the database tier becomes the bottleneck
in the stack of the software application, there are two main
options for achieving scalability at the database tier to enable
the application to cope with more client requests:

1) Scaling up (Vertical scalability): which aims at allocating
a bigger machine with more horsepower (e.g. more pro-
cessors, memory, bandwidth) to act as a database server.

2) Scaling out (Horizontal scalability): which aims at repli-
cating the data across more machines.

In practice, the scaling up option has the main drawback
that large machines are often very expensive and eventually

a physical limit is reached where a more powerful machine
cannot be purchased at any cost. Alternatively, it is both
extensible and economical, especially in a dynamic workload
environment, to scale out by adding another commodity server
which fits well with the pay-as-you-go pricing philosophy of
cloud computing. In addition, the scale out mechanism is more
adequate for achieving the elasticity benefit of cloud platforms
by facilitating the process of horizontally adding or removing
(in case of scaling in), as necessary, computing resources
according to the application workload and requirements.

In database replication, there are two main replication strate-
gies: master-slave and multi-master. In master-slave, updates
are sent to a single master node and lazily replicated to
slave nodes. Data on slave nodes might be stale and it is the
responsibility of the application to check for data freshness
when accessing a slave node. Multi-master replication enforces
a serializable execution order of transactions between all
replicas so that each of them applies update transactions in the
same order. This way, any replica can serve any read or write
request. Our framework mainly considers the master-slave
architecture as it is the most common architecture employed
by most web applications in the cloud environment. For the
sake of simplicity of achieving the consistency goal among
the database replicas and reducing the effect of network
communication latency, we employ the ROWA (read-once-
write-all) protocol on the Master copy [18]. However, our
framework can be easily extended to support the multi-master
replication strategy as well.

In general, provisioning of a new database replica involves
extracting database content from an existing replica and copy-
ing that content to a new replica. In practice, the time taken
to execute these operations mainly depends on the database
size. To provision database replicas in a timely fashion, it is
necessary to periodically snapshot the database state in order
to minimize the database extraction and copying time to that
of only the snapshot synchronization time. Clearly, there is a
tradeoff between the time to snapshot the database, the size of
the transactional log and the amount of update transactions
in the workload. In our framework this trade-off can be
controlled by application-defined parameters. This tradeoff
can be further optimized by applying recently proposed live
database migration techniques [19], [20].

V. DATABASE REPLICATION IN THE CLOUD

The CAP theorem [21] shows that a shared-data system can
only choose at most two out of three properties: Consistency
(all records are the same in all replicas), Availability (all repli-
cas can accept updates or inserts), and tolerance to Partitions
(the system still functions when distributed replicas cannot
talk to each other). In practice, it is highly important for
cloud-based applications to be always available and accept
update requests of data and at the same time cannot block
the updates even while they read the same data for scalability
reasons. Therefore, when data is replicated over a wide area,
this essentially leaves just consistency and availability for a
system to choose between. Thus, the C (consistency) part
of CAP is typically compromised to yield reasonable system
availability [10]. Hence, most of the cloud data management
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overcome the difficulties of distributed replication by relaxing
the consistency guarantees of the system. In particular, they
implement various forms of weaker consistency models (e.g.
eventual consistency [6]) so that all replicas do not have to
agree on the same value of a data item at every moment of
time. In particular, the eventual consistency policy guarantees
that if no new updates are made to the object, eventually
all accesses will return the last updated value. If no failures
occur, the maximum size of the inconsistency window can be
determined based on factors such as communication delays,
the load on the system and the number of replicas involved in
the replication scheme.

Florescu and Kossmann [22] have argued that in the new
large scale web applications, the requirement to provide 100
percent read and write availability for all users has overshad-
owed the importance of the ACID paradigm as the gold stan-
dard for data consistency. In these applications, no user is ever
allowed to be blocked. Hence, while having strong consistency
mechanisms has been considered as a hard and expensive
constraint in traditional database management systems, it has
been turned into an optimization goal (that can be relaxed) in
cloud-based database systems.

Kraska et al. [23] have presented a mechanism that allows
software designers to define the consistency guarantees on the
data instead of at the transaction level. In addition, it allows
the ability to automatically switch consistency guarantees
at runtime. They described a dynamic consistency strategy,
called Consistency Rationing, to reduce the consistency re-
quirements when possible (i.e., the penalty cost is low) and
raise them when it matters (i.e., the penalty costs would
be too high). Keeton et al. [24] have proposed a similar
approach in a system called LazyBase that allows users to
trade off query performance and result freshness. LazyBase
breaks up metadata processing into a pipeline of ingestion,
transformation and query stages which can be parallelized to
improve performance and efficiency. LazyBase uses models
of transformation and query performance to determine how
to schedule transformation operations to meet users’ freshness
and performance goals, and to utilize resources efficiently.

While Consistency Rationing and LazyBase represent two
approaches for supporting adaptive consistency management
for cloud-hosted databases, they are more focused on the
perspective of cloud service provider. On the contrary, our
framework is more focused on the cloud consumer perspective.
In particular, it provides the cloud consumer (software appli-
cation) with flexible mechanisms for specifying and managing
the extent of inconsistencies that they can tolerate. In addition,
it allows the creation and monitoring of several replicas of the
database with different levels of freshness across the different
virtualized servers as we will show in a later section.

VI. PERFORMANCE EVALUATION OF DATABASE
REPLICATION ON VIRTUALIZED CLOUD ENVIRONMENTS

In this section, we present an experimental evaluation for
the performance characteristics of the master-slave database
replication strategy on virtualized database server in cloud
environments [25]. In particular, the main goals of the ex-
periments of this section are:

• To investigate the scalability characteristics of the master-
slave replication strategy with an increasing workload
and an increasing number of database replicas in a
virtualized cloud environment. In particular, we try to
identify what factors act as limits on achievable scale
in such deployments.

• To measure the average replication delay (window of
data staleness) that could exist with an increasing number
of database replicas and different configurations to the
geographical locations of the slave databases.

A. Experiment design
The Cloudstone benchmark3 has been designed as a per-

formance measurement tool for Web 2.0 applications. The
benchmark mimics a Web 2.0 social events calendar that
allows users to perform individual operations (e.g. browsing,
searching and creating events), as well as, social operations
(e.g. joining and tagging events)[26]. Unlike Web 1.0 applica-
tions, Web 2.0 applications behave differently on database in
many ways. One of the differences is on the write pattern. As
contents of Web 2.0 applications depend on user contributions
via blogs, photos, videos and tags. Therefore, more write
transactions are expected to be processed. Another difference
is on the tolerance with regards to data consistency. In general,
Web 2.0 applications are more acceptable to data staleness.
For example, it might not be a mission-critical goal for a
social network application (e.g. Facebook) to immediately
have a user’s new status available to his friends. However, a
consistency window of some seconds (or even some minutes)
would be still acceptable. Therefore, we believe that the design
and workload characteristics of the the Cloudstone benchmark
is more suitable for the purpose of our study rather than
other benchmarks such as TPC-W or RUBiS which are more
representing Web 1.0-like applications

The original software stack of Cloudstone consists of 3
components: web application, database, and load generator.
Throughout the benchmark, the load generator generates the
load against the web application which in turn makes use of
the database. The benchmark designs well for benchmarking
performance of each tier for Web 2.0 applications. However,
the original design of the benchmark makes it hard to push
the database performance to its performance limits which
limits its suitability for our experiments of focusing mainly
on the database tier of the software stack. In general, a
user’s operation which is sent by a load generator has to
be interpreted as database transactions in the web tier based
on a pre-defined business logic before bypassing the request
to the database tier. Thus the saturation on the web tier
usually happens earlier than the saturation on the database tier.
Therefore, we modified the design of the original software
stack by removing the web server tier. In particular, we re-
implemented the business logic of the application in a way
that a user’s operation can be processed directly at the database
tier without any intermediate interpretation at the web server
tier. Meanwhile, on top of our Cloudstone implementation, we
also implemented a connection pool (i.e. DBCP4) and a proxy

3http://radlab.cs.berkeley.edu/wiki/Projects/Cloudstone
4http://commons.apache.org/dbcp/
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(i.e. MySQL Connector/J5) components. The pool component
enables the application users to reuse the connections that
have been released by other users who have completed their
operations in order to save the overhead of creating a new
connection for each operation. The proxy component works as
a load balancer among the available database replicas where all
write operations are sent to the master while all read operations
are distributed among slaves.

Multiple MySQL replicas are deployed to compose the
database tier. For the purpose of monitoring replication delay
in MySQL, we have created a Heartbeats database and a
time/date function for each replica. The Heartbeats database,
synchronized in the format of SQL statement across replicas,
maintains a ’heartbeat’ table which records an id and a
timestamp in each row. A heartbeat plug-in for Cloudstone
is implemented to insert a new row with a global id and
a local time stamp to the master periodically during the
experiment. Once the insert query is replicated to slaves, every
slave re-executes the query by committing the global id and
its own local time stamp. The replication delay from the
master to slaves is then calculated as the difference of two
timestamps between the master and each slave. In practice,
there are two challenges with respect to achieving a fine-
grained measurement of replication delay: the resolution of the
time/date function and the clock synchronization between the
master and slaves. The time/date function offered by MySQL
has a resolution of a second which represents an unacceptable
solution because accurate measuring of the replication delay
requires a higher precision. We, therefore, implemented a user
defined time/date function with a microsecond resolution that
is based on a proposed solution to MySQL Bug #85236.
The clock synchronizations between the master and slaves are
maintained by NTP7 (Network Time Protocol) on Amazon
EC2. We set the NTP protocol to synchronize with multiple
time servers every second to have a better resolution.

With the customized Cloudstone8 and the heartbeat plug-
in, we are able to achieve our goal of measuring the end-
to-end database throughput and the replication delay. In par-
ticular, we defined two configurations with read/write ratios
of 50/50 and 80/20. We also defined three configurations of
the geographical locations based on Availability Zones (they
are distinct locations within a Region) and Regions (they are
separated into geographic areas or countries) as follows: same
zone where all slaves are deployed in the same Availability
Zone of a Region of the master database; different zones where
the slaves are in the same Region as the master database, but in
different Availability Zones; different regions where all slaves
are geographically distributed in a different Region from where
the master database is located. The workload and the number
of database replicas start with a small number and gradually
increase at a fixed step. Both numbers stop increasing if there
are no throughput gained.

5http://www.mysql.com/products/connector/
6http://bugs.mysql.com/bug.php?id=8523
7http://www.ntp.org/
8the source code of our Cloudstone customized implementation is available

on http://code.google.com/p/clouddb-replication/
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Fig. 3: Database replication on virtualized cloud servers.

B. Experiment setup

We conducted our replication experiments in Amazon
EC2 service with a three-layer implementation (Fig. 3). The
first layer is the Cloudstone benchmark which controls the
read/write ratio and the workload by separately adjusting the
number of read and write operations, and the number of
concurrent users. As a large number of concurrent users em-
ulated by the benchmark could be very resource-consuming,
the benchmark is deployed in a large instance to avoid any
overload on the application tier. The second layer includes the
master database that receives the write operations from the
benchmark and is responsible for propagating the writesets
to the slaves. The master database runs in a small instance
so that saturation can be expected to be observed early. Both
the master database server and the application benchmark are
deployed in us-east-1a location. The third layer is a group of
slaves which are responsible for processing read operations
and updating writesets. The number of slaves in a group
varies from one to the number where throughput limitation
is achieved. Several options for the deployment locations of
the slaves have been used, namely, the same zone as the
master in us-east-1a, a different zone in us-east-1b and four
possible different regions, ranging among us-west, eu-west, ap-
southeast and ap-northeast. All slaves run in small instances
for the same reason of provisioning the master instance.

Several sets of experiments have been implemented in order
to investigate the end-to-end throughput and the replication
delay. Each of these sets is designed to target a specific
configuration regarding the geographical locations of the slave
databases and the read/write ratio. Multiple runs are conducted
by compounding different workloads and numbers of slaves.
The benchmark is able to push the database system to a limit
where no more throughput can be obtained by increasing the
workload and the number of database replicas. Every run lasts
35 minutes, including 10-minute ramp-up, 20-minute steady
stage and 5-minute ramp down. Moreover, for each run, both
the master and slaves should start with a pre-loaded, fully-
synchronized database.

C. End-to-end throughput experiments

Fig. 4 and Fig. 5 show the throughput trends for up to 4
and 11 slaves with mixed configurations of three locations
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Fig. 4: End-to-end throughput of the workload with the read/write ratio 50/50.
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Fig. 5: End-to-end throughput of the workload with the read/write ratio 80/20.

and two read/write ratios. Both results indicate that MySQL
with asynchronous master-slave replication is limited in its
ability to scale due to the saturation to the master database. In
particular, the throughput trends react to saturation movements
and transitions in database replicas in regards to an increasing
workload and an increasing number of database replicas. In
general, the observed saturation point (the point right after
the observed maximum throughput of a number of slaves),
appearing in slaves at the beginning, moves along with an
increasing workload when an increasing number of slaves are
synchronized to the master. Eventually, however, the saturation
will transit from slaves to the master where the scalability
limit is achieved. Taking throughput trends with configurations
of the same zone and 50/50 ratio (Fig. 5a) as an example,
the saturation point of 1 slave is initially observed at under
100 workloads due to the full utilization of the slave’s CPU.
When a 2nd slave is attached, the saturation point shifts to 175
workloads where both slaves reach maximum CPU utilization
while the master’s CPU usage rate is also approaching its
utilization limit. Thus, ever since the 3rd slave is added,
175 workloads remain as the saturation point, but with the
master being saturated instead of slaves. Once the master is in
the saturation status, adding more slaves does not help with
improving the scalability, because the overloaded master fails
to offer extra capacity for improving write throughput to keep
up the read/write ratio that corresponds to the increment of the
read throughput. Hence, the read throughput is suppressed by
the benchmark, for the purpose of maintaining the pre-defined
read/write ratio at 50/50. The slaves are over provisioned in
the case of 3 and 4 slaves, as the suppressed read throughput
prevents slaves from being fully utilized. The similar saturation

transition also happens to 3 slaves at 50/50 ratio in the other
two locations (Fig. 4b and Fig. 4c), and 10 slaves at 20/80
ratio in the same zone (Fig. 5a), and different zone (Fig. 5b)
and also 9 slaves at 20/80 ratio in different regions (Fig. 5c).

The configuration of the geographic locations is a factor that
affects the end-to-end throughput, in the context of locations of
users. In the case of our experiments, since all users emulated
by Cloudstone send read operations from us-east-1a, distances
between the users and the slaves increase, following the order
of same zone, different zone and different region. Normally,
a long distance incurs a slow round-trip time, which results
in a smaller throughput for the same workload. Therefore,
it can be expected that a decrease in maximum throughput
would be observed when configurations of locations follow
the order of same zone, different zone and different region.
Moreover, the throughput degradation is also related to read
percentages where higher read percentages would result in
larger degradations. It explains why degradation of maximum
throughput is more significant with configuration of 80/20
read/write ratio (Fig. 5). Hence, it is a good strategy to
distribute replicated slaves to places that are close to users
to improve end-to-end throughput.

The performance variation of instances is another factor
that needs to be considered when deploying databases in the
cloud. For throughput trends of 1 slave at 50/50 read/write
ratio with configurations of different zone and different region,
respectively, if the configuration of locations is the only factor,
the maximum throughput in the different zone (Fig. 4b) should
be larger than the one in the different region (Fig. 4c).
However, the main reason of throughput difference here is
caused by the performance variation of instances rather than
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Fig. 6: Average relative replication delay of the workload with the read/write ratio is 50/50.
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Fig. 7: Average relative replication delay of the workload with the read/write ratio is 80/20.

the configuration of locations. The 1st slave from the same
zone runs on top of a physical machine with an Intel Xeon
CPU E5430 2.66GHz. While another 1st slave from the dif-
ferent zone is deployed in a physical machine powered by an
Intel Xeon CPU E5507 2.27GHz. Because of the performance
differences between physical CPUs, the slave from same zone
performs better than the one from different zone. Previous
research indicated that the coefficient of variation of CPU of
small instances is 21% [2]. Therefore, it is a good strategy to
validate instance performance before deploying applications
into the cloud, as poor-performing instances are launched
randomly and can largely affect application performance.

D. Replication delay experiments

Fig. 6 and Fig. 7 show the trends of the average relative
replication delay for up to 4 and 11 slaves with mixed
configurations of three locations and two read/write ratios.
The results of both figures imply that the configurations of the
geographical locations has a lower impact on the replication
delay than that of the workload characteristics. The trends of
the average relative replication delay respond to an increasing
workload and an increasing number of database replicas. For
most cases, with the number of database replicas being kept
constant, the average relative replication delay surges along
with an increasing workload which leads to more read and
write operations sent to the slaves and the master database,
respectively. It turns out that the increasing number of read
operations result in a higher resource demand on every slave
while the increasing write operations on the master database
leads to, indirectly, increasing resource demand on slaves as
more writesets are propagated to be committed on slaves.

The two increasing demands push resource contention higher,
resulting in the delay of committing writesets, which sub-
sequently results in higher replication delay. Similarly, the
average relative replication delay decreases along with an
increasing number of database replicas as the addition of a
new slave leads to a reduction in the resource contention and
subsequent decrease in replication delay.

As previously mentioned, the configuration of the geo-
graphic location of the slaves play a less significant role in
affecting replication delay, in comparison to the changes of
the workload characteristics. We measured the 1/2 round-trip
time between the master in us-west-1a and the slave that uses
different configurations of geographic locations by running
the ping command every second for a 20-minute period. The
results suggest an average of 16, 21, and 173 milliseconds
1/2 round-trip time for the same zone (Fig. 6a and Fig. 7a),
different zones (Fig. 6b and Fig. 7b) and different regions
(Fig. 6c and Fig. 7c), respectively. However, The trends of the
average relative replication delay can usually go up from two
to four orders of magnitude (Fig. 6), or one to three orders
of magnitude (Fig. 7). Therefore, it could be suggested that
geographic replication would be applicable in the cloud as long
as workload characteristics can be well managed (e.g. having
a smart load balancer which is able to balance the operations
based on estimated processing time).

VII. PROVISIONING THE DATABASE TIER BASED ON SLA
OF DATA FRESHNESS

A. Adaptive Replication Controller

In practice, the cost of maintaining several database replicas
that are always strongly consistent is very high. Therefore,
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keeping several database replicas with different levels of
freshness can be highly beneficial in the cloud environment
since freshness can be exploited as an important metric of
replica selection for serving the application requests as well as
optimizing the overall system performance and monetary cost.
Our framework provides the software applications with flexible
mechanisms for specifying different service level agreements
(SLA) of data freshness for the underlying database replicas.
In particular, the framework allows specifying an SLA of
data freshness for each database replica and continuously
monitor the replication delay of each replica so that once a
replica violates its defined SLA, the framework automatically
activates another database replica at the closest geographic
location in order to balance the workload and re-satisfy the
defined SLA [27]. In particular, the SLA of the replication
delay for each replica (delaysla) is defined as an integer
value in the unit of millisecond which represents two main
components:

delaysla = delayrtt + delaytolerance

where the round-trip time component of the SLA replication
delay (delayrtt) is the average round-trip time from the
master to the database replica. In particular, it represents the
minimum delay cost for replicating data from the master to the
associated slave. The tolerance component of the replication
delay (delaytolerance) is defined by a constant value which
represents the tolerance limit of the period of the time for
the replica to be inconsistent. This tolerance component can
vary from one replica to another depending on many factor
such as the application requirements, the geographic location
of the replica, and the workload characteristics and the load
balancing strategy of each application. Therefore, the control
module is responsible of triggering the action module for
adding a new database replica, when necessary, in order to
avoid any violation in the application-defined SLA of data
freshness for the active database replicas. In our framework
implementation, we follow an intuitive strategy that triggers
the action module for adding a new replica when it detects a
number of continuous up-to-date monitored replication delays
of a replica which exceeds its application-defined threshold

(T ) of SLA violation of data freshness. In other words,
for a running database replica, if the latest T monitored
replication delays are violating its SLA of data freshness,
the control module will trigger the action module to activate
the geographically closest replica (for the violating replica).
It is worthy to note that the strategy of the control module
in making the decisions (e.g. the timing, the placement, the
physical creation) regarding the addition a new replica in order
to avoid any violence of the application-defined SLA can play
an important role in determining the overall performance of
the framework. However, it is not the main focus of this article
to investigate different strategies for making these decisions.
We leave this aspect for future work.

B. Experimental Evaluation

We implemented two sets of experiments in order to eval-
uate the effectiveness of our adaptive replication controller
in terms of its effect on the end-to-end system throughput
and the replication delay for the underlying database replicas.
Figure 8 illustrates the setup of our experiments in Amazon
EC2 platform In the first set of experiments, we fix the
value of the tolerance component (delaytolerance) of the SLA
replication delay to 1000 milliseconds and vary the monitor
interval (intvlmon) among the following set of values: 60,
120, 240 and 480 seconds. In the second set of experiments,
we fix the monitor interval (intvlmon) to 120 seconds and
adjusts the SLA of replication delay (delaysla) by varying the
tolerance component of the replication delay (delaytolerance)
among the following set of values: 500, 1000, 2000 and
4000 milliseconds. We have been evaluating the round-trip
component (delayrtt) of the replication delays SLA (delaysla)
for the database replicas in the three geographical regions of
our deployment by running ping command every second for
a 10 minutes period. The resulting average three round-trip
times (delayrtt) are 30, 130 and 200 milliseconds for the
master to slaves in us-west, us-east and eu-west respectively.
Every experiment is executed for a period of 3000 seconds
with a starting workload of 220 concurrent users and database
requests with a read/write ratio of 80/20. The workload
gradually increases in steps of 20 concurrent users every 600
seconds so that each experiment ends with a workload of 300
concurrent users. Each experiment deploys 6 replicas in 3
regions where each region hosts two replicas: the first replica is
an active replica which is used from the start of the experiment
for serving the database requests of the application while the
second replica is a hot backup which is not used for serving the
application requests at the beginning of the experiment but can
be added by the action module, as necessary, when triggered
by the control module. Finally, in addition to the two sets
of experiments, we conducted two experiments without our
adaptive replication controller in order to measure the end-
to-end throughputs and replication delays of 3 (the minimum
number of running replicas) and 6 (the maximum number of
running replicas) slaves in order to measure the baselines of
our comparison.

1) End-to-end throughput: Table I presents the end-to-end
throughput results for our set of experiments with different
configuration parameters. The baseline experiments represent
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TABLE I: The effect of the the adaptive replication controller on the end-to-end system throughput
Experiment Parameters The monitor interval The tolerance of Number of Running time End-to-end Replication

(intvlmon) replication delay running of all replicas throughput delay
(in seconds) (delaytolerance) replicas (in seconds) (operations per seconds)

(in milliseconds)

Baselines with fixed N/A N/A 3 9000 22.33 Fig. 9a
number of replicas N/A N/A 6 18000 38.96 Fig. 9b

Varying the monitor interval 60 1000 3 → 6 15837 38.43 Fig. 9d
(intvlmon) 120 1000 3 → 6 15498 36.45 Fig. 9c

240 1000 3 → 6 13935 34.12 Fig. 9e
480 1000 3 → 6 12294 31.40 Fig. 9f

Varying the tolerance of 120 500 3 → 6 15253 37.44 Fig. 9g
replication delay 120 1000 3 → 6 15498 36.45 Fig. 9c
(delaytolerance) 120 2000 3 → 6 13928 36.33 Fig. 9h

120 4000 3 → 6 14437 34.68 Fig. 9i

the minimum and maximum end-to-end throughput results with
22.33 and 38.96 operations per second, respectively. They
also represent the minimum and maximum baseline for the
running time of all database replicas with 9000 (3 running
replicas, with 3000 seconds running time of each replica from
the beginning to the end of the experiment) and 18000 (6
running replicas, with 3000 seconds running time of each
replica) seconds, respectively. The end-to-end throughput of
the other experiments fall between the two baselines based
on the variance on the monitor interval (intvlmon) and the
tolerance of replication delay (delaytolerance). Each exper-
iment starts with 3 active replicas after which the number
of replicas gradually increases during the experiments based
on the configurations of the monitor interval and the SLA
of replication delay parameters until it finally ends with 6
replicas. Therefore, the total running time of the database
replicas for the different experiments fall within the range
between 9000 and 18000 seconds. Similarly, the end-to-end
throughput delivered by the adaptive replication controller for
the different experiments fall within the end-to-end throughput
range produced by the two baseline experiments of 22.33 and
38.96 operations per second. However, it is worth noting that
the end-to-end throughput can be still affected by a lot of per-
formance variations in the cloud environment such as hardware
performance variation, network variation and warm up time
of the database replicas. In general, the relationship between
the running time of all slaves and end-to-end throughput is
not straightforward. Intuitively, a longer monitor interval or
a longer tolerance of replication delay usually postpones the
addition of new replicas and consequently reduces the end-
to-end throughput. The results show that the tolerance of the
replication delay parameter (delaytolerance) is more sensitive
than the monitor interval parameter (intvlmon). For example,
having the values of the tolerance of the replication delay
equal to 4000 and 1000 result in longer running times of the
database replicas than having the values equal to 2000 and
500. On the other side, the increase of running time of all
replicas shows a linear trend along with the increase of the
end-to-end throughput. However, a general conclusion might
not easy to draw because the trend is likely affected by the
workload characteristics.

2) Replication delay: Figure 9 illustrates the effect of the
adaptive replication controller on the performance of the repli-
cation delay for the cloud-hosted database replicas. Figure (9a)
and Figure (9b) show the replication delay of the two baseline
cases for our comparison. They represent the experiments of
running with a fixed number of replicas (3 and 6 respectively)

from the starting times of the experiments to their end times.
Figure (9a) shows that the replication delay tends to follow
different patterns for the different replicas. The two trends of
us-west-1 and eu-west-1 surge significantly at 260 and 280
users, respectively. On the same time, the trend of us-east-1
tends to be stable throughout the entire running time of the
experiment. The main reason behind this is the performance
variation between the hosting EC2 instances for the database
replicas9. Due to the performance differences between the
physical CPUs specifications, us-east-1 is able to handle the
amount of operations that saturate us-west-1 and eu-west-1.
Moreover, with an identical CPU for us-west-1 and eu-west-1,
the former seems to surge at an earlier point than the latter.
This is basically because of the difference in the geographical
location of the two instances. As illustrated in Figure (8),
the MySQL Proxy location is closer to us-west-1 than eu-
west-1. Therefore, the forwarded database operations by the
MySQL Proxy take less time to arrived at us-west-1 than
eu-west-1 which leads to more congestion on the us-west-1
side. Similarly, in Figure (9b), the replication delay tends to
surge in both us-west-1 and us-west-2 for the same reason
of the difference in the geographic location of the underlying
database replica.

Figures (9c), and (9g) to (9i) show the results of the
replication delay for our experiments using different values for
the monitor interval (intvlmon) and the tolerance of replication
delay (delaytolerance) parameters. For example, Figure (9c)
shows that the us-west-2, us-east-2, and eu-west-2 replicas are
added in sequence at the 255th, 407th and 1843th seconds,
where the drop lines are emphasized. The addition of the
three replicas are caused by the SLA-violation of the us-west-1
replicas at different periods. In particular, there are four SLA-
violation periods for us-west-1 where the period must exceed
the monitor interval, and all calculated replication delays in
the period must exceed the SLA of replication delay. These
four periods are: 1) 67:415 (total of 349 seconds). 2) 670:841
(total of 172 seconds). 3) 1373:1579 (total of 207 seconds).
4) 1615:3000 (total of 1386 seconds). The addition of new
replicas is only triggered on the 1st and the 4th periods based
on the time point analysis. The 2nd and the 3rd periods do not
trigger the addition of new replica as the number of detected
SLA violations does not exceed the defined threshold (T ).

Figures (9c), and (9d) to (9f) show the effect of varying the
monitor interval (intvlmon) on the replication delay of the

9Both us-west-1 and eu-west-1 are powered by Intel(R) Xeon(R) CPU
E5507 @ 2.27GHz, whereas us-east-1 is deployed with a better CPU,
Intel(R) Xeon(R) CPU E5645 @ 2.40GHz
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(a) Fixed 3 running replicas
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(b) Fixed 6 running replicas
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(c) delaytolerance = 1000 ms and intvlmon = 120
sec
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(d) intvlmon = 60 seconds
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(e) intvlmon = 120 seconds
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(f) intvlmon = 480 seconds
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(g) delaytolerance = 500 milliseconds
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(h) delaytolerance = 2000 milliseconds
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(i) delaytolerance = 4000 milliseconds

Fig. 9: The performance of the the adaptive management of the replication delay for the cloud-hosted database replicas.

different replicas. The results show that us-west-2 is always
the first location that add a new replica because it is the
closest location to us-west-1 which hosts the replica that firstly
violates its defined SLA data freshness. The results also show
that as the monitor interval increases, the triggering points
for adding new replicas are usually delayed. On the contrary,
the results of Figure (9c) and Figures (9g) to (9i) show that
increasing the value of the tolerance of the replication delay
parameter (delaytolerance) does not necessarily cause a delay
in the triggering point for adding new replicas.

In general, the results of our experiments show that the
adaptive replication controller can play an effective role on
reducing the replication delay of the underlying replicas by
adding new replicas when necessary. It is also observed
that with more replicas added, the replication delay for the
overloaded replicas can dramatically drop. Moreover, it is
more cost-effective in comparison to the over-provisioning
approach for the number of database replicas that can ensure
low replication delay because it adds new replicas only when
necessary based on the application-defined SLA of data fresh-
ness for the different underlying database replicas.
VIII. PROVISIONING THE DATABASE TIER BASED ON SLA

OF TRANSACTION RESPONSE TIMES

Another consumer-centric SLA metric that we consider
in our framework is the total execution times of database

transactions (response time). In practice, this metric has a
great impact on the user experience and thus satisfaction of
the underlying services. In other words, individual users are
generally more concerned about when their transaction will
complete rather than how many transactions the system will
be able to execute in a second (system throughput) [22].
To illustrate, assuming a transaction (T ) with an associated
SLA for its execution time (S) is presented to the system
at time 0, if the system is able to finish the execution of
the transaction at time (t ≤ S) then the service provider has
achieved his target otherwise if (t > S) then the transaction
response cannot be delivered within the defined SLA and
hence a penalty p is incurred. In practice, the SLA require-
ments can vary between the different types of application
transactions (for example, a login application request may
have an SLA of 100 ms execution time, a search request
may have an SLA of 600 ms while a request of submitting
an order information would have 1500 ms). Obviously, the
variations in the SLA of different applications transactions
is due to their different natures and their differences in the
consumption behaviour of system resources (e.g. disk I/O,
CPU time). In practice, each application transaction can send
one or more operations to the underlying database system.
Therefore, in our framework, consumer applications can define
each transaction as pattern(s) of SQL commands where the
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Fig. 10: Comparison of SLA-Based vs Resource-Based Database Provisioning Rules

transaction execution time is computed as the total execution
time of these individual operations in the described pattern.
Thus, the monitoring module is responsible for correlating
the received database operations based on their sender in
order to detect the transaction patterns [28]. Our framework
also enables the consumer application to declaratively define
application-specific action rules to adaptively scale out or scale
in according to the monitored status of the response times
of application transactions. For example, an application can
define to scale out the underlying database tier if the average
percentage of SLA violation for transactions T1 and T2 ex-
ceeds 10% (of the total number of T1 and T2 transactions)
for a continuous period of more than 8 minutes. Similarly,
the application can define to scale in the database tier if the
average percentage of SLA violation for transactions T1 and
T2 is less than 2% for a continuous period that is more than
8 minutes and the average number of concurrent users per
database replica is less than 25.

We conducted our experiments with 4 different rules for
achieving elasticity and dynamic provisioning for the database
tier in the cloud. Two rules are defined based on the average
CPU utilization of allocated virtual machines for the database
server as follows: Scale out the database tier (add one more
replica) when the average CPU utilization of the virtual
machines exceeds of 75% for (R1) and 85% for (R2) over
a continuous period of 5 minutes. Two other rules are defined
based on the percentage of the SLA satisfaction of the work-
load transactions (the SLA values of the different transactions
are defined as specified in the Cloudstone benchmark) as
follows: Scale out the database tier when the percentage of
SLA satisfaction is less than 97% for (R3) and 90% for (R4)
over a continuous period of 5 minutes. Our evaluation metrics
are the overall percentage of SLA satisfaction and the number
of provisioned database replicas during the experimental time.

Figure 10 illustrates the results of running our experiments
over a period of one hour for the 80/20 workload (Figure 10a)
and the 50/50 workload (Figure 10b). In these figures, the
X-axis represents the elapsed time of the experiment while
the Y-axis represents the SLA salification of the application
workload according to the different elasticity rules. In general,
we see that, even for this relatively small deployment, SLA-
based can show improved overall SLA satisfaction of different
workloads of the application. The results show that the SLA-
based rules (R3 and R4) are, by design, more sensitive for

Workload / Rule R1 R2 R3 R4
80/20 4 3 5 5
50/50 5 4 7 6

TABLE II: Number of Provisioned Database Replicas

achieving the SLA satisfaction and thus they react earlier than
the resource-based rules. The resource-based rules (R1 and
R2) can accept a longer period SLA violations before taking
any necessary action (CPU utilization reaches the defined
limit). The benefits of SLA-based rules become clear with
the workload increase (increasing the number of users during
the experiment time). The gap between the SLA-based rules
and SLA-based rules is smaller for the workload with the
higher write ratio (50/50) due to the higher contention of CPU
resources for the write operations and thus the conditions of
the resource-based rules can be satisfied earlier.

Table II shows the total number of provisioned database
replicas using the different elasticity rules for the two different
workloads. Clearly, while the SLA-based rules achieves better
SLA satisfaction, they may also provision more database repli-
cas. This trade-off shows that there is no clear winner between
the two approaches and we can not favour one approach
over the other. However, the declarative SLA-based approach
empowers the cloud consumer with a more convenient and
flexible mechanism for controlling and achieving their policies
in dynamic environments such as the Cloud.

IX. RELATED WORK

Several approaches have been proposed for dynamic pro-
visioning of computing resources based on their effective
utilization [29], [30], [31]. These approaches are mainly
geared towards the perspective of cloud providers. Wood et.
al. [29] have presented an approach for dynamic provisioning
of virtual machines. They define a unique metric based on
the data consumption of the three physical computing re-
sources: CPU, network and memory to make the provisioning
decision. Padala et.al. [31] carried out black box profiling
of the applications and built an approximated model which
relates performance attributes such as the response time to
the fraction of processor allocated to the virtual machine
on which the application is running. Dolly [14] is a virtual
machine cloning technique to spawn database replicas and
provisioning shared-nothing replicated databases in the cloud.
The technique proposes database provisioning cost models
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to adapt the provisioning policy to the low-level cloud re-
sources according to the application requirements. Rogers et
al. [32] proposed two approaches for managing the resource
provisioning challenge for cloud databases. The Black-box
provisioning uses end-to-end performance results of sample
query executions, whereas white-box provisioning uses a
finer grained approach that relies on the DBMS optimizer
to predict the physical resource (e.g., I/O, memory, CPU)
consumption for each query. Floratou et al. [33] have studied
the performance and cost in the relational database as a service
environments. The results show that given a range of pricing
models and the flexibility of the allocation of resources in
cloud-based environments, it is hard for a user to figure out
their actual monthly cost upfront. Soror et al. [13] introduced
a virtualization design advisor that uses information about
the database workloads to provide offline recommendations
of workload-specific virtual machines configurations. To the
best of our knowledge, our approach is the first that tackle
the problem of dynamic provisioning the cloud resources of
the database tier based on consumer-centric and application-
defined SLA metrics.

A common feature to the different cloud offerings of the
platform storage services and the relational database ser-
vices is the creation and management of multiple replicas
of the stored data while a replication architecture is running
behind-the-scenes to enable automatic failover management
and ensure high availability of the service. In general, repli-
cating for performance differs significantly from replicating
for availability or fault tolerance. The distinction between the
two situations is mainly reflected by the higher degree of
replication, and as a consequence the need for supporting
weak consistency when scalability is the motivating factor
for replication.In addition, the platform storage layer and
the relational database as a service are mainly designed for
multi-tenancy environments and they are more centric to the
perspective of the cloud provider. Therefore, they do not
provide support for any flexible mechanisms for scaling a
single-tenant system (consumer perspective).

X. CONCLUSIONS

In this paper, we presented the design and implementation
details10 of an end-to-end framework that facilitates adaptive
and dynamic provisioning of the database tier of the software
applications based on consumer-centric policies for satisfying
their own SLA performance requirements, avoiding the cost
of any SLA violation and controlling the monetary cost of
the allocated computing resources. The framework provides
the consumer applications with declarative and flexible mecha-
nisms for defining their specific requirements for fine-granular
SLA metrics at the application level. The framework is
database platform-agnostic, uses virtualization-based database
replication mechanisms and requires zero source code changes
of the cloud-hosted software applications.
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