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THE CONVERGENCE OF A CLASS OF QUASIMONOTONE
REACTION–DIFFUSION SYSTEMS

YI WANG and JIFA JIANG

Abstract

It is proved that every solution of the Neumann initial-boundary problem
∂ui/∂t = di∆ui + Fi(u) t > 0, x ∈ Ω,

∂ui/∂n(t, x) = 0 t > 0, x ∈ ∂Ω, i = 1, 2, . . . , n,

ui(x, 0) = ui,0(x) > 0 x ∈ Ω̄,

converges to some equilibrium, if the system satisfies (i) ∂Fi/∂uj > 0 for all 1 6 i 6= j 6 n, (ii) F(u∗g(s)) >
h(s) ∗ F(u) whenever u ∈ Rn

+ and 0 6 s 6 1, where x ∗ y = (x1y1, . . . , xnyn) and g, h : [0, 1] −→ [0, 1]n are
continuous functions satisfying gi(0) = hi(0) = 0, gi(1) = hi(1) = 1, 0 < gi(s), hi(s) < 1 for all s ∈ (0, 1) and
i = 1, 2, . . . , n, and (iii) the solution of the corresponding ordinary differential equation system is bounded
in Rn

+. We also study the convergence of the solution of the Lotka–Volterra system
∂ui/∂t = ∆ui + ui

ri +

n∑
j=1

aijuj

 t > 0, x ∈ Ω,

∂ui/∂n+ αui = 0 t > 0, x ∈ ∂Ω, i = 1, 2, . . . , n,

ui(x, 0) = ui,0(x) > 0 x ∈ Ω̄,

where ri > 0, α > 0, and aij > 0 for i 6= j.

1. Introduction

This article is motivated by the study of large asymptotic behaviour of solutions
to the following reaction–diffusion-type initial-boundary value problem (1) for an
unknown vector-valued function u(t, x) ∈ Rn of the time–space variable (t, x) ∈
R1

+ × Ω: 
∂u

∂t
= D∆u+ F(u) t > 0, x ∈ Ω,

∂u

∂n
(t, x) = 0 t > 0, x ∈ ∂Ω,

u(x, 0) = u0(x) x ∈ Ω̄.

(1)

Here D = diag(d1, d2, . . . , dn) is a diagonal matrix with di > 0 on the diagonal.
Ω is an open bounded domain in Rk with a smooth boundary ∂Ω. ∂/∂n denotes
differentiation in the direction of the outward normal to ∂Ω and F(u) :Rn −→ Rn is
a co-operative C2-vector field, that is, ∂Fi/∂uj > 0 whenever 1 6 i 6= j 6 n, for all
u ∈ Rn.

Of course, ∆ denotes the Laplacian.
Given any initial distribution u0 ∈ C(Ω̄,Rn), in order to guarantee global existence
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and boundedness of a classical solution u ∈ C(R1
+ × Ω̄,Rn) ∩ C1,2((0,∞) × Ω̄), we

make the following additional hypothesis.
(H):F(0) > 0 and the system of ordinary differential equations

dv

dt
= F(v) t > 0,

v(0) = v0,

(2)

possesses a bounded global solution v ∈ C1(R1
+,R

n
+), for every v0 ∈ Rn

+.
Let X = Πn

i=1Xi be the Banach space with the norm ‖φ‖ =
∑n

i=1 |φi|, where
Xi = C(Ω̄,R) are Banach spaces with the supremum norm.

For each I = {j1, j2, . . . , jm} ⊂ N = {1, 2, . . . , n}, we can induce an order in
XI = Πm

k=1Xjk , that is, for uI , vI ∈ XI ,

uI 6I vI ⇔ ui(x) 6 vi(x) for all x ∈ Ω̄, i ∈ I,
uI 6=I vI ⇔ ui(x) 6= vi(x) for some x ∈ Ω̄ and some i ∈ I,
uI <I vI ⇔ uI 6I vI and uI 6=I vI ,

uI �I vI ⇔ ui(x) < vi(x) for all x ∈ Ω̄, i ∈ I.
Notations such as uI >I vI have natural meanings. If A,B ⊂ XI are subsets of XI ,
then A <I B means a <I b for all a ∈ A, b ∈ B; and similarly for A 6I B, A�I B,
etc.

In case I = N, we omit the order subscripts and obtain the order 6 (<,�, 6=) in
X. In case I = {i} is a singleton index subset of N, we denote the order of Xi by
6i (<i,�i, 6=i).

Let X+ = {u ∈ X : u > 0}. Then the above quasimonotone reaction–diffusion
system with initial value u0(x) ∈ X+ generates a monotone semiflow on X+ and
every positive semi-orbit has compact closure (cf. [13]). There is now an extensive
literature on monotone (or order-preserving) dynamical systems, beginning with
the ground-breaking work of Hirsch [3, 4] for monotone semiflows. The results
of Hirsch and later improvements by Matano [8], Smith and Thieme [14, 15] and
Polác̆ik [9] established that most orbits of a continuous-time, strongly monotone
semiflow converge to the set of equilibria. Many researchers have tried to find some
extra conditions added to strongly monotone dynamical systems to prove that every
positive semi-orbit converges to an equilibrium.

Takác̆ [16] replaced the concavity conditions in [3] and [11] by the sublinear
hypotheses to generalize the convergent results. His hypothesis is that the system (1)
is quasimonotone (co-operative) and irreducible and F is sublinear in the sense that

F(αu) > αF(u) for all (α, u) ∈ [0, 1]×X+. (3)

Together with some technical hypotheses, he proved that every positive semi-orbit
with compact closure converges to an equilibrium. The set E of all equilibria of (1)
is either {O}, or {O, p} with p � O, or {O} ∪ L, where L is a simply ordered line
segment. Therefore all equilibria are simply ordered by the usual order relation �.

The above-mentioned results apply only to strongly monotone dynamical systems.
Recently, Jiang has studied the asymptotic behaviour of finite dimensional continuous-
time order-preserving dynamical systems without the irreducible assumption. In [7],
he studied the system (2) and proved that every positive semi-orbit converges to
an equilibrium if every positive semi-orbit is compact and F satisfies the following
property.

(P):F(u ∗ g(s)) > h(s) ∗ F(u) whenever u ∈ Rn
+ and 0 6 s 6 1, where x ∗ y =
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(x1y1, . . . , xnyn) and g, h : [0, 1] −→ [0, 1]n are continuous functions satisfying gi(0) =
hi(0) = 0, gi(1) = hi(1) = 1, 0 < gi(s), hi(s) < 1 for all s ∈ (0, 1) and i = 1, 2, . . . , n.

The main goal of this paper is to study the asymptotic behaviour of the solution
with initial value in X+ in the above-mentioned system (1) with the hypotheses
(H) and (P). The infinite-dimensional dynamical system generated by our reaction–
diffusion system (1) is only monotone. Therefore, we are unable to directly use any
of the convergent results mentioned in the previous paragraphs since none of them
combines monotonicity with infinite dimension. Without the strong assumption on
order, we prove that Jiang’s results in [7] also hold in the infinite-dimensional
dynamical system generated by (1). Note that hypothesis (P) is weaker than (3),
thus we generalize Takác̆’s result. An example is also given to show that the set of
equilibria is not simply ordered and, therefore, is not included in the type of Takác̆
[16], but we can still obtain the convergence of the semi-orbits by our result.

In this paper, we also study the following Lotka–Volterra system:

∂ui

∂t
= ∆ui + ui

ri +

n∑
j=1

aijuj

 t > 0, x ∈ Ω,

∂ui

∂n
+ αui = 0 t > 0, x ∈ ∂Ω i = 1, 2, . . . , n, (4)

ui(x, 0) = u0,i(x) > 0 x ∈ Ω̄,

where ri > 0, α > 0, aii < 0 and aij > 0 for i 6= j. In case α = 0, our result
has shown that every compact semi-orbit of (4) is convergent to an equilibrium.
Furthermore, if A = (aij)n×n is stable (cf. [12]), then there is a positive equilibrium
which is globally asymptotically stable. In case α > 0, under some hypotheses of the
coefficients, we also prove the same convergent result. Roughly speaking, if ri and
|aii| are large enough, every solution of (4) is bounded and convergent to a unique
positive equilibrium.

2. Notations and preliminaries

In this section, we first agree on some notations, give important definitions and
state some known results which will be important in our proofs.

Let N = {1, 2, . . . , n}. If I ⊂ N, then C(I) = N\I . HI = {u ∈ X : ui(x) = 0 for all
x ∈ Ω̄, i ∈ C(I)}, H+

I = HI ∩ X+ and IntH+
I = {u ∈ H+

I : ui �i 0, i ∈ I}. At each
point p ∈ X, there is a non-negative cone defined by

p+X+ = {u ∈ X :u > p}.
Definition 2.1. A semiflow Φ : R1

+ × X+ −→ X+; (t, u) 7−→ Φ(t, u) is called
monotone (respectively, strictly monotone) if u, v ∈ X+ and u 6 v (u < v) implies that
Φ(t, u) 6 Φ(t, v) (respectively, Φ(t, u) < Φ(t, v)) for all t > 0. The semiflow is called
strongly monotone if Φ(t, u)� Φ(t, v) whenever u < v and t > 0.

Definition 2.2. A monotone semiflow is said to be of type K if any subset I ⊂ N
and u < v with ui <i vi for all i ∈ I , one has Φ(t, u) < Φ(t, v) with Φi(t, u)�i Φi(t, v)
for all i ∈ I and t > 0.

From Definitions 2.1 and 2.2, we immediately obtain the following relationship:

strongly monotone⇒ Type-K monotone⇒ strictly monotone⇒ monotone.

However, it is easy to see that every converse relationship does not hold.
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We denote by O+(u) the positive semi-orbit from u ∈ X+. A subset A ⊂ X+ is called
positive invariant, if u ∈ A implies that O+(u) ⊂ A. A point p is called an equilibrium
if p ≡ Φ(t, p) for all t > 0. The set of all equilibria of (1) is denoted by E and the set
of equilibria of (2) by Eo. Obviously, Eo ⊂ E. p is called Liapunov stable if for every
ε > 0 there is δ > 0 such that u ∈ X+ and ‖u−p‖ < δ implies that ‖Φ(t, u)−p‖ < ε for
all t > 0. The ω-limit set of u is defined by ω(u) = {y ∈ X+ :Φ(tn, u) −→ y for some
sequence tn → ∞}. Notice that if O+(u) is relatively compact in X+, then ω(u) 6= ?
and it is connected and totally invariant, that is, Φ(t, ω(u)) = ω(u) for all t > 0.

The following proposition shows that (1) with hypothesis (H) can generate a
type-K monotone semiflow in the Banach space X+.

Proposition 2.1. Suppose that (H) holds. Then for each u ∈ X+, (1) has a unique
classical solution u(t) ∈ X+ defined on [0,+∞) satisfying u(0) = u. Furthermore,
Φ(t, u) = u(t) is a type-K monotone semiflow on X+ and the positive semi-orbit O+(u)
of any u has compact closure in X+.

Proof. The existence of a unique classical solution of (1), belonging to X+,
is a consequence of [13], Theorem 7.3.1. It follows from hypothesis (H) that the
solution can be continued to a maximal interval of existence [0,+∞). Then [13],
Theorem 7.3.1 and Corollary 7.3.5 show that Φ(t, u) is a monotone semiflow and
every positive semi-orbit has compact closure. That the semiflow is of type-K follows
from maximum principle (cf. [10], Theorem 3.15) and its proof can be found in [17].

q

For system (2), we have the following propositions.

Proposition 2.2. Let p < q be order-related equilibria of (2). If there does not
exist any other equilibrium of (2) between p and q, then there is a monotone orbit
connecting p and q.

This proposition is due to Dancer and Hess and is adapted from [1], where the
strict monotonicity follows from the well-known Kamke theorem.

Proposition 2.3 (Jiang [7]). Suppose that (H) and (P) hold. Then for system (2),
we have the following:

(i) If there is a positive equilibrium p in Eo, then p is Liapunov stable and every
solution of (2) is bounded.

(ii) Every solution of (2) converges to an equilibrium in Eo.

3. Main result and its proof

The main result in this section is as follows.

Theorem 3.1. Suppose that (P) and (H) hold. Then every positive semi-orbit of (1)
converges, that is, ω(u) is a singleton for each u ∈ X+.

Remark 3.1. Without the hypothesis of irreducibility of the nonlinearity F(u),
we conclude the convergent result from Theorem 3.1, which was not obtained by the
papers mentioned in the introduction. This result also generalizes the corresponding
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result in ordinary differential equation systems by Jiang [7] to partial differential
equation systems (1). Furthermore, under hypothesis (P) which is much weaker than
condition (3), we generalize the convergent result obtained by Takác̆ [16] and Hess
[2]. The example below shows that there exists a new limit-sets distribution which
violates the characteristics of limit-sets obtained by Takác̆ [16].

Example 3.1. Consider the partial differential equation system

∂u1

∂t
= ∆u1 − u1(u1 − u2),

∂u2

∂t
= ∆u2 + u2(u1 − u2) t > 0, x ∈ Ω,

∂u3

∂t
= ∆u3 + u2

3(1− u3),

∂ui

∂n
= 0, t > 0, x ∈ ∂Ω; and ui(0, x) = ui,0(x) x ∈ Ω̄.

(5)

Then hypotheses (P) and (H) can be easily checked. Therefore, we can apply
Theorem 3.1 to (5) and conclude that every solution of (5) with initial value in X+

tends to an equilibrium as t −→ ∞. Note that we are unable to directly use any of
the results on the monotone semiflow mentioned in the introduction to obtain the
same result. Furthermore,

{(a, a, c) ∈ R3 ⊂ X :a > 0, c = 0 or 1} ⊂ E ∩X+.

Therefore system (5) violates the characteristics of E obtained by Takác̆ in the
introduction, that is, there are new types of dynamic behaviour of system (1)
without the hypothesis of irreducibility.

Inspired by the methods provided in [6], we first present some lemmas which are
of great importance in the proof of our results.

Lemma 3.1. Suppose that (H) and (P) hold. Then for every u ∈ X+, there exist
two constant equilibria p 6 q satisfying p 6 ω(u) 6 q, {r ∈ Eo : r 6 ω(u)} 6 p and
{s ∈ Eo :s > ω(u)} > q.

Proof. Let A = {r ∈ E0 : r 6 ω(u)}, B = {s ∈ Eo : s > ω(u)}. It follows from
Proposition 2.1 that ω(u) is compact. Then there exist two points p0, q0 ∈ Rn

+ such
that p0 6 ω(u) 6 q0. By the monotonicity, the uniqueness of solution of (1) and
Proposition 2.3 imply that we can find r, s ∈ Eo satisfying r 6 ω(u) 6 s. Thus A 6= ?,
B 6= ?. Let p̃i = supr∈A{ri} and q̃i = infs∈B{si} for i ∈ N. Then p̃ 6 ω(u) 6 q̃. It
follows from Proposition 2.3 that ω(p̃) = p ∈ Eo, ω(q̃) = q ∈ Eo and p 6 ω(u) 6 q.
It is obvious that A 6 p and B > q. This completes the proof. q

Given u ∈ X+, we define

L(u, p) = max{σp(y) :y ∈ ω(u)}, where σp(y) = #{i :yi >i pi},
where # denotes the cardinality of a set. Obviously, L(u, p) = 0 implies that ω(u) = p.
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Lemma 3.2. If L(u, p) = m 6 n, then there exist y ∈ ω(u) and I ⊂ N, #I = m

such that pi �i yi(t) for all i ∈ I and t > 0, pj ≡ yj(t) for all j ∈ C(I) and t > 0.

Proof. It follows from the definition that there exist ȳ ∈ ω(u) and I ⊂ N, #I = m

such that pi <i ȳi for all i ∈ I and pj ≡ ȳj for j ∈ C(I). We denote by ȳ(t) (t > 0)
the solution of (1) with initial value ȳ. Let y = ȳ(δ) for some δ > 0. Then y ∈ ω(u).
By the type-K condition and p ∈ Eo ⊂ E, we obtain pi �i yi(t) for all i ∈ N and
t > 0. The fact that pj ≡ yj(t) for all j ∈ C(I) and t > 0 is a direct result of the
maximal property of m and the type-K condition. q

Proposition 3.1. Suppose that system (1) has at least one positive constant equi-
librium, that is, r ∈ Eo and r � 0. Then ω(u) is a singleton for any u� 0.

Proof. Given u � 0, we can find s ∈ (0, 1) such that 0 � g(s) ∗ r 6 u. From [7,
Lemma 3.1], we obtain that g(s) ∗ r is a sub-solution of (1). Then (g(s) ∗ r)(t) is a
nondecreasing solution which tends to p̄ ∈ Eo as t→∞. Since p̄ 6 ω(u), Lemma 3.1
implies that p̄ 6 p. Therefore,

0� g(s) ∗ r 6 p 6 ω(u) 6 q.

It follows from Proposition 2.3(i) that every constant equilibrium in [p, q] is Liapunov
stable according to system (2). If ω(u) ∩ Eo 6= ?, then ω(u) contains a Liapunov
stable equilibrium. By [1, Lemma 2.1], ω(u) is a singleton, thus we have obtained
the result. Therefore, we assume that

ω(u) ∩ Eo = ? (6)

below.

Claim 1. L(u, p) 6 n− 1.

Suppose that L(u, p) = n. Then it follows from Lemma 3.2 that there exists some
y ∈ ω(u) such that pi �i yi for all i ∈ N, that is, p� y 6 q. We assert that p is not
an isolated equilibrium of system (2) from above. Otherwise, it is easy to prove that
B := ([p, q] ∩ Eo)\{p} is compact. By Zorn’s lemma, B contains a minimal element
w which implies that there exists no equilibrium of (2) between p and w. From the
paragraph above, p and w are Liapunov stable according to system (2), contradicting
Lemma 2.2. This shows our assertion is true. Therefore, we can find w ∈ Eo such
that p < w � y 6 q. It follows from y ∈ ω(u) that there exists a t0 > 0 such that
w � u(t0). Thus w 6 ω(u). By Lemma 3.1, w 6 p, contradicting p < w. This proves
Claim 1.

Assume that L(u, p) = m. Then there exist u1 ∈ ω(u) and I ⊂ N, #I = m such
that pI �I u

1
I (t) and pJ ≡ u1

J(t), J = C(I) for all t > 0. Without loss of generality,
we assume that I = {1, 2, . . . , m}. By Lemma 3.1, there exist p1, q1 ∈ Eo such that
p1 6 ω(u1) 6 q1. Therefore, 0� p 6 p1 6 ω(u1) 6 q1 6 q and

pJ ≡ p1
J ≡ u1

J(t) for all t > 0. (7)

Claim 2. L(u1, p1) 6 m− 1.

If L(u1, p1) = m, then there exists z ∈ ω(u1) such that p1
I �I zI and p1

J ≡ zJ . It is
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easy to see that u1
I (t) (t > 0) is the solution of system

∂ui

∂t
= di∆ui + Fi(u1, . . . , um; p1

m+1, . . . , p
1
n) t > 0, x ∈ Ω,

∂ui

∂n
= 0 t > 0, x ∈ ∂Ω,

u(x, 0) = u0,i(x) > 0 x ∈ Ω̄, i = 1, 2, . . . , m.

(8)

In order to show that every solution of (8) is bounded, we consider the following
partial differential equation system:

∂ui

∂t
= di∆ui + Gi(u) t > 0, x ∈ Ω,

∂ui

∂n
= 0 t > 0, x ∈ ∂Ω, i = 1, 2, . . . , n,

ui(x, 0) = u0,i(x) > 0 x ∈ Ω̄,

(9)

where Gi = Fi for i ∈ I , Gj ≡ 0 for j = m+ 1, . . . , n. It is easy to see that G satisfies
hypothesis (P). Then we can apply Proposition 2.3(i) to the corresponding ordinary
differential equation system of (9) and conclude that every solution of this ordinary
differential equation system is bounded. Therefore, every solution of (9) is bounded.
Obviously, u1

I (t) is the solution of (8) if and only if (u1
I (t), p

1
J) is the solution of (9).

Hence, every solution of (8) is bounded. System (8) has a corresponding ordinary
differential equation system

dui

dt
= Fi(u1, . . . , um; p1

m+1, . . . , p
1
n) t > 0, i = 1, 2, . . . , m. (10)

Noticing that p1
I is an equilibrium of (10), we assert that p1

I is not an isolated
equilibrium of system (10) from above.

Proof of the assertion. Since ω(z) ⊂ ω(u1) ⊂ ω(u) and (6), we obtain
ω(z) ∩ Eo = ?, which implies that p1 < ω(z). Given any w = (w1, . . . , wn) ∈ ω(z).
By ω(z) ⊂ ω(u1) and (7), we have wj ≡ zj ≡ p1

j ≡ pj for j = m + 1, . . . , n. Let
zI (t) = (z1(t), . . . , zm(t)) be the solution of (8) with the initial value zI = (z1, . . . , zm)
and ωI (zI ) the ω-limit set of zI (t). Then ωI (zI ) = {wI :w ∈ ω(z)}, hence,

p1
I < ωI (zI ). (11)

We will show p1
I is not the unique equilibrium of (10) in p1

I +Rm
+. If this is not the

case, by Jiang [5], we conclude that p1
I is globally asymptotically stable in p1

I +Rm
+

according to (10). Then we can find an m-dimensional constant vector mI such that
zI 6I mI , thus p1

I 6I zI (t) 6 mI (t) for all t > 0. Therefore, ωI (zI ) = p1
I , contradicting

(11). We have proved that p1
I is not the unique equilibrium of (10) in p1

I +Rm
+. Then

there exists an equilibrium wI of (10) satisfying p1
I <I wI . Suppose that p1

I is an
isolated equilibrium of system (10) from above. Then we can find an equilibrium of
(10), still denoted by wI , such that there exists no equilibrium of (10) between p1

I and
wI . It is easy to see that w = (wI , p

1
J) is a constant equilibrium of (9). Therefore, there

exists no constant equilibrium of (9) between p1 and w. Applying Proposition 2.3(i)
to the corresponding ordinary differential equation system of (9), we obtain that
every constant equilibrium of (9) in [p1, w] is Liapunov stable, which contradicts
Proposition 2.2. We have proved the assertion.
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From the assertion, we can find an equilibrium wI of (10) satisfying p1
I < wI �I zI .

Let w = (wI , pJ), then p1 < w < z. It follows from the monotonicity that p1 < w(t) <
z(t) for all t > 0. Since zj(t) ≡ p1

j for all t > 0 and j = m + 1, . . . , n, wj(t) ≡ p1
j

for all t > 0 and j = m + 1, . . . , n. This shows that wI (t) is the solution of (8) with
initial value wI . Noticing that wI is an equilibrium of (8), we have wI (t) ≡ wI for
all t > 0. Thus w ∈ Eo. Since z ∈ ω(u1), wI �I zI and (7) holds, we conclude that
w 6 u1(t) for all sufficiently large t, which implies that w 6 ω(u1). Then w 6 p1, a
contradiction. Thus we have proved Claim 2.

We can use the method in the proof of Claim 2 repeatedly to obtain a sequence
ui ∈ ω(u) such that

L(ui+1, pi+1) < L(ui, pi) < L(u, p) 6 n− 1

for i = 1, 2, . . ., where pi ∈ Eo which are obtained by Lemma 3.1. Since L(ui, pi) is a
positive integer not more than n− 1 for every i, L(ui, pi) = 0 for sufficiently large i.
Then ω(u)∩Eo 6= ?, contradicting (6). Therefore, ω(u) is a singleton. This completes
the proof. q

Proposition 3.2. ω(u) is a singleton for any u� 0.

Proof. Let m = m(Eo) = max {σ(p) : p ∈ Eo}, where σ(p) = #{i : pi >i 0i}. It
follows from the type-K property that σ(p) = #{i : pi �i 0i}. If m = n, then the
conclusion is obtained by Proposition 3.1. Therefore, we assume that m < n. Then
there exist p = (p1, p2, . . . , pn) ∈ Eo and an index subset I ⊂ N, #I = m such
that pi �i 0i for all i ∈ I , pj ≡ 0 for j ∈ C(I). Without loss of generality, we
assume that I = {1, 2, . . . , m}. Then p = (p1, . . . , pm; 0, . . . , 0). It is easy to prove that
Eo ⊂ H+

I .

Claim A. For any u� 0, ω(u) ⊂ Eo.
It follows from Lemma 3.1 that there exist r, q ∈ Eo such that r 6 ω(u) 6 q.

Therefore, ω(u) ⊂ H+
I . Since u � 0, there is s > 0 sufficiently small such that

0 < z := g(s) ∗ p � u. By Jiang [7], we obtain z(t) > z for all t > 0. Therefore,
z+X+ is positive invariant and ω(u) ⊂ z+X+. Noticing that zI �I 0, we now obtain
ω(u) ⊂ IntH+

I . If Claim A is false, we can find y ∈ ω(u) such that y 6∈ Eo. Let y(t)
(t > 0) be the solution of (1) with the initial value y. Then y(t) = (y1(t), . . . , ym(t);
0, . . . , 0) and yi(t) >i zi �i 0 for all t > 0 and i = 1, . . . , m. Let p1

m+1 ≡ . . . ≡ p1
n ≡ 0

in partial differential equation system (8). Then yI (t) = (y1(t), . . . , ym(t)) is a solution
of (8). Since (8) has a positive constant equilibrium p = (p1, . . . , pm) and system (8)
satisfies hypotheses (P) and (H), we can apply Proposition 3.1 to (8) and conclude that
every solution of (8) with the positive initial value converges to a constant equilibrium
of (8).

It follows from the total invariance of ω(u) that there exist y−t ∈ ω(u) such
that y−t(t) = y for all t > 0. By the compactness of ω(u), we may assume that
y−n → w ∈ ω(u) as n→∞, where the convergence is the uniform convergence in Ω̄.
Therefore, y−nI (n) = yI and y−nI → wI (n→ ∞). Obviously, w ∈ ω(u) ⊂ IntH+

I , then
wI �I 0, hence wI (t) → vI �I 0 (t → +∞) by the result obtained in the previous
paragraph, where vI is a constant equilibrium of (8). It follows from Proposition 2.3(i)
that vI is Liapunov stable. Since y 6∈ Eo, we get ‖yI − vI‖ = µ > 0. On the other
hand, given any ε > 0, ‖wI (tm)− vI‖ < ε/2 for tm sufficiently large. For each tm > 0,
it follows from the dependence on initial conditions that we can find nm (> tm)
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sufficiently large such that ‖y−nmI (tm)− wI (tm)‖ < ε/2. Therefore,

‖y−nmI (tm)− vI‖ < ε (12)

for nm > tm and m = 1, 2, . . . .

Since vI is Liapunov stable according to (8), for µ/2 > 0, we can choose ε > 0
sufficiently small such that (12) holds and

‖(y−nmI (tm))(t)− vI‖ < µ/2 for all t > 0

where (y−nmI (tm))(t) denotes the solution of (8) with the initial value y−nmI (tm).
Therefore,

‖y−nmI (tm + t)− vI‖ < µ/2 for all t > 0.

Let t = nm − tm > 0, we obtain ‖y−nmI (nm) − vI‖ < µ/2, that is, ‖yI − vI‖ < µ/2, a
contradiction. Thus we have proved Claim A.

Claim B. For any u� 0, ω(u) is a singleton.

If this is not the case, it follows from Claim A that there exist two distinct points y,
z ∈ ω(u) ⊂ Eo. Without loss of generality, we can assume that I0 = {i :yi <i zi} 6= ?.
Let τ = max {yi/zi : i ∈ I0}. Then 0 < τ < 1, hence there exists τ0 ∈ (0, 1) such that
gi(s) > τ for all s ∈ (τ0, 1) and i ∈ N. Let v = z ∗ g(s), then we have

(i) v +Rn
+ is positive invariant;

(ii) y 6∈ v +Rn
+;

(iii) zI ∈ vI + IntRm
+, where I = {i :zi >i 0} and m = #I .

It follows from z ∈ ω(u) and (iii) that there exists t0 sufficiently large satisfying
u(t0) > v. Therefore, by (i), ω(u) ⊂ v + Rn

+, contradicting (ii). This completes the
proof. q

Proof of Theorem 3.1. Ifss there exists t0 > 0 such that u(t0) � 0, then we can
apply Proposition 3.2 to obtain the theorem. Therefore, we assume that u(t) ∈ ∂X+.
Let m = max {σ(u(t)) : t > 0}, where σ(y) = #{i :yi >i 0i}. Then m < n. Hence there
exist some t0 > 0 and I ⊂ N, #I = m such that ui(t0) >i 0i for i ∈ I , uj(t0) ≡ 0
for j ∈ C(I). Given any t̄ > t0, it follows from the definition of m and the type-K
condition that uI (t) �I 0I , uJ(t) ≡ 0 for all t > t̄. Therefore, uI (t) (t > t̄ ) is the
solution of the partial differential equation system

∂ui

∂t
= di∆ui + Fi(u1, . . . , um; 0, . . . , 0) t > t̄, x ∈ Ω,

∂ui

∂n
= 0 t > t̄, x ∈ ∂Ω, i = 1, 2, . . . , m, (13)

ui(x, t̄ )�i 0 x ∈ Ω̄.

Since (13) satisfies hypotheses (H) and (P), we apply Proposition 3.2 to (13)
and conclude that uI (t) → vI (t → +∞), where vI is a constant equilibrium of
(13). Therefore, u(t) = (uI (t), 0J) → (vI , 0J) as t → +∞ and this completes the
proof. q
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4. Lotka–Volterra systems

In this section, we will discuss the following Lotka–Volterra systems

∂ui

∂t
= ∆ui + ui

ri +

n∑
j=1

aijuj

 t > 0, x ∈ Ω,

∂ui

∂n
+ αui = 0 t > 0, x ∈ ∂Ω, i = 1, 2, . . . , n, (14)

ui(x, 0) = ui,0(x) > 0 x ∈ Ω̄,

where ri > 0, α > 0, and aij > 0 for i 6= j.

In case α = 0, (14) has very simple asymptotic behaviour. More precisely, we have
the following theorem.

Theorem 4.1. For the Lotka–Volterra system (14) with α = 0, we have the
following:

(i) If A = (aij)n×n is a stable matrix (that is, for A to have all its eigenvalues in the
open left half plane), then every solution with the initial value in X+ converges to some
constant equilibrium. Furthermore, there exists a unique positive constant equilibrium
attracting all the solution u(t) with initial value ui >i 0i for all i = 1, 2, . . . , n.

(ii) If A is an unstable matrix, then every solution u(t) → +∞ as t → η(u)− for
every u satisfying ui >i 0i for all i = 1, 2, . . . , n, where [0, η(u)) is the maximal existence
interval of u(t).

Proof. (i) If A is a stable matrix, then it follows from [12] that hypothesis (H) is
satisfied. Let g(s) = s and h(s) = s2 in hypothesis (P). Then it is easy to see that (14)
satisfies hypothesis (P) and hence the convergent result follows from Theorem 3.1.

In this case, Smith [12] showed that, for the corresponding ordinary differential
equation system of (14), there exists a unique equilibrium p � 0 which is globally
(with respect to positive initial conditions) asymptotically stable. Thus if the initial
value u of (14) satisfys ui >i 0i for all i = 1, 2, . . . , n, then the type-K condition
implies that u(δ)� 0 for any given δ > 0 and hence there exist positive vectors M
and V such that 0�M 6 u(δ) 6 V , so by the monotonicity and the result of Smith
[12], u(t)→ p as t→∞.

(ii) If u satisfying ui >i 0i for all i = 1, 2, . . . , n is such that η(u) < ∞, then clearly
u(t) → +∞ as t → η(u)−. Let u satisfy ui >i 0i for all i = 1, 2, . . . , n be such that
η(u) = ∞. Then we can argue as in the previous paragraph to obtain 0�M 6 u(δ)
and hence η(M) = ∞. It follows from Smith [12] that M(t)→ +∞ as t→∞. Hence
u(t)→ +∞ as t→∞ by the monotonicity. This completes the proof. q

Remark 4.1. Since our hypotheses are such that each subsystem of (14),
obtained by setting some uI ≡ 0 (I ⊂ N) inherits the property (H) and (P), this
result can be applied to each subsystem. Therefore, it turns out that the asymptotic
behaviour of a solution with initial condition lying on a boundary of X+, can be
completed described as well.

In case α > 0, we cannot argue as in the proof of Theorem 4.1, because (14) cannot
have the corresponding ordinary differential equation system any more. Hence we
need new methods to study the asymptotic behaviour of (14) with α > 0.
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In (14), it is biologically and mathematically reasonable to assume that aii < 0
(i ∈ N) and aii > 0 (i 6= j). Furthermore, let

F(u) = diag (u1, . . . , un)(r + Au),

where A = (aij), r = (r1, . . . , rn)
T and u = (u1, . . . , un)

T.

Lemma 4.1. Suppose that |aii| > ∑j 6=i aij . Then every solution of (14) with initial
value in X+ is bounded and can be continued to infinity. Therefore, the closure of every
semi-orbit is precompact.

Proof. Let b = max16i6n{ri/(|aii| −∑j 6=i aij)}. Then B = (b, . . . , b) � 0. For any
l > 1, we assert that [0, lB] is positive invariant. Indeed, whenever u ∈ [0, lB] satisfies
ui = lb, then

Fi(u) = lb

(
ri +

∑
j 6=i

aijuj − l|aii|b
)

6 lb

[
ri + lb

(∑
j 6=i

aij − |aii|
)]
6 0.

Hence the assertion follows from [13, Theorem 7.3.1].
Now given any u ∈ X+, there exists some l > 1 such that 0 6 u 6 lB. Hence

the positive invariance of [0, lB] implies that 0 6 u(t) 6 lB for all t > 0. That is,
u(t) is bounded and can be continued to infinity. Also, by [13, Theorem 7.3.1(iv)],
we obtained that the closure of every semi-orbit is precompact. This completes the
proof. q

Let λ0 < 0 be the negative principal eigenvalue of the system
λw = ∆w x ∈ Ω,

∂w

∂n
+ αw = 0 x ∈ ∂Ω,

and w be the normalized positive eigenfunction to λ0. Then we have W =
(w, . . . , w)� 0 and the following lemma.

Lemma 4.2. Suppose that λ0 +min16i6n{ri} > 0. Then there exists ε0 > 0 such that
εW is a strict sub-solution of (14) for any 0 < ε 6 ε0.

Proof. We only need to compute

∆(εW ) + F(εW ) = ε∆W + DF(0) · εW + o(ε)w

= ε(∆W + DF(0)W ) + o(ε)w

= ε[diag (λ0 + r1, . . . , λ0 + rn)W ] + o(ε)w.

Observe that if λ0 + min16i6n{ri} > 0, then it follows that ∆(εW ) + F(εW ) > 0 if
ε > 0 is sufficiently small, which completes the proof. q

Lemma 4.3. Let the hypotheses of Lemma 4.1 and Lemma 4.2 be satisfied. Then
there exist two equilibria p, q satisfying 0� ε0W 6 p 6 q 6 B such that (εW )(t)→ p

as t→∞ for any 0 < ε 6 ε0, (lB)(t)→ q as t→∞ for any l > 1.
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Proof. First we assert that lB (l > 1) is a strict super-solution of (14). Indeed,

∆(lb) + Fi(lB) = lb

(
ri + lb

∑
j 6=1

aij − l|aii|b
)
< 0 i ∈ N, l > 1,

and
∂(lB)

∂n
+ α(lB) = αlB > 0,

which implies the assertion. Therefore, it follows from [13, Corollary 7.3.6] and
Lemma 4.1 above that (ε0W )(t) → p (t → ∞) and (lB)(t) → ql as t → ∞ for any
l > 1, where p, ql are the equilibria of (14) and 0 � p 6 ql . Since the semi-flow in
p+X+ is strongly monotone, (lB)� ql > p for all l > 1.

Given any l > 1, we define

Q = {a :0 6 a 6 l − 1 and (l − a)B > ql}.
Obviously, 0 ∈ Q and q is a close subset of R+ satisfying the property that [0, a] ⊂ Q
whenever a ∈ Q. Therefore, Q = [0, a∗]. Furthermore, if a ∈ [0, a∗] then (l−a)B > ql ,
which implies that ((l − a)B)(t) > ql for all t > 0. Hence ql−a > ql . On the other
hand, ql−a 6 ql . Thus we obtain

ql−a = ql whenever a ∈ Q = [0, a∗]. (15)

Now we claim that a∗ = l − 1. Suppose that a∗ < l − 1. It follows that (l − a∗)B �
ql−a∗ = ql , where the second equality follows from (15). Hence if δ > 0 is sufficiently
small, then a∗ + δ ∈ Q. This produces a contradiction since Q = [0, a∗].

We have now shown that Q = [0, l − 1]. Therefore it follows from (15) that
q1 = ql−(l−1) = ql . That is, (lB)(t)→ q1 as t→∞. By the arbitraryness of l, we have
(lB)(t)→ q1 as t→∞ for all l > 1. Thus we have found q = q1 = ω(B).

Similarly, we can also argue as in the previous paragraphs to show the existence
of p such that (εW )(t) → p as t → ∞ for any 0 < ε 6 ε0. This completes the proof.

q

Lemma 4.4. Suppose that |aii| is sufficiently large for all i = 1, . . . , n. Then p ≡ q.

Proof. Let v = p−q. Then v 6 0. On the other hand, since p, q are the equilibria
of (14), they satisfy

∆pi + pi

(
ri − |aii|pi +

∑
j 6=i

aijpj

)
= 0,

∆qi + qi

(
ri − |aii|qi +

∑
j 6=i

aijqj

)
= 0

(i = 1, 2, . . . , n) and the corresponding boundary condition. Therefore, we have

0 = ∆vi + rivi + |aii|(q2
i − p2

i ) + pi
∑
j 6=i

aijpj − qi
∑
j 6=i

aijqj

= ∆vi + rivi − |aii|(pi + qi)vi + vi
∑
j 6=i

aijpj + qi
∑
j 6=i

aijvj .
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Hence

−∆vi +

[
− ri + |aii|(pi + qi)−

∑
j 6=i

aijpj

]
vi − qi

∑
j 6=i

aijvj = 0 i = 1, 2, . . . , n. (16)

Note that if

−ri + |aii|(pi + qi)−
∑
j 6=i

aijpj − qi
∑
j 6=i

aij > 0 for all i = 1, 2, . . . , n, (17)

then, by the maximum principle (cf. [10, Theorem 3.15]), we obtain vi > 0 for all
i = 1, 2, . . . , n. Hence p ≡ q. In order to prove that (17) holds, it is sufficient to show
that

2|aii|ε0w − ri − 2b
∑
j 6=i

aij > 0 for all i = 1, 2, . . . , n. (18)

Thus it follows from the definition of b that if |aii| is sufficiently large for all i ∈ N,
then (18) holds. This completes the proof. q

Theorem 4.2. Suppose that λ0 + min16i6n{ri} > 0, |aii| > ∑
j 6=i aij and |aii| is

sufficiently large for all i = 1, . . . , n. Then there exists a unique positive equilibrium
attracting all the solution u(t) with initial value ui >i 0i for all i = 1, 2, . . . , n.

Proof. We can argue as in the proof of Theorem 4.1 that u(δ)� 0 for any given
δ > 0. Therefore, we can find some ε > 0 and l > 1 such that 0� εW 6 u(δ) 6 lB.
By the monotonicity and Lemmas 4.3 and 4.4, we have u(δ) → p ≡ q as t → +∞.
This completes the proof. q

The following theorem shows that if ri is sufficiently small, then 0 is globally
asymptotically stable.

Theorem 4.3. Suppose that |aii| > ∑
j 6=i aij . Let φ ∈ C(Ω̄,R) be the solution of

the boundary problem 
−∆φ = λφ+ 1 x ∈ Ω,

∂φ

∂n
+ αφ = 0 x ∈ ∂Ω,

where 0 < λ < −λ0. Then if max16i6n{ri} 6 1/‖φ‖∞, then the zero solution of (14) is
globally asymptotically stable.

Proof. Let Φ = (φ, . . . , φ). Since it is well known that φ is a positive function, we
have Φ � 0. Let us consider ũ(x, t) = ce−λtΦ, where c > 0 and 0 < λ < −λ0. Thus
we have

∂ũi(x, t)

∂t
− ∆ũi(x, t)− Fi(ũ(x, t)) = ce−λt

{
1− φ

[
ri −

(
|aii| −

∑
j 6=i

aij

)
ce−λtφ

]}
> ce−λt(1− φri) > 0,

for all i = 1, 2, . . . , n. Thus we have shown that ũ(x, t) is a super-solution of (14). For
any initial value u ∈ X+, there exists c > 0 such that 0 6 u 6 cΦ = ũ(x, 0). By [13,
Theorem 7.3.4], 0 6 u(t) 6 ũ(x, t) = ce−λtΦ. Let t → +∞, we obtain u(t) → 0. Thus
we complete the proof. q
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