Tractable Locomotion Planning for RoboSimian

Brian W. Satzinger, Chelsea Lau, Marten Byl, Katie Byl *

Abstract

This paper investigates practical solutions for low-
bandwidth, teleoperated mobility for RoboSimian in
complex environments. Locomotion planning for this
robot is challenging due to kinematic redundancy.
We present an end-to-end planning method that ex-
ploits a reduced-dimension RRT search, constrain-
ing a subset of limbs to an inverse kinematics table.
Then, we evaluate the performance of this approach
through simulations in randomized environments and
in DRC-style terrain both in simulation and with
hardware.

We also illustrate the importance of allowing for
significant body motion during swing leg motions on
extreme terrain and quantify the trade-offs between
computation time and execution time, subject to ve-
locity and acceleration limits of the joints. These
results lead us to hypothesize that appropriate sta-
tistical ”investment” of parallel computing resources
between competing formulations or flavors of random
planning algorithms can improve motion planning
performance significantly. Motivated by the need to
improve the speed of limbed mobility for the DARPA
Robotics Challenge, we introduce one formulation of
this resource allocation problem as a toy example and
discuss advantages and implications of such trajec-
tory planning for tractable locomotion on complex
terrain.

*B. Satzinger, C. Lau, M. Byl and K. Byl are with
the Robotics Laboratory, University of California at Santa
Barbara, Santa Barbara, CA 93106, USA, {bsatzinger,
cslaul2, marten.byl, katiebyl}@gmail.com

Figure 1: RoboSimian can balance more easily than a
biped, but its high-DOF limbs complicate planning.

1 Introduction and Problem
Statement

RoboSimian is a human-scale quadruped robot built
by JPL to compete in the DARPA Robotics Chal-
lenges (DRC). It is inspired by an ape-like morphol-
ogy, with four symmetric limbs that provide a large
dexterous workspace and high torque output capa-
bilities. The DRC is motivated by the possibility of
using robots to aid in responding to disasters such as
the nuclear disaster in Fukushima. The tasks in the
DRC are representative of situations a robot might
encounter in a disaster response scenario. Many of
the tasks require manipulation, leading to the Ro-
bosimian’s high degree of freedom design with seven
joints per limb. On the other hand, the robot is also
required to walk over rough terrain, as pictured in
Figure 1.



RoboSimian is designed with distinct advantages
that facilitate rough terrain walking. For example,
its long-limbed, quadrupedal form provides a large,
stable base of support, and the existence of redundant
kinematic solutions increases the likelihood that joint
configurations can be found to reach particular, de-
sired footholds while avoiding collisions between the
limbs and terrain. However, these same advantages
provide significant challenges in experimental imple-
mentation of walking gaits. Specifically:

1. A wide support base results in high variability
of required body pose and foothold heights, in
particular when compared with planning for hu-
manoid robots.

2. The long limbs on RoboSimian have a strong
proclivity for self-collision and terrain collision,
requiring particular care in trajectory planning.

3. Having the rear limbs outside the field of view
requires creation of an adequate world map.

We present a tractable means of planning statically
stable and collision-free gaits, which combines prac-
tical heuristics for kinematics with traditional ran-
domized search algorithms, such as rapidly-exploring
random trees (RRTs). In planning experiments,
our method outperforms other tested methodologies,
while field testing indicates that perception limita-
tions provide the greatest challenge in real-world im-
plementation. Our simulation tests show that the
planner is capable of traversing DRC-style terrain as
well as a variety of randomized terrains. We also
examine the performance of our method relative to
a known time-optimal synthetic reference trajectory,
revealing that we are generating considerably sub-
optimal solutions with respect to execution time un-
der RoboSimian’s joint velocity and acceleration lim-
its. We further determine that the sub-optimality can
largely be attributed to a lack of smoothness in the
solutions combined with the acceleration limits of the
robot, which we suggest may be the most important
area of future research toward improving our speed
of locomotion on rough terrain.

The problem of generating desired joint reference
trajectories for this high-dimensional quadruped to

walk on rough terrain is an example of kinodynamic
planning (Donald et al. (1993), Donald & Xavier
(1995)), simultaneously considering kinematic con-
straints as well as dynamics. For RoboSimian, the
primary kinematic challenges involve selecting among
redundant solutions and avoiding collisions of the
robot with terrain obstacles and with itself, while the
main dynamic constraints are joint velocity limits,
acceleration limits, and static balance requirements.
For quasi-static walking, consideration of joint accel-
erations and allowable center of pressure (aka ZMP)
location are not usually key considerations. How-
ever, we have recently discovered that acceleration
limits for RoboSimian slow trajectory execution time
dramatically for typical RRT solutions, and we are
currently implementing appropriate smoothing.

Comparing with past work in planning quadruped
locomotion on rough terrain for LittleDog (Byl et al.
(2009), Byl (2008), Kolter & Ng (2011), Zucker et al.
(2011)), two particular challenges for RoboSimian are
that it has seven degrees of freedom (DOF's) per limb,
rather than three, and that perception relies solely on
on-board sensing, rather than the use of motion cap-
ture (Vicon) along with saved (point-cloud) terrain
maps.

Each of RoboSimian’s identical four limbs consists
of a kinematic chain of six rotational DOFs to define
the (6 DOF) position and orientation of a lower leg
segment, shown in green in Figure 2, relative to the
body frame. A final (7*") rotational joint simply al-
lows the most distal end, or foot, of the lower leg to
twist relative to the leg, so that the L-shaped lower
leg segment itself can yaw while the foot remains fixed
with respect to the ground. Even with only six actua-
tors to set the 6-DOF pose of the lower leg, there are
frequently redundant solutions. Qualitatively, each
solution involves making one of two geometric choices
(akin to “which way to bend an elbow”) at each of
three points along the chain: 23 results in a total of
8 IK families, as depicted in Fig. 2. The workspace
and proclivity for self-collision of each family is differ-
ent, and solutions for continuous trajectories in task
space within a single family sometimes require dis-
crete jumps in joint angles, so that kinematic plan-
ning is quite complex. In our problem formulation,
we seek tractable methods to design trajectories for



all 28 actuated joints, for slow walking with high-
torque joints, given a set of candidate footholds on
complex terrain.

Figure 2: Redundant inverse kinematic (IK) solutions
for RoboSimian.

As computational resources increase dramatically
over time (via Moore’s Law), it is clear our no-
tions of tractable motion planning should evolve.
One approach that is likely to thrive in this setting
is the use of trajectory libraries (Stolle & Atkeson
(2006), Schaal & Atkeson (2010), Jetchev & Tous-
saint (2009), Hauser (2013)), where precomputed tra-
jectories are refined according to the specific situa-
tion. This presents its own set of (adaptive) comput-
ing resource allocation problems, to cover relevant
dynamic motions with adequate fidelity. We are in
the process of developing trajectory libraries for flat
terrain locomotion. Another approach is to allocate
computation cycles toward on-the-fly trajectory plan-
ning (e.g., via RRTs), and this is the path we inves-
tigate in exploiting cloud computing resources that
will be provided to teams competing in the DARPA
Robotics Challenge in June 2015. We note that prac-
tical use of RRTs in a time-constrained contest set-
ting has already been investigated by Kuwata et al.
(2008) on MIT’s team for the DARPA Urban Chal-
lenge. In that work, random trees are built using

a very low-dimensional search: i.e., x,y coordinates,
plus a heading angle associated with each node. Our
trees have significantly higher dimensionality, with
either 9 or 16 angular degrees of freedom at each
node. However, with our formulation, this search is
still practical for on-the-fly locomotion planning. An
open question we pose in this work is how best to allo-
cate parallel computing resources to improve (quan-
titatively and/or qualitatively) the plans we generate
for RoboSimian.

The rest of this paper is organized as follows. Sec-
tion 2 presents our technical approach, which divides
motion planning for the 28 actuated joints and 6-
DOF pose of the robot into a lower-dimensional RRT
search that pins either two or three limbs to a pre-
computed inverse kinematics (IK) table. Section 3
provides results for the approach, aimed at demon-
strating practicality for real-world planning, while
Section 4 introduces and analyzes a planning frame-
work that uses parallel randomized searches as a
means of achieving near-optimal and qualitatively di-
verse plans from which a remote operator can choose.
Finally, Sections 5 and 6 provide conclusions and
discuss potential extensions for future work. This
paper builds upon the experimental results first pre-
sented in Satzinger et al. (2014). Compared with this
prior work, Section 2 now provides a more complete
overview of our A* foothold graph search as well as
our motion planning approach, R2T2, which blends
“RRTs with Tables” (of IK solutions) for tractability.
Section 3 now includes results from two simulations of
our planner over a simulated DRC terrain in addition
to a real-world demonstration with RoboSimian in an
outdoor environment. To demonstrate the robustness
of the planner, we also show statistical results from a
set of 900 RRT runs for swing trajectories on a ter-
rain with several randomly-placed obstacles.  Sec-
tion 4 newly introduces a resource allocation frame-
work for randomized planning. This parallel planning
approach is motivated by the increasing availability
of cloud computing resources for robotics planning —
notably, the DARPA Robotics Challenge will provide
such resources in the DRC finals in 2015 — and by
the difficulty of accurately quantifying cost functions
with a fully autonomous planner: i.e., availability
of multiple solutions improves the statistical odds of



finding any one near-optimal solution and also allows
for downselection by context-aware robot operators
among qualitatively different solutions.

2 Technical Approach

Foothold Set

!

Foothold Graph Search

Foothold Plan

Pose Finding

Body Poses over N steps

Y
RRT-Connect

Motion Plan

\ 4

Execution

v

Finished

Robot State

Robot State

Figure 3: Planning phases in our approach

Our approach begins with a set of candidate
foothold locations. We use a graph search to find
a specific foothold plan, consisting of a series of steps
that will be taken. At each node in the graph search,
we perform a secondary search for a robot pose which
is free of both self and world collisions while main-
taning static stablility. If this search produces a valid
body pose, then this proves by construction that it is
possible to stand on the footholds described by this
node. If this search fails, we assume it is impossible
to stand on this node’s footholds and reject the node.
While the specifics of the body pose search differ, our
search is analogous to the footstep planning search al-
gorithm described in Section 4 of Zucker et al. (2011).
If the graph search finds a feasible path through the
stance graph, the required sequence of steps is stored

in a foothold plan. If, however, the graph search fails,
then a different set of candidate footholds must be
provided (e.g., by a human operator), and the search
restarted. The stance graph and the associated body
poses which proved the feasibility of the nodes within
the graph are discarded at this time.

In the next phase of planning, we again find body
poses that are kinematically feasible, stable, and col-
lision free. However, unlike during the A* search,
when we were simply concerned with proving (by
construction) that it is possible to stand on a sin-
gle set of footholds, here we are generating the body
poses which will actually be used during walking.
This choice will significantly affect the overall per-
formance. In particular, it is highly undesirable to
require moving the body between every step. Ac-
cordingly, we discuss in Section 2.3 our approach for
finding body pose solutions that considers multiple
sequential stances together. After the Pose Finder
determines feasible body poses for the beginning and
end of each step, we are able to specify the com-
plete sequence of motions (steps and body shifts).
At this point, we invoke the RRT-Connect planner
which plans the detailed motions between the start-
ing and end positions, still respecting static stability,
kinematic feasibility, and collision constraints. The
motion plan is then executed on the robot (or a sim-
ulation).

The overall process contains multiple planning
horizons of different lengths. The RRT-Connect
planners always plan one motion (step or body shift)
ahead, immediately before execution. The Pose Find-
ing algorithm plans over a horizon of several (typi-
cally three or four) steps. For the experiments and
simulations discussed in this paper, the Foothold
Graph Search is performed over the entire terrain
model to some goal location a significantly further
distance (e.g., 10 meters) away. Due to inherent
limitations in terrain perception at those distances,
we expect that in practice the horizon used for the
Foothold Graph Search will be significantly shorter
(e.g., 2-3 meters).

It is possible for failures to occur at every level
of the planning process, and there are a variety of
automatic and manual interventions possible. The
Foothold Graph Search may fail to find a solution



on the provided candidate footholds. In this case
the operator is prompted to provide a different set
of candidate footholds and to try again. The Pose
Finding algorithm will, it turns out, never fail, as
long as its input foothold plan was generated by the
Foothold Graph Search. This is because, by design,
the Pose Finding algorithm will always rediscover the
proof-of-feasibility body poses generated during the
Graph Search, if a more efficient solution does not
exist.

The RRT-Connect planner may fail to find a solu-
tion'. In this case, the operator is given the option to
have it try again (with possible success) or replan at
either the Pose Finding or the Foothold Graph Search
stage. Due to our dominant-limb formulation (to be
discussed), we actually run multiple RRT planning
queries and choose the plan with the fastest execu-
tion time of the plans that are successful. See Section
3.2 for a statistical analysis of our planners with dif-
ferent dominant limbs choices.

There may also be failures during the Execu-
tion phase. For example, the expected foothold
position may simply be incorrect due to percep-
tion/localization errors, misapprehension of the phys-
ical properties of the walking surface (e.g., tissue pa-
per covering a deep hole), or changes in the environ-
ment that have taken place after the world model
was generated. After the robot’s foot touches down
and detects the ground (using force sensors), the
foothold’s ‘true’ location is then known. When run-
ning with the physical robot, there will always be
discrepancies (typically small) between the expected
and ‘true’ foothold location. We account for these
discrepancies by updating the position of the foothold
in the foothold plan (output of the Foothold Graph
Search) and the queue of upcoming motions (output
of the Pose Finding algorithm). We then check that
the modified queue of motions is still valid (i.e., if we
move the foothold to its new location, are the chosen
body poses still feasible?). If it is, we continue execu-
tion immediately with the modified motion queue. If

1 Although RRT-Connect is probabilistically complete, in-
finity is a long time. Additionally, it may simply be the case
that the goal pose is not in fact reachable from the starting
pose. Accordingly, the RRT-Connect planner will eventually
time out and ’fail’, for either reason.

not, we discard the queue and re-generate it from the
modified foothold plan. If this succeeds, we continue
normally. If it fails?, then the operator is prompted
to choose between re-running the Foothold Graph
Search on the modified foothold set, providing an en-
tirely new foothold set, and aborting walking.

Because RoboSimian self-checks for anomalous
conditions while moving, sometimes a motion is
aborted before it is completed because a limit (e.g.,
joint tracking error) was exceeded. Sometimes an
anomaly will be transient, but other times it reflects
a real failure in the robot that requires operator in-
tervention. Accordingly, if a motion is aborted dur-
ing execution, the operator is given an opportunity
to evaluate the robot’s state and then decide to ei-
ther abort walking or attempt to re-plan (using RRT-
Connect) from the robot’s current position to the goal
location and execute the new plan.

The individual phases of our planning process are
described in more detail below.

2.1 Foothold Graph Search

The first phase in our planning approach searches
for a feasible sequence of steps to bring the robot
to a specified goal location. First, a set of feasible
footholds are selected from the terrain based on, e.g.,
perception and classification of the terrain, a priori
knowledge of terrain shape as in DRC simulation, or
manual selection. We then use a variation of the A*
algorithm (Hart et al. (1968)) in order to construct a
path from the selected set of footholds.

The A* algorithm makes use of a heuristic that
estimates the cost of traversing between nodes. The
only limitation on the heuristic is that it must be
admissible (it does not overestimate the true cost).
The cost function for the algorithm is the sum of the
heuristic cost of traversing from the expanding node
to the goal node and the actual cost of traversing from

2This is not inconsistent with the claim above that ”The
Pose Finding algorithm will, it turns out, never fail, as long as
its input foothold plan was generated by the Foothold Graph
Search.” By modifying the position of a foothold, we no longer
have a foothold plan that was generated (entirely) by the
Foothold Graph Search. In practice, if foothold errors are
small, this rarely happens.



the start node to the expanding node. Like the best-
first search algorithm, the node with the smallest cost
in the queue is expanded first. The tree is expanded
until the goal node is reached.

Although A* search guarantees an optimal solu-
tion, it is suggested by Felner et al. (2003) that sub-
optimal solutions may be found by related best-first
search algorithms in much less time. In particular,
they propose a K-best-first search algorithm that ex-
pands the K best nodes at once (A* corresponding
to the special case of K =1). We have implemented
a modified approach where K threads expand nodes
asynchronously. The empirical performance of this
algorithm relative to alternative graph search algo-
rithms is not in the scope of this paper, but some
performance data will be presented in Section 3.3 of
our implementation in the context of the entire sys-
tem. We expect other foothold planning methods to
be applicable as well (Byl (2008), Kolter & Ng (2011),
Zucker et al. (2011), Vernaza et al. (2009)).

In our formulation, there is a fixed set of foothold
locations provided as an input to the process. A selec-
tion of four (RoboSimian being a quadruped) unique
footholds gives a particular stance, which may or may
not turn out to be kinematically feasible (while also
respecting collision and stability constraints). We
search over an implicit graph, where nodes each cor-
respond to stances which have been determined to
be achievable, and edges connect two nodes whose
stance footholds differ in only one position. Stances
are determined to be achievable by searching for a
body pose from which all footholds are kinematically
reachable, while respecting collision and stability con-
straints. Our cost heuristic is the linear distance be-
tween the centroids of the footholds of two nodes (or
between a node and the goal location). The complex-
ity of the search depends on the candidate footholds
provided. We provide some data about a typical ex-
ample in Section 3.3. In general, we can success-
fully plan to walk on “nearly flat” ground with an
enforced gait order, but on the DRC terrain, the free
gait search or a gait search with weak order enforce-
ment (i.e. you cannot take a step with the same limb
twice in a row) is advantageous because it enables
the negotiation of difficult parts of the terrain. We
expect future work to modify the cost heuristic to

reflect other planning preferences, such as the prefer-
ential use of certain footholds over others.

2.2 IK Tables

Once a foothold plan is determined, we must choose
body poses at the beginning and end of each step.
This process requires an inverse kinematics solution
that addresses the difficulties inherent in high-DOF
robot limbs. We used an IK table rather than an
IK solver because, although an IK solver such as
ikfast (Diankov (2010)) can easily provide an arbi-
trary number of solutions to achieve a given 6-DOF
pose with RoboSimian’s 7-DOF limb, ikfast does not
distinguish among “families” of kinematic solutions,
thus beginning and ending poses that come from dif-
ferent “families” may require that limb to be recon-
figured during the transition. For example, one or
more joints may require 180° rotations to move from
an “elbow-in” configuration to an “elbow-out” con-
figuration.  Our in-house IK solver is relatively slow
but groups the solutions to minimize limb reconfig-
urations across the reachable workspace. To allow
for a real-time implementation, we precompute an
IK table in terms of only the relative 3-DOF position
of a limb with respect to the body coordinate sys-
tem. This exploits the fact that the lower leg need
not be exactly normal to the ground during stance
and greatly simplifies planning for body pitch and
roll.

2.3 Body Pose Search

Another advantage of pre-computing an IK table for
the (z,y,z) coordinates of a limb is that we can also
test potential body poses for feasibility very rapidly.
Given a set of either three stance legs and one
swing leg, we set a nominal body orientation (roll,
pitch, and yaw) heuristically to match the underly-
ing foothold locations and heights. We search over a
6-DOF grid of potential body poses centered on the
heuristic pose. The grid consists of a set of 50 points
in the x-y plane, 7 discrete values for z, and 5 each
for roll, pitch, and yaw. Thus, we examine up to
50 x 9 x 5 x5 x 5 = 56250 body poses. We search in
an order that tests poses closer to the nominal pose



first, and we terminate as soon as a single feasible
pose is found. A feasible pose consists of one that is
kinematically feasible for all four limbs, with static
stability on a support triangle (with margin) given
by the 3 stance footholds.

In order to handle uncertainty in the terrain while
planning, we also test that the swing foot will be
able to reach above and below the planned foothold
location while remaining kinematically feasible. This
ground penetration distance can be set as a parame-
ter. Choosing a larger value will allow greater uncer-
tainty in the terrain, but also forces the planner to
choose only conservative motions.

RoboSimian’s four limbs together account for
roughly 60 % of its total mass. Because limb motions
affect center of mass location significantly, testing a
step for feasibility requires performing two body pose
searches, one with the swing foot at the initial pose,
and one with the swing foot at the final pose. This
also allows us to plan steps with different body poses
at the beginning and end. In the results section, we
will show the results of an analysis on the effect of
allowing body motion during a step on the volume of
reachable footholds. We will demonstrate that this
capability does not have much advantage when plan-
ning a regular forward crawl gait on flat ground, but
does significantly increase the reach on complex ter-
rain with irregular steps or height changes.

We expect future work to address several short-
comings with this method of finding body poses.
The approach is somewhat computationally expen-
sive. We will quantify the time spent searching for
body poses in comparison to other planning pro-
cesses. The search also does not guarantee that the
solution is better than other possible solutions or that
it is far away from infeasibility. The authors expect
to implement either a more sophisticated search or a
subsequent pose optimization step to address one or
both of these issues.

2.4 Motion Planning

Our general trajectory planning framework is de-
scribed in more detail in Satzinger & Byl (2014), but
we will reproduce figures and some explanation in this
section for the sake of clarity. Once the footholds and

body poses for each step are selected, a lower-level
algorithm is needed to construct trajectories for the
transitions between poses. Several works plan loco-
motion by first searching over a graph and then fill-
ing in allowable motions (Bouyarmane & A. (2012),
Hauser et al. (2005), Bretl (2005)). In particular,
Bretl (2005) developed a non-gaited motion planner
for the LEMUR quadruped, which has 3 DOF per
limb. Hauser et al. (2005) solved for non-gaited mo-
tions on a 36-DOF humanoid by focusing on clever
(contact-before-motion) sampling, but a single step
still required several minutes, and a plan for climbing
a ladder took a few hours, computationally. We use
RRT-Connect (Kuffner & LaValle (20000)) to solve
for a feasible paths between steps. Kuffner et al.
(2002) has demonstrated this method to plan loco-
motion for a humanoid with 6-DOF limbs, but, in
practice, this required a search over an apparently
much smaller configuration space (e.g., C?) than in
our case (C'9).

We now provide a brief overview of the RRT-
Connect algorithm, which is an extension of the orig-
inal RRT algorithm (Kuffner & LaValle (2000a)). In
the RRT-Connect algorithm, two trees are grown si-
multaneously — one from the start node and one from
the goal node. In each iteration, one tree is chosen
to be expanded randomly while the other tree is cho-
sen to extend towards the last node in the first tree.
The roles of the trees are then swapped in the next
iteration. This process is continued until the connect
tree is able to extend within delta of the last node of
the extend tree.

To provide context for our experimental results, we
will briefly summarize our implementation of RRT-
Connect to find paths between initial and goal loca-
tions (from Satzinger & Byl (2014)). We parame-
terize the configuration space in a way that allows us
to reduce the dimensionality substantially compared
to a naive approach. Simultaneously, this approach
also addresses kinematic closure of the stance limbs,
allows full motion on the swing limb, and guarantees
that the resulting joint trajectories are continuous.

We will denote a coordinate transformation from
frame a to frame b by C}'. Coordinate transforms can
be multiplied (C2C¢ = C¢) and inverted ((C2)~! =
C?). We assume a fixed world frame, a body frame



attached to the robot body, and foothold frames. We
will refer to a foothold (frame) by f, which can be
indexed by limb. Therefore, C’“;"”d gives the location
of the iy, foothold in the world frame. We will use
1 as a generic limb index, and sometimes d and s to
denote the index of a dominant or swing limb (to
be defined) as appropriate. A joint trajectory over
time is written ¢(n), but where n is defined, g(n) is
understood to refer to a specific sample. The joint
angles of limb ¢ are denoted by ¢;, while the joint
angles of the entire robot (consisting of appending all
of the ¢;’s) are designated by q. We will also designate
optional function parameters (related to the swing
leg) in [brackets]. Some functions will return a status
variable, intended to indicate the Success or Failure
of the function call.

Then, we can define a forward kinematics func-
tion FK(i,q;) and an inverse kinematics function
IK ,TABLE(i,C’?fdy) implemented as a lookup ta-
ble specifically designed with certain properties (so-
lutions are unique, and trajectories through the
workspace are smooth). An algorithmic approach for
designing the IK tables is described in detail in Byl
et al. (2014).

O™ = FK (i, q)-

(1)

(i, status) = IK_TABLE(i, ;™) (2)

Figure 4 illustrates this approach. During a swing
motion, the complete pose of the robot can be speci-
fied by the 7 joint angles of the dominant limb and
the 7 joint angles of the swing limb. We can also
allow rotation at the contact between the dominant
limb and the ground by introducing 2 additional de-
grees of freedom to give roll and pitch at this con-
tact. This gives a total of 16 degrees of freedom. In
the results section, we discuss the effect the choice of
dominant limb has on the solutions provided by the
RRT-Connect algorithm. In future work, the authors
plan to take advantage of this property and the avail-
ability of multiple cores to simultaneously run multi-
ple parallel instances of the RRT-Connect algorithm
with a certain percentage dedicated to each possible
dominant limb according the to their probability of

Figure 4: Cartoon sketch from Satzinger &
Byl (2014) illustrating the design of our RRT-
Connect configuration space parameterization for Ro-
boSimian.

obtaining a “fast” solution. A post-processing proce-
dure will then select the best solution.

The initial and goal configurations for the domi-
nant and swing limbs are determined using the IK
table lookup procedure. However, the joint trajec-
tories are not limited to IK table solutions in the
RRT-Connect search. This allows for complicated
maneuvers during swing motions while still maintain-
ing continuity in IK solutions between steps.

The remaining two dependent limbs are not di-
rectly represented in the parameterization. We de-
termine their positions using IK table lookups after
obtaining the trajectory solutions for the dominant
and swing limbs. Using forward kinematics, the joint
configurations of the dominant limb are used to define
the body positions along the trajectory. In turn, the
body positions provide the location of the footholds of
the dependents limbs relative to RoboSimian’s body.
It is possible to generate poses where one or more
dependent limbs do not have a kinematically feasible
IK table solution. These poses are considered to be
infeasible and are not used.

A similar approach can be used to allow a body
shift with all four feet in contact with the ground
along with different initial and final body poses. This
still requires one dominant limb to determine the
body pose and the remaining three limbs to be depen-
dent limbs. This gives 9 degrees of freedom, including



Algorithm 1 Procedure for calculating the full
pose (consisting of ¢ and Col?). Cporl gives the
foothold locations relative to the world, d and ¢4 give
the index and joint angles of the dominant limb, and
optional parameters s and g5 give the index and joint
angles of the swing limb (if applicable).
1: procedure FULL,POSE(C}‘jO”d, [d, qd), [8, qs])
M FK(d, qa)
wor body — wor
Cbodyld — (Cfd y) 10 : ld
for i =0 to (Nyimps — 1),7 # d,i # s do
bod wor world)—
Cf,i Yo Ofi ld(cbodyld) 1
(i, status) < IK_ TABLE(i,C}")
if status # Success then

return (C’l%‘[’lzld, q, Failure)

end if
end for
11: return (C[%(C’lgd, q, Success)
12: end procedure

© X% NP gosw N

H
@

the roll/pitch contact with the dominant foothold.

One issue with trajectories generated using RRT's
is that they are not smooth. Such trajectories slow
down the overall motion during steps because the
sharp changes in direction require the joints to slow
down in order to obey the velocity and acceleration
limits of the motors. The authors expect to address
this issue using methods such as the post-processing
smoothing procedure in Hauser & Ng-Thow-Hing
(2010) that also takes velocity and acceleration limits
into account.

All dimensions are given in radians, and angles
are not wrapped at multiples of 27. Although Ro-
boSimian’s actuators do not have hard joint limits
and can continuously rotate, accumulating several ro-
tations could damage cabling passing through the ac-
tuators. To avoid the accumulation of rotations dur-
ing planning, we treat all joint angles (e.g, 0 and 27)
as distinct.

3 Results

We present results from various simulation and hard-
ware experiments that demonstrate the capabilities

and benefits of our approach to trajectory planning
for Robosimian.

3.1 Feasible Step Volume

y[m]

05 -
£ -
-1

x[m] y [m]

E 0.5 &
N
1.5 :

1
15 0.5 >
05 -1

xm) 05 T

HENRES e S
] 05 O
x [m] y[m]

Figure 5: Volumetric rendering of the reachable vol-
ume from several perspectives. Black shows the vol-
ume S, and green shows the relative complement of
S in D (showing the region reachable only with body
motion during a step). Red shows regions contained
in S and D where the RRT solvers were not able to
find a path, despite the existence of feasible initial
and final poses. Blue shows the outline of the ini-
tial support region, with the initial swing foothold
embedded in the reachable volume.

In contrast with the planning approach used on
RoboSimian during the 2013 DRC trials, our RRT
configuration space design supports movement of the
body during a step, from an initial pose to a final
pose. We performed an analysis to consider the ef-
fects of this design decision on the ability for our sys-
tem to plan steps on difficult terrain.

For the analysis, the robot’s initial footholds are
placed in a crawl-gait position corresponding to a
steady state step length of 0.50 meters. Then, we



consider planning a step with one of the limbs from
its initial position to a set of goal positions on a 3D
grid. The search grid had 32 points in x and y, and
18 points in z. We compare the volumes reachable
when the initial and final poses are forced to be the
same, and when they are allowed (but not required)
to be different. Therefore, the “same pose” volume .S
will always be a subset of the “different pose” volume
D, and we can quantify the benefits of this approach
by the size and shape of the relative complement of
Sin D.

The analysis found that 2541 of the destination
foothold locations were likely reachable based on find-
ing a feasible body pose for the end of the motion.
Our RRT-Connect implementation was able to find
paths to 2499 of them (98.3%). The remaining 42
points where the RRT-Connect search failed to find
a path are shown in red in Figure 5. The 2499 suc-
cessful paths represent 1.92 km of total motion, with
an average step length (linear distance from start to
finish) of 76.8 cm, and a maximum step length of
169.7 cm.

In contrast, when the body position was required
to be the same at the beginning and end of the step,
only 1065 steps were possible, with an average step
length of only 55.7cm, and a maximum step length
of only 130.6¢cm.

As Figure 5 shows, the reachable volume is sub-
stantially increased by allowing the body to move
during a step. Notably, the maximum distance that
it is possible to move the foot directly forward (pos-
itive x direction) does not vary much between S and
D, so there is little benefit for a regular crawl gait
on approximately flat terrain. However, S is much
larger in other directions, suggesting benefits for ir-
regular gaits, especially on terrain with large changes
in height, or when the robot is turning.

3.2 Obstacle Avoidance

To characterize typical performance of our R2T2 al-
gorithm for complex and unpredictable obstacle ge-
ometry, we generated thirty random sets of footholds
and random obstacles for Robosimian to avoid when
taking one step forward. For each set of footholds and
obstacles, initial and final body poses were found us-

ing the body pose search described in Section 2.3, and
thirty searches were run for each of the three (non-
swing leg) available choices of dominant limb, for a
total of 900 searches per dominant limb.

Recall that one motivation in our work is to develop
a strategy that can exploit parallel computing. As a
result, we are particularly interested in the statistics
of the entire group of thirty searches performed for
any one of the thirty random terrain cases.

Starting footholds were chosen from a uniform ran-
dom distribution centered around nominal foothold
positions (without rotation), with bounds of +0.2
meters in x (forward/backward) and y (right/left)
and £0.1 meters in z (down/up)®. The goal foothold
was randomly selected from a uniform distribution
centered 0.4 meters ahead (+x) of the starting swing
foothold, with bounds of +0.1 meters in x, y, and
z. We placed three boxes near the swing footholds,
and distributed five boxes randomly throughout the
workspace. The sizes of the boxes were chosen
from uniform random distributions on the intervals
[0.04,0.2] meters in x, [0.1,0.5] meters in y, and
[0.2,1.0] meters in z. The poses of the boxes were
chosen from a uniform random distribution centered
around the geometric center of the start footholds
with bounds of £1.0 meters in x (forward/backward),
+1.0 meters in y (forward/backward), and [—0.1, 0]
in z (down/up). The roll, pitch, and yaw of the
boxes were also uniformly distributed on the inter-
val [—30, 30] degrees. (See Figure 6.) All simulations
for this experiment were run on a computer with a
3.40 GHz Intel i7-2600 CPU. Each search terminated
either when a solution was found or 100,000 nodes
were added to either tree, whichever occurred first.

Of the 900 total runs, 897 (99.67%) were success-
ful in finding full body trajectories for the step for
at least one choice of dominant limb before “timing
out”. After running thirty trials on each terrain, we
were always successful in finding multiple successful
plans for each of the thirty terrain cases. The average
number of nodes (both trees combined) for the 897
"best” trajectories was 34,755 with a standard devi-
ation of 53,418. The average computation time for
running the planner three times (for each available

3The sign convention for z is that -z is 'up’ and +z is ’"down’.



Figure 6: Two examples of randomly-generated ob-
stacles and footholds. The robots shown are facing
to the left. The front, right foot, shown at the far left
in each image, is Limb 1, with limb numbers increas-
ing as one goes clockwise, as viewed from above the
robot. Thus, red circles mark footholds for Limb 1,
green circles for Limb 2, blue circles for Limb 3 (i.e.,
the swing limb), and the pink circles for Limb 4.

choice of dominant limb) was 28.00 seconds with a
standard deviation of 42.91 seconds. We summarize
the success rates and computation times with respect
to each choice of dominant limb in Table 1.

Within the table, notice that on some terrains, a
particular choice of dominant limb sometimes results
in a 0 % success rate, although solutions were found
for one or both of the other limbs; we discuss likely
explanations and consequences for this later in this
section. Also note that the computation time of the
unsuccessful RRT-Connect searches is affected by the
number of nodes we allow to be added before ter-
minating the search and can theoretically approach
infinity if allowed to run to completion. In our set
of searches, unsuccessful searches ran for 58.58 sec-
onds on average before timing out. By comparison,
successful searches found solutions in 3.11 seconds,
nearly one twentieth of the average computation time
of unsuccessful searches. However, we intend to make
use of parallel searches, selecting the solution that is
returned first, which would then shift emphasis to the
minimum computation time with respect to the avail-
able choices of dominant limb from the aggregate of
all choices. In the 900 runs, the average minimum
computation time was 0.65 seconds with a standard
deviation of 0.87 seconds. This highlights the influ-
ence parallel searches would have on the computation

time associated with planning swing trajectories.

We find it interesting that, of the thirty sets of
data, there were multiple cases where only one choice
of dominant limb resulted in a solution. This pro-
vides evidence for our hypothesis that (in these cases)
one stance limb must almost certainly deviate from
the IK table solutions to permit a collision-free so-
lution to be found. It also illustrates why alternate
approaches, such as an RRT search over the 6 degrees
of freedom of a floating base, with no dominant limb
(but using IK tables to guarantee continuous solu-
tions), would be very unlikely to find a solution for
the same planning queries.

For our choice of swing limb, Limb 2 seems to pro-
vide the best chance of resulting in a solution when
used as the dominant limb. However, there is one ter-
rain example in which Limb 2 failed as the dominant
limb in all thirty iterations of the RRT. These results
indicate sensitivity both to the obstacle locations and
sizes as well as the choice of swing limb. Our conclu-
sion is that it is simply best to search over all possible
dominant limbs since we cannot predict all scenarios
in which Robosimian may find itself. Searching over
multiple dominant limbs also increases the variability
among successful plans found, improving the odds of
finding a lucky motion plan, near the fast end of the
tail in required execution time.

Computation Time vs Execution Time

The idea of terminating parallel runs of the RRT
based solely on the minimum computation time
brings up the question of the efficiency of the plans
returned first. Table 1 summarizes the variability in
computation time required to find either the “best
of 30” parallel searches performed or the “average
computation time” overall. Additional statistics of
interest include the average execution time required
for the robot to perform the resulting motion plan, as
well as the potential benefit in execution time if one
waits for additional parallel computations to be com-
pleted, rather than taking the first feasible solution
found.

The trade-off between computation time and ex-
ecution time for our collision avoidance data set
is summarized in Figure 7. At left, as one waits



for longer for parallel RRT searches to complete,
the best-yet execution time decreases monotonically.
However, there are diminishing returns. For example,
if one always waits until 2.6 times the time required
for the first feasible solution to be found, the aver-
age execution time drops from 5.67 seconds to 4.18
seconds (highlighted by the 4+ symbol at left), repre-
senting an average execution time that is 0.74 times
the first-found solution (highlighted on the normal-
ized plot at right).

3

®

o

N

Average execution time (sec)
IS

Reduction factor for execution
° &
» &

o
o

@> 2
a3

5 10 15 20 10' 10
Average computation time (sec) Extra computation time factor

3

Figure 7: Computation time versus execution time.
At left: best-yet execution time reduces with increas-
ing computation time. However, there are diminish-
ing returns over time. At right: the same data are
presented with computation time and execution time
normalized by the average times for the first-found
solution.

In practice, we wish to minimize the combination
of computation time plus execution time. Taking the
first solution found, the average computation time is
0.51 seconds and the average execution time for the
motion plan is 5.67 seconds, resulting in an average
of 6.18 seconds per step on cluttered terrain. We ex-
plored policies which allowed the parallel planner to
run for the minimum of either some constant, kcomp,
times the first-found computation time of some frac-
tion, feree, of the first-found execution time. Based
on our sample data, in which we ran 30 searches for
each of 30 randomly generated terrains, the optimal
parameters for this simple policy are kcomp = 2.6
and fegee = 0.14, resulting in the total time changing
from 6.18 seconds to 5.18, i.e., to about 84% of the
“greedy” first-found case. The expected reduction is
execution time alone after waiting kcomp = 2.6 times
the first-found solution is highlighted on both sub-
plots of Figure 7 with a + symbol.



Limb 1 Dominant Limb 2 Dominant Limb 4 Dominant
Trial N Tavg Tmin N Tavg Tmin N Tavg Tmin
1 30 0.22 0.13 30 0.50 0.28 30 0.42 0.23
2 0 N/A N/A 30 8.57 2.15 30 0.78 0.44
3 30 5.58 0.84 30 2.43 0.76 30 2.91 0.63
4 30 0.15 0.09 30 0.18 0.11 30 1.16 0.45
5 30 0.24 0.12 30 1.34 0.43 30 0.16 0.09
6 29 5.27 0.67 30 0.49 0.26 30 4.88 0.55
7 30 5.72 0.32 30 1.34 0.24 29 10.86 0.42
8 30 1.60 0.19 30 0.51 0.25 30 1.82 0.95
9 30 1.33 0.39 30 0.47 0.29 30 0.19 0.14
10 30 1.64 0.11 30 0.24 0.09 30 0.27 0.12
11 29 9.56 1.88 30 1.70 0.29 30 0.93 0.20
12 24 13.12 0.79 30 1.32 0.44 30 0.47 0.21
13 30 0.34 0.18 30 0.23 0.11 30 0.13 0.09
14 29 13.50 3.11 30 2.51 0.77 30 5.34 1.39
15 29 6.24 0.93 30 0.57 0.26 29 8.00 0.82
16 30 0.76 0.19 30 0.33 0.17 30 0.30 0.17
17 30 0.06 0.05 30 0.13 0.07 30 0.53 0.13
18 27 5.58 0.79 30 0.88 0.25 28 11.35 1.99
19 0 N/A N/A 30 1.93 0.49 30 10.83 1.15
20 0 N/A N/A 0 N/A N/A 27 22.03 7.07
21 30 1.53 0.32 30 0.46 0.25 30 1.90 0.33
22 0 N/A N/A 30 0.42 0.25 30 2.60 0.70
23 30 0.39 0.24 30 0.51 0.26 30 0.89 0.18
24 30 4.33 0.47 30 5.39 0.82 30 1.18 0.33
25 0 N/A N/A 30 2.27 0.70 0 N/A N/A
26 30 1.49 0.41 30 5.39 0.81 30 0.96 0.24
27 18 27.49 9.05 30 2.65 0.34 30 15.79 1.21
28 30 1.06 0.20 30 1.41 0.55 30 0.49 0.25
29 30 1.36 0.17 30 0.28 0.16 29 4.14 0.76
30 0 N/A N/A 30 3.08 0.88 0 N/A N/A
Summary | 695 4.02* 0.90** | 870 1.63* 0.43** | 832 3.87" 0.75"*
(77%) (97%) (92%)

Table 1: Results from the thirty sets of simulations with random sets of obstacles and start and end foothold
locations. NN is the number of successful runs in a given trial, Ty, is the average computation time of the
N runs, and T, is the minimum computation time of the N runs. We are interested in the minimum
computation time as a termination criterion for parallel searches. *The overall average computation time is
over the successful runs of all 900 runs per choice of dominant limb. **In the summary row, we provide the

average minimum time over the thirty trials.




3.3 Traversal of DRC Terrain

We performed both simulation and hardware experi-
ments to quantify the performance of our approach.
A simulated DRC terrain was created by placing
footholds on a 16 x 16 x 6 inch grid, to match the spac-
ing created by the cinderblocks used in the trial. An
additional foothold was placed on each terrain level
above ground level in order to provide more choices
to the Foothold Graph Search (which did not find a
foothold plan when a single foothold was centered on
each grid tile). The goal location was set 10 meters
from the starting location. In order to reduce the A*
search space, only two rows of the terrain grid were
populated with footholds, as this was sufficient to al-
low a solution (Figure 8). We also did not consider
the orientation of the footholds, which in reality are
on locally sloped surfaces for the second half of the
terrain. Therefore, the first and second ‘hills’ in the
course are identical in this simulation. It is not en-
tirely redundant to cross two identical ‘hills’, because
the robot must still negotiate the transition from one
‘hill’ to another.

Figure 8: RoboSimian at the beginning of a simu-
lated DRC terrain crossing, showing terrain collision
geometry and foothold plan. Foothold plan is high-
lighted with colors by limb (front-right: red, rear-
right: green, rear-left: cyan, front-left: pink). (Blue
background indicates ‘idle’ software state.)

Figure 9: RoboSimian during the middle of simula-
tion, straddling both ‘hills’. (Green background indi-
cates that a motion is currently being executed, and
the yellow robot indicates the current ‘live’ position
of the robot as reported by the low level control soft-
ware. In this case, the low-level software is operating
in a special offline simulation mode. When operating
with hardware, the ‘live’ pose is the actual position
of the robot (see Figure 11).

We provide the planner with a terrain model, con-
sisting of collision geometry encompassing the cin-
derblock stacks. The collision model is used for check-
ing feasibility during all phases of planning. For the
described simulation experiment, the collision geom-
etry differs from reality in the following ways. First,
the cinderblocks are grouped into stacks rather than
being represented individually. Second, although it
is not discernable from the ‘wireframe’ graphics, the
boxes are actually open at the top. This is a sim-
plification made in order to work around a software
bug related to selectively excluding certain end effec-
tors from the collision geometry (which is necessary
to discern if a robot pose is truly in collision with
the terrain or merely resting on it with the end ef-
fector). Finally, as menioned previously, the second
half of the terrain lacks the slopes present in the real
terrain.

The simulation was performed using RoboSimian’s
control software in a special offline mode, which
provides the software interfaces, interpolation algo-
rithms, and error checking that are used with the



robot hardware. Therefore, the planning / execution
cycle occured in real time with representative com-
munications overhead. All software involved in the
simulation was run on a single laptop with an Intel
i7-4900MQ 2.8 GHz CPU and 16 GB of memory. All
planning was done autonomously, without operator
input.

The A* search was executed once at the beginning
for the entire terrain. This process was multithreaded
using 7 threads to expand the search tree in parallel.
There were 102 footholds associated with the terrain
model, and an additional 4 footholds for the robot’s
starting position. When the search terminated there
were 4988 nodes in the closed set, and 553 nodes in
the open set. Most of time spent during the Foothold
Graph Search is spent determining if a stance is fea-
sible before adding it to the graph. On average, ex-
panding a node generated 2.01 feasible child nodes
(the maximum was 14 child nodes).

We performed two experiments under identical
conditions, except for the Pose Finding horizon,
which was set to 3 and 4 steps ahead. Some im-
plications of the size of the Pose Finding horizon will
be discussed later in this section. The Pose Finding
search used 8 threads.

Our previously described algorithms were used to
find feasible and stable paths between the initial and
final poses given by each step or body movement.
Our formulation gives a special role to one of the
three (during a step) or four (during a body shift)
stance limbs, which we call the ’"dominant’ limb. We
call the RRT-Connect solver three (or four) times it-
erating over which limb is ‘dominant’. The solution
with the shortest time (respecting the robot’s actua-
tor velocity and acceleration limits) is used. Because
these calls are independent, in principle, they can be
parallelized. However, for this experiment they were
done serially.

For this offline experiment, we did not include un-
certainty in the terrain height relative to the given
foothold locations. This would have allowed us to
use pipelining and, for example, plan for the next
step while the current step was still executing. How-
ever, when running on hardware we discover the true
height of the terrain at the end of a step when contact
is made with the ground and incorporate that knowl-

Subtask Time (s) | Time (%)
Foothold Graph Search 169.9 13.1
Pose Finding 1924 14.9
RRT-Connect 212.8 16.5
Execution 647.2 50.0
Other 71.1 5.5
Total 1293.5 100.0

Table 2: Reprinted from Satzinger et al. (2014): Time
spent in various subtasks (non-overlapping) while
simulating DRC terrain crossing, without collision
detection. See the text for a description of the sig-
nificant differences between this simulation, and the
simulations described in Tables 3 and 4.

edge into the planned sequence of motions. There-
fore, we postpone calling the RRT-Connect solvers
until just before the motion is to be executed so that
motions are planned with the most up to date infor-
mation possible.

Subtask Time (s) | Time (%)
Foothold Graph Search 221.60 11.52
Pose Finding 377.50 19.63
RRT-Connect 571.73 29.72
Execution 972.69 50.57
Other 1.59 0.08
Total 1923.51 100.0
Table 3: Time spent in various subtasks (non-

overlapping) while simulating DRC terrain crossing,
with Pose Finding horizon of 4 steps.

Tables 3 and 4 show data for two runs with iden-
tical terrain geometry, candidate foothold locations,
starting position, and goal position. We varied the
Pose Finding planning horizon (four steps, and three
steps, respectively) for two reasons: first, in order to
facilitate comparisons to previously published simu-
lation results with a horizon of four steps in Satzinger
et al. (2014) (reprinted in Table 2) and to real-world
demonstration to be discussed shortly which used a
horizon of three steps; and second, in order to provide
an illustration of the relationship between errors in
the expected positions of footholds, time spent find-



Subtask Time (s) | Time (%)
Foothold Graph Search 221.90 12.16
Pose Finding 156.03 8.55
RRT-Connect 609.76 33.42
Execution 1057.97 57.98
Other 0.81 0.04
Total 1824.58 100.0
Table 4: Time spent in various subtasks (non-

overlapping) while simulating DRC terrain crossing,
with Pose Finding horizon of 3 steps.

ing body poses over a longer horizon (thus requiring
fewer body motions), and time spent planning and
executing (more or fewer body shift motions, depend-
ing on the output of the Pose Finding algorithm).
We will now compare these new simulation results
to the results previously presented in Satzinger et al.
(2014). The previous results were generated under
conditions which differ from the new simulations in
the following ways. The Pose Finding horizon was
four steps. No collision geometry was provided by
the terrain model. The ‘Other’ timing category in-
cluded some time spent for the user to set up the
simulation environment before a simulation, which
has been excluded in the new simulations. The RRT
timeout has been increased (because the planning
problem is made more complex by collision geome-
try). The distance to the goal has been increased
to 10 meters (from 9 meters) in order to ensure
the robot completely clears the terrain. Additional
candidate footholds have been provided on all levels
above ground level, in order to provide more possi-
ble routes. Finally, the software used for the new
trials is a newer version and contains many small ad-
justments and improvements that do not change the
overall approach, but may affect execution time.
The data in Table 3 provides the most direct com-
parison (with the caveats described above) to the
previous simulation results. The overall time has
increased from 1293.5 seconds to 1923.51 seconds.
This is primarily due to increased time spent per-
forming RRT-Connect searches and executing the re-
sulting motions. We attribute this to the greater
complexity of planning around the collision geome-

try. The resulting plans are also longer, and there-
fore require more time to execute. The time spent
performing the Foothold Graph Search has increased
from 169.9 seconds to 221.60 seconds. We should
note that the foothold density has roughly doubled,
since there are now two candidate footholds on top
of each cinderblock stack (previously there were two
only on the highest level). It is also simply more
computationally expensive to check for terrain colli-
sions than not to do so, and this will necessarily slow
down planning by some amount. The time spent in
the Pose Finding algorithm has also increased from
192.4 seconds to 377.50 seconds. Because the terrain
collision geometry rules out many body poses that
would otherwise be feasible, the Pose Finder must
resort to less efficient solutions which require more
frequent body shifts between steps. By design, the
planner tries to find body solutions with the assump-
tion that efficient solutions (i.e., where a single body
pose is feasible for several successive steps) are pos-
sible, and only after failing to find them does it at-
tempt to find increasingly inefficient solutions (i.e.,
where body poses differ for several successive steps,
requiring the insertion of body-shift motions in be-
tween steps). It may be possible to improve this per-
formance, for example by modifying the Pose Find-
ing algorithm to have more pessimistic assumptions
from the beginning. The length of the Pose Finding
planning horizon can also be adjusted, which we will
discuss next.

Table 4 shows data generated with a shorted Pose
Finding horizon (3 steps). This reduced horizon sub-
stantially reduces the time spent finding body poses
(from 377.50 seconds to 156.03 seconds). In ex-
change, less efficient plans are generated requiring an
increased number of body shifts in between steps.
This increases the RRT-Connect planning time from
571.73 seconds to 609.76 seconds, and the execution
time from 972.69 seconds to 1057.97 seconds. But,
on balance it is 98 seconds faster to use a horizon of
3 steps. This is, of course, relative to the speed of
our computer. All other things being equal, if our
computer was roughly twice as fast, then it would be
better to have a horizon of 4 steps.

Although simulated results suggest longer planning
horizons result in more efficient plans, practical ex-



Figure 10: We used our approach with real robot
hardware in an outdoor environment. Results were
similar to simulations, but we were substantially lim-
ited by issues related to perception and localization.
The system was able to proceed as far as shown be-
fore the robot’s pose estimate error became too large
for it to plan successfully. Before this occurred, it
planned and executed 19 steps fully autonomously.

perience instead suggests that the planning horizon
must be matched with the robot capabilities. Hav-
ing a larger planning window becomes ineflicient if

sufficiently large errors in expected foothold locations
force the robot to replan often. Figure 10 shows
frames from a video of one of our experiments with
robot hardware in an outdoor environment. We were
substantially limited by the perception and localiza-
tion available on the prototype RoboSimian hardware
and software available at the time of the experiments,
and, as a result, we could rarely complete 4 step mo-
tion plans without replanning. Thus, in practice, a
3 step planning horizon was more efficient. Specifi-
cally, the terrain map generated onboard the robot
was not of high enough fidelity to support meaning-
ful collision checking. To overcome this, the operator
manually aligned a high fidelity collision geometry
model with the low-fidelity map data. The collision
geometry model is similar to the one used in the pre-
viously discussed simulations, but with only the first
‘hill’ present (see Figure 11) and with additional col-
lision geometry around the cinderblocks in order to
partially compensate for localization errors (by forc-
ing a larger margin around the terrain, particularly
the corners). Despite this workaround, the robot’s
pose estimate accumulated relatively large errors over
time that eventually prevented planning.

Figure 11: The world map available at the beginning
of the experiment presented in Figure 10, and the
collision geometry model that the operator manually
aligned with the world map.

As a result, we did not successfully traverse the en-
tire terrain. However, we were able to reach the top
of the first ‘hill’ fully autonomously (taking 19 steps)
before pose estimate errors accumulated sufficiently



to cause the robot to believe it was in collision with
the terrain. At this point, although it was possible
to manually re-align the world model and continue
planning from the A* phase, we terminated the ex-
periment. These problems would be ameliorated by
better mapping and localization. Future hardware
and software upgrades are expected to be made by
our colleagues at JPL in order to address these issues
4

It is a potential criticism of this work that we are
planning on a model of the environment and there-
fore require some level of modeling and localization
accuracy in order for it to be useful. However, as
previously discussed, our approach has several mech-
anisms for dealing with discrepancies between the
model and reality. In practice, we were able to walk
autonomously for several minutes and take 19 steps
in an outdoor environment despite significant map-
ping and localization errors. If a sufficiently accurate
mapping and localization system is available, then
our approach is able to take advantage of it in or-
der to plan in complex environments. Section 3.2
shows simulation results in some such complex envi-
ronments, where a simpler, more reactive walking
system (e.g., the system used on RoboSimian in the
2013 DRC Trials) might collide with the terrain.

3.4 DARPA Robotics Challenge

Our methods have been tested in simulation and
in an outdoor testing environment in preparation for
the DARPA Robotics Challenge (DRC). However,
the most significant (and disappointing) result for
us was that drift in perception of our world map
made careful foothold planning a significant chal-
lenge. In practice, RoboSimian performed the loco-
motion task during the December 2013 DRC Trials

4We are extremely grateful to our colleagues at JPL for
generously allowing us to have access to RoboSimian. We are
emphasizing the difficulties we encountered with perception
and localization in order to highlight how real world effects
impact our approach. For example, the robot cannot map the
far side of the hill until it has approached the summit thus it
does not make sense to have a planning horizon which extends
over terrain with a high degree of uncertainty. Therefore, it
is likely that the robot should dynamically vary the planning
horizon based upon the maps currently available.

Figure 12: RoboSimian pitches its body and stretches
to a near-singular configuration to traverse terrain at
the DRC.

using RRT-Connect for a set of heuristic footholds
planned blindly on terrain, using force feedback to de-
tect ground contact. Results were still good enough
to place 5" and qualify for the final competition,
scheduled for mid 2015.

4 Comparison to Synthetic
Time-Optimal Reference

RRT-Connect is probabilistically complete, but does
not generally produce optimal solutions. Although
sub-optimal solutions are acceptable in many situa-
tions (especially when computing truly optimal solu-
tions is intractable), we are interested in determining
how sub-optimal our solutions are in practice as an
evaluative technique. Of course, a solution being con-



sidered optimal is always contingent on the choice of
cost function. For our purposes, we desire to mini-
mize the time it takes for the robot to execute the
plan.

RoboSimian’s low-level control algorithms use
trapezoidal interpolation with velocity and acceler-
ation limits v;q, and ap,q, to track a position refer-
ence. These limits are identical for all joints. RRT-
Connect generates a sequence of joint angle way-
points without timestamps. Then, a post-processing
step assigns timestamps to each waypoint greedily in
a single pass. This algorithm assumes maximum ac-
celerations (subject to velocity saturation) from way-
point to waypoint, in order to give a reference tra-
jectory that is physically achievable under v,,,, and
Gmaz- This does not preclude the existence of a refer-
ence trajectory with the same waypoints but different
timestamps that is also achievable, but takes overall
less time because the accelerations are less aggressive.

Due to time and resource limitations, we elected
to use the greedy timestamp assignment algorithm
for this analysis and our experimental testing. We
are currently evaluating post-processing algorithms
to “smooth” the trajectories found by the RRT in
both space and time with the goal of both moving
faster and avoiding agressive accelerations which are
strongly correlated with tracking faults.

4.1 Synthetic Reference

Despite the limitations described above, we can gen-
erate certain trajectories that are provably time-
optimal out of any achievable choice of timestamps,
respecting Vpaz and Gmq.. One controlling joint tra-
jectory q.(t) will accelerate from rest at ay,q, until
the velocity saturates at v,,q, and then decelerate at
—Qmaz to rest, taking t. seconds to perform the mo-
tion. The remaining non-controlling joints can follow
trajectories ¢;(t) as long as those trajectories can be
completed in less than t. seconds so they do not be-
come the controlling joint. For simplicity, we limit
motion to a single swing limb (keeping other joint
angles constant), although with care, time-optimal
whole-body trajectories could be generated through
a similar process. For additional simplicity, we gen-
erate our waypoints by linear interpolation between

the initial and final poses. Figure 13 shows the start
(red) and end (blue) poses for our synthetic trajec-
tory, along with the resulting, curved path of the
end effector. Timestamps are chosen in order to re-
spect the velocity and acceleration limits of the robot,
which are nominally 1.2 rad/s and 4.7 rad/s?, respec-
tively.

Figure 13: An example of a time-optimal swing
leg trajectory, used in benchmarking RRT statistics.
All joint are frozen thoughout the motion, except
the swing leg, and when swing-leg joints move in a
straight-line trajectory in joint space, the end effec-
tor moves in a smooth curve. Our RRT search allows
for additional joint motions of the other limb. While
an infinite number of equally-optimal solutions exist,
it is mathematically impossible to out-perform the
synthetic trajectory.

We can use the techniques previously discussed in
this paper to generate plans between the initial and
final poses from the time-optimal synthetic reference
trajectory (¢(0) and ¢(t.)). Then, we can compare
these trajectories to the synthetic reference trajectory
and draw conclusions about the performance of the
algorithm.

Because we are considering a plan with a single
swing limb, we have three choices of dominant limb.
This gives three distinct formulations of the same
problem. In addition to comparing the solutions to
the synthetic reference as an absolute lower bound



Synthetic Trajectory (by samples)

Joint Angle (rad)
o

? i n I | . . . .
20 40 60 80 100 120 140 160 180 200
Sample (n)

Synthetic Trajectory (by timestamp)

Joint Angle (rad)

0 0.2 0.4 0.6

| | . . .
0.8 1 1.2 1.4 1.6
Time (s)

Figure 14: (top) Synthetic trajectory is generated by
linear interpolation between initial and final position.
(bottom) Timestamps for each waypoint are assigned
to respect velocity and acceleration limits. Joint an-
gles are only shown for the swing limb, as all other
joints are held constant.

on time, we can compare these three formulations in
relation to each other. We performed a total of 10000
random trials with different random seeds, alternat-
ing between the three choices of dominant limb. All
trials successfully resulted in a solution. Figure 15
shows the results of these random trials.

Figure 15 shows the distribution of the amount
of time it will take RoboSimian to execute the
plans, both with normal acceleration limits, and
with greatly exaggerated acceleration limits. In both
cases, the choice of dominant limb greatly affects the
expected value of the execution time. In the top plot,
with normal acceleration limits, there is a significant
discrepancy compared to the execution time of the
synthetic reference trajectory (dashed vertical line).
However, in the bottom plot, when the acceleration
limit is increased by a factor of 1000, many of the
solutions are nearly optimal, and the overall distri-
bution is much closer to the optimal solution. This

Execution Time Histogram with Standard Vel. and Acc. Limits

T T
| .
L I dominant 1 ||
2000 ! dominant 2
| I dominant 3
& 1500 i 3
2
] |
S
g 1000 [ f
i |
|
500 | = i
i r
0 o
0 1 2 3 4 5 6 7 8
Exec Time (s)
Plan Exec Time with Standard Vel. and 1000x Standard Acc. Limits
T T T T T T T T
| -
L _ I dominant 1 ||
2000 : dominant 2
| I dominant 3
3 1500 i a
<
] +
g 1000 ! B
I | .
I
500 0 4
|
0
0 1 2 3 4 5 6 7 8
Exec Time (s)
Figure 15: (top) Stacked histograms showing the

distibution of execution times of 10000 random tri-
als, separated by dominant limb. (bottom) Same as
above, but reprocessed with 1000 times greater accel-
eration limit, showing that accelerations are the dom-
inant reason for suboptimal solutions. The dashed
vertical line shows the execution time of the synthetic
reference trajectory with the appropriate velocity and
acceleration limits.

suggests that our planners are generating unsmooth
paths with frequent changes in direction. However,
the choice of dominant limb still makes a large dif-
ference in the execution times, with dominant limb 2
giving nearly optimal solutions most of the time, and
dominant limb 3 giving solutions taking about twice
as long.

Figure 16 shows the relationship between execu-
tion time and the number of nodes (waypoints) in
the finished path. This is the same dataset as in Fig-
ure 15, to give an idea of the horizontal distribution
of points. Dominant limb 1 (blue) shows a tendency
to generate paths with more nodes.

One question of interest is the amount of CPU
time required to generate a solution. We use the
total number of feasibility checks performed during
a search as a proxy for CPU time, with the assump-
tions that feasibility checks all take the same amount
of time, feasibility checking dominates the computa-



Number of Nodes in Solution vs Execution Time (standard vel. and acc. limits)

)
b}
=]

5 ! +  dominant 1
5 300 ! dominant 2 1
3 | + dominant 3
2801 | .
@ |
3
g 260 I . R
z | + .
S 240} | g . B
3 | p e N
-} .
€ 220+ | 4
E
4 |

200 I I I I I I I I

1 2 3 4 5 6 7 8
Exec Time (s)
Number of Nodes in Solution vs Execution Time (standard vel. and 1000x acc. limits)

320 T 7 T T T T T
5 ! . . «  dominant 1
5 300 ! : . dominant 2 1
3 ! + dominant 3
© 2801 | .
@ |
2
g 260 ! + b
4 [
S 240 B
o
38
€ 2201 ! b
S y
4

200 . . . . . . . .

Exec Time (s)

Figure 16: (top) Scatter plot of number of nodes in
the solution path vs the total execution time, sepa-
rated by dominant limb. (bottom) Same, but with
1000x the normal acceleration limit.

tion, and that CPU time measurements are subject
to errors due to thread scheduling and transient back-
ground loads on the computer as well as the overall
speed of the computer. Figure 17 shows this data as
a scatterplot and a histogram. Although dominant
limb 2 (green) continues to be the best performing
choice, dominant limb 1 (blue) and dominant limb 3
(red) have switched places. The distribution of CPU
times required for dominant limb 3 (red) is nearly
comparable with dominant limb 2 (green), with dom-
inant limb 1 (blue) clearly much worse. Indeed, dom-
inant limb 1 has the greatest mean number of feasibil-
ity checks, and a long tail of very expensive searches.

4.2 Which planner should we prefer?

Should we prefer a planner that produces faster solu-
tions more slowly, or slower solutions more quickly?
If we are to plan and then execute serially, we are
concerned with the sum of both the planning time
tpian and the execution time tegec.

(3)

Assuming a constant time per feasibility check

tiotal = tplan + tezee

Number of Nodes in Solution Path vs Total Number of Feas. Checks
T

N
o

T
dominant 1
dominant 2 ]

+ dominant 3

o
S
T

®
=]
T

=
=)
T

N
o
T

Number of Nodes in Solution Path
n n n n n w W
(2]

o
T

o
S

I I I I I
2000 3000 4000 5000 6000

Total Number of Feas. Checks

I
0 1000

Histogram of Total Number of Feas. Checks
3000 T T T

; ;
I dominant 1
[__Idominant 2 []
I dominant 3

2500

1500

requenc)

I I I
0 1000 4000 5000 6000

2000
Total Number of Feas. Checks

3000

Figure 17: Total number of feasibility checks serves
as a proxy for overall planning time.

treas (seconds) and a number of feasibility checks
Nfeqs, We can make the approximation

(4)

tplan = tfeas *MNfeas,

and therefore express the total time as

(5)

We assume that nfeqs is drawn from the distribu-
tions shown in Figure 17 and ty e is drawn from the
distributions shown in Figure 15, while ¢ ¢4 is a con-
stant that depends on the overall speed of the com-
puter and software being used. Figure 18 shows the
expected value of tio1q; as a function of t..s, using
the mean values of tczec and nyeqs that we observed
in our data for each choice of dominant limb.

No matter the value of ¢ feqs (which cannot be neg-
ative), it turns out that, in this experiment, dominant
limb 2 (green) will always have the shorter expected
total time. Ignoring limb 2 momentarily, all eyes are
on the race for second place. Whether dominant limb
1 (blue) or limb 3 (red) is preferable now depends on
the speed of the computer being used. If tfeqs is
less than approximately 1072 seconds then dominant
limb 1 is better, otherwise dominant limb 3 is better.
(The value of tfeqs that the author observes on their

tiotal = tfeas * Nfeas + texec:



Expected Total Time vs Time per Feas. Check

dominant 1
dominant 2
dominant 3 7

Expected Total Time (s)
o - N w S o1 o ~ ©
f 1

I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Seconds / Feas Check

Figure 18: Expected total time depends on feasibility
checking speed.

computer is approximately 2 - 10~% seconds.)

5 Conclusions and Discussion

Our approach blending RRT-Connect and IK Tables
(R2T2) provides a computationally practical kino-
dynamic planning method with a high rate of suc-
cess. In an example of trajectory planning across
extreme terrain used in the 2013 DRC trials, plan-
ner and execution time were approximately equal.
This suggests that improvements in planning speed
(through more efficient allocation of computational
resources among an ensemble of randomized planning
algorithms) or in the execution time (through better
trajectory smoothing) are both important avenues for
future improvements.

We note that it would likely be desirable to allocate
at least some computational cycles toward RRT*, to
seek “optimal” solutions directly. However, we also
note that as environments become increasing com-
plex and stochastic, it becomes increasingly difficult
for a programmer to accurately define what cost func-
tion should actually be optimized, to achieve fast
and reliable locomotion. In practice, we anticipate
that access to a family of feasible solutions will al-
low an operator to preview the best-ranked trajectory
found within time limits, as a sanity check. Humans
have contextual knowledge (e.g., “I can brush by the
bush — but I don’t want to risk close clearance with
the brick wall...”) that is not easily encapsulated
into autonomy. A secondary advantage of producing

a family of randomized plans is to allow an operator
to select among closely-ranked but qualitatively dis-
similar solutions. Finally, a third and perhaps most
practical application is in debugging and tuning defi-
nitions of cost functions to evaluate a plan. Features
can be extracted from each plan, and cost functions
can be adapted based on human ranking. In practice,
we are curious to determine which of these three is
most useful in planning for the DRC tasks.

We conclude by noting two key potential limi-
tations specific to the current configuration of Ro-
boSimian. First, perception is a strong requirement
for real-world implementation on RoboSimian. At
the time of writing, RoboSimian currently relies on
three pairs of forward-facing stereo cameras to view
front limbs; however, rear limbs are often well over a
meter behind the front limbs, requiring an accurate
world map of previously viewed terrain. Work is cur-
rently underway to upgrade the robot with LIDAR
sensing and additional camera pairs.

It is also apparent that our trajectories take longer
than necessary due to a combination of low joint
acceleration limits in the hardware and unnecessary
high-frequency content in the joint trajectories from
the randomized planner, suggesting that trajectory
smoothing techniques such as Hauser & Ng-Thow-
Hing (2010) could provide a significant speedup.

6 Future Work

There exists a large and growing family of random-
ized planning algorithms. As computational power
increases with Moore’s Law, it will become increas-
ingly practical to allow such algorithms to compete
in an open market during both off-line and real-time
planning.

Optimal investment and betting strategies quantify
risk and bet according to a certainty equivalent of ex-
pected value, which discounts expected reward as a
function of uncertainty in a mathematically elegant
way, now well-known as the Kelly criterion (Kelly
(1956)). When a family of betting options exist, co-
variance must also be considered, and optimal solu-
tions hedge by including investments that “cover the
bases” for a variety of outcomes (Browne & Whitt



(1996), Cecchetti et al. (1988)). Similarly, the best
way to divide computing resources should seek to re-
duce risk by biasing different parallel searches in dif-
ferent ways. We are currently investigating the de-
velopment of effective, adaptive methods to do so as
future work.

We are currently integrating a trajectory smooth-
ing technique based on the methods presented in
Hauser & Ng-Thow-Hing (2010) to improve the per-
formance of our RRT planners in terms of trajectory
execution time. This technique extends the RRT
along time-optimal curves rather than straight-line
trajectories as in the original algorithm (Lau & Byl
(2015)). We have tested this implementation on toy
examples with positive results, and we hope to have
the same measure of success on Robosimian’s plat-
form.

Acknowledgment

This work is supported by JPL NASA Contract
#1471138, which is a subcontract award for the
DARPA Robotics Challenge (DRC). The authors
would also like to thank the entire RoboSimian team
for their efforts in designing (and debugging) the
robotic system hardware and software.

References

Bouyarmane, K. & A., K. (2012), ‘Humanoid robot
locomotion and manipulation step planning’, Ad-
vanced Robotics (Int. J. of the Robotics Society
of Japan), Special Issue on the Cutting Edge of
Robotics in Japan 2012 26(10), 1099-1126.

Bretl, T. W. (2005), Multi-step motion planning: Ap-
plication to free-climbing robots, PhD thesis, Cite-
seer.

Browne, S. & Whitt, W. (1996), ‘Portfolio choice and
the bayesian kelly criterion’, Advances in Applied
Probability pp. 1145-1176.

Byl, K. (2008), Metastable legged-robot locomotion,
PhD thesis, MIT.

Byl, K., Byl, M. & Satzinger, B. (2014), Algorith-
mic optimization of inverse kinematics tables for
high degree-of-freedom limbs, in ‘Proc. ASME Dy-
namic Systems and Control Conference (DSCC),
accepted’.

Byl, K., Shkolnik, A., Prentice, S., Roy, N. &
Tedrake, R. (2009), Reliable dynamic motions for
a stiff quadruped, in ‘Proc. International Sympo-
sium of Robotics Research (ISER) 2008’, Vol. 54,
pp. 319-328.

Cecchetti, S. G., Cumby, R. E. & Figlewski, S. (1988),
‘Estimation of the optimal futures hedge’, The Re-
view of Economics and Statistics pp. 623-630.

Diankov, R. (2010), Automated Construction of
Robotic Manipulation Programs, PhD thesis,
Carnegie Mellon University, Robotics Institute.

Donald, B. R. & Xavier, P. (1995), ‘Provably
good approximation algorithms for optimal kino-
dynamic planning for Cartesian robots and open-
chain manipulators’, Algorithmica 14(6), 480—
530.

Donald, B., Xavier, P., Canny, J. & Reif, J. (1993),
‘Kinodynamic motion planning’, Journal of the
ACM 40(5), 1048—1066.

Felner, A., Kraus, S. & Korf, R. (2003), ‘Kbfs: K-
best-first search’, Annals of Mathematics and Ar-
tificial Intelligence 39(1-2), 19-39.

Hart, P. E., Nilsson, N. J. & Raphael, B. (1968),
‘A formal basis for the heuristic determination of
minimum cost paths’, Systems Science and Cyber-
netics, IEEE Transactions on 4(2), 100-107.

Hauser, K. (2013), Large motion libraries: Towards
a ”google” for robot motions, in ‘Proc. Workshop
on Robotics Challenges and Vision’, pp. 5-8.

Hauser, K., Bretl, T. & Latombe, J.-C. (2005), Non-
gaited humanoid locomotion planning, in ‘Proc.

Int. Conf. on Humanoid Robots’, IEEE, pp. 7-12.

Hauser, K. & Ng-Thow-Hing, V. (2010), Fast
smoothing of manipulator trajectories using opti-
mal bounded-acceleration shortcuts, in ‘Robotics



and Automation (ICRA), 2010 IEEE International
Conference on’, pp. 2493-2498.

Jetchev, N. & Toussaint, M. (2009), Trajectory pre-
diction: Learning to map situations to robot tra-
jectories, in ‘Proc. Int. Conf. on Machine Learn-
ing’, pp. 449-456.

Kelly, J. L. (1956), ‘A new interpretation of informa-
tion rate’, Information Theory, IRE Transactions
on 2(3), 185-189.

Kolter, J. Z. & Ng, A. Y. (2011), ‘The Stanford Little-
Dog: A learning and rapid replanning approach to
quadruped locomotion’, The International Journal
of Robotics Research (IJRR) 30(2), 150-174.

Kuffner, J. J. & LaValle, S. M. (2000a), RRT-
connect: An efficient approach to single-query path
planning, in ‘Robotics and Automation, 2000. Pro-
ceedings. ICRA’00. IEEE International Conference
on’, Vol. 2, IEEE, pp. 995-1001.

Kuffner, J., Kagami, S., Nishiwaki, K., Inaba, M. &
Inoue, H. (2002), ‘Dynamically-stable motion plan-
ning for humanoid robots’, Autonomous Robots
12(1), 105-118.

Kuffner, J. & LaValle, S. (20000), RRT-connect: An
efficient approach to single-query path planning, in
‘Proc. IEEE International Conference on Robotics
and Automation (ICRA)’, Vol. 2, pp. 995-1001
vol.2.

Kuwata, Y., Fiore, G. A., Teo, J., Frazzoli, E. &
How, J. P. (2008), Motion planning for urban driv-
ing using RRT, in ‘Intelligent Robots and Systems,
2008. IROS 2008. IEEE/RSJ International Confer-
ence on’, IEEE, pp. 1681-1686.

Lau, C. & Byl, K. (2015), ‘Smooth RRT-connect:
An extension of RRT-connect for practical use in
robots’, Accepted for IEEE/Technologies for Prac-
tical Robotic Applications (TePRA) 2015 .

Satzinger, B. & Byl, K. (2014), ‘More solutions
means more problems: Resolving kinematic redun-
dancy in robot locomotion on complex terrain’,
Submitted to IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS) .

Satzinger, B. W., Lau, C., Byl, M. & Byl, K. (2014),
Experimental results for dexterous quadruped lo-
comotion planning with robosimian, in ‘Proc.
International Symposium of Robotics Research

(ISER)’.

Schaal, S. & Atkeson, C. G. (2010), ‘Learning con-
trol in robotics’, Robotics €& Automation Magazine,
IEEE 17(2), 20-29.

Stolle, M. & Atkeson, C. G. (2006), Policies based on
trajectory libraries, in ‘Robotics and Automation,
2006. ICRA 2006. Proceedings 2006 IEEE Interna-
tional Conference on’, IEEE, pp. 3344-3349.

Vernaza, P., Likhachev, M., Bhattacharya, S.,
Chitta, S., Kushleyev, A. & Lee, D. D.
(2009), Search-based planning for a legged robot
over rough terrain, in ‘Proc. IEEE Int. Conf.
on Robotics and Automation (ICRA)’, IEEE,
pp. 2380-2387.

Zucker, M., Ratliff, N., Stolle, M., Chestnutt, J., Bag-
nell; J. A., Atkeson, C. G. & Kuffner, J. (2011),
‘Optimization and learning for rough terrain legged

locomotion’, The International Journal of Robotics
Research 30(2), 175-191.





