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Chapter 1

Introduction

In this chapter we provide a brief description of the thesis. In the first and second sections

a complete introduction in both Italian and English languages is presented. Some answers

to unsolved research questions are discussed in Section 3, finally, in Section 4 we provide a

general, but comprehensive, description of the work in order to explain which are our goals

and how we try to implement them.

1.1 Introduzione

Il ragionamento umano è un processo cognitivo affascinante e complesso che può essere
applicato in diversi campi della ricerca come la filosofia, la psicologica, il diritto e la finanza.
Purtroppo, sviluppare un software di supporto a tali aree che sia in grado di affrontare questo
tipo di complessità risulta difficile e richiede un adeguato formalismo logico astratto.

In questa tesi intendiamo sviluppare un programma il cui compito sia quello di valutare
una theory (un insieme di regole) in relazione ad un dato Goal, e restituire risultati del
tipo: “Questo Goal è derivabile a partire dalla KB (theory)1”. Al fine di raggiungere il
nostro obiettivo dobbiamo analizzare diverse logiche e scegliere quella che meglio risponde
ai nostri requisiti.

La logica, in genere, può essere vista come un tentativo di determinare se una data con-
clusione è logicamente implicata da un insieme di assunzioni T (theory). In realtà, quando ci

1Knowledge base. Nel seguito useremo l’abbreviazione KB per indicare l’insieme delle regole da usare
per derivare un goal.
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CHAPTER 1. Introduction

occupiamo della programmazione logica abbiamo bisogno di un algoritmo efficiente al fine
di verificare tali implicazioni. In questo lavoro usiamo una logica piuttosto simile a quella
umana. Infatti, il ragionamento umano richiede una estensione della logica del primo ordine
capace di raggiungere una conclusione in base a premesse non definitivamente vere2 che ap-
partengono all’insieme della nostra conscenza. Dunque, il primo passo per lo sviluppo di
tale software è l’implementazione di un framework basato su defeasible logic3 in grado di
manipolare e valutare le regole defeasible della nostra conoscenza.

Questo tipo di applicazioni risultano molto utili nell’ambito legale specie se dispongono
di un framework argomentativo basato su una modellazione formale del gioco. In parole po-
vere, poniamo che theory sia l’insieme delle leggi, che keyclaim sia la conclusione che uno
dei partecipanti al dibattito vuole dimostrare (e che l’avversario vuole confutare), e dando
la possibilità ai giocatori di poter inserire dinamicamente nuove regole nella conoscenza,
allora, possiamo eseguire una competizione argomentativa tra le due parti e verificare se la
conclusione raggiunta sia dimostrabile o meno a seconda della strategia di gioco usata dagli
sfidanti.

Implementare un game model richiede un nuovo meta-interprete in grado di valutare
il sottostante defeasible logic framework; infatti in accordo al teorema di Göedel (see on
page 127), non è possibile valutare il significato di un linguaggio usando gli strumenti messi
a disposizione dal linguaggio stesso, bensì, abbiamo bisogno di un meta-linguaggio capace
di manipolare il linguaggio oggetto4.

Quindi, piuttosto che un semplice meta-interprete, noi proponiamo un meta-livello con-
tenente differenti meta-valutatori. Il primo di questi è stato descritto in precedenza, il
secondo è necessario per implementare la competizione sul modello del gioco, un terzo
meta-interprete sarà usato per cambiare le strategie di gioco e di esplorazione dell’albero di
derivazione.

2Alcune regole possono essere usate anche se non sono sempre vere. Possiamo asserire che un uccello in
generale vola anche se alcuni uccelli non ne sono in grado. Quindi, la regola non è innegabilemente vera, ma
potrebbe essere accettata in un determinato contesto. (see Chapter 2)

3Defeasible logic è una logica non-monotona sviluppata da Nute per un efficiente applicazione del ragion-
amento defeasible. (see Chapter 2).

4Si noti che la valutazione di un linguaggio svolta nella maniera sbagliata, nel senso che viene effettuata
usando gli stessi strumenti del lingiaggio stesso, conduce al paradosso.
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CHAPTER 1. Introduction

1.2 Motivazioni

In questa sezione discuteremo le motivazioni alla base di questo progetto. Negli ultimi anni
la ricerca su argomentazioni e ragionamento umano ha fatto passi da gigante e oggi nella
letteratura scientifica è disponibile una elevato numero di pubblicazioni che spiegano diversi
approcci per l’implementazion di un framework argomentativo o per la defeasible logic.
Ciononostante, si avverte una notevole carenza di implementazioni, in particolar modo per
l’interpretazione logica dei linguaggi, dal momento che i ricercatori hanno focalizzato il
loro impegno su uno studio teorico delle possibile estensioni da integrare nei framework
astratti già definiti. Tuttociò ha reso estremamente difficile i processo di testing relativo
alle recenti evoluzioni di tali framework, e involontariamente ha comportato che lo studio
di queste discipline ignorasse problemi relativi alla complessità computazione in termini di
memoria occupata, carico computazionale del processore e tempo necessario per eseguire
le applicazioni stesse.

Inoltre, potrebbero sorgere ulteriori problemi nel tentativo di sviluppare un software
di supporto (come nel nostro caso). Noi vorremo implementare un framework argomen-
tativo basato sul modello del gioco e sulla defeasible logic, ma, purtroppo, non ci sono
DL-framework disponibili. Dunque, potrebbe essere interessante non solo provare a rag-
giungere il nostro obiettivo iniziale, bensì anche provare a implementare alcune estensioni
pubblicate di recente relative alle defeasible priority e al cambiamento dinamico della forza

di un regola.

In questo lavoro mostreremo come sia possibile implementare un meta-interpreter per
defeasible-logic e un meta-livello in grado di eseguire la competizione tra due sfidanti;
successivamente, analizzeremo la complessità risultante. Vogliamo dimostrare che il game-
model è intrinsecamente problematico dal momento che coinvolge un elevato numero di
strutture dati che devono essere allocate sullo stack del sistema comportando un notevole
rallentamento dell’esecuzione. Quindi, alla luce delle conclusioni relative alle performance,
analizzeremo sia come ottimizzare il codice sia la definizione teorica del game model, dal
momento che potrebbero esserci delle imprecisioni che, trascurando casi particolari, non ci
danno la possibilità di prevenire la costruzione dell’intero albero quando in realtà sarebbe
possibile effettuare delle ottimizzazioni e ridurre la complessità. Nei capitoli 5 e 6 verrano
presentati alcuni suggerimenti per lavori futuri. In più dimostreremo che una riduzione
della complessità può essere attuata prevenendo che l’immissione di regole che portereb-

3



CHAPTER 1. Introduction

bero il sistema in stati instabili come ad esempio loop infiniti generati da paradossi. Di-
mostreremo che questo genere di problemi è risolvibile semplicemente spostandoci da un
controllo di consistenza logica ad un controllo di consistenza dell’informazione, in altre
parole, noi rigettiamo una regola se questa potrebbe essere inconsistente con la conoscenza
comune, questo approccio comporta due benefici, in primo lugo riduciamo il numero di nodi
nell’albero di derivazione, in più avendo eseguito un controllo a priori, non è più necessario
effettuare un controllo sulla consistenza logica relativa a tali regole durante il controllo di
derivabilità del keyclaim.

1.3 Architettura

Fin qui abbiamo introdotto le motivazioni del nostro lavoro ed abbiamo trascurato la de-
scrizione del progetto al fine di mettere in luce quali sono le novità proposte e per quali
motivi queste possono essere considerate rilevanti.

In primo luogo, dobbiamo creare un framework per la defeasible logic, l’implementazione
di tale software sarà realizzata sfruttando le potenzialità dei linguaggi dichiarativi. Abbiamo
usato un motore Prolog, in particolare Sicstus Prolog, e abbiamo testato l’applicazione su
due macchine con i sistemi operativi Gnu/Linux e Windows. In più, abbiamo reso disponi-
bile una interfaccia grafica basata sul linguaggio Java e su Rich Client Platform plugin
messo a disposizione da Eclipse (Galileo). Nella figure 1.1 è possibile notare la struttura di
base del nostro meta-interprete dove è enfatizzata la coesistenza di più meta-valutatori nello
stesso livello, che chiameremo meta-livello.

In realtà, potremmo anche aggiungere diversi livelli per mostrare le relazioni tra al-
cuni meta-componenti, ma poichè tali componenti non sono sempre indipendenti e sono
spesso incapaci di restituire un risultato se non coordinati da un softaware esterno o da un
ulteriore meta-livello, è preferibile disegnare l’architettura definendo un meta-livello cos-
tituito da meta-componenti. Ciò che ci preme sottolineare è la struttura fortemente mod-
ulare. Poniamo che M1 sia il nostro meta-interprete per defeasible logic, e che M3 sia
l’implementazione del meta-game-model; in questa architettura è possibile rimpiazzare un
modulo di meta-livelli senza applicare ulteriori cambiamenti agli altri moduli. Per esempio
potremmo sostiturire il criterio di gioco definito nel meta-livello con un nuovo criterio di
gioco senza alterare il framework per defeasible logic sottostante. In questo modo possiamo
garantire sia la modularità che la scalabilità del codice.

4



CHAPTER 1. Introduction

Il nostro obiettivo è l’implementazione dell’architettura che abbiamo appena descritto
e sviluppare un framework argomentativo per lo svolgimento di un dibattito tra due gioca-
tori. Ricordiamo che grazie a questo approccio modulare potremmo implementare differenti
metodi di esecuzione del modello di gioco tra giocatori.

L’analisi implementativa metterà in luce una serie di problemi intrinsechi della formal-
izzazione del criterio di gioco, questo comporterà la definizione di due nuovi teoremi una
proposizione e una serie di suggerimenti per l’ottimizzazione del codice per le future im-
plementazioni del game model.

Per concludere suggeriremo anche delle possibili migliorie ed estensioni che si potreb-
bero integrare nel sistema quali Acid Cuts e Multiple Keyclaims.

1.4 Introduction

Human reasoning is a fascinating and complex cognitive process that can be applied in
different research areas such as philosophy, psychology, laws and financial. Unfortunately,
developing supporting software (to those different areas) able to cope such as complex
reasoning it’s difficult and requires a suitable logic abstract formalism.

In this thesis we aim to develop a program, that has the job to evaluate a theory (a set of
rules) w.r.t. a Goal, and provide some results such as “The Goal is derivable from the KB5

(of the theory)”. In order to achieve this goal we need to analyse different logics and choose
the one that best meets our needs.

In logic, usually, we try to determine if a given conclusion is logically implied by a set
of assumptions T (theory). However, when we deal with programming logic we need an
efficient algorithm in order to find such implications. In this work we use a logic rather
similar to human logic. Indeed, human reasoning requires an extension of the first order
logic able to reach a conclusion depending on not definitely true6 premises belonging to a
incomplete set of knowledge. Thus, we implemented a defeasible logic7 framework able to
manipulate defeasible rules.

5Knowledge base. In the following we will call KB the set of rules to be used to derive a Goal.
6Some rules can be used also if they are not always sure. We can assert that a bird usually flies,also if

there are some birds that cannot flies. Thus, the rule is not undeniably true but it could be acceptable in some
contexts. (see Chapter 2)

7Defeasible logic is a non-monotonic logic designed for efficient defeasible reasoning by Nute (see Chapter
2).
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CHAPTER 1. Introduction

Those kind of applications are useful in laws area especially if they offer an implemen-
tation of an argumentation framework that provides a formal modelling of game. Roughly
speaking, let the theory is the set of laws, a keyclaim is the conclusion that one of the party
wants to prove (and the other one wants to defeat) and adding dynamic assertion of rules,
namely, facts putted forward by the parties, then, we can play an argumentative challenge
between two players and decide if the conclusion is provable or not depending on the dif-
ferent strategies performed by the players.

Implementing a game model requires one more meta-interpreter able to evaluate the
defeasible logic framework; indeed, according to Göedel theorem (see on page 127), we
cannot evaluate the meaning of a language using the tools provided by the language itself,
but we need a meta-language able to manipulate the object language8.

Thus, rather than a simple meta-interpreter, we propose a Meta-level containing different
Meta-evaluators. The former has been explained above, the second one is needed to perform
the game model, and the last one will be used to change game execution and tree derivation
strategies.

1.5 Research question

In this section we discuss the motivations of our work. In the last years research on argu-
mentation and human reasoning has made giant steps, nowadays in literature we can consult
a lot of different approaches about the defeasible logic and argumentation framework. How-
ever, especially in defeasible logic interpretation, there is a deep lack of implementations.
After the first Nute’s implementation of DP-interpreter, the researchers committed them-
selves to add some extensions to this first framework just theoretically. Thus, it has become
extremely difficult testing recently theoretical improvement, and evaluate their complexity
such as memory or time requirements.

Furthermore, there may be problems attempting to develop supporting software. That
is our case. We would like to implement an argumentation framework based on the game-
model with defeasible logic, but there are no DL-framework available. So it could be in-
teresting not only trying to achieve our initial goal, but also trying to test some extensions
stated in the last years regarding defeasible priority and dynamic changing of the strength

8Note that evaluating a language in the wrong way, we mean using the language itself, will bring us to
paradoxes.
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CHAPTER 1. Introduction

of a rule.

In this work we will show how to implement the defeasible meta-interpreter and how
to implement a meta-level able to perform a challenge between two players; later we will
analyse complexity, in particular computational complexity. We want to demonstrate that
game-model is intrinsically problematic since it involves an high number of different data
structures that must be allocated on the stack and make the execution really slow. So we will
survey both code programming optimisation and theoretical inaccuracies that could slow
down the system since some general cases could be executed without building the whole
tree; some suggestions to speed up system are presented as future work in Chapter 5 and
6. Furthermore, we will demonstrate that complexity reduction could be applied preventing
the assertion of rules that would bring the system to unstable states such as paradoxical
infinite loops. We will show that those problems are solved simply switching from logic
inconsistency control to information inconsistency control, it means that we reject a rule
if it could be inconsistent with the KB, consequently, we reduce the number of the nodes
in tree derivation and we avoid the evaluation of a logical consistency check during the
keyclaim evaluation.

1.6 Architecture

So far, we introduced the motivations of our work, but we left out a description about which
are the novelties we want to propose and why they can be considered relevant.

First, we need to create a new framework for defeasible logic. We decided to implement
the software using a declarative programming language such as Prolog; in particular we
used Sicstus prolog, and we tested the application on GNU/Linux and Windows operating
system. Furthermore, we realised a graphical interface using Rich Client Platform plug-in
of Eclipse using Java programming language.

In figure 1.1, we show the logical architecture of the meta-interpreter. We emphasise
the coexistence of multiple meta-interpreters in the same level.

7



CHAPTER 1. Introduction

Figure 1.1: Defeasible Meta-Interpreter: logical architecture.

Actually, we could also add more levels in order to show the meta-relationship be-
tween meta-components, but, since those components aren’t always independent and are
usually unable to return a result unless they are coordinated by an external software or by
a further meta-level, we prefer to draw the architecture defining a meta-level containing
meta-components. It should be noted that this structure is strictly modular. Let M1 be our
meta-interpreter and that M3 be the implementation of game-model; using this architecture
is possible to replace a module without changing to other modules. For example, we could
replace the game-model implementation with a new kind of game-model leaving the DL-
framework without changes. In this way we guarantee modularity and scalability of the
code.

Our aim is the implementation of the just presented architecture and develop an argu-
mentation framework to perform the debate between two players. We remark that thanks to
this modular approach, we could implement different kinds of game-models.

The analysis we carried out sheds light on some intrinsic problem of the formal game-
model, thus, we refine some conclusion about the model, introducing two theorems, one
proposition and some suggestions for code optimisation and for future implementations of
this game-model.

Finally, we present some interesting topics for future works that could be integrated into
our system such as: Acid Cuts and Multiple Keyclaim.

1.7 Outline

In the next chapters we present a brief introduction to non-monotonic reasoning (Chapter 2)
and we describe defeasible reasoning. In Chapter 3 we provide a complete analysis on the
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CHAPTER 1. Introduction

argumentation framework, the relation between semantics and extensions and we introduce
an approach to perform a game-model debate. In Chapter 4 we discuss the meta-languages,
their definition and their representation, we shows differences between ground and non-
ground meta-interpreters and the motivations of using a non-ground meta-interpreter in this
work. In Chapter 5 we describe clearly the milestones of the implementation of the project9.
In Chapter 6 we will realise step by step a case of study in order to prove the correctness of
the software and to check the complexity in terms of memory and CPU’s consume and we
conclude showing which are the future applications.

9A complete explanation can be found on http://splogad.altervista.org
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Chapter 2

Non Monotonic Reasoning

In this chapter we introduce non-monotonic reasoning and different kinds of logic such as

default logic and we discuss if they are applicable for our purpose. As we said in the pre-

vious chapter, we need a non-monotonic formalism as basic abstract starting point for our

framework implementation. However, even starting from now, we need to survey in parallel

theoretic assumption and their application on a concrete logic language (i.e. prolog) since

it’s needed to evaluated feasibility of our approaches.

We want to focus on the knowledge representation and knowledge assimilation. The

first one implies an accurate analysis about the knowledge formalization, the second one,

in literature, is usually associated to the problem of the database update[1], namely, if

adding a new sentence in the database could alter the old sentences or if the new sentence

is inconsistent with the other ones.

Please note that in monotonic logic the addition of a new sentence in a knowledge

repository doesn’t alter previous knowledge. This feature represents a strong limitation as

we cannot emulate human reasoning in which knowledge usually improves over the years

also refuting previous not provable beliefs (before accepted as if they were absolutely true).

2.1 Non-monotonic reasoning

We say that an inference is non-monotonic if it is defeasible; it means that the basics of
a knowledge repository sometimes could generalize and seem true until we demonstrate
that they are wrong. Human beings adopt the same behavior, thus, while discovering new

11



CHAPTER 2. Non Monotonic Reasoning

information are inclined to change idea, namely, withdraw the inference that before was
considered undoubtedly true.

Why are humans often wrong? It was due to generalize some facts as if they were
always true, so when we deal with a particular exception we discover that our knowledge
was not sufficient.

The typical example about non-monotonic inference in literature is the bird example.
If we know that Tweety is a bird, then we can say that Tweety can fly (as our knowledge
suggests that usually birds fly). But we should withdraw our conclusion as soon as we
know that Tweety is not a typical bird, it is a penguin. Thus, lack of informations can lead
us to commit mistakes in our conclusions. It means that adding new informations, in this
case Tweety is atypical, our conclusions could change.

Normally, in monotonic logic, we could not conclude that Tweety can fly just knowing
that it is a bird, that a rule asserts that usually birds fly and that there are some extensions
(i.e. penguins) that could state that Tweety is an atypical bird. In the example above, we
introduced a new topic, we mean, how to deal with incomplete knowledge? The Tweety

example sheds light on the advantage of using an improved knowledge system that is able
to reach ambiguous conclusions.

The so-called frame problem is one of the most interesting case in which we can apply
a non-monotonic reasoning. The frame problem is the following one:

“In order to plan how to reach its goals, an artificial agent will need to

know what will and what will not change as a result of each action it might

perform.”

The problem of listing all the things that will not change after performing an action could
be impracticable. The solution is to use non-monotonic reasoning. With this new approach
we assume that usually no actions alter the system, except some known actions. Thus,
we assume a generalized idea about our actions in order to list the ones who change our
environment, rather than the actions who leave the system unchanged.

One more non-monotonic application is known as closed world assumption; by using a
particular form of negation (see later) it operates assuming that repository (usually) contains
all the relevant information. Let S be a sentence that cannot be proved by the knowledge
in the repository KB and that adding the sentence t in the KB, S is proved, thus the same
repository with a new sentence can derive or not a given sentence. That is the typical

12
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behavior of a non-monotonic system. We use this occasion to introduce Negation as Failure

(see on page 22), namely, a particular form of negation widely used in logic programming.

Let the following program P[2]:

car(volvo).

car(saab).

car(ferrari).

driver(giacomo).

We are sure that the goal car(giacomo) is non-derivable from the program P , and intuitively
we would answer car(giacomo) = false. In other words, let A be a gound-term :

CWA(P) ={ ∼A |does not exist a refutation SLD for P
⋃

{A}}

Example:

capital(stockholm).

city(X):- capital(X).

city(uppsala).

And the following query:

?- not(capital(uppsala)).

true.

?- not(capital(bologna)).

true.

Thus, our program just knowing that Stockholm is the capital is able to answer if whatever
city is a capital. It appears “clever” as it says that Uppsala is not a capital although it does
not contain informations such as “not(capital(uppsala))”. But it isn’t intelligent. What
happens if I ask "capital(rome)"?

Dealing with incomplete knowledge and defeasible reasoning we have to strike a bal-
ance between which are the contexts in which is the case that the system is able to give an
answer and what it really knows.

13
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2.2 Finding a non-monotonic formalism

2.2.1 Default logic

In order to formalize a non-monotonic system, we need to add new rules to the first-order

logic. This work has been performed by Raymond Reiter, who defined the default logic
adding the default rule:

p : q

r
(2.1)

In this rule p identifies the prerequisite, q is the justification1 and r is the consequent and it
means that if p is true and assuming q is consistent with the rest of our KB, then we conclude
r. In the simpler cases q and r can coincide, i.e. the bird example:

bird(X) : flies(X)

flies(X)
(2.2)

Thus, the sentence “assuming flies(X) is consistent with the rest of our KB,” could not be
verified if in our KB there are some information about atypical birds. This could seem a
trivial case, but it becomes more complex assuming that consistency depends not only on
the initial data but also on the various combinations of consequences that derive from them.
Reiter also introduced the extensions. He defined an extension for a default theory in the
following way:

Let T is a default theory composed by:

• a setW of premises;

• a set D of rules;

an extension is a set of sentences E that can be derived from W applying as
many of the rules of D as possible without generating inconsistency.

Default logic definition is important for our purpose as it can generalize some conclusions
without including in the knowledge all the rules needed for their derivation. Let us suppose

1We can put one or more justifications.
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that two friends are walking in a park and one of them, say Jim, sees a dog behind a bush
and that they have never seen that dog before. Now, Jim asks to Paul (the other guy) “How

many paws does that dog have?”. Paul could say “it should have four paws”, in other words
he says that usually or by default a dog has four paws, but it is not undoubtedly true. The
only way to know if that dog has four paws is to wait until the dog gets out that bush and
see. In this book we will not reveal the end of this skit in order to better impress on the
reader the lack of absolute certainty of this approach.

2.2.2 Auto-epistemic logic

Another kind of logic whose definition is close to the default one is the auto-epistemic logic

(from greek “επıστηµη” - “knowledge, science”). Whit this logic we can infer somethings
about the world just considering my own knowledge and using my own way of think. The
typical example is:

“From the fact that I do not believe that I owe you a million of pounds, I

can infer that I do not owe you a million pounds, since I would surely know if I

did.”

So coming back to the bird example is like to say that if someone cannot believe that Tweety

can’t fly, then Tweety flies. Auto-epistemic logic syntax extends that one of propositional
logic with a modal2 operator � and its meaning is the following:

let F be a Formula.

2A brief introduction to modal logic is needed:
Modal logic is a type of formal logic that extends the standards of formal logic to include the elements of

modality (probability, possibility and necessity).
Modals qualify the truth of a judgment. For example, if it is true that "John is happy", we might qualify

this statement by saying that "John is very happy”, in which case the term "very" would be a modality.
Traditionally, there are three "modes" represented by modal logic, namely, possibility , probability ,
and necessity .

The basic unary (1-place) modal operators are usually written �(= “it is believed that. . . ”) for Necessarily
and � for Possibly.

In a classical modal logic, each can be expressed by the other and negation:

• �P↔¬ � ¬ P;

• � P↔¬ � ¬ P.

Thus it is possible that it will rain today if and only if it is not necessary that it will not rain today.[3]
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• � F means that F is known;

• �¬ F means that ¬ F is known;

• ¬� F means that F is not known.

In our case as �¬ (¬flies(Tweety) ), then Tweety can fly. This kind of logic, instead of
being used as a formal model for our framework could be used for writing a theory. A new
example could be: ”we can assert that birds fly because nobody has seen a penguin before,

and so we cannot prove neither that penguins exist nor they don’t fly”; in this case we
extended the auto-epistemic logic from personal reasoning to community beliefs. Let’s go
back to the past for a moment, in middle age for example. Now, we take into consideration
a small village mainly inhabited by peasants where nobody of them has ever seen a penguin
before. Defeasible inference usage mixed with auto-epistemic/community-epistemic logic
would not cause logic damages in their daily life, and this example represents a context in
which assuming some defeasible facts doesn’t seriously affect defeasible reasoning.

2.2.3 Circumscription

One more way to formalize non-monotonic reasoning is Circumscription that circumscribes
some rules of thumb using abnormality predicates, in order to apply the rules to only those
things to which they must apply.

In other words, rather than assuming some general rules, we limit the target items to
which to apply our rules, just improving them.

“∀X(Bird(X)&¬Abnormal(X))→ Flies(X)”

In our case we have to explicitly say if X is abnormal or not.
We leave this topic aside for a while, as we will come back later with a deeper analysis.
All the models that we introduced have their strengths and weakness, but it is important

to underline an interesting aspect; every model defines different extensions3 starting by the
same premises. The following Nixon example shows how can be possible to generate some
incompatible extensions (which is obviously a side effect).

Starting by the premises:

• Nixon is a Quaker;

3An comprehensive definition of extensions will be provided in the next chapter.
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• Nixon is a Republican.

and according to the following rules:

• Quakers are typically pacifists;

• Republicans are typically not pacifists.

Each of these rules block the application of the other one. Having multiple extensions is
not a weakness, it is obvious that starting from premises that do not describe the whole
world we get more interpretations. Each extension is a particular way of reasoning on the
premises. Since now we can define two different strategies.

Let E be a set of extensions:

credulous strategy if we simply believe to one of the extension in E ;

skeptical strategy if we believe on those claims that appear in every extensions in E ;

Roughly speaking, an extension contains all the argument that can stand together, a
skeptical extension is the intersection of all credulous semantics (semantics will be dis-
cussed in detail 3.4).

Nevertheless, a plausible theory can generate an unacceptable extension (Take a look at
the Yale shooting problem below).

Finally, we would like to spend some words on probabilistic logic. It provides some
threshold and a value (typically a value that varies over time) that is assigned to a possible
conclusion. When this value exceeds the threshold, the related conclusion can be taken
as plausible. It is non-monotonic since the addition of premises can modify the threshold
values or the values assigned to the prepositions.

2.3 Problems dealing with computational logic

In this section we will concretely explain, as described in [4], how to represent non mono-
tonic reasoning examples seen before using logic programming. We provide this deepening
as it will be essential to understand the prosecution of this work.

We take for granted that the reader knows differences among abduction, deduction and
induction, nevertheless we provide a simple example from[5] to better understand those
kinds of reasoning. Let define a reasoning composed by a rule a case and a result:
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Deduction

• Rule: All the beans in that bag are white.

• Case: Those beans come from that bag.

• Result: Those beans are white.

Induction

• Case: Those beans come from that bag.

• Result: Those beans are white.

• Rule: All the beans in that bag are white.

Abduction

• Rule: All the beans in that bag are white.

• Result: Those beans are white.

• Case: Those beans come from that bag.

Those approaches have different behaviors since abduction and deduction are the best way
to formalize (in programming logic) predicates able to return results / cases from rules,
instead, using induction we get rules starting from cases / results and it becomes interesting
during the evaluation of a goal and also executing a meta-level able to manipulate a rule.

2.3.1 Abduction and integrity constraints

Abduction is a human reasoning behavior that can be successfully applied in computational
logic to solve some of the problems discussed in literature, such as Database updates prob-

lem, and it provides generalization for negation by failure.

An abductive explanation of a conclusion C is a set of sentences called4 such that:

1. T
⋃

∆ logically implies C;

2. T
⋃

∆ satisfies I;
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Where T is a theory containing both rules and hypothesis, I is a set of integrity constraints.
From now on we consider that constraints are formalized as denials and interpreted

by a logic with a semantic for negation by failure. To better understand how to deal with
constraints with abduction a brief deepening on this kind of reasoning is needed. Abduction
is the process of inference that produces a hypothesis as its end result [6]. Commonly, the
term abduction is presumed to mean the same thing as hypothesis, that is due to the fact
that the conclusion depends on a strong premise that is for sure and a weaker premise that
is uncertain, or better, is certain only in given domains. Thus, abduction involves weak
premises that we cal hypothesis and some constraints that restrict the degrees of freedom
(possible values) [7].

Kowalski in [4] points that if transform an abductive program into a logic theory T’ we
can get, as we show below using a Horn-clause-free theory, the same results by deduction.

A typical application of Abduction explanation is fault diagnosis. This example shows
the possible causes of a woobly-wheel. In this case we notice that there are two possible
options, tyre is flat or spokes are broken, but adding a constraint such as tyre holds air, then
the first cause should be rejected. Given the following theory and Constraint:

Program

wobbly-wheel ←flat-tyre (1)

wobbly-wheel ←broken-spokes (2)

flat-tyre ← punctured-tube (3)

flat-tyre ← leaky-valve (4)

Constraint

← flat-tyre, ¬tyre-holds-air

Hypothesis the following sub goals can be considered hypothesis if they are consistent
with KB and integrity constraint

punctured-tube

leaky_valve

broken_spokes
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In order to know which is the cause of the failure, we try to get the abductive explanation

of the goal (query):

? wobbly-wheel4

As we can see all assumptions are consistent with the theory. But adding a new information
as:

tyre-holds-air

(3),(4) bring the system to be inconsistent with the constraint and so we should withdraw
non-monotonically punctured-tube and leaky-valve. In other words, if we are sure that tyre
holds air, is not possible that the tube or the valve is broken.

Furthermore, we can also perform fault diagnosis using dialectic reasoning. In this case
we have to reverse cause and effect relations and ignore the constraints. To apply dialectic
reasoning we have two ways: logic programming or non-Horn clauses. The first option may
have the following representation:

possible(flat-tyre) ← possible(wobbly-wheel)

possible(broken-spokes) ← possible(wobbly-wheel)

possible(punctured-tube) ← possible(flat-tyre)

possible(leaky-valve) ← possible(flat-tyre)

possible(wobbly-wheel)

?- possible(X)

This is a lower-level representation and predictable. Programming representation it’s really
similar to programming languages and, usually, provides an easy way to write a program.
Nevertheless, there is also a side effect in term of expressivity.

The other way is non-Horn representation:

flat-tyre ∨ broken-spokes ← wobbly-wheel

punctured-tube ∨ leaky-valve ←flat-tyre

wobbly-wheel

4Using this goal, is the same that using all the sub goals and it is a backward-reasoning.
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Since the program is Horn-clause-free, we can list all possible failure causes or represent
the integrity constraints. For example, if we add some information as:

← flat-tyre, ¬tyre-holds-air

tyre-holds-air ∨ flat-tyre ∨ broken-spokes ← wobbly-wheel

punctured-tube ∨ leaky-valve ←flat-tyre

wobbly-wheel

we notice that it is possible to derive monotonically the conclusion:

broken-spokes

In this simple example we applied a particular approach called “abduction through deduc-

tion”.

2.3.2 Default reasoning5

Abduction provides a natural mechanism for performing reasoning [8]. Reiter has illus-
trated the Nixon example6 [9] that it is useful to introduce the conflicting defaults. This
example known also as Nixon Diamond is the typical case is a scenario in which default as-
sumptions can lead to mutually inconsistent conclusions. We know that usually quakers are
pacifist and that republican usually are not pacifist. What happen if we say that someone,
say, Nixon is both a quaker and a pacifist? We could reach both conclusion pacifist and its
negation.

Using the abduction representation the example might take the form:

Theory

pacifist(X) ← quaker(X), normal-quaker(X)

hawk(X) ← republican(X), normal-republican(X)

quaker(nixon)

republican(nixon)

Constraint
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Hypothesis Conclusion
normal-quaker(nixon) pacifist(nixon)

normal-republican(nixon) hawk(nixon)

Table 2.1: Hypothesis and relative conclusion in Nixon Diamond Example with Abduction
approach.

← pacifist(X), ¬ hawk(X)

According with table 2.1 we can infer both the conclusions with the appropriate hypothesis
but not at the same time. This is the typical case where two hypothesis are both consistent
with the constraints, but together are inconsistent, namely, this is a conflicting defaults

phenomenon. In other words, we would like to represent an inconsistency between two
hypothesis that are not involved in a constraint. In this case we should add a new predicate
able to notify to the system that it is not allowed to assert both conclusions also if the
abducible rules are consistent. So, we developed incompatibility/2 predicate that represents
the above constraint (see on page 65).

2.3.3 Negation as Failure (NaF)

Negation as failure is an attempt (rather similar to CWA) to obtain answer by a limited
Knowledge repository. NaF derive negations of atoms whose proof finishes with a failure
in finite time. Let P is a program, the set FF(P) contains the atoms7 A such that their proof
fails in a finite time. To better understand Negation as Failure in Prolog we recommend to
consult the deepening on page 129.

What we want to focus is that abduction simulates and generalizes negation as failure.
If P is the following:

p ←not q

q ← r

to apply an abductive reasoning we need two more element: an hypothesis and one or more
constraints.

5See Default logic on page 14
6We saw this example on page 16
7Remember that prolog does not apply a safe rule to select elements to inspect. It takes the leftmost literal

without checking if it is ground or not.
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The hypothesis could be the following:

“is the case to assume ¬q to hold, only if ¬q is consistent”

the constraint state that q cannot be true and false at the same time:

←q, ¬(¬q)

Using backward reasoning and integrity constraints, to infer that p is true, we should check
not q for consistency, if it fails, it means that not q is consistent and the result is true. In a
more complex case we could have more constraints and, mostly, nested negation :

pacifist(X) ←not republican(X)

republican(X)← not democratic(X)

And two constraints:

← republican(X), not republican(X)

← democratic(X), not democratic(X)

Checking not republican(X) for consistency we have two possible options:

1. not republican(X) is inconsistent with the hypothesis not democratic(X). So pacificst(X)
fails.

2. not republican(X) is consistent without the hypothesis not democratic(X). So pacificst(X)
succeeds.

Now the problem is that point 1 can be applied using NaF, instead, point 2 not. To eliminate
2. we can add a new constraint:

not democratic(X) ∨ democratic(X)

Kawasaki in [4] state that we can see this relation as meta-level or modal epistemic state-
ment [10] that means:

either democratic(X) or not democratic(X) can be derived from the

theory.
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In this way if democratic(X) is not proved, we assume the hypothesis not democratic(X).

The atom democratic(X) is not proved since when we deal with abduction just to simulate
NaF, only negative atoms are assumed as hypothesis8.

Leaving aside particular cases we saw above9 in this chapter we would like to focus on
different kind of approach to build a defeasible logic, but also different ways to reasoning
in order to get you used to those concepts that will be used later for the implementation.

2.3.4 The Yale Shooting Problem

The Yale Shooting Problem is one of the most discussed in the literature. Indeed, applying
some minimal model such as circumscription and default logic, we get unacceptable results,
instead, NaF through abduction gives correct result.

The problem is the following. We want to determine if after shooting a turkey, called
Fred, remains alive or it dies:

S1��
��

S2��
��

S3��
��wait

-

shooting
-

loaded(gun)
alive(Fred)

dead(Fred)

Figure 2.1: Yale shooting problem

Neither circumscription, nor other minimizing approach can solve this problem as they
accept unpredictable solutions. Minimizing the changes, the expected solution allows two
condition changes: the first one to load the gun, the second one to transit the turkey’s state
from alive to dead (or not(alive)).

Let suppose to represent the problem using the graph in Figure 2.1. It should be noted
that this graph requires a temporal analysis since it involves change of status (effect) caused
by events. Given a notation, introduced by Hanks and McDermott in [11], t(P,S) means that
property P holds in situation S. Furthermore, we need two more representations: the first
one to explain the result caused by the occurrence of an event in a given situation result(E,S)

8A deep explanation about how to simulate NaF using Abduction is discuss in [4] (on page 10)
9We will continue to use most of them throughout the book to easily understand the final behavior of the

application.
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and the other one to represent a case of abnormality ab(P,E,S) that means that property P is
abnormal w.r.t. the occurrence of event E in situation S.

Given the following program:

1 t(alive, s0)

2 t(loaded, result(load, S))

3 t(dead, result(shoot)) t(loaded,S)

4 t(P, result(E,S)) t((P,S), not ab(P,E,S)

5 ab(alive, shoot, S) t(loaded,S)

in line 1 we define the property Fred is alive at the beginning, in line 2 we define that
after we load the gun we get the property (loaded), in line 3 we say that if the gun is
loaded and after we shoot, Fred dies. In line 4 there is a control in order to avoid that the
result involves a property that is abnormal in a give situation S. Last line contain the typical
abnormality statement: if we shoot with a loaded gun, Fred cannot remain alive.

Now, let suppose we want to apply circumscription, minimizing the predicate ab. Intu-
itively, the control of line 4 will fail passing P = alive, since the last line has been removed.
It means that our system is able to reach both conclusions: Fred alive and Fred died after
shooting with a loaded gun.

Dealing with frame problem10 approach we would accept the following solution: “that
after shooting, system could pass to unloaded gun state; leaving Fred alive. Indeed, adding
the following rule:

t(unloaded, result(shoot))← t(loaded,S)

and after shooting, system could say that Fred is alive and gun unloaded11.

What we tried to show in this section, is that sometimes default logics and minimizing

approaches such as circumscription and frame problem, are not able to get the right solution
since in those formulations “is missing [...] an appropriate analogue of the disjunctive

integrity constraints”[4].

10The frame problem was initially formulated as the problem of expressing a dynamical domain in logic
without explicitly specifying which conditions are not affected by an action, nowadays, this problem is known
as the problem of limiting the beliefs that have to be updated in response to actions. In other words, it
represents a way reduce the complexity of a set of rules. The necessity of a large number of formulas stating
the obvious fact that conditions do not change unless an action changes them is known.

11A deeper explanation of this approach can be found in [12].
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2.3.5 Rules and Exceptions

Instead using constraints, we could define some exceptions. In the bird’s example using the
word abnormal we meant that an abnormal bird is an exception.

Implementing this semantic we notice that the behavior is quite similar to abductive

reasoning. Indeed, we define some general rules, but if they are contradicted by an excep-
tion (it’s like to say if a rule does not respect one of the integrity constraint), the rule is
withdrawn.

Using Rules & Exception, we usually distinguish between clauses with positive head
(rules) and clauses with negative head (exceptions).

Let’s take a look on a new version of the quaker-republican example:

Rules

pacifist(X) ← quaker(X)

hawk(X) ← republican(X)

quaker(nixon)

republican(nixon)

Exception

¬ pacifist(X) ← hawk(X)

¬ hawk(X) ← pacifist(X)

As we can see, Exceptions are more specialized than integrity constraints since:

1. they propose a conclusion;

2. we can reason on the specificity of the conditions of a rule and an exception with
different conclusions;

3. it’s easier transform this model into normal logic programs using NaF12 [13].

12Note that in this model exceptions have the same form of rules, it means that writing them as clauses
in Logic Programming Language such as Prolog, we don’t need to change syntax or implement different
predicates able to evaluate rules and constraint / exceptions.
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Applying this semantic we can conclude both pacifist(nixon) and hawk(nixon) as we have
two different models (like abductive theories) and they are useful to fix conflicts in order to
seek which rule generate contradictions (i.e. In the case “¬ pacifist(X) ← hawk(X)”

we should withdraw the first clause).
Now we propose an attempt to transform Rules&Exceptions into a Program:

pacifist(X) ← quaker(X), not ab1(X)

hawk(X) ← republican(X), not ab2(X)

quaker(nixon)

republican(nixon)

ab1(X) ← hawk(X)

ab2(X) ← pacifist(X)

This program has the same models of nested negation, but its representation is quite sim-
ilar to logic programming. In the appendix we can see a brief description of the negation
in prolog needed to understand the behavior of a possible implementation of logic pro-
grams. Logically, the difference between negation and negation as failure, can represent
an advantage to be exploited in case of lack of informations, but can also cause ambiguous
conclusions as we consider false something that is not proved to be true, rather than proved

to be false.

2.4 Conclusion

In this chapter we introduced some different logic approaches able to deal with non-monotonic
reasoning. We also considered a potential implementation in a logic programming language
such as prolog. We evaluated which are the advantages in using a particular representation
rather than another one, specially to better define a link between formal representation and
language representation, without losing expressivity.
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Chapter 3

Argumentation Framework

In this chapter we discuss the fundamentals of argumentation and its possible applica-

tions in AI. Analysing argumentation is needed since our purpose is the implementation

of a game theory for defeasible reasoning. As described in chapter one, our defeasible

(meta)interpreter is just the under-layer of our software architecture. We need to realise

a new component, implementing an abstract argumentation framework, able to answer to

our specific questions, evaluating results coming from under-layer defeasible Meta Inter-

preter. Thus, we need to introduce main concepts about argumentation framework (AF),

game-theory and in parallel sketch an implementation. In the next sections we discuss

some different formal definitions proposed over the years. Special emphasis will be placed

on Dung abstract framework, Pollock recursive semantic for defeasible logic and on Rah-

wan&Larson game-theory.

3.1 A brief introduction to Argumentation

Looking for a definition of argumentation on a dictionary, we got two different explana-
tions, the first one is “the process of arriving at reasons and conclusions; arguing or rea-

soning”, the second one is “discussion in which there is disagreement; debate”. The former
represents a relation with previous chapter, instead the latter give rise to discuss about the
concept of debate. Since middle age, this topic has been popular among philosophers, and
just then was defined the first formal debate between two people arguing opposite conclu-
sions. Abelard, a Scholasticism philosopher, in his book Sic et non [14], described a Method
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of issues concerning a debate between two different ideas, and a dialogic structure where
by adding some arguments it is possible to decide which of the starting ideas is the right
conclusion. So we can argue that argumentation is more than “reasoning” since it involves
interaction. Deserve a mention also Aristotle’s formal system methodology [15] and Plato’s
Dialogues [16] that provides the first form of an intelligent interaction among reasoning
agent.

Nowadays, argumentation analysis arises the study of non-monotonic reasoning. In-
deed, as we saw in the previous chapter, if we try to use classical logic on a more expressive
kind of inference, we notice that it is inadequate, and it is due to its intrinsically monotonic
behaviour.

Argumentation serves knowledge representation and reasoning as a representational use
of logic in Artificial Intelligence. Adding non-monotonic reasoning we mean that a conclu-
sion can be supported by a defeasible premise that in turn can be defeated by the attacks
by others argument or by new informations. Thus, the obtained conclusion (derived from a
chain of defeasible reasons) is not a proof, but an argument.

That is the reason why we sometimes call this kind of reasoning defeasible Argumen-

tation. In the following sections[17] we show different kinds of argumentation system
proposed over the later years.

3.2 Argument as a kind of logic

The first research work we analyse has been developed by Stepen Toulmin [18]. He intro-
duced a conceptual model of argumentation, in particular, he studied the legal arguments
and he distinguished their form in four part:

• claim;

• warrant (non demonstrative reason that allows the claim);

• datum (the evidence needed to use the warrant);

• backing (the ground underlying the reason);

His historical contribution to argumentation deserves the mention since he laid the founda-
tions for argumentation study. The first complete approach is the idea of defeasibility into
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epistemology and a consequent concept that is justification defined by Pollock [19]. He
says that reasoning operates in term of reasons. We have two different kinds of reasons:
non-defeasible and defeasible; defeasible reasons are defined as a particular knowledge
(defeaters). In other words, a defeater attacks a conclusion reached by another reason. He
defined two kinds of defeaters:

rebutting: if the defeater attacks the conclusion of another reason and supports the com-
plementary;

undercutting: if the defeater attacks the relation between a reason and the conclusion (i.e.
some premises);

Furthermore, he proposed a new definition of the warrant notion. Before, warranted con-
clusion was defined as a conclusion that has an argument for it, now Pollock says that we can
consider a conclusion as warranted only if after an iterative justificatory process it emerges
undefeated.

During the history, philosophic logic dealt with knowledge incompleteness and its rep-
resentation. At times, defeasible logic hasn’t been considered as the proper way to survey
this topic; at other times has been showed that the analysis done so far was not complete,
and it was necessary to investigate some aspects, such as the different kind of conflict.

Deserves a mention D. Nute, who realises the first formalism (LDR1) in which the
competition was among rules and not among arguments; in the next years he realised the
first implementation in Quintus Prolog of an argumentation system in defeasible logic.

Later Dung gave, with his new abstract framework, the major contribution in this field.
Dung defined a conjunction ring between argumentation and logical programming. He
showed that it is possible to implement argumentation using Negation as Failure and intro-
duced a method for generating meta-interpreters for argumentation system [20]. Later, a lot
of combined implementation of Dung’s and Pollock’s system has been defined, in particular
we mention the framework realised by Simari in his PhD Thesis, and the following works
with Loui.
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3.2.1 Concrete applications

3.2.1.1 Acquisition of knowledge

The first application we show is the natural language comprehension. Alvarado, created
a framework (OpEd) [21] that after reading some editorial segments concerning specific
fields of policy and economics, is able to answer questions about the content. It’s important
underline the work behind this approach. The argument framework has been built as a
network of arguments, whose relations are different kinds of attack or deductive relations
etc... He also defined some features related the atomic concept of argument and not the
specific proposition viewed as argument or part of it. Thus, it was able to him to develop an
abstract framework.

3.2.1.2 Legal reasoning

Another important field of application is the law. In the first time argumentation has been
used just for retrieve cases pertinent to a legal argument (BankXX). Later, different ap-
proaches have been proposed. We mention J. Huge, that defined an elegant “reason-based

logic”. He stated that application of a rule leads to a reasoning that brings towards the rule’s
conclusion itself. Other contributions concern using of priorities in order to choose in case
of conflict which is the preferred argument, the attempt to model the legal reasoning as a
dialogue, and new paradigms such as legal merit argument in which the value of a legal
outcome is measured in terms of moral, ethic, social welfare, etc. . .

3.2.1.3 Decision task

One more application field, is the decisions task. This is interesting as have been proposed a
lot of different approaches such as defeasible arguments, and also persuasive argumentation
in order to define tactical rules to reach a goal. It’s important underline that here we can
define a strategy or a structured defeasible argument that (although not provable) could
bring toward the definition of a successful result.
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3.3 The study of some argumentation systems

Our aim in this section is to offer a complete survey on the different argumentation frame-
work that have been proposed during the last years. Some of them have been introduced in
the previous section such as Dung’s and Pollock’s systems.

3.3.1 Rescher’s Dialectics

In [22] Rescher proposed a new formal disputation describing a process. The novelty is that
there are three parties : the proponent, the opponent and the determiner. The process starts
with the proponent thesis, that is the root of our tree representation and it proceeds using the
rules and assertions in order to propose an answer. In this system an answer is a structured
move, namely, a combination of the fundamental moves:

Categorical assertions: represented with !P and it means “P is the case”.

Caution assertions: represented with †P and it means “P is compatible with all that have

been shown”.

Provisoed assertions: represented with P/Q and it means “if Q is the case, then usually
P is the case also”.

The first move, namely, the thesis proposed at the beginning of the debate, is always a
Categorical assertion.

The behaviour should be as follows:

1. The answer to a categorical assertion as !P could be whether † ∼ P (a caution

counter-assertion) or a provisoed counter-assertions such as ∼ P/Q& †Q .

2. The answer to a caution assertion as †P could be whether ! ∼ P (a categorical coun-

terassertion) or a provisoed counter-assertions such as ∼ P/Q& †Q .

3. The answer to a provisoed assertion∼ P/Q must be another provisoed (counter)assertion

equally or better informed, and it form can be strong or weak:

• strong: ∼ P/(Q&R)&!(Q&R).

• weak: ∼ P/(Q&R)& † (Q&R).
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Provisoed assertion are considered always true, and that is the reason why is not allowed to
attack it with the negation or a direct caution counter-assertion.

One of the party concedes an assertion if it does not answer to the claim of the assertion
by the other one.

The game proceeds until one of the parties stops to answer. If the resources limitation

leads the match to a draw, the third party will decide which is the winner, according to the
plausibility of the assertions proposed by the proponent that were not conceded by the other
party.

Plausibility is a strong concept and a central mechanism. It is used to explain the idea
of presumption. In a debate, one party could argue a presumption rather than a random
proposition. A presumption is just a supposition, and it’s defeasible. Its goodness depends
on the plausibility, namely, how it harmonises with the rest of the knowledge.

Rescher also proposed the concept of “burden of proof ”, that can be distinguished into:

• probative of an initiating assertion (the proponent).

• evidential burden of further reply in the face of contrary considerations.

This kind of approach explains better the intrinsically progressive process of a debate.
Rescher’s work has been really useful for a mature definition of the argumentation systems
and, maybe, in its framework we can see a forecast of the Default logic.

The reason why we mentioned this research work is that Rescher proposed concepts still
in use in modern argumentation framework such as relation between fundamental moves1,
limitation of time criteria, and burden of proof, that later will gain importance and will
deeply take part on the core of the reasoning engine.

3.3.2 Lin & Shoham’s argument framework

In [23] Lin & Shoham proposed an abstract language (that has been conceived according
to the inference rules) for the definition of the following kind of rules:

• A (basic fact) where a is a wff2;

1In the next years moves change their name, but, basically the meaning remained more or less the same.
2In mathematical logic, a well-formed formula (often abbreviated wff) is a word (i.e. a finite sequence of

symbols from a given alphabet) which is part of a formal language. It is a syntactic object that can be given a
semantic meaning. A formal language can be considered to be identical to the set containing all and only its
wffs.
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• A1,. . .An →3B (monotonic rule) where n>0 and Ai,B is a wff;

• A1,. . .An ⇒B (non-monotonic rule) where n>0 and Ai,B is a wff.

The three kind of inference rules represent respectively explicit knowledge, deductive knowl-

edge and commonsense knowledge. This abstraction is useful to define the atomics compo-
nents that build an argument. In the tree-representation, an argument is a root with some
labelled arcs. An argument supports a formula if the formula is the root of the tree that

comprises the argument.

He defined the argument structure concept. A set T of arguments is an argument struc-

ture if it satisfies the following conditions:

1. Let p be a basic fact, then p ∈ T ;

2. T must be closed, if p ∈ T and p’ is a sub-tree of p, then, p’ belongs to T ;

3. T is monotonically closed, if p is the conclusion (in a monotonic rule) of some pi that
belong to T , then also p belongs to T ;

4. It is consistent, cannot support an element and its complementary.

The latter bring us to the definition of completeness. We say that a set is complete w.r.t to a
formula φ if it supports φ or ¬φ.

The power of this framework is that it is abstract and can be used with default reasoning,
negation as failure and circumscription. Language definition can be easily implemented in a
logic programming and in the implementation chapter we will see a rather similar definition
of rules distinguished in monotonic rule (strict) and non monotonic rules (defeasible).

3.3.3 Simari & Loui: Pollock and Poole combination

In this section we deal with a mathematical approach introduced in [24] by Simari & Loui.
They presented a general system that merges the theory of warrant that we saw before in the
Pollock framework and the specificity concept proposed by Poole. They used the argument

structure described above, and tried to shed light on the conditions under which a structure
is preferred, according only to syntactical considerations.

3Note that this notation is not the same to the we presented in the Chapter 2. This notation is needed just
to distinguish between monotonic and non-monotonic rules.
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They distinguished the knowledge in indefeasible( K) and defeasible( ∆), so the whole
knowledge has been represented by a pair ( K, ∆). The former should be consistent, the
latter is a set of defeasible rules expressed in the metalanguage. In order to define a deriva-
tion from K using the ground item in · we need to realise a meta-meta relationship using
a formula h. Simari & Loui called it defeasible consequence and we can see it as material
implications for the application of modus ponens.

We generally use a subset of the defeasible knowledge, let T be a subset of ∆, we say
that it is an argument for a sentence h if T derives h, T is consistent (w.r.t K ), T is
minimal. In this terms we are able to define a argument structure that consists in both T
and h (< T ,h>).
K usually is divided into two set, the first one called TP represents the contingent

knowledge, the other one TG represents the necessary knowledge.
They represent a dispute with a tree-structure. Tree’s branches are represented through

three different relationships:

Disagree: Two arguments disagree if and only if combining both their sentences with K
we obtain an inconsistency;

Counter-argue: An argument counter-argues another argument if it disagrees with a sub-
argument of the second one.

Defeat: An argument A1 defeats (in the weak and strong sense) another argument A2if can
counter-argues at the literal h a subset As of the of the second one and A1 is strictly

more specific than the sub-argument of A2and it is not related by specificity to As.

An argument that is able to defeat another argument is called defeater. Furthermore, we
talked about specificity, namely, it is implicitly expressed that we are using preference cri-
teria.

Simari and Loui present an inductive definition to explain the process of justification.
We should remember that Pollock defined different levels where the arguments played a
different roles. S&L keep on using this strategy in order to label the arguments as in and
out.

1. In the level 0 all arguments support arguments and interfere argument.

2. We say that an argument is active as a supporting argument in a level n+1 if there are
no interfering arguments in the level n that defeat it.
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3. We say that an argument is active as a interfering argument in a level n+1 if there are
no active interfering arguments in the level n that are strictly more specific than the
first one.

Finally they defined an argument as justification if remains accepted as a supporting ar-
guments. This inductive has been extended with the definition of a tree-structure called
dialectical tree (MTDR) in which is allowed the consideration of cases of fallacious argu-

mentation.

The dialectical tree has an inductive definition: a single node containing an argument
with no defeaters is a dialectical tree; let A is an argument and B,C,D three defeaters, in
a dialectical tree A be the root and B,C,D are its children; leaves are undefeated nodes.
Generally the nodes can be labelled as U-node or D-node, where U and D meaning is,
respectively, Un-defeated and Defeated. If the root is labelled as U-node, then the sentence
h supported by the root argument can be considered true. We call it justified belief and A is
said justified.

Tree show a game-tree behaviour where two players in turn propose new argument in
order to make justified or not the root.

D
<A,p>

D
<A3,¬r>

U
<A2,¬p>

U
<A4, r>

�
���

@
@@I

6

Figure 3.1: A dialectical tree.

In this figure we have the typical representation of a dialectical-tree. Despite the mean-
ing of the sentences, we want to underline that the root is defined justified if and only if all
its children are U-node. So in the figure it’s obvious that the argument is not justified.

A.J. Garcia developed a Defeasible Logic Programming language (DLP) using the
MTDR as inference procedure.

This work is fundamental for our application since Simari&Luoi defined the tree deriva-
tion structure to asses the state of an argument and specificity criteria. In this manner we can
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express the first superiority relation among arguments. If the tree that proves an argument
A contains the the tree that proves an argument B, A can be said “more specific than b”.

Furthermore, it becomes clear the idea of a game-theory implementation in argumen-
tation debate; this approach is resumed by Vreeswijk whose abstract framework (we wont
explain for reason of space) defines also the concept of won for an argument.

3.3.4 Brewka’s approach: Rescher and Reiter combined

Their work provides an extension of default logic, in a different form, namely, the provisoed
assertions are seen as Reiter’s default logic. The proponent’s goal is to build a default theory
that implies a formula and persuades the opponent to accept it. The opponent, instead,
should pose questions or add new evidence against its claim. Also in this case the knowledge
is divided into facts(W) and default(D). Brewka proposed two different extensions:’

• PDL (Priority Default Logic): uses the priority to solve conflicts;

• SDL (Specificity Default Logic): use the specificity4 criterion.

In DL extensions represent set of acceptable beliefs a reasoner might adopt.
His most important contribution, maybe, has been the definition of SLD-extensions, but

its definition depends on PDL, so we present a brief summary about a prioritised extension.
First we must define a prioritised default theory as a triple (D,W,<); Given a strict total

order “�” containing “<”, we say that E is a PDL-extension of ∆ (default theory) iff E is
the union of some sets built inductively:
E0 = Theorem(W), and E i+1= E i if no default is active in E or E i+1= Theorem(E i∪{b})

where b is the consequence of the “�”-minimal default that is active in E .
Let’s come back to SLD, we say that E is a SLD-extension of ∆ if the specificity order-

ing “<4” of4exists and E is a prioritised extension of (D,T∪C,<4).
That is an important result as shed light on a relation between specificity and priority,

namely, specificity is a particular priority criterion.
Furthermore, he defined a distinction between the default theory of a proponent and the

one of the opponent (4pro , 4opp in order to distinguish the different supported theories),
and he re-defined the fundamental moves:

4In case of conflict it should prefer the defaults more specific to the more general ones.
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additions: addg(i) where i is a formula, if g=T (background knowledge) then i is added to
the current player’s background knowledge, otherwise to its contingent knowledge;

concessions: conceedg(i) moves the formula i in the other player’s background knowledge;

removals: removeg(i) removes i from the current player’s background knowledge.

For a move to be consistent, the current player theory must have at least one consistent ex-
tension. To be legal, a move must be consistent and lead us to a new state, never considered
before.

We are obliged to underline the distinction of specificity and priority, that conceptually
are really different, but, during implementation we will see that can be merged in the same
predicates since specificity relation is somewhat a relation of superiority.

3.3.5 Dung’s argumentation theory: extending logic programming

The central notions of the Dung’s argumentative theory [25, 26] are: acceptability and ex-

tended logic program. The latter is a way to represent a program P who contains particular
clause depending on atomic literals (objective literals) and the negation of some other liter-
als (subjective literals).

Subjective literals are also called assumption and they are the atomic elements on which
is based the proof. An argument A supports an objective literal L if there exists a proof of L
on assumptions contained in A. When an argument supports both L and ¬L, it is called self-

defeating and represents inconsistent between its assumptions due to one or more conflicts.
The available ways to attack an argument are:

Reductio Ad Absurdum (RAA-attack) A attacks A’ and A ∪ A’ us self defeating

Ground Attack (g-attack) A attacks A’ and an assumption of A’ support ¬L, but L is
supported by A

According to Dung’s theory the semantic of an extended program P is defined by the
semantics of the argumentation framework defined as follows:

AF(P) = 〈 A, attacks, g-attacks〉

where attacks is the union of g-attacks and RAA-attacks.
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Now we propose the notion of acceptability and admissibility according to Dung’s theory.
Given a conflict-free5 set of argument S, an argument A is acceptable w.r.t. S if for any
argument B that attacks A, B is g-attacked by some argument of S. If all element in S are
acceptable, we say that S is admissible.

Dung’s framework reveals important role since we will use this abstract formalism as
starting point for our work. We will implement the same kinds of attack and the same
criteria to determine if a rule is rebutted/undercutted or not.

3.3.6 Prakken & Sartor’s framework for legal argumentation

In[27] Prakken & Sartor presented a framework for defeasible argumentation that provides
two kinds of literals strong and weak. Strong literals are atomic first-order formula, weak

literals are the “weak-negation” of the strong literals; thus, let L be a strong literal, its
related weak literal is ∼L. Pay attention to the difference between ∼ and ¬. The former
should be read as “there is no evidence that L is the case”, instead the other one means
“L is definitely not the case”6.Prakker and Sartor introduced this new symbol in order to
represent assumptions.

They proposed two argumentation frameworks:

• Framework for fixed priorities;

• Framework for defeasible priorities.

Framework for fixed priorities
Their framework read a theory passed as input called ordered theory in which the rules

are distinguished into Defeasible rules (D) and Strict rules (S) that contains only strong

literals.

An argument is a set of ground instances of rules composed by strong literals and there
is a ordered sequence of rules and related literals, and a conclusion for an argument A is L,
where L denote a consequent of some rules in A.

In this framework is also useful define a concatenation between argument and rules in
order to show better the possible cases of conflict between arguments. The possible attacks
are:

5It means that there are no attacks among its elements.
6It is not so far from the Dung’s definition of objective literals and subjective literals, also if Dung used

the ¬ symbol to denote the subjective literals.
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Rebutting Attack A rebuts B if they lead to complementary conclusions and, according
the priority criteria by induction, A is preferred.

Undercutting Attack A undercuts B if a conclusion of A is a strong negation of an as-
sumption of B.

The defeat notion derives from the attacks discussed above. We say that A1defeats A2

if A1 is empty and A2 is incoherent or A1undercuts A2 or A1rebut A2 and A2 does not
undercuts A1

7.
Notice that it is not mentioned the relation between defeat and priority order. So it is a

weak definition.
An argument A is acceptable w.r.t. a set of arguments Args iff every argument that

attacks A is attacked by an argument in Args. Thus, given a ordered theory Γ, we can
define the set of all justified argument JustArgΓin terms of fix-point operators (characteristic

function) of the ordered theory w.r.t a subset of JustArgΓ.
As we saw in the previous section, the characteristic function behaves monotonically.

Thus, given an argument A and a ordered theory Γ:

A is Justified iff A is in the least fixpoint of FΓ.

A is overruled iff A is attacked by a justified argument.

A is defensible iff A is neither justified nor overruled.

Framework for defeasible priorities
In the previous section we defined the argumentation framework as a triple where the

third element was the priority relation. Now we want do describe the other approach,
namely, the one where priorities are not fixed, but defeasible. We are moving the priori-
ties relation from meta-level to object-level and that is the reason why in our new definition
of the framework we have just two elements that describe it:

AF = 〈 S, D〉

7Notice that it is not possible to counterattack a Rebutting Attack with another Rebutting Attack, as it
depends on fixed priorities and and the counterattack would be inconsistent. Although, a similar approach
could be analysed applying defeasible or simply not-fixed priorities. We will show the defeasible priorities
approach in the next section.
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Furthermore, we add a set of strict rules in every theory in order to define a strict partial

order and a link between meta-level and object-level. Now the ordering component “<”
is determined by priority arguments, i.e. (r,r’)∈ < iff there exists a justified argument for
r ≺ r′, namely, the meta-relation between r and r’ depends on the fact that must exist a
justified argument, that this relation of priority. The engine remains more or less the same,
obviously, we have to put in account that also during the conflicts and attacks analysis
the priorities are defeasible8. Maybe, the most important change regards the monotonicity
of the characteristic function; indeed this feature is true just for the conflict-free sets of
arguments.

This work can be view as a refinement of Dung’s framework in legal arguments. We
underline the difference between priority fixed and defeasible. Later (during implemen-
tation explanation) we will show you a deep usage of this theory applied on priority and
incompatibility relation that will be considered as normal defeasible rules.

3.4 Extensions and extension-based semantics

So far we talked about arguments evaluation as if it was undeniably unique. Instead, Given
some arguments that may attack or be attacked clearly they can not stand all together and in
order to know which their status we need to evaluate them. It means that evaluation criteria
would assume different numbers of arguments that can stand together9.

In this section we introduce the semantics. We say that an argumentation semantic “is

the formal definition of a method (either declarative or procedural) ruling the argument

evaluation process”[28]. In the literature, argumentation semantics are distinguished be-
tween: extension-based and labelling-based.

“In the extension-based approach a semantics definition specifies how to derive from

an argumentation framework a set of extensions, where an extension E of an argumen-

tation framework is a subset of the set containing all the arguments, representing a set of

arguments which can “survive together” or are “collectively acceptable”.

In the labelling-based approach a semantics definition specifies how to derive from an

8In this case the authors added a new representation Args-defeat, instead defeat. This is due to distinguish
between a normal defeat and a defeat depending on a not-fixed priority criterion.

9We remind that an argument is justified status if there exists a proof-tree in which the argument is the root
(U-labelled) and no one of its children is non D-labelled.
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argumentation framework a set of labellings, where a labelling L is the assignment

(mapping) to each argument in A of a label taken from a predefined set L, which corresponds

to the possible alternative states of an argument in the context of a single labelling“.

3.4.1 Bondarenko, Dung, Kowalski & Toni’s abstract AF

In [29] authors discussed sa generalisation of Pool’s Theorist [30] framework that allows
each theory, that is formulated in a non-monotonic logic to be extended by a defeasible set

of assumptions.

The aim is to define a framework able to decide if some assumptions can be accepted as
an extension for a given theory, or not. In order to define a extension we need to put some
constraints, and the extension acceptability depends on the choice of the constraints.

So the question could be: “Which are the constraints that make us able to understand if

an extension is acceptable?”

Naive semantics The naive semantics are the simplest extensions. An extension is naive,
if is maximal and conflict-free. Its greatest feature is that there exists an naive ex-
tensions for each assumptions-based-framework that provide at least a conflict-free
extension..

Stable semantics As we saw in the previous section, stable semantic are credoulus, in other
words they considere more arguments as acceptable than a skeptical semantic. In this
context, a set of assumptions is stable if it is closed (in the sense that not contains
assumptions that are proved as false),conflict-free, and it attacks all the assumptions
it does not contain.

Admissibility and preferential semantics (They are both credoulus) The former extends
the admissibility semantic proposed by Dung. It is a relaxation of the stable semantic
(same behaviour of preferred semantic saw above). Preferential semantic are really
similar, but consideres just the maximal set as admissible; in the sense that the sub-set
of the extension are not admissible. We presented those two semantic togheter as they
are equivalent if our context is a normal assumption-based framework, and according
to the maximal conflict-free notion.
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Complete and Skeptical semantics Complete semantics are credoulus, and their constraint
is that an extension is complete if it contains all the assumptions that it defends. The
last semantic is Skeptical and it accepts as justified only conclusions that can be de-
rived in all acceptable sextensions. It is important as the skeptical version of the stable
semantic is the basis of the well-formed semantics of logic programming

3.4.2 Dung semantic analysis

Dung in [31] proposed and compared a set of different extensions. Now we investigate the
differences among them. First of all we need to clearly distinguish between the skeptical

and credulous semantics:

Skeptical: is a semantic that considers acceptable an argument only if acceptable for each
extension.

Credulous: is a semantic that considers acceptable an argument if it is acceptable at least
for one extension.

Roughly speaking a Credulous justifications include Skeptical justifications. Dung defined
credulous semantics using the notion of preferred extension, namely, it is the maximal
admissible set of arguments. They are always defined for argumentation framework.

Stable semantic, are stronger semantics, in sense that given a set of argument this is a
stable extension iff for each argument A that does not belong to S, there exists a relation
(attack) between S and A. In other words, S attacks every argument that is not contained in
S.

It’s stronger in the sense that it is more restricted, namely, given a set of argument it is
not always possible to define a stable extension:
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Figure 3.2: Impossible application of a stable semantic
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Preferred extension is a relaxation of the constraint imposed in the stable semantic. It
means that it is not needed to attack all the argument not contained in the extension, but just
the ones that attack an argument that belongs to the extension. Thus a stable semantic is
also a preferred semantic, but it’s not true the converse.

Dung introduced a new kind of semantics called ground semantics. Those are the typical
Skeptical semantics, and a unique-state, it means that for each argumentation framework is
it possible to get just one extension. It is based on the concept of fixed-point. The definition
of a Characteristic function allows us to define the acceptable argument in a monotonic way,
and the least fixed-point of this function corresponds to our Ground Extension.

a b c d e f- - - - -
�

a c d e f- - -
�

a c e f-�

Figure 3.3: Typical ground extension and iterative approach.

In the Figure 3, there is a simple representation of the possible iterative approach to
select the argument of the ground extension. The first element is “a” as it is not attacked by
nobody. So we remove all the argument attacked by “a” as they will be considered certainly
defeated, and so on. The ground extension is {a,c}.

The last semantic we see is the complete semantic; perhaps, it should have been the first,
but we would underline the important meaning of this semantic in relation with the other
ones assessed above. Indeed, the complete extension is the link between preferred extension

(Credulous) and grounded extension (Skeptical). Let’s define a CO, a set of argument S is
a complete extension iff acceptable argument w.r.t. S belongs to S.

Dung proved that a preferred extension can be defined as maximal complete extensions,
and the grounded extension is a least complete extension.

For our purpose it becomes really interesting since using the same meta-interpreter and
the same defeasible logic, we get different conclusions depending on the semantic we are
using. Thus, in some contexts with a credulous semantic we couldn’t be satisfied for the
results, but switching to a skeptical semantic we can disambiguate the conclusions. On the
other hand if a skeptical semantic is to strict to get a solution, it will be necessary to switch
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to a credulous semantic.

3.5 Game model

In this section we discuss how to set up a legal argumentation adversarial as a dialectic
process using a meta-logic defeasible framework. What we need is a formal model in order
to analyze computationally the argumentation’s. To assess the dispute between two parties
we use the mechanism of the game as a challenge between two players. Thus, we survey
which are the conditions to obtains wins or losses. Computationally, logic is represented by
Horn clauses. This approach provides a symbolic knowledge representation with a formally
well-based semantics.

We model the argumentative process in a meta-logic setting with a background knowl-
edge that represent the object language clauses encoded as terms. The sequential nature of
the legal disputes leads us to use a tree-analysis to survey the correctness and to know which
are the chances of win and to find possible strategies.

3.5.1 The meta-logic argumentation framework

Let’s consider a dispute between two persons. They will follow a specific schema ( i.e.
expressions of facts, laws, evidence) according to a given logic. Who start the debate,
called proponent, proposes his key-claim and he has to defense it from the possible attacks
of the opponent.

The game is won for a party in the state Si, if some admissible act leads to lost
for the other party in a subsequent state Si+1...the game is lost for a party when
all admissible acts recursively lead to won for the other party.

The proponent wins if:

• the key-claim is proved in the state Si;

• the key-claim is defeasibly defended in the state Si and the opponent has not more
admissible moves in the next state.

The proponent loses if:
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• the negation of the key-claim is proved;

• in the state Si it’s not proved the negation of the key-claim and the proponent has
exhausted his moves.

Accordingly, the opponent wins if:

• the negation of the key-claim is proved in the state Si.

• the negation of the key-claim is defeasibly defended in the state Si and the proponent
has exhausted his moves.

The opponent loses if:

• in the state Si the Key-claim is proved;

• the key-claim is defeasibly defended in the state Si and the opponent has exhausted
his moves.

Keep in mind that it’s important to distinguish the quantifier some and all. I mean that:

“A loss means that all the acts lead to won for the proponent.”

“A win means that some act leads to lose for the opponent.”

In the following, we present a defeasible logic prover, described introducing the evolving
argumentative state S = {S1,S2,..,Sn} where n <∞ (So it’s a finite set):

1. Y 1,...,Y n→X,S`Y 1,S`Y 1,..,S`Y n
S`X , it means that X is proved if X is a conclusion of some

premises that can be proved by S;

2. SvX
S`X if X is proved, then it’s also defeasibly defended;

3. S¬`¬X,Y 1,...,Y n⇒X,SvY 1,..,SvY n
SvX that means: X is defeasibly defended if it’s not proved

X negation and if X is the conclusions that S can be defeasibly defended.
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3.5.2 A simple legal dispute: Assessing the pleas

First of all, we have to define a legal code formalization. Thus, we start with a general
analysis. In other words, we need something that is considered by all true.

In the last years a lot of people have been disappointed by some messages concerning
licenses check on their personal computer from Windows O.S. Indeed, using that operat-
ing system they noticed that there are some applications able to control if for the installed
software the customer has purchased a regular license. So, there are two cases (i) customer
bought computer with pre-installed OS from an authorized seller (ii) customer brought com-
puter from a non-authorized shop. In the former case at the first bootstrap, operating system
requires that user accepts the license, in the latter case it doesn’t happen since it has been
installed a pre-configured illegal copy of windows and so also if the user didn’t accept the
license is guilty because he is running a fake copy of the software. Nevertheless, they sue
windows for privacy violation.

Legal code (defined by some rules):
Receive_messages privacy_violation
Receiving_messages ∧ accepted_license not(privacy_violation)
User:
Receive_messages⇒ privacy_violation
⇒ Receiving Messages
→OS Pre-Installed⊇¬ `Receiving Messages∧Accepted License not(privacy_violation)
Microsoft:
Receiving Messages ∧ Accepted License⇒¬privacy_violation
⇒¬Receiving Messages
→Accepted License
→Fake Vendor
A complete meta-logic formalization can be consulted here [32], or a simple attempt for

this special case in appendix on page 128.

3.5.3 Running the argumentation game

A running game example could be the following one:
The proponent (the windows user) say:
Receiving Messages⇒ Privacy violation
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⇒ Receiving messages
Now Microsoft has got two options:

Speech act opt. A Speech act opt. B
⇒ ¬Receiving messages (becomes
a draw)

→accepted license “You accepted
the license when you installed our
product.”Now proponent could say
→OS Pre-Installed (“when I bought
my computer the operating system
was already installed”).
→Finally Microsoft say
Fake Vendor

Table 3.1: Game-tree sample

When Microsoft says “Fake Vendor” wins the challenge because the key-claim “Privacy
violation” has not been proved, and after its last answer, the proposer hasn’t got more acts.

3.6 Conclusion

In this chapter we discussed about argumentation framework and its different implementa-
tion proposed over the years, we accepted Dung’s abstract framework as starting point for
our architecture of arguments. Furthermore, we resumed some aspects introduced later in
the years as defeasible priority, specificity as priority relation and we defined a game-model
in order to realize a simulation of a debate.
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Chapter 4

Meta Languages and Meta Interpreters

In this chapter we discuss meta-languages and their representations, later we provide a

description of their basic implementation and an analysis of their pro and con. Prefix

Meta (from Greek: "beyond"), is used to indicate a concept which is an abstraction from

another concept, used to complete or add to the latter, for example, meta-data are data

about data. In this context meta represents an abstract level for our language (generally

human language) whose has the job of evaluating the object language.

Paradoxes and anatomies are typical cases in which we try to evaluate a language

without use an abstract level, thus we reach unacceptable conclusions using acceptable

premises and reasoning. The most popular is the “liar paradox” by Epimenide1 but also

more paradoxes have been studied during the history. Deserve a mention Russel’s anti-

nomy2, whose definition can be summarised so : ”Let A be the set containing all the sets
that don’t belong to them self. Does A belong to itself?”. This paradox would demand a

more specific explanation but for reason of space we omit it and we refer to this document

[33].

1Actually, its paradox was quite different. He said that: “The Cretans are always liars” and since Epi-
menide was from Crete, it sounds like a paradox. Thus, that sentence is not a paradox. Diogene Laerzio
ascribed paradox invention to Eubulides of Miletus that said “I’m laying”.

2The following formula is a simple attempt to show you mathematically this paradox : R={x: x /∈ x}.
Then R ∈ R iff R /∈ R.
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4.1 Representations

In this section we introduce two ways to represent a language: ground and non-ground.

“if L is a typed-free language, and L′ is a typed-language that inspects L,

then:

in a ground interpreter a variable x in L, correspond to a constant a’ in

L′.”[34]

“if L is a typed-free language, and L′ is a typed-language that inspects L,

then:

in a non-ground interpreter a variable x in L, correspond to a variable x’
in L′.”[34]

Roughly speaking, the typed language hasn’t a correspondence variable-to-variable with
the typed-free language, namely, we set a relation from a variable to a constant, and we
associate this constant to an index in the typed-language.

Our aim in this chapter is to discuss how to analyze a language using a meta-language,
however, sometimes it could be useless (easier) using the same language. In other words,
we would like to realize a software using a language X and evaluate it with X language
itself. This approach doesn’t sound so strange since, usually, we describe a language using
itself:

“Stockholm is a nine-letter word”

If this is a sentence of a meta-language describing the form of words in an object language,
then “Stockholm” denotes itself, and the sentence is true, However, if “Stockholm” denotes
the capital, the statement is false.[35]

Thus, our issue is finding a way to describe variables, constant and the other terms from
a typed-free language to our meta-language. In the followings sections we analyze two
different terms representations: Ground Representation and Non-Ground Representation.

4.1.1 A definition for Meta-Interpreter

An interpreter, informally, is a program that evaluates programs. Interpretation is pervasive
both a theoretical point of view than from a practical point of view. A lot of programs are
interpreters for specific language domains. A program that read a configuration file for the
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set up, has to interpret the language used to write that file. An interpreter for a language that
is written with the same or with a similar language, is called Meta-Interpreter. If an inter-
preter is able to interpret itself, it is called Meta-Circular. Applying this meta-interpretation
action in computer science we get a new definition since an interpreter corresponds to a
program:

“Meta-programming is a programming technique that enables manipulation

with program structures. Because Prolog uses the same data structures to rep-

resent programs as well as data, Prolog is suitable for writing meta-programs.”[36]

4.1.2 Ground Representation

A possible ground-representation may look as follows:

• each constant of the object-language is represented by a costant of the meta-language;

• each variable of the object-language is represented by a costant of the meta-language;

• each n-ary functor of the object-language is represented by a unique n-ary functor of
the meta-language;

• each n-ary predicate symbol of the object-language is represented by a unique func-
tor of the meta-language (with the corresponding arity).

Thus we can define a function φ between the two domains and its inverse φ−1 to determine
the interpretation of a symbol. Let c is a constant of the meta-language, its meaning c= is
the constant or variable φ−1(c) of the object-language. Instead, about the n-ary functions
we propose some rules:

The meaning f= of a n-ary function, is a function that maps:

(i) the terms t1, . . . ,tn to the term φ−1(f) (t1, . . . ,tn ) if φ−1(f) is a functor of the
object-level;

(ii) the terms t1, . . . ,tn to the atom φ−1(f) (t1, . . . ,tn ) if φ−1(f) is a predicate of the
object-level;
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(iii) the formulas f , . . . ,fn to the formula φ−1(f) (f , . . . ,fn) if φ−1(f) is a connective3

of the object-level;

The next example can help us to understand what we stated above.

Let L′ be our object-language composed of constants a,b, the predicates
p/1, q/2, the connectives←,∧ and an infinite but enumerable set of variable X.

Our meta-language L consists of the constants a,b,x the functors4 p/1,q/2,

and/2 and if/2.
If we analyze this sentence in the meta-language:

if(p(x)),and(q(x,a),p(b))

the assigned meaning in the object-language is:

p(X)←5q(X,a) ∧ p(b)

What we need is a description of the relation between the terms and formulas of the object-
language in the meta-language.

step(Goal, NewGoal)←

select(Goal,Left,Selected,Right),(1)

clause(Selected),(2)

rename(Selected,Goal,Head,Body),(3)

unify(Head,Selected,Mgu),(4)

combine(Left,Body,Right,TmpGoal),(5)

apply(Mgu,TmpGoal,NewGoal).(6)

This pseudo-code, represents a meta interpreter for our object-language. If we use prolog,
we would add some predicates to replace the ones built-in in prolog-engine.

(1) takes the goal and selects a sub-goal and its neighbors, we mean the one before it and
the next one.

3We mean operator such as and, or, if.
4Note that the predicates in the object language will be inspected by meta-language using functors repre-

sentation.
5Note that we used the last rule for the if formula, as it is a connective in the object-language.
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(2) we check if it is a clause that we know (see later).

(3) we rename the clause in order to obtain a variant of Head and Body of Selected, without
variables in common with the Goal .

(4) gets the mgu of Head and Selected.

(5) creates a new temporary goal composed by a conjunction of Left, Body and Right.

(6) with apply we apply a substitution of the temporary goal TmpGoal using the Mgu and
we obtain a NewGoal.

So, we have to save6 all clauses of the object-language as facts in the meta-language:

z:-demo(

[(pred(foo,[var(s(0)),var(s(s(0)))])<= (1)

[pred(bar,[var(s(0)),const(b)]),

pred(doe,[const(c),var(s(s(0)))])]),

(pred(bar,[const(a),const(b)])<=[]), (2)

(pred(doe,[const(c),const(d)])<=[])], (3)

[pred(foo,[const(a),const(d)])]) Goal

So all the goals of the object-language were passed during the goal invocation foo(1),
bar(2), doe(3). The second arguments is the real goal, and our meta-interpreter has to
control if the invoked predicate (in this case foo) is contained into the list of the available
goal, and if so, check if it unifies with the goal.

An alternative way could be defining into the program some facts, say, the object-
language predicates:

clause(p(pred(foo,[var(s(0)),var(s(s(0)))])<=

[pred(bar,[var(s(0)),const(b)]),

pred(doe,[const(c),var(s(s(0)))])])q).

clause(ppred(bar,[const(a),const(b)])<=[]q).

clause(ppred(doe,[const(c),const(d)])<=[]q).

6Or pass them in a list as a sort of dictionary where to store all our object-language information.
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A goal such as clause(X) shows all the available clauses in the program:

?- clause(X)7.

X = pred(foo, [var(s(0)), var(s(s(0)))])<=...

X = pred(bar, [const(a), const(b)])<=[] ;

X = pred(doe, [const(c), const(d)])<=[].

That’s a static definition, we are not able to execute the predicate inside the clause, but we
know that it is correct for the object language.

If we want manipulate a goal, i.e. we need to separate the body by the head or select a
sub-goal in the body, we need to define a new clause using the operator <= defined before:

deeperInvestigation(Head <= Body,...) <= (do something)

It’s important investigate the sub-goal in a body of the object-language, for example to
define a derivation tree. Thus, using this representation for the clause of the object-language
and defining a new predicate for checking the derivation sequence, we are able to know
which steps are needed to carry out a derivation-SLD tree for a specific goal:

derivation(G, G).

derivation(G0, G2) :- step(G0, G1), derivation(G1, G2).

In our case:

derivation(ppred(foo,[const(a),var(s(s(0)))]q,true). %is there a

derivation from this goal to the empty goal?

It matches with the second clause of derivation/2:

derivation(...) :- step(p[pred(bar,[const(a),const(b)]),

pred(doe,[const(c),var(s(s(0)))])]))q, G1), derivation(G1, G2).

And so on...till arrive to the empty goal.

7It is needed to define the new operator <= in the prolog program, putting at the head of the file the
following line: :- op(1,xfx,(<=)).
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4.1.3 Non-Ground Representation

Ground interpreters are more readable since they don’t use only buit-in predicate to de-
fine unification, substitution and there are no ambiguity between variables that belongs to
object-level and to meta-level but they need more memory to save all the terms of the ob-
ject language; furthermore, developing a program is a demanding task because we need to
rewrite a lot of code.

The non-ground representation is more pragmatical, and less logical since they behave
in a strange way when we deal with renaming and binding of a variable8, but allows us to
develop interpreters in an easier way. The core idea is to map object-language variables to
meta-language variables, instead constants. It straightforward, but there are some semantic
restriction.

A typical example used to compare the two meta-interpreters is the one about relation-
ship between relatives:

Example 1

Ground Representation:

clause(pgrandparent(X, Z) ← parent(X, Y ), parent(Y, Z)q).

clause(pparent(X, Y ) ← father(X, Y )q).

clause(pfather(adam, bill))q).

clause(pfather(bill, cathy)q).

Non-Ground Representation:

clause(grandparent(X, Z) if parent(X, Y ) and parent(Y, Z)).

clause(parent(X, Y ) if father(X, Y )).

clause(father(adam, bill)) if true).

clause(father(bill, cathy) if true).

The idea is to represent the whole object-language in the meta-level in order to manipulate
and execute object-predicate without “translate” them.

Thus, we don’t need rather complicated definitions for the built-in logical predicate
about unification, renaming,. . . etc and the meta-interpreter is quite easier:

solve(true). (1)
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solve(X and Y) ←solve(X), solve(Y). (2)

solve(X)←clause(X if Y), solve(Y).(3)

This meta-interpreter is known as Vanilla Meta-Interpreter (a deeper analysis
with code example is provided A.4)

Roughly speaking, the “translation” is performed in the meta-level, it’s like to say that

“the meta-interpreter knows the meaning of the connectives and variables

of the object language and does not need to build a dictionary to convert the

representation in the meta-level with the meaning in the object-level”

Coming back to the previous example, a possible goal is←solve(parent(adam,bill)).

This goal matches (3) and its body after the substitution is:

←clause(parent(adam,bill) if Y0), solve(Y0).

and this new goal matches with second clause of the Example 1. So, Y0 = father(adam,bill).

So the unification between the two goal is in the meta-level. Furthermore, if we invoke
a goal with a variable such as parent(adam,bill) prolog9 returns the result X =

bill, as renaming predicate used in the meta-level does not need a explicit different
definition as in the ground-interpreter, now X is a variable also in the meta-level.

4.1.4 Why do we use Ground MI if they are so complex?

The reason why sometimes we have to use a Ground-MI is that Non-Ground MIs although
are really easy to develop, they haven’t a clear declarative appearance. For example, if we
consider renaming, in non-ground MI we can implement it using the underlying mechanism
for renaming, namely, using the clause predicate to get the body. The disadvantage of this
method is that the object-program is fixed, making it impossible to do “dynamic meta-

programming”.

Let p(X,a) is a clause that unify with p(Y,Y). after the invocation of the assignment, say,
p(X,a) = p(Y,Y) both atoms will take the form p(a,a), namely, the old version of p predicate
is no longer accessible. Unfortunately, this task becomes a problem while implementing
a non-ground meta-interpreter. It would use the same predicate “in a different ways on

8In the next section those kind of issues will be better explained.
9Prolog is our point of reference.
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the same branch”. It means that it cannot evaluate decoratively a code with this particular
issue10. One more problem is that we are not able to test in a declarative way, whether two
atoms are variants (or an instance) of each other. Furthermore they express incorrectly the
quantifier. Let a program contains the following code:

p(X)←q(X). % ∀X [p(X)←q(X)]

in Vanilla MI it means:

demo(p(X)←q(X)). % ∀X demo(p(X)←q(X)).

that is different as it means that for every term t the clause belong to program.
Thus, solving those problems it’s a task that is entirely up to the programmers, however,

since those behavior are also due to the fact that Prolog is not completely declarative, and
could be necessary to switch to a different kinds (strongly typed) of programming language
such as Göedel11 .

4.2 Conclusion

In this chapter we got acquainted with the most popular representations of a language :
ground representation and non-ground representation. Later we implemented and tested
those two different approaches on the same programming language (Prolog), finally we
discussed about different applications depending on their strengths and weakness.

In the following chapter we will show you our implementation of a non-ground meta-
interpreter (Vanilla-like) since we evaluated that our application would not be affected by
non-ground limitations.

10Actually, a partial implementation could be performed using prolog built-in predicate copy/2.
11We tried to test the behavior of our software on Göedel, but we had problem to use it. It is not more

updated since 1996 and it is capable only with Unix system. Nevertheless, we had problem running the
software on Ubuntu Linux 10.04. Could be interesting in future works analyzing a new implementations of
the same meta interpreter on a strongly typed language such as Göedel.
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Implementation

In this chapter we present our implementation. In the first part we describe the under-

layered defeasible meta-interpreter, later the game-model we use to perform the debate

between two parties. Some issues caused by resources limitation and some suggestions for

future work are described in the last sections. We decided to use Sicstus Prolog for meta-

interpreter implementation and Java Rich Client Platform to provide a simple graphical

interface. In the following sections we use two friendly names to distinguish between meta-

interpreter, that we call Maggie and the graphical interface, that we call Ubongo1.

5.1 Getting started

Our aim is to build a non-ground meta-interpreter using defeasible logic. This task involves
investigating prolog features and conclude if it is able to perform this process. We know
that defeasible reasoning is just non-monotonic reasoning and prolog is suitable for this
task, indeed adding new informations (new clauses) in a prolog program the result for a
goal could change. Unfortunately, we have problems when we try to represent assumptions
and defeasible conclusions since Prolog has not been developed according to this kind of
behavior; it usually answers saying definitely yes or definitely no2. Prolog rules are not

1Maggie and Bongo are my girlfriend’s dogs, nevertheless, we called the GUI Ubongo as funny thanks
to GNU/Linux (not only Ubuntu) and Free Software community that provide a lot of excellent tools for
developers. All this thesis implementation, except for Sicstus Prolog, has been implemented only using free
software.

2That is not properly true since applying closed world assumptions or circumscription, in other words,
using Negation as Failure prolog answers also when it does not contain enough information to be completely
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defeasible and so what we need is a new syntax in order to expand prolog expressivity and
make it able to allow new kinds of knowledge representation.

Thus, we defined a new kind of rules (defeasible rules) those rules are usually true, but
when we evidence that we are dealing with an exception, they can be defeated. One more
problem is the negation. In the previous sections we talked about negation as failure and
negation, and we noticed that prolog doesn’t provide a negation predicate. A wrong point
of view could bring us to argue that the problem is not in prolog, we mean that the rules
(not defeasible) still work, but there is something, maybe not explicitly written in the code,
that blocks them. But it’s not so. A typical example [37] to explain this wrong approach is
the following one:

Let say Wolf and Fox are all running for the same elective office. Someone might say,
"I presume Wolf will be elected, but if he isn’t, then Fox will be." How could we represent
this assertion in Prolog?

will_be_elected(wolf). %fact

will_be_elected(fox):- \+ will_be_elected(wolf). %clause

But it is different, and also replacing the fact with a new clause:
will_be_elected(wolf):- \+ will_be_elected(fox).

Taking into account the latter clause, we notice that there are not enough informations,
and a goal as will_be_elected(X). could returns an error or generates an infinite
loop depending on which prolog engine we are using.

Let’s add some detail to our example. Suppose our political prognosticator goes on to
say, "Of course, Wolf won’t win the election if Bull withdraws and throws his support to
Fox. "How shall we represent this in Prolog?

\+ will_be_elected(wolf):- withdraw(bull), support(bull,fox).

But this isn’t a well formed prolog clause. So we need to invent a new kind of defeasible
rule and also a negation operator. Indeed, NaF states that if something is not proved then is

the case, but this is not enough, we need a new operator able to answer true when something

is not the case.
In literature, usually, has been used a symbol representation to define defeasible rule

“:=/2” operator, i.e. replacing this operator to the bird’s example we have:

flies(X) :- bird(X).3 % X flies as it is a bird

sure.
3Normal prolog inference will be used only for strict rules.
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flies(X) := bird(X).%X should flies, since birds usually fly.

The negation we are introducing is denoted by neg/1. One more interesting features about
it, is that we can put it at the head of a clause (that is not allowed in a normal prolog clause
using NaF).

For the assumptions, we keep on using “:=” symbol. Indeed, an assumption could be
seen as a defeasible fact; a fact could be seen as a rule whose body is simply true. Likewise
a defeasible fact will be represented as follows:

will_be_elected(wolf):= true.

What happens if our conclusion is defeasible? Or better, if a conclusion depends on weak
defeasible facts (assumptions), what should our prolog engine do? Actually, it should de-
clare a draw as is not possible to hold that the conclusion is true, nor that it doesn’t. This
conclusion sheds light on a problem: the attacks we studied in the defeasible logic, can
be represented in prolog programming in the same way; we mean a rebutting attack when
a defeasible conclusion is attacked by another defeasible rule that supports the opposite
conclusion, and an undercutting-attack that attacks not the conclusion, but an assumption
that leads a rule to a defeasible conclusion4. The representation of a defeater is usually (in
literature) performed with the following symbol “:^”. Thus, if we wanted to express that
Wolf might not win the election if voter turn out is poor, we can use the just described
representation as follow:

neg will_be_elected(wolf):^ poor_voter_turn_out.5

So far, we show two different rules (strict and defeasible). But we didn’t mentioned in
which way a conclusion can be derived nor what to do in case of conflicts.

First, we define two different kinds of derivation for a conclusion:

Strictly(derivable) if the conclusion derives only from strict facts and rules6.

Defeasibly(derivable) if the conclusion derives also from non-strict facts or rules.

4Usually the defeasible rules that under-attack another defeasible rule are called defeaters.
5Notice that this is not a rule with a conclusion, we are not saying that if the voter turn-out is poor, then

wolf will not be elected, but we are saying that if the voter turn-out is poor then Wolf might not win the
election, that is quite different as the latter is not providing a conclusion.

6We say that a conclusion strictly derivable is also at least defeasibly derivable.

63



CHAPTER 5. Implementation

In the previous chapters we dealt examples in which were not obvious conflicts between
strict rules; but normally we have them. Given two strict rules:

mammal(X) :- dolphin(X).

neg mammal(X) :- fish(X).

and more rules that evidence that an animal is a dolphin but it is also a fish, we conclude
both is and isn’t a mammal, it means that we can’t solve this conflict as both are defeasibly
derivable. The solution is to refrain from conclude one of them7. One more typical example
in the literature is:

native_speaker(X,german_dialect) :- native_speaker(X, pa_dutch).(1)

born(X, Pennsylvania) := native_speaker(X,pa_dutch).(2)

born(X,usa) :- born(X, Pennsylvania).(3)

neg born(X,usa) := native_speaker(X,german_dialect).(4)

native_speaker(hans, pa_dutch).(5)

In Pennsylvania there exists a dutch dialect called “pa dutch”, who speaks this dialect usu-
ally was born in Pennsylvania, namely, was born in Usa. But, as people who speak dutch
dialect usually were not born in Usa we reach a conflict state. As we can see both the
conclusion depend on a defeasibly derivation. Which one is to be accepted?

Also if the condition of the strict rule is defeasible derivable while the second one is
strictly derivable, the strict one is superior. In this case we assume that Hans was born in
the Usa (according to the following rule):

a strict rule can only be defeated if its condition is only defeasibly derivable,

and then only by a fact or by another strict rule that rebuts it.

In other words the strict rule is superior, but adding more information able to defeat its
defeasible condition, leads us to withdraw the conclusion and to accept the opposite one.

Coming back to the example of mammals, we should explain better how to avoid this
kind of issues. Literature is full of similar example 8 in which we can conclude contrary

7After all, we analyzed this problem in terms of ambiguity we defined two approaches: blocking ambiguity
and propagation ambiguity.

8In particular the example of incompatibility between capitalist and marxist. Ping is from china ans usually
people from China are marxist, but she left China to go to Usa and now she owns a restaurant, but a restaurant
owner usually is a capitalist. How can we disambiguate those clauses?
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conclusions. It is due by the fact that we should add a new prolog predicates in order to
express the disambiguation.

incompatible(capitalist(X),marxist(X)). (5)

Thus, we can conclude that two clause conflict or are competitors if their heads are con-
traries, but also defining a predicate incompatible/2 able to tell to d-Prolog9 that two clause
could be incompatible also if they aren’t complements.

In our case, we should implement a contrary relation between two rules, and we can do
it using this code:

contrary(Clause1,Clause2):- incompatible(Clause1,Clause2).

contrary(Clause1,Clause2):- comp(Clause1,Clause2).

comp(neg Atom, Atom10).

comp(Atom, neg Atom).

In other words, both conclusions are defeasibly derivable, but logically, for a normal man,
those conclusions are in conflict. It means that we need two add some new informations, as
prolog without them cannot perceive by intuition this logical conflict.

Furthermore, in this work we added one more defeasible behavior. Since also a compati-
bility could be seen as defeasible, we decided to propagate a possible definition of defeasible
to make it defeasible in some cases:

incompatible(marxist(X), capitalist(X)):= point_of_view(strict).

neg incompatible(marxist(X), capitalist(X)):^

point_of_view(strict),we_are_in_2010.

This example sheds light on a deep characterization of our defeasibility. As we can see not
only we provide an incompatible predicate, but we also use it as it was a normal rule, so it is
defeasible and the system also correctly evaluate its negation. So we can assert a defeasible
incompatibility, and also using a defeater incompatibility.

9Usually with d-Prolog we intend the approach used in prolog programming to implement programs in a
defeasible logic.

10This definition of Atom is not we mean for atom in prolog, is just a logical atom, namely, a part
of a clause, in our case is the head.
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A complementary approach11 is to define some priorities between rules, in particular
between two rules that we know could conflict. In our case we use a sup/2 predicate that
tells to d-Prolog that in case of conflict the former is to be acceptable:

sup((capitalist(X) :=

owns(X,Restaurant)), (marxist(X):= born(X,prc12))).

In this manner the program is able to evaluate a defeasibly derivable conclusion: capital-

ist(Ping). Namely, we believe intuitively that if someone escapes from his birth place to
open a business activity in order to earn more money, he is capitalist.

We saw in the previous summaries, that Reiter proposed the idea of Specificity as crite-
rion to choose between two conflicting rules.

Specificity bring us to choose the more specific rule, and leave aside the more general
ones.

In the typical Bird’s example:

“The converse (of the rule bird(X) :- penguin(X).), of course, is not

true: many birds are not penguins. So any rule for penguins is more spe-

cific than any rule for birds. Penguin rules take into account more information

than do bird rules. When one rule is more specific than another, the first rule

is superior to the second. How can we tell that penguin rules are more specific

than bird rules? By noticing that the strict rule bird(X) :- penguin(X).

is in our database”[37].

This problem sometimes can became really difficult to be solved:

adult(X) := college_students(X).

neg employed(X) := college_students(X).

neg self_supporting(X) := college_student(X).

employed(X) := adult(X).

self_supporting(X) := employed(X).

11Those approaches are different, but they can be used together because they cope to different kind of
issues.

12People’s Republic of China.
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college_student(jane).

employed(jane).

In this example we notice that there is a conflict as Jane being a college student she should
not be self supporting, but because she is employed she should be self supporting. Which
rule is more specific? In this case is not so easy to determine which rule is more specific
because both conclusion could be defeasible derivable and there are no obvious clues to
leave aside one of them.

So we conclude that we need some investigating rules and some distinction between the
set of rules that we should use or not. In particular we call knowledge bases those different
sets of information that we are using as a part of the whole rules at a given time. And
root Knowledge Base the entire d-Prolog database. Furthermore, as during the derivation
process, proponent and proposer will add some new informations, we need to keep track of
the KB in use at each stage of reasoning.

Our system provides all those approaches: specificity, superiority relation and incom-

patibility.

5.1.1 Reaching a conclusion

Rather than reasoning about how we explicitly derive a conclusions from some rules, is the
case to discuss in this chapter what we discussed above about semantic issues and present a
solution for ambiguity dealing.

We defined two families of semantics: skeptical and credulous semantics. Let suppose
that we have some extensions containing some different and complementary conclusion.
Using a skeptical semantic we define a set containing the intersection of all the conclusions
belonging to extensions. Instead, using a credulous semantic we define a set containing
the conjunction of all the conclusions. Coming back to our meta-interpreter this different
semantic approach could bring us to different scenarios. Let suppose we have a goal and
some rules that could conclude both goal and neg goal:

skeptical both conclusions will be rebutted. Maybe, it is better to consider that the in-
tersection of the extensions containing goal and the other set containing neg goal is
empty. According to Nute’s first implementation and as a respect for the author, we
keep on calling the state as “I am not able to draw a conclusion”.
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credulous both conclusions will be considered true. It means that implementing a debate
between two parties and assuming in two different cases that the keyclaim is goal

and later is neg goal, we let both players winning. This example sheds light on some
problems about game model that we will see later: “Does the opponent win if the

keyclaim isn’t defeasibly derivable or if the negation of the keyclaim is defeasibly

derivable or both?”

Since this semantic distinction, theoretically, deals just the conclusion of a derivation tree,
it would be better implement a more general definition of ambiguities more suitable for
programming logic. So we decided to implement two predicates that provide the assertion
of ambiguity_propagation or ambiguity_blocking.

Sometimes, ambiguities emerges during the keyclaim evaluation. It means that in the
derivation tree we can have one or more nodes that are both defeasibly true and defeasibly

false. It sounds really similar to skeptical/credulous semantics and it is. Also if the re-
sults are rather similar, it is important to distinguish which approach are we using. Indeed,
semantic check could be verified only at the end of the whole derivation process, thus,
we should implement two different derivability predicates: one for the last evaluation and
one more for the previous states. Instead, implementing ambiguity blocking/propagation

represents better the state of each nested derivability predicates invocation and it is more
scalable.

5.2 Maggie

In order to clearly describe Maggie-metainterpeter we divide this section into two parts: 1.
Defeasible meta-interpreter, 2. Game-Model Meta-Level. This approach is needed since,
given an object language (a theory), its evaluation is performed by our defeasible meta-
interpreter. As we described above, each time we are trying to evaluate a language we have
to move up on a meta-level able to reasoning on the under-layered language. The same rule
must be used among meta-levels. Indeed, our game-model is just a particular reasoning on
the defeasible meta-interpreter, thus, we provide in the next section a brief introduction to
our meta-interpreter and later a description of meta-game-model as to implement it we need
to understand how meta-interpreter works.

So far we introduced some features to add into meta-interpreter and we proposed some

68



CHAPTER 5. Implementation

syntactic extensions for prolog. Now, we need to refine and deeply describe our implemen-
tation.

5.2.1 Defeasible meta-interpreter

Defeasible meta-interpreter must be able to read a theory and try to derive some conclusions
according to our previously described principles.

This meta-interpreter has been created starting from a Quintus prolog implementation
realized by Nute. Unfortunately, his meta-interpreter had uncorrected behavior13, didn’t
provide a superiority relation and also its skeptical semantic implementation didn’t satisfy
our needs. So we had to redefine almost all predicates.

Our meta-interpreter can be viewed as human reasoning able to evaluate some basic
features of the theory that we put forward. Those basic features can be summarized as
follows:

Derivability Given a rule it tries to derive it using the rules in KB. Derivation can be :

• Strict: Strict derivation is the same kind of derivation used by prolog engines.
It simply tries to evaluate a goal only using strict rules.

• Defeasible: Defeasible derivation is our extensions and is able to derive using
both strict rules and defeasible rules. Since it involves normal derivation, we
only invoke defeasible derivability of a goal. It’s a correct approach because
in our OR-predicates location strict rules derivability have been written before,
thus, it’s like if we gave priority to them. In other words, we try to evaluate a
goal, at least defeasibly, it means that we try to derive it strictly but if the system
fails, we try with the defeasible approach.

Using different ways to derive a goal requires a different invocation of itself, so we added
a new operator “@”. It means that if the goal is preceded by @-operator, we are also

13We say that its behavior seems uncorrected since we tested all the typical example provided in its dpl
file, but we noticed that sometimes rebutting criteria weren’t applied as we expected. Maybe, this is due to
preemptive predicate in Nute’s framework. If you take a look on Maggie code you will notice that we didn’t
apply ambiguity blocking/propagation criteria in def_der, namely defeasible derivable, predicate, but during
the rebutting predicate.
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interested in its defeasible derivability, otherwise, without, @-operator, we use the typical
prolog goal-invocation14.

Attackability With attackability we intend both kinds of attack rebutting and undercutting.

In the previous chapters we widely described the differences between those attacks,
and we can simply summarize our previous conclusions:

• rebutting attacks propose a new conclusion in opposition of an existing rule.

• undercutting attacks just block a conclusion provided by a defeasible rule.

Attackability criteria are introduced in the next bullet list, but a wider survey is pro-
vided later:

• Rebutted: a rule is rebutted if its contrary is strictly derivable. But if a defeasi-
ble rule (that is defeasibly derivable), is attacked by another defeasibly derivable
rule we implemented two different behavior:

1. If ambiguity_blocking is disabled we say that a rule R is rebutted by a rule
R1 iff both rules are derivable and there exists a superiority relation in favor
of R1.

2. if ambiguity_blocking is enabled we say that a rule R is rebutted by a rule
R1 iff both rules are derivable and there not exists a superiority relation in
favor of R.

• Undercutted: a defeasible rule is undercutted by a defeater iff are both deriv-
able and there isn’t a superiority relation in favor of the former rule.

Decision_criteria Priority relations have been used before as criterion to decide if a rule
is to be rebutted/undercutted or not and we introduced them earlier when we talked
(more generally) about decision criteria. The other decision criteria we analyzed are:
incompatibility15 and specificity.

14Actually, this approach does not provide all the information we could need, indeed from a result we are
not able to distinguish which kind of derivation has produced it. Later we introduce a new meta-level that
provides this feature using a new operator $-operator ( on page 72).

15Incompatibility rather then be a decision criteria, can be seen as a manner to make a goal undecidable.
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• Incompatibility: we say that two rules, both derivable, are incompatible if there
exists a strict incompatible/2 rule that argue that, or if there exists a defeasible
incompatible/2 rule whose body is derivable. Incompatibility implementation
is used in contrary/2 predicate. When we try to derive a rule we have to con-
trol if there are other defeasible derivable rules with opposite conclusion, but an
incompatible rule can be considered as an undercutting criteria. In other words
saying: “incompatible(Rule1,Rule2)” and Rule1, Rule2,incompatible(Rule1,Rule2)
are defeasible derivable, it means that the system cannot reach a conclusion
since Rule2 “attacks” Rule1.

• Superiority relations16: we say that a Rule1 is superior to another rule, say,
Rule2 iff:

1. there exists a strict superiority rule arguing that.

2. there exists a strict superiority rule arguing that and its body is derivable*.

3. there is a superiority rule in favor of Rule1 and there isn’t a superiority rule
in favor of Rule2 or if exists is not derivable*.

4. there is a superiority rule in favor of Rule1 and there a superiority rule in
favor of Rule2, but those rules are involved in a new superiority relation
that argues non-directly that Rule1 is superior of Rule2 (and so on...)*.

• Specification: In our implementation Specification predicate belongs to superi-
ority relation one. Indeed, if the above criteria fail, we try to see if the condition
of the Rule1 is more specific that the condition of the Rule2, in other words if
Rule2’s Body is derivable using Rule1’s Body and not the contrary.

Rejecting criterion:17 a rule must be rejected when it is the negation of a rule that belongs
to our common KB:

• Let R be a Rule such that R ∈ CKB and R has the shape of:

– rule(<something>).

– rule(<something>):- true.

– rule(<something>):= true.

16Options marked with star(*) are valid only if defeasible_priority option is enabled.
17Keep in mind this criterion since it will be of vital importance in the case-studies chapter.
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we will reject whatever rule R′ such that has the form of:

– neg rule(<something>).

– neg rule(<something>):- true.

– neg rule(<something>):= true.

where rule can be both a negation rule or a normal rule.

Criteria described above represent the basic defeasible layer of our meta-interpreter and a
brief code visualization is provided in the appendix on page 133. What those definition
underline is the complex behavior of this implementation depending on mutual multiple
invocation among different predicates. As we said above, a rule is derivable if it is not
rebutted, to be rebutted there must exist a superiority rule that is derivable...and so on. . . .

5.2.1.1 Tools meta-level

So far, our meta-interpreter is able to answer to some questions concerning evaluation of
a goal, but it isn’t still complete. We need some tools and some of them can conceptually
located in a superior meta-level. As we said in the previous section we would need a new
layer able to distinguish if a derivation has been provided from normal prolog engine or if
the result has been reached using Maggie. Obviously, this component is not properly part
of Maggie, but it is a new meta-layer that has to reason on the meta-interpreter.

We defined $-operator that is quite similar to @-operator in the sense that tries to eval-
uate the goal using derivable criteria described above, but distinguishing between strict and
defeasible derivation and provides different answers. Furthermore, Maggie provides also
two predicates, whynot and say_why_not. Those predicates proposed by Nute provide a
similar result, the former explains why a goal is not defeasibly derivable, the other one
displays a list of rules and defeaters for a failed goal18.

One more important rule we need for our meta-interpreter is dload(+File). This rule
help us to load a file containing defeasible rules, put them in a dictionary data structure that
we can manipulate removing some rules or adding more. Actually, that predicate is only
used to load a file since the game-model we are developing requires completely different
data structure specifications for the rules.

18More or less the same difference between @-operator and $-operator
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Figure 5.1: OR-AND tree simple representation.

5.2.2 Game-model meta-level

In the last section we introduced Maggie19 meta-interpreter, now we are going to show a
possible implementation of a specific game-model defined in [38]. Our aim is to create a
recursive game-model that involves two parties in an argumentative debate. We represent its
evaluation process using an OR-AND tree20, where the root is the keyclaim, and its children
are all the possible moves that the opponent can put forward. With respect to figure 5.1, if
there exists (OR) at least one branch in which the proponent wins in the next step for each
(AND) of its moves, the debate is won by him.

Thus, each node of the tree represents a new state characterized by the fact that a new
rule has been put forward. Since, our meta-interpreter is based on a non-monotonic logic,
it means that evaluating the derivability of the keyclaim in different nodes the result could
change.

In every nodes of that tree we should evaluate the keyclaim asserting a related set of
rules that are valid just for that node. Indeed, when one of the players puts forward a new
rule, Maggie will have to remember which of the player has moved and in which node he
did that move, thus, it will evaluate a different possible evolution represented by a unique
branch.

In figure 5.2 we show the distribution of the different knowledge bases involved into
project; private ones are only known by related owners, instead, the common knowledge
is public and accessible by both the parties. Maggie represents an intermediate layer that

19Pay attention, from now saying Maggie-MI we only refer to the meta-interpreter, instead, saying Maggie
we refer to whole prolog application containing Maggie-MI, tool and game-model implementation.

20In literature are also called Exist/For-all.
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Figure 5.2: Knowledge repository and Maggie evaluation

takes in turn a rule from each private KB and evaluate the keyclaim. So it is like a judge
that, evaluating the common laws (rules) and the arguments putted forward by the lawyers
(players), pronounces sentence.

The implementation is based on the pseudo-code defined in [32] (chapter 10) and it is
made up of two fundamental predicates:

won(proponent): proponent wins the debate if:

1. Keyclaim is strictly derivable;

2. Keyclaim is defeasibly derivable and the opponent exhausted his moves;

3. Proponent has got a valid move and using that move in the next step, opponent
will lose.

lost(opponent): opponent loses the debate if:

1. Keyclaim is strictly derivable.

2. Opponent exhausted his moves and keyclaim is still defeasible.

3. Proponent will win in the next step and so far negation of the keyclaim is not
derivable.

4. Proponent will not win in the next step and the negation of the keyclaim is
derivable.

won(opponent): opponent wins if:
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Proponent loses if
negation of keyclaim

is derivable
vs

Proponent loses if
keyclaim is not

derivable

Table 5.1: Logical proponent lost criteria.

1. Negation of the keyclaim is strictly derivable;

2. Proponent exhausted his moves and negation of the keyclaim is derivable;

3. If he has got more moves to put forward and in the next step and Proponent will
lost.

lost(proponent): proponent loses

1. Negation of the keyclaim is strictly derivable;

2. Proponent exhausted his moves and keyclaim is not derivable;

3. Opponent doesn’t win and keyclaim is not derivable;

4. Opponent doesn’t win and keyclaim is derivable the negation of the keyclaim;

Unluckily, although this approach is really elegant we will see some complexity problem
related to a possible double deliberation in lost predicate (point 3,4). Furthermore, it should
be noted that during valuation we can assume different criteria in order to determine if
proponent has won.

This remark can be considered the point at issue since it involves the first we presented.
Indeed we need to use two different options in lost predicate because this unclear definition
of lost criteria. In this case we assume two different approach both applicable:

1. We use both point 3 and 4 of lost predicate accepting the risk of a double evaluation.

2. We just use negation of the keyclaim and when it’s needed we could switch to a
skeptical semantic in order to avoid that both keyclaim and its negation could be true.

In this thesis we used both approaches and in complexity section we will reach some con-
clusions useful to get better performance.

Implementation of a meta-game-model requires also a data structure that can be under-
stood by humans, in particular a tree derivation tree able to represent all possible path of
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our debate. Tree is built starting from the root and recursively goes down till the leaf nodes
requiring in backward the generated data, it means that in a given node, after won/lost pred-
icate invocation, prolog cannot remove from the stack the invoking predicate and it must
remain open and wait till the end of the generated sub-tree explorations. Since each node
represents the addition of a new rule by one of the parties, we have a node for each move,
and for each branch that rule is putted forward in a different levels.

Actually, the trees that we have to explore are two, the first one tries to reach a victory
of the proponent, the other one a victory of the opponent; but, since their behavior is rather
similar, in the appendix we will show just the first one (see on page 135).

The game starts from a keyclaim attended by first proponent move, that can be consid-
ered wrong since keyclaim sounds like a proponent rule, but it isn’t for a simple reason:
after expressing the keyclaim, proponent has the burden to defend it and try to prove its
truth.

5.3 Basic protocol

In this section we show the basic protocol of the game-player explained in [32] and that we
present in an algorithmic representation.

To initialize and execute the game-model we apply Algorithm 1: system loads all the
rules and builds Proponent won tree. In this case we use the protocols described in Algo-
rithm 2 and Algorithm 3. In Algorithm 2 we show in detail the behavior of game-model
from the proponent’s won criteria point of view. We can distinguish it into three possible
cases of victory:

1. Keyclaim is strict;

2. Keyclaim is defeasible and opponent doesn’t have valid rules to put forward;

3. We put forward a new Proponent’s rule invoking lost predicate.

Note, that third point requires that each invocation of lost predicate has to succeedes; this
behavior corresponds to AND part of OR/AND tree.

Algorithm 3 shows the behavior of the other part of the game-model. It’s quite similar
to algorithm 2 but in this case we are not seeking if proponent won, but if opponent lost. It’s
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Algorithm 1 Game-model’s initialization and starting goals execution.
begin
load data structure for Opponent and Proponent repositories
load data structure for Proponent and Proponent repositories
load configuration settings such as defeasible priority, ambiguity propagation etc...
load Keyclaim

if won(pro,CKB,ProKB,OppKB,OldTree,Newtree) returns true
write NewTree in tree.txt file
return true

else if won(opp,CKB,ProKB,OppKB,OldTree,Newtree) returns true
write NewTree in tree.txt file
return true

else if return draw
end

necessary since we need to use a different predicate to put forward rules from opponent’s
private repository. Also in this case we underline three opponent cases of lost:

1. Keyclaim is strict;

2. Keyclaim is defeasible and opponent doesn’t have valid rules to put forward;

3. We put forward a new Opponent’s rule invoking won predicate.

Note, that third point does not require that each invocation of lost predicate has to suc-
ceedes; this behavior corresponds to OR part of OR/AND tree.

Those Algorithms shed light on the recursive approach, in particular executing won/6

predicate and reaching the third “if option” we invoke lost/6 predicate, and it does the
same. That is the reason why we state that this recursion is mutual. Furthermore, both third
“if options” have to invoke as many times as the number of valid rules in OppKB/ProKB.
That is the reason why we state that this recursion is also multiple.

If pseudo-code we illustrated fails, system will use two rather similar algorithms in
which a success means Opponent won. Since this second tree derivation is the dual ap-
proach and it is really similar to the one we described, we decided to omit it, but if you are
interested, Maggie code can be consulted on:

http://splogad.altervista.org/target/site/maggie/source/defeasibleMI.pl.txt
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Algorithm 2 Game-model protocol: won(pro,CKB,ProKB,OppKB,OldTree,Newtree).
Tree exploration of the debate between proponent and opponent.
Input: X ⊆ pro, CKB, ProKB, OppKB, OldTree.
Output: Y ⊆ NewTree.

begin
assert all rules into CKB

if Keyclaim is strictly derivable
create NewTree starting by OldTree
return NewTree

end
retract all the rules

assert all rules into CKB
if Keyclaim is defeasibly derivable && Opponent exhausts valid rules

create NewTree starting by OldTree
return NewTree

end
retract all the rules

for each rule ∈ ProKB do
if the rule is valid
insert rule in CKB
delete rule from ProKB
invoke lost(opp, NewCKB, NewProKB, OppKB, OldTree, NewTree)

end
if each valid rule in ProKB returns true from lost/6 predicate

create NewTree starting by OldTree
return NewTree

end
end
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Algorithm 3 Game-model protocol: lost(opp,CKB,ProKB,OppKB,OldTree,Newtree).
Tree exploration of the debate between proponent and opponent
Input: X ⊆ opp, CKB, ProKB, OppKB, OldTree.
Output: Y ⊆ NewTree.

begin
assert all rules into CKB

if Keyclaim is strictly derivable
create NewTree starting by OldTree
return NewTree

end
retract all the rules

assert all rules into CKB
if Keyclaim is defeasibly derivable && Opponent exhausts valid rules

create NewTree starting by OldTree
return NewTree

end
retract all the rules

for each rule ∈ OppKB do
if the rule is valid
insert rule in CKB
delete rule from OppKB
invoke won(pro, NewCKB, ProKB, NewOppKB, OldTree, NewTree)

end
return NewTree

end
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5.4 Complexity

In this section we discuss some performance tests of our system and we try to propose
some suggestions in order to get better tree representation and evolve the system for future
improvements. First, we present some evaluation related to resources of time and memory,
later we will show you some attempts to improve performance.

We tested the application adding some theory with a growing number of rules, on a
Centrino 2 T2300@1.66Ghz, 1Gb Ram, kernel Linux 2.6.32.22-generic. Our assessment
provides some information about the time (measured in ms) to finish the game, and the total
amount of memory used during the task execution. At the beginning we were not able to get
a result (except for trivial examples) since stack limitation21 blocked our application, and
system during calculation was becoming slowly till arrive to deadlock; fortunately, we solve
that problem since on Linux is possible to change the stack limitation to unlimited size. One
more problem that we underline is CPU usage that we didn’t include in this evaluation since
the application is not optimized for working with more processors and multi-threading.

Looking on the chart of Figure 5.3, in the (a) item we noticed in 4x4 example an exces-
sive usage of memory, instead time evaluation is about 2.5 seconds. It is not a great result,
but considering that application is not yet optimized we could accept it. Resources usage
becomes almost out of control just adding one more rule for each party. In the chart (b) we
can see that time needed for evaluation is 4.079.490 ms (about 1h and 8 minutes), and the
task requires more than 69MB.

This result is not encouraging because a real theory should contain a great number of
possible rules to put forward and since our application is really slow also to compute a
minimum number of rules a deep analysis it’s needed to fix those problems.

There are two ways we can use to analyze this problem:

1. Improve our programming approach;

2. Analyze our formal definition and check if there are some theoretical errors;

The first approach is less interesting and could be applied in any case (see 5.8). The second
one is more appealing since it involves complexity study, logical analysis useful to provide
some suggestions for the future works.

21On Linux stack is fixed to 8192kb for each shell.
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(a) With at most 4 rules for each of the parties. (b) With 5 rules for each of the parties compared with
previous results.

Figure 5.3: Game model resources usage.

To better understand the causes of this huge increase of time and memory we measure
the complexity of the system:

State_Space_Complexity: with this index we indicate the number of reachable positions
from the init state. It means to evaluate all the possible state we reach including
intermediate nodes:

Given K and Q, where K is the proponent number of rules and Q opponent
number of rules, the number of total nodes would be the following succession:

nodenumber = 1 + k+ k ∗ q+ k ∗ q ∗ (k− 1) + k ∗ q ∗ (k− 1) ∗ (q− 1) + k ∗
q ∗ (k− 1) ∗ (q− 1) ∗ (k− 2) + k ∗ q ∗ (k− 1) ∗ (q− 1) ∗ (k− 2) ∗ (q− 2) + ...

that could be express with a recursive function. Nevertheless, our aim is to
concretely see a quick complexity size, so we can round down this number
using only depth and branch factor in this case we use a depth (d) of k+q (in
the worst case) and a branching factor (b) that is the average among k,q.

In this case we have a complexity about O(bd);

Game_Tree_Size: game tree size represent the number of conclusion that we can reach, in
other words the number of child nodes of our tree, namely, k! ∗ q!;

81



CHAPTER 5. Implementation

Game_Tree_Complexity: the minimum number of leafs that we have to explore coincide
to the total number of leafs, namely, k! ∗ q!;

Computational_Complexity: computational complexity depends on number of input ar-
guments, we can see that the number of items increases factorially (that is worst than
exponential), furthermore, for each node instance we would create a data structure
containing three different lists (Common KB, Opponent private KB, Proponent pri-
vate KB). It should be noted that in a 5X5 rules debate we would have 14400 leafs
nodes each containing a different data structure whose size is between 1Kb-3Kb (in
our simple examples). It means that just for node children we would need of about
50MB of memory. It is easy to demonstrate that this problem is an ExpTime problem
and also about memory we have a exponential complexity.

Thus, it would be better analyze our approach before attempt to optimize the code.

5.5 God, Complexity and Acid Cut

Why tree exploration can lead system to slowing down? Leaving aside mathematical prob-
lem and informatic tree derivation issues, logically, we are trying to simulate human rea-
soning with a logic programming, and we are working just on a logical approach, maybe
forgetting what is the real human approach.

Roughly speaking, humans don’t create trees, nor any similar data structure. If we
remark the typical reasoning approach, we notice that we are used to use almost always a
depth first approach. Let suppose the reader is not convinced, why don’t you try to draw a
tree on a paper, we mean a tree like the ones we explained above with three rules for each
of the parties; you will notice that A4-paper are really small and that all the branches are
almost useless. That’s normal since we reason creating branches only when there is the
evidence that those branches are gains for our purpose. The problem is that we are able to
reasoning, and learn over the year when is the case to create some branches. But, sometimes
we are wrong since we tried to reduce complexity despite our strategies acquired over the
years. This section title involves the word God, since existence of God is the typical acid
cut that we perform to avoid a complex (almost paradoxical) reasoning22. Indeed, there are

22Take a look on the notable people who tried to prove the existence of God as for example Göedel. He
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two kinds of people: who believe in God, and the ones who reject its existence. It’s funny
noticing that both are wrong. If human brain was written in prolog, we could summarize
those beliefs using a few lines of code:

• People who believe:

exists(god, john) := has_faith(john).

• People who don’t believe in God:

neg exists(god, splogad) := \+ proved_existence(splogad).

Both rules are defeasible, but talking with both kinds of people they seem strict rules. It’s
like if those people tried to change the strength of the rule. Their reasoning present a deep
lack of proofs, the first one demonstrates God’s existence using the faith, in other words,
without demonstrating its existence. The others will change idea only when someone will
prove God’s existence. So it’s like if in their mind those rules were strict.

Dynamic change of the strength of a rule it’s not a novelty in literature, instead, using
this approach to reduce complexity it could be. Indeed, we suggest for future works to de-
velop a meta-level able to change a rule from defeasible to strict when needed or according
some principles that we explain below and the following definition:

Definition 1. With Acid Cuts we mean a prunning criterion able to reduce the size of the tree

and avoid the excessive growth of numbers of nodes during the exploration tree. According

appropriate principles (see below), it is able to dinamically change the strength of a rule

and keep on evaluating the keyclaim derivability “with gambling”.

Principles:

• Time constraints (if a rule is derivable during a pre-defined time, we can consider it
as strict);

passed a lot of years studying that problem or better trying to defeat all the scholars theories that preceded
him and that were accepted as philosophical demonstrations. Göedel lost a lot of time achieving his goal and
he dead after some months of madness during which he was sure that someone wanted kill him poisoning
his food, so he stopped to eat but meeting death. It could be a nice demonstration of how it is complex and
paradoxical logic field and that existing of god is just superficially analyzed by normal people.
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• Defeaters disabled (if all the defeaters that attack a goal are false since one of the term
of their condition is strictly false, we can assume that the defeasible rule will never
defeated by them);

• More than one of the terms of rule’s condition is strict (we can assume that the whole
rule could become strict).

We demonstrate that changing the keyclaim strength in a certain part of the debate, the
complexity of the program will be reduced, indeed, we reached a quick result with four
rules for each party without changing stack size.

We call this kind of cut, Acid cut, since they are not completely true, but can reduce the
amount of memory used by the task without introduce inconsistencies (if well developed).
An acid cut could be interesting also to analyze the strategies, we mean that is like to
hop up the system and can be interesting see the debate prosecution after a cynical / not

completely correct alteration of our theory. What could happen if one of the party strictly
assert something that is not true, and opponent is not able to change or notice that change?
Could the worst lawyer win the debate cheating?

Why reduce complexity with gambling? Actually, during writing thesis we tried to
propose as much suggestions as possible to fix performance issues of our system. Never-
theless, this approach is interesting also to increase similarity between artificial intelligence
and human reasoning, indeed, we can assume that humans don’t reach conclusions always
reasoning in the same way, they usually answer to a question quickly using the simplest
way of reasoning that they could use. That is the reason why sometimes we listen to people
saying sentences such as “I’m sorry. I answered hastily!” or “I’ve been racking my brains

all morning trying to think of an answer to your question!”. Those two sentence shed light
on a probably multi-level reasoning approach of humans, say, that the first sentence could
correspond to an Acid Cut and that was not appropriate in that context, so, after a feedback
from interlocutor that make us aware of a mistake in our previous conclusion, we have to
reply saying “I’m sorry, I’m wrong”, namely, reasoning on that problem takes more time
than expected. In the second sentence we can see a problem rather similar to our complexity
issues, namely, considerable amount of time spent to evaluate a conclusion, and after al the
morning we are still waiting for a conclusion. It means that we can approximate human
reasoning to a multi layered system in which each level is able to cope the problem with a
different deepness.
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5.6 Tree analysis

One may ask :”Is it necessary to build this tree?”. Indeed, this tree is not a suitable way to
analyze all the possible cases. Generally, two possible aims require building a tree:

1. Is there at least one possibility of won using my theory? (CASE1)

2. Is it sure that i will win the debate using this theory? (CASE2)

Also if those questions seems rather similar, they aren’t. Roughly speaking, this approach
represent a strategy tree in the case that proponent can only win. But this isn’t a general
case. Usually, we use a theory in a wrong way and maybe using a different orders of the
sentences we could change the result. Unfortunately, this tree represents limitation when:

• We provide a dynamical changing of the strength of a rule;

• If the number of rules in theory proposed by two parties is different.

Let’s first analyze the second item. Indeed, if we suppose that Proponent has got two23

more rules than Opponent, and one of them is a MatchPoint (we use this name to define a
rule that surely bring one of the party to a won), there will be some branches in which the
proponent won’t be able to put forward his MatchPoint and he will lose, instead in the other
branches he will win. Looking at figure 5.4, we reach the first two leafs. Let’s suppose that
in the former leaf node the keyclaim is not derivable, proponent would lose, but in the next
leaf node he would win as it will use the MatchPoint rule. In this case the system fails both
tree evaluations and it returns “It’s a draw” and it is not correct. So, if we are in CASE2
this approach could be acceptable, but we cannot consider it as a rule of thumb. (The same
would happen if we add cutting criteria caused by a dynamical changing of the strength of
a rule.

Thus, it means that this approach, we mean OR/AND tree, is not always acceptable, and
it would be better using a OR/OR tree.

Definition 2. We say that a theory is persistent if it is not subject to dynamic change of

strength of the rules, if all the rules that belong to the theory cannot be rejected and if the

23We refer to general case of two more rules than the other payer, because it depends also on who is the
first player putting forward a rule. Indeed, to get an ambiguous tree derivation in the first tree, we need just
one more rule for proponent only if opponent starts, otherwise, two ore more rules.
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Figure 5.4: Ambiguous derivation OR/AND tree.
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players have got the same number of rules to put forward or at most one more rule for the

player who goes first.

Theorem 3. OR/AND tree can be used only if the theory is persistent.

Proof. A player won if there exists at least one branch in which all its children lost, it means,
that if we notice one or more cases where we cannot use OR/AND tree as a rule of thumb,
we must use OR/OR tree derivation.

Let suppose T be a not persistent theory, then during its derivation process we could
reach unforeseeable final states since permutations could be different and change in a dif-
ferent way since we have different context.

Let K be the number of rules that Proponent can put forward and Q Opponent’s rules
number such that K > Q and that both K and Q can allow MatchPoint rules. Then there
could exists at least one permutation that allows a different result. Let defder(CKB(P1), Key)

(where Key is the keyclaim and CKB contains only a subset SKof Proponent’s rules and
all Opponent’s rules) be not true, if K − SK is the set of Proponent’s rules that we didn’t
use before, and that could contain a MatchPoint rule, than in the next branch in which
MatchPoint rule will be used, and makes defder(CKB(Pi), Key) true and reach a differ-
ent conclusion than before.

Case of Acid cuts
A not persistent theory could contain Acid cuts, different number of rules proposed

by players, or rules that can be rejected. In the first case, we can alter a rule in a given
context and prune the tree if there are the conditions to change the strength of a given rule
R ∈ ProKB. Depending on the contexts we can have the following states:

R ∈ SK and it remains defeasibly derivable;

R ∈ SK and it becomes strict;

Both cases are possible and could bring the system to reach a different conclusions,
namely, same rules but in a different permutation can reach different conclusion in the final
step.

Case of rejected rules
If a rule is rejected in a given context, it means that in another context it is allowed and

the system can reach a different conclusion. Notice that rejecting a rule we alter number of
available rules, it means that survey next case is needed.

Case of different number of rules in private repositories
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This is the most trivial case since if we have K > Q+ 1 it should be noted that permu-
tations reach different final steps caused by the fact that they use different rules.

Unluckily, Theorem 2 says that OR/AND tree would never be applied since if we have
the same number of rules, in each leaf node we always assert the same rules and so if we
noticed that in the first branch proponent won/lost, he will win/lose in every leaf nodes. In
this case, we could drastically reduce the complexity of our tree using a depth-first approach,
namely, from O(k!q!) to O(k + q).

Theorem 4. If a theory is persistent, then depth first-search is enough to know who is the

winner.

Proof. Let two players Proponent and Opponent have got respectively K and Q rules and K
and Q are such that:

K = Q , or,
K = Q+1 iff Proponent will go first, or,
Q = K+1 iff Opponent will go first;
and that the keyclaim is Key.
Let suppose that Acid-cuts are not allowed, that there are no rules that could be rejected

and that derivability is given applying the following formula:
Kder(i) = defder(CKBi, Key). where i represents the i-th step during the evalua-

tion.

and that we are only interested in the final step. So we replace i with K+Q.

All the possible available branches in this derivation task are given by the permutation
of that rules, and since the theory is persistent, all the branches in case of won reach the leaf
node and they are represented by all the possible combination of the rules that are K!Q! .
Now we define all those leaf nodes as a possible result of the permutation of the two sets of
rules provided by the players.

Thus, we have that:
CKB(P1) is the final step of the first permutation and it contains all the rules;
CKB(P2) is the final step of the first permutation and it contains all the rules;
...
CKB(PK!Q!) is the final step of the first permutation and it contains all the rules;
Since all the final steps contain all the rules we can say that intersection of all CKB(Pi)

is the set containing all the rules provided by player, say, CKBg.
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But if :
CKB(P1) = CKB(P2) = ... = CKB(PK!Q!) = CKBg,
then
Kder(Q + K) = defder(CKB(P1), Key) = defder(CKB(P2), Key) = ... =

defder(CKB(PK!Q!), Key) = defder(CKBg, Key)

So any branch is able to give the result.

If theory is not persistent, we simply use an OR/OR tree24.

5.6.1 Adding rules in Maggie

In previous sections we noticed that system’s performance is compromised since intrinsic
recursive structure of game-model and also by the fact that we are putting forward new rules
from private repositories randomly, namely, without reasoning on their meanings.

What does it mean reasoning on rule’s meaning? Simply, we want to put forward a rule
only if it is the case to use it, in other words, only if a player can approach to achieving goal
using it. Thus, we need to define and formalize when is the case that a rule can be asserted
by a player in order to avoid the assertion of “useless” rules that slows down the system
since they aren’t needed in a given context.

Let suppose that in the future a software like the one presented in this thesis will be used
in legal domain. It could be possible to load into the program a great number of rules and
some of them, in a given instance, it is not the case to evaluate. We mean that if we are
dealing with a case of murder, it would be better if the system, or better, one of the player
doesn’t use Highway code’s rules just to give the impression to have more rules. Indeed,
using too much rules not only requires more resources in term of space and time to reach a
conclusions, but also we are losing touch with our aims, we mean an intelligent system and
not a random rules evaluator.

The problem of reasoning on a rule is that it could depend on human language compre-

hension since we need to understand not only the meaning of a rule, but also if asserting it
can be usefull to change (to take advantage) the meaning of the whole rules evaluation. In
this case how can we understand if a rule changes keyclaim derivability result?

24So don’t worry if using Ubongo-0.5 we see a pruned tree, since it is a normal behavior: if the opponent
doesn’t win in a branch, it won’t build that branch.
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Rule R is not recommended Rule R is recommended
R is not the case to be introduced, but if it
is the only rules in private repositories it
could be asserted
R for now is rejected, but it could be
used later so we leave it in private
repository

R can be used.

R is to be removed from private repository

Table 5.2: Reasoning on rules: different available criteria.

We already found a potential problem, we mean our reasoning it will be just a suggestion
or could be also a rejecting criteria? Namely, if we notice that a rule is not the case to be
put forward we can label it as not-recommended or reject it. In the latter case we cannot
remove it from private repositories, since it could depend on one more rule not yet asserted
and could be convenient store it for future evaluation (see Table5.2).

What does it mean to suggest a rule? We said that we can use a rule only if it is the
case to use it, in other words if it is convenient to put forward a rule for the player who is
currently playing.

To better understand how to implement in Maggie this approach we need to formalize a
set of recommendation rule criteria for both proponent and opponent:

“A basic protocol for the admissible moves of the players could be, for the proponent,

that the current move attacks the previous move of the opponent, and that the main claim

(the content of the dispute) follows from the arguments assessed as currently valid.”

“For the opponent we have that the arguments of the move attack the previous move,

and the main claim is not derivable.”[38]

The text quoted above explains, verbally, criteria that we would like to formalize. Ac-
tually, in previous section we already said that one of the goals of each player is to reach
respectively keyclaim derivability and keyclaim non-derivability depending on Proponent

and Opponent. The novelty of the approach we quoted above is a mutual goals dependency
among the parties, indeed, they not only have to achieve the intended keyclaim status, but
also create a debate using an intelligent way in the sense that we cannot allow system to ran-

domly put forward all rules contained in private repositories, but reasoning on both keyclaim

and last enemy’s rule.
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We represented what we stated above in Algorithm 425, where we suppose that opponent
goes first and attacking keyclaim means put forward:

1. A rule (defeasible or defeater) whose conclusion is the negation of keyclaim;

2. A rule that is a term of the condition of a rule whose head is the negation of keyclaim.

Note that this approach is an improvement since we apply a well-advised and a priori

cutting criterion able to reduce complexity without make system non-deterministic. Never-
theless, our definition is quite elementary, in the sense that we omitted some important rules
we define throughout writing the thesis such as incompatibility and superiority_relations.

In that case we suggest to use the same algorithm for both proponent and opponent. If
a given rule fails previous putting forward criteria and has the form of sup_rule(X,Y).
or incompatible(X,Y). and is able to make keyclaim respectively defeasible for pro-
ponent and non-defeasible for opponent, then is the case to put it forward.

We tested this behavior in Maggie-Beta1-Test1 and we achieve our aims in term both of
performance and quality26.

Furthermore deserve a mention possibility to add more than one rule in each turn. In-
deed, sometimes, rules are not independent and need the support of other rules to be con-
sidered by the system Recommended.

Example. Let suppose Proponent argues a keyclaim and that Opponent
can attack keyclaim just asserting one rules, if we need more rules to argue an
attack, we have to side effects: we risk to generate too much rules, we could
ignore some rule that in a given step aren’t Recommended but in a context in
which other rules are involved it becomes usable. The latter problem could be
serious if we accepted criteria of Table 5.2 line 3.

So let Keyclaim be:

keyclaim.

and Opponent have got the following rules:

25In this algorithm we suppose that Opponent starts the game, it is quite similar to the case in which
starts Proponent. We provided different implementations of Maggie for testing the game using both criteria:
opponent goes first vs proponent goes first.

26With quality we remark what we stated above, namely, the need of a system able to put forward rules in
a reasoned way and not just randomly.
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Algorithm 4 Rule to put forward selection.
begin

load keyclaim
/*let suppose that keyclaim is derivable at the beginning
and that Opponent starts the game*/
Opponent:

if there exists at least one rule whose head is the negation of keyclaim
and it is not derivable but we have a rule R that is a term of its condition
that can make the first rule derivable (Keyclaim attack)

put forward R
end
read last rule

if there exists at least one rule whose head is the negation of last added
proponenent’s rule, more specific and it is not derivable but we have a rule R
that is a term of its condition that can make the first rule derivable

put forward R
end

Proponent:
read last rule

if there exists at least one rule whose head is the negation of last
opponent’s rule, more specific and it is not derivable but we have a rule R
that is a term of its condition that can make the first rule derivable

put forward R
end

read last opponent rule
if there exists at least one rule whose head is the support keyclaim

and it is not derivable but we have a rule R that is a term of its condition
that can make the first rule derivable

put forward R
end

end
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1. neg keyclaim := term1, term2.

2. term1 := term3.

3. term3.

4. term2.

If in a first sight we should consider only rule 1 Recommended. After asserting

that rule we would need to assert in the following steps the assertion of the

rules that prove the condition of rule 1.

In case explained above, we would need to create more data-structure, build more tree if
we allow just one rule to put forward in each node. Instead, if we allow opponent to put
forward not only rule 1 but also all the rules that support it, namely, 2,3,4 we could get a
smaller computational complexity since we reduce tree size and it would be more similar to
human reasoning.

5.7 Ubongo

Finally, we show the graphical interface developed to easy use Maggie. As we said above
we called it Ubongo and it consist of three simple components:

• Engine (The core of the application that has the job to manage the other components);

• Parser (An extended Prolog parser that accepts also defeasible rules and new kind of
rule to configure the challenge);

• MI (Maggie);

• TreeViewer (A simple viewer of the derivation tree);

Project has been developed using Java(TM) SE Runtime Environment (build 1.6.0_20-
b02), eclipse Galileo and javacc 5.0. Application is just the graphical interface front-end
that provides some example by default, but it is also a nice text-editor.

It simply take the theory from the text viewer and send it to the parser that has the job
of evaluating the syntax. It is a prolog parser built over YProlog and it has been modified
since it was no able to evaluate defeater, defeasible rules and “rules”.
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Figure 5.5: Ubongo packages diagram.

With “rules” we mean some rules that we added in order to make possible the initializa-
tion of the challenge, and all available rule are:

• rule(key, <keyclaim>) : is the rule that we have to use in order to put forward the
keyclaim;

• rule(pro, <rule>) : <rule> is a rule that belongs to Proponent private KB;

• rule(opp, <rule>) : <rule> is a rule that belongs to Opponent private KB;

• rule(ambiguity_blocking, <on/off>) : enables or disables the ambiguity propagation;

• rule(defeasible_priority, <on/off>) : enables or disables defeasible priority;

• rule(orandTree, <on/off>) : enables or disables Or/And tree derivation;

• rule(metaSupRel, <on/off>) : enables or disables the meta superiority relation level
to control possible paradoxes putted forward in CKB;

• rule(mess, <rule>) : is a rule that we can use to add some message rule as for example
write(’<text-to-write>’);

It should be noted that it becomes easy writing a theory in this way, and clicking on the
execution button (after the parser evaluation) Ubongo tries to access to a script and execute
it from java. This task is performed opening a command editor (shell in Linux) whose stack
size is increased to unlimited value. The external usage of Maggie allow us to simply add
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(a) Complete theory execution diagram

(b) Detailed sequence diagram between application and Maggie

Figure 5.6: Theory execution sequence diagram.

a folder in Ubongo’s root directory in a completely modular scenario. If you want to use
Maggie 0.7 or a customized version of Maggie instead the last Beta release, you have just
to change the folder.

Actually, there isn’t a direct invocation from java to prolog, since our aim is to leave this
application non Sicstus-dependent, so just changing the path of the prolog engine a new
script for prolog invocation will be built and executed.
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5.8 Future works

In this chapter we discuss some suggestions for future works and we also want to clear
up some alternative approach in order to improve Maggie performance. During previous
sections we focused on tree analysis and we hope to have provided enough and deep infor-
mations that can help to improve this system. But we also mentioned a different way as a
solution of system slowing down, namely, code optimization.

Due to lack of time, we cannot develop more programming approaches for our applica-
tion, but we can suggest some interesting way to speed up Maggie engine. First, we have to
find our bottleneck and assess if we can fix it.

As we saw in the game model code, slowness is due by recursion since it is mutual
and multiple. It seems really difficult to apply a tail recursion in this scenario, but we
may change something in our algorithm and prevent that recursion fill the stack or at most
prevent an excessive processor usage.

Taking a look on the code, we notice that find-all predicate, not only cause a problem
since, also if it was the last rule in the clause, it requires multiple invocation of the same
predicate, thus, tail recursion can be only partially implemented; but it cannot be the last
rule because after find-all execution we need to perform some check on the result in the
case of OR/AND tree and evaluate if won/lost predicate is verified for all child nodes.

To fix this implementation we can completely change our recursive approach and edit
our algorithm about:

• forward tree building;

• find-all parallelism;

• delaying the OR/AND check;

The first item indicate one of the heaviest recursive problem, namely, a parent node wait
until the children sub-executions end take their resulting sub-lists and build its sub-list.
To perform this task we have to reserve to much memory and make processor task slows
down. Thus, it would be a better solution if parent node send its “up-list” to its child
nodes, and also if the tail-recursion practically cannot completely close parent predicate, we
can save up memory since allocation decreases. But how many time it takes the complete
execution of its last invocation, namely, the find-all predicate? Actually, it is a thorny
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problem since multiple recursion is not easy to be prevented, but it should be noted that
the nested execution of find-all arguments is completely independent. It means that we
can execute its argument in parallel exploiting Muse framework. This framework, provided
by SicstusProlog, leaves unchanged the prolog syntax and just asserting a new predicate:
“muse_flag(num_workers,_,<number_of_workers>)” we could improve our
performance. From sicstus web-page there are some examples that report a speed up about
3.8; in our case of 5X5 rules, it means a time-saving from 1h8’ to 17’. It’s a great result,
but we have to mention that time keep on increasing exponentially, and 5X5 example is just
an elementary example. Nevertheless, combining all the changes, maybe we could achieve
an even better result. Finally, we said that find-all predicate cannot be the last rule since
we need to check if at least (OR) one branch wins and for all branches (AND) opponent
loses. That is not a problem, indeed, if all the child nodes before ending make tracks of
their list (note: now the list is forwarded) in a data structure, we are able to build the tree in
bottom-up.

Furthermore, there are more solutions such as a complete rewriting of the code in a
strongly typed language. In particular we suggest Erlang. This project doesn’t need a
presentation, but deserve a mention. Since 2001 it has been integrated in Ericsson’s Open
Source Erlang/OTP system; it aimed at efficiently implementing concurrent programming

systems using message-passing in general and the concurrent functional language Erlang

in particular, namely, it has been invented in order to improve recursion performance.

We guess that those suggestions are enough to provide a nice starting point for a future
work based on this thesis survey.

5.8.1 Multiple keyclaim approach

What we did is not enough since we are dealing with logic programming and reasoning on
computational features we risk to lose touch with another aim we would like to reach, we
mean human reasoning simulation. Indeed, a limitation of our approach is caused by the
fact that we are using just one keyclaim, but, usually, we would need more than one.

Let suppose that we want to evaluate if a given strategy (or better using a given theory)
can help a lawyer to demonstrate that the suspect, say John, is not guilty. Probably, investi-
gations proved that he is guilty, so using a keyclaim such as neg guilty(john) would be use-
less. Imagine that our system is able to notice that with a particular theory will lose without
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Figure 5.7: Multiple keyclaim tree derivation.

a doubt, but using a different keyclaim we would reach an acceptable compromise, for ex-
ample, bargaining(john) that could support reduced_sentence(john) or trial_transfer(john)

that could support statute_of_limitation(john).
Thus, it would be nice leave to a machine reach the best goal for a given context. It

would be necessary to define a new heuristic search exploration in a tree where the root
is the initial keyclaim, and its child nodes are the best alternative to the keyclaim whose
child nodes are the supporting arguments. In this case generate alternative keyclaim could
be performed using a probabilistic approach or better, with a neural network able to meta-
reason on the laws a choose the more suitable solution for the root keyclaim fail.

5.9 Conclusions

In this fundamental chapter we described all the implementation process of the thesis. We
talked about Maggie MI and we provided part of the source code, Ubongo GUI its structure
and its behavior. After testing this application we reach some demotivating results due to ex-
cessive resources usage, thus, we provided a deep analysis on the complexity of the system
and we showed some alternative approach to reduce time and memory usage. Furthermore,
for completeness’s sake, we suggested some possible code optimizations regarding both
parallelism and recursion optimization.
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Case study

In this chapter we present three case-studies, we prepared the first one on the basis of a

typical example of meta-defeasible-reasoning known as “Villa example”, the latter, instead,

has been built on tweety the bird and acid cut approach. The former involves a complete

remark of all the work we presented in the previous chapters and a deeper investigation on

superiority_relation reasoning (that I leaved aside in the fifth chapter on purpose to explain

using this simple example). The second one is important to see which are the condition

that make able the tree to prune some of its branches in order to achieve a reasoning more

similar to the human one and a way to reduce the complexity of the tree building process.

6.1 Villa example

Sartor and Prakken in [39] introduced their study regarding defeasible priorities and pro-
nounced some criteria for their definition and how to reach inconsistent paradoxical state
caused by their intrinsic weaknesses (as well as whatever else language definition).

In Chapter 5 we explained our superiority relations implementation, but what we said
is not enough to grasp the meaning of a more complex case in which superiority relations

can be multiple, nested or even paradoxical.

Actually, villa example represent the limit for an acceptable reasoning, and we will
see one more example in which Maggie comes to a grinding halt since a paradoxical loop
doesn’t allow our meta-interpreter to reach the right conclusion.

First, we discuss villa example whose meaning is related to Lex Prioriter Principium:
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Rule Meaning

r1(x) : x is a protected building⇒¬x’s exterior may be
modified

r2(x) : x needs restructuring⇒x’s exterior may be
modified

r3(y, x) : x is a rule about the protection of artistic buildings
∧ y is a town planning rule⇒ y ≺ x

T (x, y) : x is earlier than y⇒ x ≺ y

r4(r1(x)) : ⇒ r1(x) is a rule about protection of artistic
buildings

r5(r2(x)) : ⇒ r2(x) is a town planning rule
r6(r1(x), r2(y)) : ⇒ r1(x) is earlier than r2(y)

r7(V illa) : Villa is a protected building
r8(V illa) : Villa needs restructuring
r9(T (x, y), r3(x, y)) : T (x, y) is earlier than r3(x, y)

Table 6.1: Villa example formalization.

Lex Prioriter Principium: if a law L1 is posterior to another law L2, then L1

is superior to L2.

Thus, we will use this principle as superiority criterion between two rules for villa example
definition. Now we will show how Sartor&Prakken formalized it:

“[...] They state contradicting priorities between a town planning rule saying

that if a building needs restructuring, its exterior may be modified, and an

earlier, and conflicting, artistic-buildings rule saying that if a building is on the

list of protected buildings, its exterior may not be modified. [...]”[39]

6.2 Theory definition

Furthermore, they provide a programming-like definition (Table 6.1)1 that is the starting
point for our prolog implementation. According with the syntax we mentioned in Chapter
5 now we show how to build a theory capable with Maggie, first we define a common KB:

1Where y ≺ x means x is superior to y.
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neg renovate(X):= protected(X).

artistic_build((neg renovate(X):= protected(X))).

town_plan((renovate(X):= need_ren(X))).

protected(villa).

need_ren(villa).

%LEX PRIORITER PRINCIPIUM

sup(X,Y):= posterior(X,Y).

Later, we need to initialize the debate defining keyclaim and rules for opponent and
proponent:

rule(key, (neg renovate(villa))).

rule(opp, (renovate(X):= need_ren(X))).

rule(pro, (sup(X,Y):= artistic_build(X), town_plan(Y))).

rule(opp, (posterior((renovate(X) := need_ren(X)),(neg renovate(X)

:= protected(X))))).

rule(pro, (posterior((sup(X,Y):= artistic_build(X), town_plan(Y))

,(sup(X,Y) := posterior(X,Y))))).

rule(mess, write(’Villa example loaded’)).

The keyclaim is “neg renovate(villa)”, it means that tree derivation will be cre-
ated only if the keyclaim is defeasible, and since we are putting forward the same number
of rules from both the parties, according to Definition2 on page 88 , if in the first branch
keyclaim will be derivable, it will be derivable for all the others branches. Running the
example we get as a result a tree (Figure 6.1 tree’s size was too big to enter in a single
screenshot) that confirms what we expected.

To better understand what happened in our engine let’s explain step by step how Maggie
reacts to each assertion:

1. At the beginning asking for the keyclaim Maggie will answer: “Yes”, instead for
keyclaim negation will answer “No”;

2. Later we assert “(renovate(X):= need_ren(X))).” and Maggie will answer
Yes for both keyclaim and its negation2;

3. When proponent asserts :

2Unless we are using a skeptical semantic.
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Figure 6.1: TreeViewer screenshot.
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“(sup(X,Y):= artistic_build(X), town_plan(Y))).” since there is only a

superiority relation and it is in favor of proponent, system will come back to say that only

keyclaim is derivable;

4. Then, opponents puts forward “(posterior((renovate(X) := need_ren(X)),

(neg renovate(X) := protected(X))))).” it means asserting a superiority
relation since this rule matches with Lex Prioriter Principium’s condition. The result
will be the same of point 2, both keyclaim and its negation are derivable.

5. Now proponent asserts its MatchPoint, indeed, this rule is the only superiority relation
between two superiority relations and it states that only keyclaim is derivable.

Last rule structure can look strange since asserting a posterior/2 rule we indirectly state
a superiority relation because the rule matches with sup(X,Y) := posterior(X,Y).

The heart of the matter is that one of the arguments, in particular the second one, is the
superiority relation itself, an we can write it in full:

sup((sup(X,Y):= artistic_build(X), town_plan(Y)),

(sup(X,Y) := posterior(X,Y)):=

posterior((sup(X,Y):= artistic_build(X), town_plan(Y)),

(sup(X,Y) := posterior(X,Y))).

But, remembering what stated Prakken&Sartor:

“Although this seems to be self-referential, formally, its in not, since it is one

instance of Lex Posterior that speaks about another instance of itself ”[39]

it should be clear that it is not a paradox, indeed, during evaluation the variable X and Y
will be bound by some value that make this rule just an instance and not a change of the
superiority relation; in other words, in this case we don’t need a meta-level evaluation since
we are in the limit of a logic evaluation since, although, the rule is self-referred, it is a
change of behavior in a specific case and it is not a rule of thumb.

Note that, since we putted forward rules with unbound variables, unification in prolog
takes more time, instead in Tweety example all the rules introduced into the system were
bound and performance was quite better (Table 6.2)
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Example Elapsed time
Tweety 0.040s
Villa 0.570s

Table 6.2: Bound and unbound variables performance test.

Going back to previous topic, we mean superiority relations and their self-reference we
can show a case where Maggie falls in an infinite loop.

Before we show a limit-case of MI-self evaluation since the ambiguous rule didn’t affect
the system, but just a single instance, but, let suppose that we exploit Lex Prioriter to state
its contrary.

1. Lex Prioriter Principium states that a posterior rule is superior to a earlier law;

2. I put a new rule into the system, say R, that is posterior to Lex Prioriter Principium;

3. R states that an earlier rule is superior to a posterior rule, and that is true because there
exists Lex Prioriter that states the contrary.

This case is quite interesting since we are not dealing with specific instance, we are putting
a new rule completely different that make us unable to reach a solution:

• We can reach a reasonable conclusion without using a reasonable reasoning;

• Or use a reasonable reasoning without reach a conclusion.

To better understand this kind of problem we need to survey a superiority relation’s side
effect. Indeed, in Maggie we defined all the rules in the same way, in particular, using two
kinds of negation, but superiority relations require a new kind of negation. Let suppose
we have a rule such as sup(X,Y):= condition1(X), condition2(Y), and leaving aside counter-
attacks, we can assert the following kinds of negation:

1. \+ sup(X,Y):= condition1(X), condition2(Y): it is true if that rule fail;

2. neg sup(X,Y):= condition1(X), condition2(Y): it is true if there exists
the explicit negation of the rule;

3. sup(Y,X):= condition1(X), condition2(Y): it isn’t an explicit negation,
we are just arguing that the contrary is true.
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Intrinsic structure of superiority relation requires that a superiority criteria is valid only if
it is proved that other superiority relation with different conclusion don’t exist. But, in this
case we reach an infinite loop since both superiority relations are valid and during evaluation
the first one unify with a sup_rule that make it able to reach a conclusion, but trying to derive
if the opposite fails it has to evaluate one more time itself as required by the opposite rule.
In other words, asserting such as a rule the system enters in a mutual infinite recursion.

If we assert in villa example the following rules:

1 % Anti-Lex Prioriter

2 sup(Y,X) := posterior(X,Y).

3 posterior((sup(Y,X) := posterior(X,Y)),(sup(X,Y) := posterior(X,Y)))).

Maggie fails since is not able to reach a conclusion because of problems we explained
above.

6.2.1 Solving antinomies

So far we said that the problem is a paradox, but it is not completely true, it’s a particular
kind of paradox called antinomy

antinomy: we get an antinomy when a logic reasoning produces in a correct

way two solutions having the shape of thesis and antithesis, and they are both

consistent and reliable, but they lead us to sentences such as : ”A is true only

if A is false”.

Our results are rather similar to antinomies, and we should understand which are the causes.
If we analyze the last rules we proposed we notice that difference between Lex Prioriter and
the rule we called Anti-Lex Prioriter is the position of the argument, instead, the condition
remains the same. Maybe the reader could argue that is approach is a specific one, and
that it depends on our syntax. Instead, we believe that this is the easiest way to reach this
conclusion but it is not lack of abstraction. We could reach the same goal using different
condition but it is only more complicated but it is the same.

Thus, taking into account that we are dealing with two rules with the same condition and
opposite meaning, and remarking on point three of negation kinds list, we can argue that
we are just dealing with a different kind of negation, but, in this case we are not using those
rules to directly reach a conclusion, we are using them to reason on their priority relations.

105



CHAPTER 6. Case study

It means, that in this form of antinomy we are not able to reach the final conclusion since
each superiority check requires the execution of the other ones.

Roughly speaking, rules just added into the system, and in particular the first one, is
simply conflicting with Lex Prioriter. Our rules are in the following form:

LexPrioriter: sup(X,Y) := posterior(X,Y).

Anti-LexPrioriter: sup(Y,X) := posterior(X,Y).

Quoting a physical approach we can define a new reference system in which true condition
is replaced by posterior(X,Y) or more generally, by the current condition we are evaluating.
We mean that those criteria will be considered only when their condition is true, and since
they have the same condition, it doesn’t make difference, namely, it cannot happen that only
one of them is valid.

Now we can write one more time those two rules:

LexPrioriter0: sup(X,Y) := true0.

Anti-LexPrioriter0: sup(Y,X) := true0.

Remembering that inversion of arguments in a superiority relation means our new kind of
negation, this problem can be considered as defining and asserting two opposite rules:

LexPrioriter0: <sup_rule> := true0.

Anti-LexPrioriter0: neg0 <sup_rule> := true0.

But this is a known case, and this is the only rejecting criteria we defined, namely, we cannot
assert a rule and its contrary. Obviously also if this intuitive proof seems to be applicable
just in this case, we believe that it can be accepted as abstract:

Corollary 5. Given a superiority relation R1∈ CKB of the form: sup(X,Y):=Condition.

and let R2 be a new superiority relation to put forward into CKB whose condition is the

same of R1, and its arguments are the same of R1 but with inverted position, R2 must be

rejected.

Thus, if Corollary 5 is not respected, our system could accept undecidability states. It
means that in our meta-control of information consistency we have to add a new check that
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applies Corollary 4. Notice that this approach is not only an elegant way to switch that issue
from logic inconsistency to information inconsistency, but it is also useful since we prevent
the evaluation at “run-time” rejecting the rule as soon as one of the player tries to put it
forward. Rejecting a rule our tree will reduce the numbers of nodes to be evaluated, and it
means a faster way to get a result as regards allowing the assertion of the inconsistent rule
and sequentially evaluating if it is the case to use that rule.

6.3 Acid cut

In this second example we are showing the implementation of Acid cut as a form of com-
plexity reduction in the tree build process. We propose to get the most interesting results
merging acid cuts with different numbers of rules and or/or tree to see a nice improvement
of the system.

First we define a new theory that represent the typical tweety’s example but with some
new features:

Common KB:

flies(X):= bird(X).

neg flies(X):^ sick(X),bird(X).

bird(tweety).

bird(X):- penguin(X).

Private repositories:

Proponent Opponent
strong(tweety).
healed(tweety).
useless(tweety).

flies(tweety).

sick(tweety).
brokenwing(tweety).

Table 6.3: Private repositories for tweety example with acid-cut and OR/OR derivation tree.

Furthermore, in Ubongo, we can try two different execution behaviors using the follow-
ing predicate:

rule(or_and_tree, <on/off>).

107



CHAPTER 6. Case study

Example Elapsed time
Tweety (with OR/AND) 4X2 rules 0.020s
Tweety (with OR/OR) 4X2 rules 0.070s
Tweety (with OR/OR) 4X3 rules 0.310s

Table 6.4: OR/AND vs OR/OR performance test.

to choose which kind of derivation is the best for our purpose.
The theory we defined above is almost meaningless, but we need a theory that describe

both cases of won an lost for Proponent. If we use proponent’s last rule from table 6.3,
namely, its match point, proponent wins, otherwise he loses. This is not possible to be
represented in a OR / AND tree and using rule(or_and_tree, on). predicate (or
without specification since OR/AND tree is the default) we get the result showed in picture
6.2 (a) representing a Draw3.

If we try to switch to OR/OR tree derivation, we notice that Ubongo draws a derivation
tree that looks strange, since is pruned and doesn’t contain all the branches (see figure 6.2
(b)). This representation is correct since branches pruning is due to acid cuts, and branches
that are not showed into the draw are the branches that cannot return their value to the parent
node since they failed (and so they won’t be painted into the draw).

We know that the acid cut we putted is meaningless, but we just want to show that
Maggie is able to deal with those kinds of cuts and that performance grows up. Analyzing
the results showed in table 6.4, we notice that time spent for each operations is less than
half second also if we are dealing with 4 rules vs 3 rules. Notice that first invocation took
just 0.020s because as soon a branch fails, all the derivation tree fails, instead, in the second
row (second operation) Maggie requires 0.070s but reaching a result and returning the list
that Ubongo can use to draw the derivation tree.

6.4 Reasoning on rules to add

In this last case study we show a remarkable improvement in derivation tree task in both
complexity reduction and quality of reasoning. In Chapter 5 we presented a possible way
to decide which rule is the most appropriate to be put forward in order to avoid an heavy

3Note that both tree derivations return draw since both trees contain cases of won and cases of lost.
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(a) OR/AND tree derivation returns a Draw.

(b) OR/OR tree derivation shows branches where proponent won.

Figure 6.2: OR/AND vs OR/OR comparison.
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resources usage and reach human behavior in term of making a decision in a given context
rather than randomly try all the possible options.

In this section we briefly explain a new version of Maggie, called Experimental Maggie.
This version provides a new kind of reasoning while the system has to decide if it is the case
to assert a given rule. Furthermore, this version provide just proponent winning criteria tree
with an OR/OR derivation tree.

We used a theory inspired on Tweety Example in order to make things easier to compre-
hend for the reader. This theory is quite similar to the one we saw before but there are some
differences that we want to underline:

1. Players put forward rules with a structured Body;

2. Terms that only belongs to rules’ conditions are considered just supporting arguments

and are not put forward by Players;

We decided to change this behavior, since we believe that is better that a player be able
to put forward an argument rather than a simple prolog rule, in other words, we hope that
in a future release of Maggie we could integrate moves for both proponent and opponent
containing a rule and its supporting arguments. Let the following example:

if a player wants to say that tweety can flies since it has got wings and it is

a bird we would need the following rules:

• flies(X) := has_wings(X), bird(X).

• has_wings(tweety).

• bird(tweety).

It means that we need three moves to assert an argument. But, we could assert

an argument with its supporting terms, in this case we would be able to assert

something that is “self-explained” and doesn’t require additional moves to be

proved.

As we said in Chapter 5, we would like to reason on the rules, in this case we deal with
arguments but it isn’t a problem since we can apply the same approach since reasoning on
an argument would mean evaluate both Head and Body of the rule, and where Body contains
Heads of supporting arguments. Anyway, this is just a suggestion for a future work, our aim
is different. Let the following text be theory we want to evaluate:
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CKB:

flies(X):= bird(X).

bird(tweety).

sick(tweety).

healed(tweety).

brokenwing(tweety).

not-serious(tweety).

rule(key,flies(tweety)).

PKB:

rule(opp,(neg flies(X):^ sick(X),bird(X))).

rule(pro,(flies(X):= sick(X),bird(X),healed(X))).

rule(opp,(sup((neg flies(X):^ sick(X),bird(X)),

(flies(X):= sick(X),bird(X),healed(X))):= brokenwing(X))).

rule(pro,(neg sup((neg flies(X):^ sick(X),bird(X)),

(flies(X):= sick(X),bird(X),healed(X))):=

brokenwing(X), not_serious(X))).

All supporting arguments belongs to CKB just because we don’t want to make the sys-
tem busy evaluating them in different nodes. We used Recommended rules criteria showed
in Section 5.6.1, namely, given a Rule that enemy put forward in previous step, Proponent
has to defend its keyclaim, Opponent has to attack keyclaim.

We propose a simple algorithm that, given previous rule, say LastRule, and a given rule
R from private repository, it states that R is Recommended if:

1. R’s conclusion is the contrary of LastRule’s conclusion.

2. R’s conclusion is the contrary of a Term in LastRule’s condition able to change Las-

tRule’s conclusion derivability.

3. Be R a superiority relation; if asserting R Keyclaim derivability is proved (for propo-
nent) / is not proved(for opponent), then R can be added.

It’s quite easy understand the meaning of this algorithm since we are trying to put forward
the most suitable rule in a given context.

Running Maggie-Experimental we reach some interesting results. Indeed, while system
is trying to add a rule that be appropriate for the context rather than deriving randomly all
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Figure 6.3: Reduced tree size using Recommended rules.

the results, size tree is quite reduced and now is just a single branch. It’s a nice result since
not only we reduced complexity, but also because reading the tree its derivation is really
similar to human reasoning.

In Figure 6.3 we can see the screen-shot of Maggie-Experimental execution. Since
Proponent proposed the keyclaim: “flies(tweety)”, the most appropriate rule for opponent is
a rule more specific that assert the negation of keyclaim. Indeed, Opponent added a more
specific defeater. Later, Proponent used the same reasoning on the Opponent attack and
puts forward a rule more specific of the attack that support keyclaim.

After those two rules, players can only use superiority relation and since are both valid
in the steps in which they are evaluated, both will be added. Proponent won since managed
to defend keyclaim and proponent exhausted rules to assert.

6.5 Conclusions

In this section we presented two examples that represent really important cases of study.
In the second examples we proved that we can cope superiority relation inconsistency pre-
venting the evaluation and switching the problem form logic inconsistency to information
inconsistency. This approach represents an important step for the evaluation task of our
system. Indeed, it means that we can avoid not only the meta-evaluation, but also reduce
the number of nodes in the derivation tree since some rules are not consistent with CKB.
Furthermore, we sheds light on a further approach able to reduce complexity of our tree, we
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mean, Acid Cut. We remark that due to lack of time we cannot provide a better definition
for Acid Cutting criteria, and so we can only suggest to researches a new interesting way to
make the application faster than before.

113



CHAPTER 6. Case study

114



Chapter 7

Conclusions

In this chapter we will discuss the work presented in this thesis. We will first give a brief

summary of Maggie Meta-Interpreter and Game-model implementation. We will then dis-

cuss which improvements on argumentative debate and MIs have been made and have a

closer look at parts that could have been done in a different and maybe better way. Later

we will show some suggestions for future works in order to improve the work we presented

in the previous chapters and make it able to cope a “real” debate with better performance

and bring this system more near to human reasoning.

7.1 Summary

In this work we dealt with knowledge representations, non-monotonic logics and a game-
model that make possible building a human reasoning simulator able to contend a legal
debate between two parties. In the first part of the thesis we presented background mate-
rials, we showed the state of the art of non-ground MI and we present a possible game-
model. In particular, we focused on the lack of implementations that complicate theoretical
approaches testing.

We proposed a Meta-Interpreter, called Maggie, that provides a lot of features proposed
over the years such as defeasible superiority relations and we extended the notion of defea-
sible derivability on rules that before were just considered strict. Our aims in this thesis is
not only to show MI implementation, but also use it as under-layered framework to perform
an argumentative debate based on the game-model defined in Chapter 5.
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The study of such topics can be useful to analyze human reasoning and its applications in
different domains such as psychology, philosophy and legal debate, furthermore, since tree
derivation model intrinsically involves a parallel search of a conclusion in different contexts
(where a context represents a random assertion of rules during the evaluation steps in a
different order), our work also provides an helpful model for financial in term of strategies
investigation.

We defined our meta-interpreter starting from a set of rules and a given keyclaim that is
the goal to successfully reach using the set of rules, and defeasible logic-based predicates
(that we show on page 133).Set of rules we just defined is called theory in we can distinguish
in three subsets: CKB that is the common knowledge and both parties are aware of it, ProKB

is a private subset of rules that is known only by the proponent of the game model and
OppKB is the private subset of rules that belongs to Proponent of the game model. As you
can see the assertion of those rules is not a duty of MI, but we need a new meta-level able to
manipulate those rules and use Maggie-MI just to evaluate the keyclaim. Thus, game-model
meta-level performs the challenge between the players and manage their private repositories
as we showed in Chapter 5. We need to remind that this application has been conceived to
be modular in the sense that there are not strict dependencies among meta-levels, we mean
that on the one hand MI can be used with a different game-model whose burden is just
to know the name of the predicates of the meta-interpreter, on the other hand we can use
only MI (without game-mode) through a Prolog editor such as Emacs and execute goals we
prefer like in whatever else Prolog software.

In this work we tried to demonstrate that the application of a game-model, such as the
one described in [38], could be dramatically complex and leads the system to an excessive
usage of memory and processor that jeopardize time performance. A deeper evaluation of
the game-model complexity will be summarized in the next section.

7.2 Evaluation

In this section we evaluate results of our work and compare them with objectives that we
had set ourselves and check if they have been achieved. As we said in Chapters 5 and 6
we got some problems, in term of performance, running the game model since it involves
all the rules we defined in a tree-structure that is built recursively. Unfortunately, recursion
can be really slow since it requires that, during a nested evaluation, all data-structure that
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belongs to invoking method have to remain on the stack until the nested call has returned a
result. It means that depending on the number of rules we are dealing with, tree complexity
can grows much larger and it become impossible to reach a conclusion in an acceptable

amount of time.

We propose some suggestions in order to reduce game-model complexity and a deep
theoretical analysis that shed lights on intrinsically complexity since we will rich some all
the possible conclusions both in the case in which it is not needed to build the whole tree as
stated by Theorem 3, and in the case in which it would necessary survey all the nodes but
the system could not be able since there is the limitation of and/or tree structure as shown
in Theorem 2. We solved the latter problem since Maggie is now able to modify the kind of
tree derivation, but to solve the former problem it would be better to rebuild the system in
an iterative way in order to avoid the construction of the whole tree when is the case to use
depth-first search.

About Maggie-MI, we noticed that its performance are quite satisfactory and it is able
to solve all the known problem proposed in literature that we showed in Chapter 5 such as
Tweety the Bird, Nixon Diamond and Villa Example. The latter one has been an important
starting point for our work since during its analysis we proposed a new approach to solve
paradoxes as we showed in Corollary 4 in the Chapter 6. We proposed to switch from logic
inconsistency to information inconsistency check. In this way we can reduce computational
load since we reject a rule that is inconsistent with CKB and so, we don’t need to evaluate
them during the normal derivability process of the keyclaim. This approach could be inter-
esting also for loop detector, indeed, in Maggie this approach prevent a loop caused by a
double assertion of a rule and its negation. In the next section we also show that this is not a
particular case, then we could also apply the same approach to solve other kind of paradox
such as liar paradox, etc..

Finally, we provided an additional approach in order to reduce complexity that we called
Acid Cuts. This approach could be interesting also for implementing in the future a reason-
ing way more similar to the human way and we discussed in Chapter 5. In the next section
deserve a mention the reasoning criterion for putting forward a new rules, theoretically ex-
plained in [38] that, because of lack of time, we didn’t implemented. Putting forwards rules
without criteria is one of the cause of our crazy growth of complexity. In future work sec-
tion we suggest some approach to prevent the creation of useless branches of the tree that
could lead the system to noticeably reduce its complexity.
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7.3 Future Works

In this section we gather up all the the suggestions for future work that we conceived during
the writing thesis period. We can distinguish between the ones we proposed in order to
reduce complexity and the others that proposed to improve our system and to have it behave
more similar to humans beings.

We tried to invent some new approaches for the tree exploration in order to prune the
tree and avoid that its size become huge also dealing with a limited set of rules in private
repositories. It would be a nice addition to our system the implementation of a branches
reduction technique as Acid Cuts, that we deeply explained in Chapter 5, but deserve a
mention in this chapter since it can be useful in both the domains since we propose to use
Acid Cuts to reduce complexity and get a result in a quicker way, but we also use this
criterion to generate a mechanism more similar to human mind, namely, an approach to
define a double mind approach that not only is able to accept some information as true
defeasibly but can also transform those defeasible truths into strict truths. In this way we
can reduce complexity and obtain an approximate result, and if, say with a feedback, we
notice that given result is caused by a wild1 Acid Cuts. In this case we can execute more
times the execution of the debate with a growing complexity and hope for a result as soon
as possible, namely, before that tree reach its whole size.

One more future work in order to solve complexity issues would be analyze and for-
malize a reasoning technique to choose the rule to put forward. As explained in [38], we
should not allow random assertion of rules since it would be a demanding evaluation of all
the possible permutations of the items of two sets of rules. So we should take from the
repositories only the rules that can be used for a specific goal, namely, to demonstrate that
keyclaim is defeasible (for the proponent) and to demonstrate that the negation of keyclaim
is derivable or that keyclaim is not defeasible for the opponent.

Although it may seem an easy task to formalize that behavior, it would be really dif-
ficult since our system should be able to recognize the semantic meaning of a sentence,
furthermore, depending on the selected ambiguity behavior, opponent’s goal could change,
since in ambiguity propagation domain proving that negation of keyclaim is derivable is not
enough for winning the challenge. So we suggest to use, as starting points, criteria proposed
in Chapter 5 in a future work and check if complexity reduction can be reduced as expected.

1With wild Acid Cut we mean a cut that it was not appropriate to do.
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Unfortunately, lack of formalisms cannot help us to find a deterministic improvement since
it will depends on both criteria we are using and theory to evaluate.

Leaving aside programming optimizations we would spent some words to remark Mul-

tiple Keyclaim Approach that we presented on Chapter 5. Using Multiple keyclaims we can
cope well-constructed debate in which opponent/proponent’s goals can be more flexible and
change on the fly, say, like we expressed in the example on Chapter 5 to find a compromise
by heuristics search and achieve a acceptable results although is different from the original
keyclaim.

7.4 Conclusion

In this chapter we summarized the main topics of our work in order to evaluate and check if
targets we had set ourselves at the beginning of the thesis have been achieved. We are quite
satisfactory since we not only implemented a framework for defeasible logic and a game-
model argumentative debate, but we also analyzed the limitation caused by performance
issues and we proposed also some suggestions to solve those problems and ones more to
improve the system.
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Appendix A

Additional Material

A.1 Göedel theorem

When we quote Göedel theorem, we mean the second1 of its theorem of completeness that
state:

For any formal effectively generated theory T including basic arithmetical truths

and also certain truths about formal provability, T includes a statement of its

own consistency if and only if T is inconsistent.

Without losing correctness and for simplicity’s sake we can replace formal effectively gen-

erated theory T with language L and including basic arithmetical truths with including

basic logic truths. In this way we can state that every language is not able to pronounce its
features using itself. That is the reason why we need a meta-interpreter to avoid paradoxes.

Creating more meta-levels is like building some steps over our language that we have to
reach in order to evaluate the lower level. If we are not dealing just with meta-interpreter,
but some meta-levels, we could represent this structure of meta-evaluators not using a sin-
gle staircase, but a staircase in which for each following step we can have more than one
option depending on the kind of evaluation. It would be something rather similar to Escher
staircase.

In both case we need a component that is located above our object-language and it is able
to invoke below predicates. Maggie-MI will be a meta-interpreter since it is independent and

1Also if the second theorem of completeness is proved formalizing part of first theorem’s demonstration.
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(a) Meta-languages, going up a step we find a new in-
dependent meta-language able to evaluate the levels be-
low

(b) Meta-levels, going up a step we find a two
possible ways, we mean to kinds of evaluation
depending on which is our purpose, for example
just evaluate superiority relations.

Figure A.1: Different structure depending on we are dealing with meta-languages or meta-
levels.

it isn’t just a tool to use, it’s able to reach a conclusion using defeasible prolog language.

Game-model, superiority relations evaluator are just meta-level, since we use them (we
invoke their predicates on superior level) just to reach a conclusion.

A.2 Meta-logic formalization

Now I define a meaningful and legal acceptable jurisprudence in a certain level, say T1
through a meta-level, say T2, of the meaningful and legal acceptable rules as instances or
rules expressed using the meta-level theory language.

The relation between the theory and meta-theory, (T1 and T2) is defined as upward
reflection rules:

T1 ` A

(T2 ` (T1 ` A)).

In our case:

(T1 ` Receiving Messages⇒ privacy violation ⊃
T1 ` (KB_Code ¬ ` Receiving Messages⇒ privacy violation) &

T1 ` (KB_x ` Receiving Messages⇒ privacy violation) &
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T1 ` (KB_y ` ¬ Receiving Messages⇒ privacy violation)
where x,y are the two parties of the debate. In particular x is the user and y is Microsoft.
Using the Meta-theory I cannot reach a final state or a unique solution. That is the

reason why we use the approach of a game between the parties Thus, we can obtain all the
possible sequential states depending by the sentences (acts) uttered by the parties.

A.3 Negation and quantifier in Prolog

In this brief appendix we want to explain how the negation works in prolog. Actually can be
strange, but sometimes using prolog we obtain different results using the same predicates
in a different positions. We know that prolog (for performance reason) decided to adopt the
depth-first research strategy, but it also important understand the non-safe selecting literal
behavior during the negation task.

Prolog use the leftmost strategy while inspect the literals, so:

We say:

:- not(p(X)).

and its meaning is ∃ X(not p(X))

prolog check

:- p(X)

whose meaning is ∃ X(p(X))

So denies the result:

not(∃ X(p(X)))

whose meaning is:

∀ X(not p(X))

So if we use the following program:

unemployed(X) :- not employed(X), adult(X). (1)

employed(john).

adult(mary).

And the following query:
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?- unemployed(X).

We want to know if exist X such that is unemployed. So we expect yes, X/mario, but the

programs answer no.

Furthermore, using the query:

?- unemployed(mario).

It answers yes.
If we change (1) in this way:

“unemployed(X) :- adult(X), not employed(X).”

the program starts to works.
That’s because in (1) it applies a non ground term, as “not employed(X)” is non

ground during the evaluation.

A.4 Vanilla Meta-Interpreter

In this appendix we show a simple use of a Vanilla MI.Let this example expressing natural
numbers through successor mechanism:

natnum1(0).

natnum1((s(X)):-natnum1(X).

using clause predicate, we can inspect the program:

?- clause(natnum(1),Body).

Z=0

Body = true;

Z= S(_G254));

Body = natnum(_G254);

No

A more complex sample is the following

complex_goal(A):- g1(A),g2(A),g3(A).
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This clause has a body composed by more goals. They, in turn, are composed by goals or
complex terms.

The following is a body example:

body(true).

body((A,B)):- body(A), body(B).

body(G):- goal(G).2

body(_=_).

body(call(_)).

...

The code above represent our program. Let’s define an interpreter for this program:

m1(true).

m1((A,B)):-mi1(A, mi1(B)).

mi1(Goal):-

Goal \=term,

Goal \= (_,_),

clause(Goal,Body),

m1(Body).

This kind of interpreter is called Vanilla because it doesn’t add particular features to our
programs, but it can be helpful, because it’s the backbone that we can use to improve our
programs.

?- mi1(natnum(X)).

X=0;

X=s(0);

X=s(s(0))

Yes

The above example sheds light that we have defined what is not a goal, instead defining

what is a goal.3

2Be careful, this clause matches with both true and (_,_), it’s really ambiguous.
3Such representation are called “defaulty”.
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Maggie code

B.1 Attacking predicates

B.1.1 Rebutted

1

2 rebutted(KB,(Head := Body)) :-

3 contrary(Head,Contrary),

4 def_rule(KB,(Contrary := Condition)),

5 def_der(KB,Condition),

6 sup_rule((Contrary:= Condition),(Head:= Body)),

7 !.

8

9 rebutted(KB,(Head := Body)) :- ab,

10 contrary(Head,Contrary),

11 def_rule(KB,(Contrary := Condition)),

12 def_der(KB,Condition),

13 \+ sup_rule((Head:= Body),(Contrary:= Condition)).

B.1.2 Undercutted

1 undercut(KB,(Head := Body)) :-

2 contrary(Head,Contrary),

3 (Contrary :^ Condition),

4 def_der(KB,Condition),

5 \+ sup_rule((Head := Body),(Contrary :^ Condition)),
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6 !.

B.2 Priority_relation and specification

1 sup_rule(Rule1,Rule2) :-

2 sup(Rule1,Rule2),!.

3

4 sup_rule(Rule1,Rule2) :- dp,

5 clause(sup(Rule1,Rule2),Condition),

6 Condition \= true,

7 def_der(KB,sup(Rule1,Rule2)),

8 !.

9

10 sup_rule(Rule1,Rule2) :- dp,

11 def_rule(KB,(sup(Rule1,Rule2) := Condition)),

12 def_der(KB,(sup(Rule1,Rule2))),

13 def_rule(KB,(sup(Rule2,Rule1) := Condition2)),

14 \+ def_der(KB,(sup(Rule2,Rule1))),

15 !.

16

17 sup_rule(Rule1,Rule2) :- dp,

18 def_rule(KB,(sup(Rule1,Rule2) := Condition)),

19 def_der(KB,sup(Rule1,Rule2)),

20 def_rule(KB,(sup(Rule2,Rule1) := Condition2)),

21 def_der(KB,sup(Rule2,Rule1)),

22 sup_rule((sup(Rule1,Rule2):= Condition),

23 (sup(Rule2,Rule1) := Condition2)),

24 def_der(KB, Condition2),

25 !.

26 %%% SPECIFICITY

27 sup_rule((_ := Body1),(_ := Body2)) :-

28 def_der(Body1,Body2),

29 \+ def_der(Body2,Body1),nl,

30 write(Body1),write(’ is superior to ’),write(Body2).

31

32 sup_rule((_ := Body1),(_ :^ Body2)) :-

33 def_der(Body1,Body2),

34 \+ def_der(Body2,Body1),nl,

35 write(Body1),write(’ is superior to ’),write(Body2).
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B.3 Contrary and Incompatibility

1 contrary(Clause1,Clause2) :-

2 incompatible(Clause1,Clause2).

3

4 contrary(Clause1,Clause2) :-

5 incompatible(Clause2,Clause1).

6

7 contrary(Clause1, Clause2) :- dp,

8 clause(incompatible(Clause1,Clause2),Condition),

9 Condition \== true, !,

10 def_der(KB, Condition).

11

12 contrary(Clause1, Clause2) :- dp,

13 def_rule(KB,(incompatible(Clause1,Clause2) := Condition)

), def_der(KB,incompatible(

Clause1,Clause2)), def_der(KB,Condition).

14

15 contrary(Clause1, Clause2) :- dp,

16 def_rule(KB,(incompatible(Clause2,Clause1) := Condition)

), def_der(KB,incompatible(

Clause2,Clause1)), def_der(KB,Condition).

17

18 contrary(Clause1,Clause2) :-

19 atomicNeg(Clause1,Clause2).

B.4 Game-model won(proponent)

1 % Proponent won criteria.

2

3 won(pro,CKB, ProKB, OppKB,Tree,NewTree):-

4 %proponent wins if the keyclaim is strictly derivable.

5 keyclaim(Keyclaim),

6 assertall(CKB),

7 strict_der(KB, Keyclaim),

8 nl,write(’Proponent won...strict!’),nl,

9 append(Tree,[[’Proponent won’,#,[]]],NewTree),

10 unassertall(CKB),!.

11 won(pro,CKB, ProKB, OppKB, Tree, NewTree):-
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12 %it also wins if the opponents have not more moves

13 isEmpty(OppKB),

14 keyclaim(Keyclaim),

15 assertall(CKB),

16 def_der(KB, Keyclaim),

17 append(Tree,[[’Proponent won’,#,[]]],NewTree),

18 unassertall(CKB),!,

19 nl,write(’keyclaim defeasible and opponent finished its rules!’).

20

21 won(pro,CKB,_,_,_,_) :- unassertall(CKB),fail.

22

23 won(pro,CKB,ProKB,OppKB,Tree,NewTree):-

24 orand,

25 countPlayer(ProKB,ProItem),

26 findall([X,’#’,NewTreeLost],(

27 member(X,ProKB),

28 move(X,CKB),

29 append(CKB,[X],NewCKB),

30 delete(X, ProKB, NewProKB),

31 nl,write(’Calling "lost(opp)" and adding: ’), write(X),

32 lost(opp,NewCKB,NewProKB,OppKB,Tree, NewTreeLost)),List),

33 append(Tree,List,NewTree),nl,

34 countPlayer(List,N),

35 N == ProItem.

36

37 won(pro,CKB,ProKB,OppKB,Tree,NewTree):-

38 \+ orand,

39 countPlayer(ProKB,ProItem),

40 findall([X,’#’,NewTreeLost],(

41 member(X,ProKB),

42 move(X,CKB),

43 append(CKB,[X],NewCKB),

44 delete(X, ProKB, NewProKB),

45 nl,write(’Calling "lost(opp)" and adding: ’), write(X),

46 lost(opp,NewCKB,NewProKB,OppKB,Tree, NewTreeLost)),List),

47 append(Tree,List,NewTree),

48 countPlayer(List,N),

49 List \== [].
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a diventare una persona più consistente, mi ha comprato i biglietti per la vacanza e mi ha
dato casa, in pratica fa tutto lei. Un mega grazie a tutte le persone che ho incontrato a
Bologna (ma anche a quelle che ho conosciuto prima) durante questi *1 anni e con le quali
ho affrontato una tappa edificante e spesso alcolica della mia “tarda adolescenza” tanto per
cominciare la cara Antonella con annessa sorellina Giovanna2 amica di tante (dis)avventure
ArezzoWave e soprattutto infinite!! chiacchiere e molto altro ancora. Come dimenticare i
goffi approcci in cerca di amici dei primi giorni Bolognesi? Proprio allora mi è capitato di
avere a che fare nell’ordine con il buon Cascio (non rivelerò l’esatto contesto d’esame in
cui ci siamo conosciuti...) e l’eternamente strano Danilo, non temere: un giorno torneremo
a cantare La canzone dell’amore perduto sotto i portici con la bicicletta e con la spenzier-
atezza della gioventù. Quanti bei ricordi: partitelle in piazza san francesco prima che la
specialistica ci succhiasse via la vita dal midollo (cit. o quasi). Grazie alla comitivella di
quei bei tempi con Davide, Federica, Alessia y la compañera Alexandra. A dire il vero
temporalmente mi preme ringraziare i primi veri amici d’università che erano anche am-
ici di liceo, come dimenticare la prima casa di Ferrara in doppia col povero Giacinto che

1Non lo dico per vergogna...
2Lo so è dura sentirsi definire fratello o sorella di qualcunaltro, ma è lo scotto che si paga ad essere fratelli

minori...tuttosommato siamo più intelligenti, quindi, è un compromesso accettabile no?

143



mi ha dovuto sopportare nel mio esordio nel magico mondo della follia, il povero Rigoni
sempre in macchina direzione Piemonte, anzi no Padova, perchè non Termoli? e l’etnico
Pandoro per cena dove lo mettiamo!??!? Biondaaa!!! il caro vecchio Gvn che non sento
da un casino, amico storico nonchè il miglior batterista di tutti i tempi...bhè dopotutto ha
suonato nei gloriosi Sapor Vinga3. Giacchè ci sono ringrazio i compagni di musica dei sapor
vingla: Francesco, auguri per i tuoi album...a te che hai avuto il coraggio di seguire l’ardua
strada del musicista nonostante una laurea in ingegneria ambientale; Giovanni (l’unico che
si becca ringraziamento doppio...ti è andata bene) e l’ultimo arrivato ma non meno impor-
tante (benchè a stento oggi mi saluti) Giacomo4. Grazie ai Termolesi con i quali ho prati-
camente i rapporti compromessi :), pole position per Valerio, amico eterno e dalle mille
risorse nonchè iniziatore della mia carriere musicale, un grazie anche a Valeria che mi ha
portato in giro per Bologna i primi mesi della mia permanenza, il caro buon Rosati...dove
sarai ora!?!? San Diego giusto? hehhe un grazie a distanza! a Daniela grande appassionata
dei Sapor Vingla, lo so erano irresistibili. Ancora un grazie a Antonio, si il pianista iuliano,
Flavia, Marianna tutta pozzo dolce e la cassa quindi Luigi, Barone, Gino, Tania e i mille
caffè domenicali e Chiara (i tuoi ultimi lavori sono superiori)5.

Meriterebbe una sezione a parte il ringraziamento all’esperienza di Madrid un saluto alla
collega Miriam, un giorno riusciremo a rivoluzionare il mondo tecnologico con le nostre
folli idee informatiche, Valentina e il locale delle borsette col brasiliano logorroico nonchè
la parete da ripitturare, il buon Federico che mi ha raggiunto fino a Stoccolma, i miei con-
quilini Adela, Julia e Tiago. Grazie anche ai compagni di spagnolo in primis Lou e Laure
che figata la barca a stoccolma, intendo l’ostello NON il vasa! un particolare ringraziamento
alla sangria della Viga e a don Alejandro.

Grazie anche agli ultimi coinquilini di Bologna Giuliana, Michela, Chiara (non sarai
mica ancora a spasso per la penisola balcanica?!?!) e Ernesto (ogni tanto ripenso ancora al
film di Bressan :)).

Ultimi, ma solo cronologicamente parlando, gli ultimi personaggi incontrati anche per
mezzo della tanta odiata facoltà di ingegneria, Mario (linux rules!!!...lo sto usando proprio
ora!), Alessandro che mi ha fatto sentire un bravo professore del software libero, il caro
buon Joe che non vedo da un casino, il pescarese (troppo ultà) Tommaso (sei in debito con

3Un grazie anche a Vingla!!!
4Si lo so è il nome può ingannare è per questo che io ero Jaque e tu Jack.
5Questo è slang a buon intenditor....
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me...sai a cosa mi riferisco :)) e il filosofo, ehm pardon, ingegnere Simone, non so quando
ma un giorno dovremo ribeccarci e parlare della vita e della sua essenza.

Con questo penso di aver concluso. Perdonatemi o voi che non ci siete per dimenticanza
e adesso comincino le feste.
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