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Abstract. The McEliece public-key cryptosystem is based on the fact
that decoding unknown linear binary codes is an NP-complete problem.
The interest on implementing post-quantum cryptographic algorithms,
e.g. McEliece, on microprocessor-based platforms has been extremely
raised due to the increasing storage space of these platforms. Therefore,
their vulnerability and robustness against physical attacks, e.g., state-
of-the-art power analysis attacks, must be investigated. In this work, we
address mainly two power analysis attacks on various implementations
of McEliece on an 8-bit AVR microprocessor. To the best of our knowl-
edge, this is the first time that such side-channel attacks are practically
evaluated.

1 Introduction

1.1 Motivation

Mainly all modern security systems rely on public-key cryptography. Most com-
monly used are RSA, ECC and Diffie-Hellman (DH) based schemes. They are
well understood and withstand many types of attacks for years. However, these
cryptosystems rely on two primitive security assumptions, namely the factoring
problem (FP) and the discrete logarithm problem (DLP). A breakthrough in one
of the currently known attacks (e.g, Number Field Sieve or Index Calculus) or
newly introduced successful build of a quantum computer can make all of them
useless.

Fortunately, there are alternative public-key primitives, like hash-based, lattice-
based, MQ-methods and coding-based schemes. During the last years, much re-
search effort has been put into determining strengths and weaknesses of these
systems. They were implemented on different platforms, e.g., x86- and x64-based
CPUs, GPUs, FPGAs and small embedded systems employing microcontrollers.

The oldest scheme, which is based on coding theory, has been presented by
Robert J. McEliece in 1978. In its original form it withstands all the attacks.
The most recent and effective attack reported during the last 30 years reduces
the security of a system from 80- to 60-bit [2]. It has been implemented on
several platforms including CPU [3], GPU [13], FPGA [8, 28], and 8-bit micro-
controllers [8]. To make this system a real alternative to the existing schemes,



or to let it be a candidate for the post-quantum era, all possible attacks have to
be evaluated.

Since the first introduction of DPA in 1999 [15], it has become an alternative
approach for extracting secret key of cryptographic devices by exploiting side-
channel leakages despite robustness of the corresponding algorithms to cryptan-
alyzing methods. During the last ten years it has been showed by many articles
(cf., e.g., the CHES workshop proceedings since 1999) that side-channel attacks
must be considered as a potential risk for security related devices. The practical
attacks mounted on a real-world and widespread security applications, e.g., [9],
also strengthen the importance of side-channel attacks.

Though there are a few works on vulnerability and robustness of implemen-
tation of public-key algorithms to side-channel attacks (e.g., [7, 20]), most of the
published articles in the scientific literatures on this field concentrated on the
state-of-the-art Differential Power Analysis (DPA) attacks on symmetric block
ciphers, e.g., [21, 25, 30]. In addition to classical DPA approaches (like [5, 11,
15, 19]) combination of cryptanalytic schemes and side-channel leakages led to
innovative attacks, e.g., a couple of collision side-channel attacks [4, 24, 26] and
algebraic side-channel attacks [23].

1.2 Related Works and Our Contribution

There are not many articles regarding the evaluation of side-channel attacks on
post-quantum algorithms. The lattice based NTRUencrypt has been investigated
in [29] and [34]. Hash trees look more like a protocol than to a cryptographic
primitive, and they stand or fall with the underlying hash function. For MQ-
based algorithms, we know no research inquiry. Only coding-based cryptography
got some attention during the last two years.

Side-channel attacks on PC implementations of the McEliece scheme are
already addressed in [32] and [12] where the authors mounted a timing attack. By
means of this attack, the adversary would be able to decrypt only the attacked
message. Though the attack is promising, the adversary needs to repeat the
attack for every later ciphertext by having physical access to the target device.
Further, recently another timing attack on McEliece has been published in [27]
that shows the interest of the research community to side-channel attack on
McEliece implementations.

Resistance of McEliece against fault injection attacks has been investigated
in [6]. The authors stated that due to the error correction capability of this type
of cryptosystem, it is heavily resistant against fault injection attacks because
the faults are part of the algorithm and are simply corrected (maybe to a wrong
message, but no secret information is revealed).

An algebraic side-channel attack on AES presented in [23] is able to recover
the secret key of a microcontroller-based implementation by means of profil-
ing and a single mean trace supposing that the attacker knows the execution
path and can recover the Hamming weight (HW) of the operand of the selected
instructions. Though this attack is even efficient to overcome arithmetic mask-
ing schemes supposing the same adversary model, solving the algebraic system



equations encounters many problems by wrong HW predictions. Our proposed
attacks are partially based on the same idea, i.e., examining the secret hypothe-
ses considering the predicted HW of the processed data.

In contrary to the side-channel attacks proposed on the McEliece implemen-
tations so far, we have implemented and practically evaluated all steps of our
proposed attacks. The target implementations which are considered in this work
are based on the article recently published in CHES 2009 [8]. Since there is not a
unique way to implement the McEliece decryption scheme by a microcontroller,
we define four different implementation profiles to realize the decryption algo-
rithm, and for each of which we propose an attack to recover the secret key.
Generally our proposed attacks can be divided into two phases:

– collecting side-channel observations for chosen ciphertexts and generating a
candidate list for each target secret element of the cipher and

– examining the candidates to check which hypotheses match to the public
parameters of the cipher.

By means of our proposed attacks we are able to recover the permutation
matrix and the parity check matrix if each one is performed solely. On the other
hand if both matrices are combined in the target implementation, we are also
able to recover the combined (permutation and parity check) matrix. Each of
these attacks leads to breaking the decryption scheme and recovering the secret
key. It should be noted that contrary to the attack presented in [23] our supposed
adversary model does not need to profile the side-channel leakage of the target
device, and our proposed attacks are more insensitive to wrong HW predictions
than that of presented in [23].

1.3 Organization

In the next section, a short introduction to McEliece cryptosystem is given. Then,
in Section 3 the implementation profiles which are considered in our attacks as
the target implementation are defined. Section 4 briefly reviews the concept
of power analysis attacks. In Section 5 first our supposed adversary model is
introduced. Then, we explain how to use side-channel observations to directly
recover a secret (e.g., the permutation matrix) or to partially predict a part of
a secret (e.g., the parity check matrix). Afterwards, we show how to break the
system using the revealed/predicted information. Further, we discuss possible
countermeasures to defeat our proposed attacks in Section 6. Finally, Section 7
concludes our research.

2 McEliece in a Flash

This section gives a short overview on the original McEliece cryptosystem, and
introduces the used Goppa codes. We stay superficial, and explain only what is
necessary to understand the attacks described afterwards.



Algorithm 1 McEliece Message Encryption

Require: m,Kpub = (Ĝ, t)
Ensure: Ciphertext c

1: Encode the message m as a binary string of length k

2: c′ ← m · Ĝ

3: Generate a random n-bit error vector z containing at most t ones
4: c = c′ + z

5: return c

Algorithm 2 McEliece Message Decryption

Require: c,Ksec = (P−1, G, S−1)
Ensure: Plaintext m

1: ĉ← c · P−1

2: Use a decoding algorithm for the code C to decode ĉ to m̂ = m · S

3: m← m̂ · S−1

4: return m

2.1 Background on the McEliece Cryptosystem

The McEliece scheme is a public-key cryptosystem based on linear error-correcting
codes proposed by Robert J. McEliece in 1978 [18]. The secret key is an efficient
decoding algorithm of an error-correcting code with dimension k, length n and
error correcting capability t. To create a public key, McEliece defines a random
k×k-dimensional scrambling matrix S and n×n-dimensional permutation matrix
P disguising the structure of the code by computing the product Ĝ = S×G×P ,
where G is the generator matrix of the code. Using the public key Kpub = (Ĝ, t)
and private key Ksec = (P−1, G, S−1), encryption and decryption algorithms
can be given by Algorithm 1 and Algorithm 2 respectively.

Note that Algorithm 1 only consists of a simple matrix multiplication with
the input message and then distributes t random errors on the resulting code
word.

Decoding the ciphertext c for decryption as shown in Algorithm 2 is the
most time-consuming process and requires several more complex operations in
binary extension fields. In Section 2.2 we briefly introduce the required steps for
decoding codewords.

2.2 Classical Goppa Codes

This section reviews the underlying code-based part of McEliece without the
cryptographic portion. To encode a message m into a codeword c, the message m
should be represented as a binary string of length k and be multiplied by the k×n

generator matrix G of the code. Decoding a codeword r at the receiver side with
a (possibly) additive error vector e is much more complex than a simple matrix
vector multiplication for encoding. The most widely used decoding scheme for
Goppa codes is the Patterson algorithm [22].

Here we only give a short introduction and define the necessary abbreviations.



Theorem 1. [33] Let g(z) be an irreducible polynomial of degree t over GF (2m).
Then the set

Γ (g(z), GF (2m)) = {(cα)α∈GF (2m) ∈ {0, 1}n |
∑

α∈GF (2m)

cα

z − α
≡ 0 mod g(z)}

(1)
defines a binary Goppa code C of length n = 2m, dimension k ≥ n − mt and
minimum distance d ≥ 2t + 1. The set of the αi is called the support L of the
code.

This code is capable of correcting up to t errors [1] and can be described as
a k × n generator matrix G such that C = {mG : m ∈ GF k

2 } . This matrix
is systematic, if it is in the form (Ik‖Q) , where Ik denotes the k × k identity
matrix and Q is a k × (n − k) matrix. Then H = (QT ‖In−k) is a parity-check
matrix of C with C = {c ∈ GFn

2 : cHT = 0}.

Since r = c + e ≡ e mod g(z) holds, the syndrome Syn(z) of a received
codeword can be obtained from Equation (1) by

Syn(z) =
∑

α∈GF (2m)

rα

z − α
≡

∑

α∈GF (2m)

eα

z − α
mod g(z) (2)

To finally recover e, we need to solve the key equation σ(z) · Syn(z) ≡ ω(z)
mod g(z), where σ(z) denotes a corresponding error-locator polynomial and ω(z)
denotes an error-weight polynomial.

The roots of σ(z) denote the positions of error bits. If σ(αi) ≡ 0 mod g(z)
where αi is the corresponding bit of a generator in GF (2m), there was an error
in the position i of the received codeword that can be corrected by bit-flipping.

This decoding process, as required in Step 2 of Algorithm 2 for message
decryption, is finally summarized in Algorithm 3 in the appendix.

Instead of writing inverted polynomials to the columns parity check matrix
H, there exist an alternative representation for the parity check matrix, which
is important for the attack in Section 5.3.

From Equation (2) we can derive the parity check matrix H as
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This can be split into
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where the first part has a non-zero determinant, and following the second part
Ĥ is equivalent to the parity check matrix, which has a simpler structure. By
applying the Gaussian algorithm to the second matrix Ĥ one can bring it to
systematic form (Ik | H), where Ik is the k × k identity matrix. Note that
whenever a column swap is performed, a swap on the corresponding elements
of the support L is also performed. From the systematic parity check matrix
(Ik | H), now the systematic generator matrix G can be derived as (In−k | HT).

In the context of McEliece decryption, reverting the permutation can be
merged into the parity check matrix by permuting the support L. Using LP =
P−1 ∗ L to generate H leads to a parity check matrix that computes the correct
syndrome for a permuted codeword.

In the following we always refer to a binary irreducible Goppa code with
m = 11 and t = 27. This is a symmetric equivalent security of 80 bits and leads
to n = 2048 and k = 1751 [2].

3 Practical Aspects

The combination of the McEliece decryption Algorithm 2 and the Goppa de-
coding Algorithm 3 allows a wide range of different implementations. For our
proposed attacks, the most interesting point is the specific implementation of
step 1 of Algorithm 2 and step 1 of Algorithm 3 and whether they are merged
together or not. According to these points we define four so-called implementa-
tion profiles:

Profile I performs the permutation of the ciphertext and computes the columns
of H as they are needed by either using the extended euclidean algorithm
(EEA) or the structure given in Equation (3) or (4).

Profile II also performs the permutation, but uses the precomputed parity
check matrix H.

Profile III does not really perform the permutation, but directly uses a per-
muted parity check matrix. As stated in Section 2.2, we can use LP = P−1∗L
to compute the syndrome of the unpermuted ciphertext. This profile com-
putes the permuted columns as needed.

Profile IV does the same as profile III, but uses a precomputed and permuted
parity check matrix.

4 Introduction to Power Analysis Attacks

Power analysis attacks exploit the fact that the execution of a cryptographic al-
gorithm on a physical device leaks information about the processed data and/or
executed operations through instantaneous power consumption [15]. Measur-
ing and evaluating the power consumption of a cryptographic device allows ex-
ploiting information-dependent leakage combined with the knowledge about the
plaintext or ciphertext in order to extract, e.g., a secret key. Since intermediate
result of the computations are serially processed (especially in 8-,16-, or 32-bit



architectures, e.g., general-purpose microcontrollers) a divide-and-conquer strat-
egy becomes possible, i.e., the secret key could be recovered byte by byte.

A Simple Power Analysis (SPA) attack, as introduced in [15], relies on visual
inspection of power traces, e.g., measured from an embedded microcontroller
of a smartcard. The aim of an SPA is to reveal details about the execution of
the program flow of a software implementation, like the detection of conditional
branches depending on secret information. Recovering an RSA private key bit-
by-bit by an SPA on square-and-multiply algorithm [15] and revealing a KeeLoq
secret key by SPA on software implementation of the decryption algorithm [14]
are amongst the powerful practical examples of SPA on real-world applications.
Contrary to SPA, Differential Power Analysis (DPA) utilizes statistical meth-
ods and evaluates several power traces. A DPA requires no knowledge about
the concrete implementation of the cipher and can hence be applied to most of
unprotected black box implementations. According to intermediate values de-
pending on key hypotheses the traces are correlated to estimated power values,
and then correlation coefficients indicate the most probable hypothesis amongst
all partially guessed key hypotheses [5]. In order to perform a correlation-based
DPA, the power consumption of the device under attack must be guessed; the
power model should be defined according to the characteristics of the attacked
device, e.g., Hamming weight (HW) of the processed data for a microcontroller
because of the existence of a precharged/predischarged bus in microcontrollers
architecture. In case of a bad quality of the acquired power consumption, e.g.,
due to a noisy environment, bad measurement setup or cheap equipment, aver-
aging can be applied by decrypting(encrypting) the same ciphertext(plaintext)
repeatedly and calculating the mean of the corresponding traces to decrease the
noise floor.

5 Our Proposed Attacks

In this section, we first specify the assumptions we have considered for a side-
channel adversary in our proposed attacks. Afterwards, we review the side-
channel vulnerabilities and information leakages which our specified adversary
can recover considering the target microcontroller (AVR ATmega256). Taking
the implementation profiles (defined in Section 3) into account different power
analysis attacks are proposed in Section 5.2 to recover some secrets of the de-
cryption algorithm. Finally, in Section 5.3 we discuss how to use the secrets
recovered by means of the side-channel attacks to break the decryption scheme
and reveal the system private key.

5.1 Adversary Model

In our proposed attacks we consider an adversary model:
The adversary knows what is public like Ĝ, t. Also he knows the implementation
platform (e.g., type of the microcontroller used), the implementation profile,
i.e, complete source code of the decryption scheme (of course excluding memory



contents, precomputed values, and secret key materials). Also, he is able to select
different ciphertexts and measure the power consumption during the decryption
operation.

5.2 Possible Power Analysis Vulnerabilities

In order to investigate the vulnerability of the target implementation platform
to power analysis attacks a measurement setup by means of an AVR ATmega256
microcontroller which is clocked by a 16MHz oscillator is developed. Power con-
sumption of the target device is measured using a LeCroy WP715Zi 1.5GHz
oscilloscope at a sampling rate of 10GS/s and by means of a differential probe
which captures voltage drop of a 10Ω resistor at VDD (5V) path.

To check the dependency of power traces on operations, different instructions
including arithmetic, load, and save operations are taken into account, and power
consumption for each one for different operands are collected. In contrary to
8051-based or PIC microcontrollers, which need 16, 8, or 4 clock cycles to execute
an operation, an AVR ATmega256 executes the instructions in 1 or 2 clock
cycles1. Therefore, the power consumption pattern of different instructions are
not so different from each other. As Figure 1 shows, though the instructions are
not certainly recognizable, load instructions are detectable amongst others. As
a result the adversary may be able to detect the execution paths by comparing
the power traces. Note that as mentioned in Section 4 if the adversary is able to
repeat the measurement for a certain input, averaging helps to reduce the noise
and hence improve the execution path detection procedure.

      LOAD
 from FLASH

     SAVE
   to SRAM

      JUMPXOR DEC      LOAD
 from SRAM

      LOAD
 from SRAM

Fig. 1. A power consumption trace for different instructions

On the other hand, considering a fixed execution path, operand of instruc-
tions play a significant role in variety of power consumption values. As mentioned
before, since the microcontrollers usually precharge/predischarge the bus lines,
HW of the operands or HW of the results are proportional to power values. Fig-
ure 2 shows the dependency of power traces on the operands for XOR, LOAD,
and SAVE instructions. Note that XOR instruction takes place on two registers,
LOAD instruction loads an SRAM location to a specified register, and SAVE
stores the content of a register back to the SRAM. According to Figure 2(c), HW
of operands of SAVE instruction are more distinguishable in comparison to that

1 Most of the arithmetic instructions in 1 clock cycle.



(a) (b) (c)

Fig. 2. Power consumption traces for different operands of (a) XOR, (b) LOAD, and
SAVE instructions (all traces in gray and the averaged based on HWs in black)

of XOR and LOAD instructions. Therefore, according to the defined adversary
model we suppose that the adversary considers only the leakage of the SAVE
instructions. Now the question is “How precisely the adversary can detect HW
of the values stored by a SAVE instruction?” It should be noted that a similar
question has been answered in the case of a PIC microcontroller in [23] where
the adversary (which fits to our defined adversary model in addition to profiling
ability) has to profile the power traces in order to correctly detect the HWs. The
same procedure can be performed on our implementation platform. However, in
our defined adversary model the device under attack can be controlled by the
attacker in order to repeat measurements as many as needed for the same input
(ciphertext). Therefore, without profiling the attacker might be able to reach
the correct HWs by means of averaging and probability distribution tests2. In
contrary to an algebraic side-channel attack which needs all correct HW of the
target bytes to perform a successful key recovery attack [23], as we describe
later in Section 5.3 our proposed attack is still able to recover the secrets if the
attacker guesses the HWs within a window around the correct HWs. Figure 3
presents success rate of HW detection for different scenarios. In the figure, the
number of traces for the same target byte which are used in averaging is indi-
cated by “avg”. Further, “window” shows the size of a window which is defined
around the correct HWs. As shown by Figure 3, to detect the correct HWs the
adversary needs to repeat the measurements around 10 times, but defining a
window by the size of 1 (i.e., correct HWs ±1) leads to the success rate of 100%
considering only one measurement.

Differential Power Analysis First, one may think that the best side-channel
attack on implementation of McEliece decryption scheme would be a DPA to
reveal the secret key. However, the input (ciphertext) is processed in a bitwise

2 Probability distribution test here means to compare the probability distribution of
the power values to the distribution of HW of random data in order to find the
best match especially when highest (HW=8) or/and lowest (HW=0) is missing in
measurements.
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Fig. 3. Success rate of HW detection using the leakage of a SAVE instruction for
different averaging and windowing parameters.

fashion, and in contrary to symmetric block ciphers the secret key does not
contribute as a parameter of a computation. Moreover, power traces for differ-
ent ciphertexts would not be aligned to each other based on the computations,
and execution time of decryption also varies for different ciphertexts. As a con-
sequence, it is not possible to perform a classical DPA attack on our target
implementations.

SPA on Permutation Matrix Considering implementation profiles I and II
(defined in Section 3) the first secret information which is used in decryption
process is permutation matrix P . After permuting the ciphertext it is multiplied
by matrix HT . Since the multiplication of ĉ and HT can be efficiently realized
by summing up those rows of H for which corresponding bit of ĉ is “1” and skip
all “0” bits, running time of multiplication depends on the number of “1”s (let
say HW) of ĉ. As mentioned before the side-channel adversary would be able
to detect the execution paths. If so, he can recover the content of ĉ bit-by-bit
by examining whether the summation is performed or not. However, HW of ĉ is
the same as HW of c, and only the bit locations are permuted. To recover the
permutation matrix, the adversary can consider only the ciphertexts with HW=1
(2048 different ciphertexts in this case), and for each ciphertext finds the instant
of time when the summation is performed (according to ĉ bits). Sorting the time
instants allows recovery whole of the permutation matrix. Figure 4 shows two
power traces of start of decryption for two different ciphertexts. Obviously start
of the summation is recognizable by visual inspection, but a general scheme
(which is supposed to work independent of the implementation platform) would
be similar to the scheme presented in [14]. That is, an arbitrary part of a trace
can be considered as the reference pattern, and computing the cross correlation of
the reference pattern and other power traces (for other ciphertexts with HW=1)
reveals the positions in time when the summation takes place. Figure 5 presents
two correlation vectors for the corresponding power traces of Figure 4. Note
that to reduce the noise effect we have repeated the measurements and took the
average over 10 traces for each ciphertext. Using this scheme for all ciphertexts
with HW=1, permutation matrix is completely recovered.
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Fig. 5. Correlation vectors for ciphertexts (left) 0x0...01 and (right) 0x0...02.

SPA on Parity Check Matrix When implementation profiles III and IV are
used, the permutation is not solely performed and hence the attack described
above is not applicable. Therefore, the adversary has to take the multiplication
process into account. Since in this case, execution path of multiplication does
not depend on any secret, recovering the conditional branches (which only de-
pend on ciphertext bits) would not help the attacker revealing the secrets. As a
consequence the adversary has to try revealing the content of the parity check
matrix H. To do so, as described before he may reach (or guess) HW of the
processed (or saved) data. Similarly to the last scheme the attacker can chose
all ciphertexts with HW=1 and guess the HW of elements of each column of
matrix H separately. Since 27 11-bit elements of each column of H are saved
efficiently in a byte-wise fashion in 38-byte chunks3, and the adversary can only
guess the HW of each byte, he can not certainly guess the HW of each 11-bit
element of H. Therefore, the number of candidates for the HW of each 11-bit
element is increased. As the result of this procedure, the adversary will have a
set of candidates for each 11-bit element of parity matrix H at row i and column
j as follows:

Ĥi,j =
{

h ∈ {0, 1}
11

| HW(h) = the guessed HW by SPA ± window
}

.

3 Each 11-bit can be saved in 2 bytes, but it wastes the memory and also simplifies
the attack procedure by dividing the HW of an 11-bit value to the HW of two 8-
and 3-bit parts.



SPA on Goppa Polynomial If the attacker can follow the execution path
after the matrix multiplication, he would be able to measure the power con-
sumption during the computation of the syndrome polynomial inversion (step 2
of Algorithm 3). Since at the start of this computation the Goppa polynomial is
loaded, e.g., from a nonvolatile memory to SRAM, similarly to the scheme ex-
plained above the adversary can predict HW of the transfered values, and hence
make a list of candidates for each 11-bit element of the Goppa polynomial.

5.3 Gains of Power Analysis Vulnerabilities

This section discusses how to use the so far gathered information to perform a
key recovery attack.

Attack I: Knowing the permutation matrix Given the permutation matrix
P (which is recovered by means of an SPA), we are able to completely break the
systemwith one additional assumption. We need to know the original support L.
In [10], Section $3.1 it is stated that L can be published without loss in security.
Using the public key Ĝ = S ∗G ∗ P , we can easily recover S ∗G. Multiplication
by a message with only a single “1” at position i gives us row S[i] because G is
considered to be in the systematic form. Therefore, by (n − k) multiplications
we can extract the scrambling matrix S and consequently G as well.

Now it is possible to recover the Goppa polynomial. According to Equa-
tion (1) we know that for a valid codeword (i.e., error free) the corresponding
syndrome modulo g(z) equals to zero. It means that the gcd of two different syn-
dromes, which can now be computed by Equation (2) using G′ = S ∗G and the
original support L, equals g(z) with high probability. In our experiments, it never
took more than one gcd-computation to recover the correct Goppa polynomial.

From this point on, we have extracted all parameters of the McEliece system,
and hence are able to decrypt every ciphertext. In order to verify the revealed
secrets, we executed the key generation algorithm with the extracted parameters
and retrieved exactly the same secret key as in the original setup.

Attack II: knowing parity check matrix Without knowing the original
support L, the attack described above is not applicable; moreover, in implemen-
tation profiles III and IV it is not possible to solely recover the permutation
matrix. To overcome this problem we utilize the possible candidate lists Ĥi,j

derived by an SPA attack. According to the structure of the parity check matrix
H in Equation (3), every column is totally defined by elements α, g(α) and the
coefficients of g(z). We use this structure and the candidate lists in an exhaus-
tive search. For every column H[i] we randomly choose αi and g(αi) over all
possible elements. These two elements are fixed for the entire column. Now we
go recursively into the rows of column i. At every recursion level j we have to
choose a random value for gt−j and compute the actual value of H[i][j] according

to Equation (3). Only if this value is in the candidate list Ĥi,j , we recursively
call the search function for H[i][j + 1]. If a test fails, we remove the currently



selected element for gt−j from the possible list and choose a new one. When the
list gets empty, we return to one recursion level higher and try by a new element.
Thereby we only go deeper into the search algorithm if our currently selected
elements produce the values which are found in the corresponding candidate list.
If the algorithm reaches row[t + 1], with t = 27 in our case, we have selected
candidates for αi, g(αi), and all coefficients of the Goppa polynomial g(z). Now
we can check backwards whether g(z) evaluates to g(αi) at αi. If so, we have
found a candidate for the Goppa polynomial and for the first support element.

While the above described algorithm continues to search new elements, we
can validate the current one. By choosing another column H[i] and one of the
remaining n−1 support elements, we can test in t trials whether the given value
exists in the corresponding candidate list. On success we additionally found
another support element. Repeating this step n − 1 times reveals the order of
the support L and verifies the Goppa polynomial. Column four in Table 1 shows
the average number of false αs, that pass the first searched column for the right
Goppa polynomial. However, these candidates are quickly sorted out by checking
them against another column of H. For all remaining pairs (L, g(z)) it is simply
tested whether it is possible to decode an erroneous codeword.

Because a single column of H is sufficient for the first part of the attack, we
could speed it up by selecting the column with the lowest number of candidates
for the 27 positions. Depending on the actual matrix the number of candidates
for a complete column varies between 1 000 and 25 000. It turns out that most
often the column constructed by α = 0 has the lowest number of candidates. So
in a first try we always examine the column with lowest number of candidates
with α = 0 before iterating over other possibilities.

Also every information that one might know can speed up the attack. If, for
example, it is known that a sparse Goppa polynomial is chosen, we can first test
coefficient gi = 0 before proceeding to other choices. For testing we generate a
McEliece key from a sparse Goppa polynomial where only 4 coefficients are not
zero. Table 1 shows the results for that key.

Even if the permutation matrix P is merged into the computation of H

(implementation profiles III and IV) this attack reveals a permuted support LP ,
which generates a parity check matrix capable of decoding the original ciphertext
c. As a result, although merging P and H is reasonable from a performance point
of view, this eases our proposed attack.

Attack III: Improving Attack II Considering the fact mentioned at the end
of Section 5.2 knowing some information about the coefficients of g(z) dramati-
cally reduces the number of elements to be tested on every recursion level. The
use of additional information, here the HW of coefficients of g(z), significantly
speeds up the attack, as shown in Table 2.

As mentioned in the previous section, Table 1 shows the results for a sparse
Goppa polynomial. These result were achieved using a workstation PC equipped
by two Xeon E5345 CPUs and 16 GByte RAM and gcc-4.4 together with OpenMP-
3.0. The results for a full random Goppa polynomial are given in Table 2.



Table 1. Runtime of the Search Algorithm for sparse Goppa polynomial

Window Size H Window Size g(z) #g(z) # α CPU Time

0 X > 106 112 115 hours
1 X > 232 > 232 150 years
0 0 3610 68 < 1 sec
1 0 112527 98 10 sec
0 1 793898 54 186 min
1 1 > 106 112 71 days

Table 2. Runtime of the Search Algorithm for full random Goppa polynomial

Window Size H Window Size g(z) #g(z) # α CPU Time

0 X > 106 52 90 hours
1 X > 232 > 232 impossible

0 0 4300 50 69 min
1 0 101230 37 21 hours
0 1 > 232 > 232 26 days
1 1 > 232 > 232 5 years

In this table a window size of X means that we do not use the information
about the Goppa polynomial. Instead, we iterate over all possibilities. #g(z)
denotes the number of Goppa polynomials found until the correct one is hit, and
# α indicates how many wrong elements fulfil even the first validation round.
The column CPU Time is the time for a single CPU core.

Note that the values in the second and last row of each table are only esti-
mates. They are based on the progress of the search in around 2 weeks and on
the knowledge of the right values. The impossible means, that there was only
little progress and the estimate varied by hundreds of years.

Also it should be investigated whether the additional information from the
side-channel attacks can improve one of the already known attacks, e.g., [2, 16,
17, 31]. The information gathered by means of side-channels ought to be useful
since it downsizes the number of possibilities.

6 Countermeasures

Since the multiplication of the permuted ciphertext and parity check matrix HT

is efficiently implementing by summing up (XORing) some H rows which have
“1” as the corresponding permuted ciphertext, the order of checking/XORing
H rows can be changed arbitrarily. Since we have supposed that the attacker
(partially) knows the program code, any fix change on the execution path, e.g.,
changing the order of summing up the H rows would not help to counteract our
first attack (SPA on permutation matrix explained in Section 5.2). However, one
can change the order of checking/XORing randomly for every ciphertext, and



hence the execution path for a ciphertext in different instances of time will be
different. Therefore, the adversary (which is not able to detect the random value
and the selected order of computation) can not recover the permutation matrix.
Note that as mentioned before if the permutation is not merely performed (e.g.,
in implementation profiles III and IV) our first attack is inherently defeated.

Defeating our second attack (SPA on parity check matrix explained in Sec-
tion 5.2) is not as easy as that of the first attack. One may consider changing
randomly the order of checking the H rows, which is described above, as a coun-
termeasure against the second attack as well. According to the attack scenario
the adversary examines the power traces for the ciphertexts with HW=1; then,
by means of pattern matching techniques he would be able to detect at which
instance of time the desired XOR operations (on the corresponding row of H)
is performed. As a result, randomly changing the order to computations does
not help to defeat the second attack. An alternative would be to randomly exe-
cute dummy instructions4. Though it leads to increasing the run time which is
an important parameter for post quantum cryptosystems especially for software
implementations, it extremely hardens our proposed attacks. A boolean masking
scheme may also provide robustness against our attacks. A simple way would
be to randomly fill the memory location which stores the result of XORing H

rows before start of the multiplication (between the permuted ciphertext and
the parity check matrix), and XORing the final results by the same start value.
This avoids predicting HW of H elements if the attacker considers only the
leakage of the SAVE instructions. However, if he can use the leakage of LOAD
instructions (those which load H rows), this scheme does not help to counteract
the attacks. One can make a randomly generated mask matrix as big as H, and
save the masked matrix. Since in order to avoid the effect of the masking after
multiplication it is needed to repeat the same procedure (multiplication) using
the mask matrix, this scheme doubles the run time (for multiplication) and the
area (for saving the mask matrix) as well though it definitely prevents our pro-
posed attacks. As a result designing a masking scheme which is adopted to the
limitations of our implementation platform is considered as a future work.

7 Conclusions

In this paper, we presented the first practical power analysis attacks on dif-
ferent implementations of the McEliece public-key scheme which use an 8-bit
general-purpose AVR microprocessor to realize the cipher decryption. Since we
believe that with growing memory of embedded systems and future optimiza-
tions McEliece can be developed as a quantum computer-resistant replacement
for RSA and ECC, vulnerability and robustness of McEliece implementations in
the presence of side-channel attacks should be addressed before its widespread-
ing into pervasive applications and devices which are under control of the side-
channel adversaries. Further, to defeat the described vulnerabilities we intro-

4 In our implementation platform it can be done by a random timer interrupt which
runs a random amount of dummy instructions.



duced and discussed possible countermeasures which seem not to be perfect be-
cause of their high time and memory overheads. As a result, designing a suitable
countermeasure which fits to the available resources of low-cost general-purpose
microprocessors and provides a reasonable level of security against side-channel
attacks is considered as a future work. This work shows clearly that every part
of the secret key materials namely the support L, the Goppa polynomial g(z),
the permutation P and every (precomputed) part of the parity check matrix H

have to be well protected.
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Appendix

Algorithm 3 Decoding Goppa Codes

Require: Received codeword r with up to t errors, inverse generator matrix iG

Ensure: Recovered message m̂

1: Compute syndrome Syn(z) for codeword r

2: T (z)← Syn(z)−1 mod g(z)
3: if T (z) = z then

4: σ(z)← z

5: else

6: R(z)←
√

T (z) + z

7: Compute a(z) and b(z) with a(z) ≡ b(z) ·R(z) mod g(z)
8: σ(z)← a(z)2 + z · b(z)2

9: end if

10: Determine roots of σ(z) and correct errors in r which results in r̂

11: m̂← r̂ · iG {Map rcor to m̂}
12: return m̂


