
CliSeAu: Securing Distributed Java Programs
by Cooperative Dynamic Enforcement

Richard Gay, Jinwei Hu, and Heiko Mantel

Department of Computer Science, TU Darmstadt, Germany
{gay,hu,mantel}@mais.informatik.tu-darmstadt.de

Published in:
A. Prakash and R.K. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 378–398, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
The original publication is available at www.springerlink.com

Abstract CliSeAu is a novel tool for hardening distributed Java pro-
grams. CliSeAu takes as input a specification of the desired properties
and a Java bytecode target program, i.e. the format in which Java pro-
grams are usually provided. CliSeAu returns hardened Java bytecode
that provides the same functionality as the original code, unless this
code endangers the desired properties. By monitoring the components
of a distributed system in a decentralized and coordinated fashion, our
tool CliSeAu is able to enforce a wide range of properties, both ef-
fectively and efficiently. In this article, we present the architecture of
CliSeAu, explain how the components of a distributed target program
are instrumented by CliSeAu, and illustrate at an example application
how CliSeAu can be used for securing distributed programs.

1 Introduction

Dynamic enforcement mechanisms establish security at run-time by monitoring a
program’s behavior and by intervening before security violations can occur [1–3].
Dynamic enforcement mechanisms are often tailored to a particular purpose. For
instance, authentication mechanisms ensure the authenticity of users, access-
control mechanisms ensure that only authorized accesses can be performed, and
firewalls ensure that only authorized messages can pass a network boundary.
Besides such special-purpose security mechanisms, there are also dynamic en-
forcement mechanisms that can be tailored to a range of security concerns.

Our novel tool CliSeAu belongs to this second class of dynamic enforcement
mechanisms. Given a Java bytecode target program and a policy that specifies a
user’s security requirements, CliSeAu enforces that the requirements are met.

In this respect, CliSeAu is very similar to two well known tools, SASI
[4] and Polymer [5], and there are further similarities. Firstly, all three tools
aim at securing Java bytecode.1 Secondly, like in Polymer, security policies in
CliSeAu are specified in Java. Thirdly, like Polymer, CliSeAu bases enforce-
ment decisions on observations of a target program’s actions at the granularity
of method calls. Fourthly, like in Polymer, the possible countermeasures against
1 There is a second version of SASI for securing x86 machine code.

2 R. Gay, J. Hu, H. Mantel

policy violations include termination of a target program, suppression or replace-
ment of policy-violating actions, and insertion of additional actions. Finally, all
three tools enforce policies by modifying the target program’s code. Like SASI,
CliSeAu performs this modification statically before a program is run.

A distinctive feature of CliSeAu is the support for enforcing security proper-
ties in distributed systems in a coordinated and decentralized fashion. CliSeAu
generates an enforcement capsule (brief: EC) for each component of a distributed
program. The granularity of encapsulated components is chosen such that each of
them runs at a single agent, i.e. at a single active entity of a given distributed sys-
tem. The local ECs at individual agents can be used to make enforcement deci-
sions in a decentralized fashion. Decentralizing decision making in this way avoids
the bottleneck and single point of failure that a central decision point would be.
Moreover, localizing enforcement decisions increases efficiency by avoiding com-
munication overhead. Purely local, decentralized enforcement, however, has the
disadvantage that a smaller range of security properties can be enforced than
with centralized enforcement decisions [6]. CliSeAu overcomes this disadvan-
tage by supporting communication and coordination between ECs. If needed,
enforcement decisions can be delegated by one EC to another. There are a few
other tools that support decentralized, coordinated enforcement, and we will
clarify how they differ from CliSeAu when discussing related work.

Another distinctive feature of CliSeAu is the technique used for combining
ECs with components of a target program. Parts of the EC code are interwoven
with the target program using the in-lining technique [4], which is used by SASI
and Polymer. Other parts of the EC code are placed in a process that runs
in parallel with the modified target program. This ensures responsiveness of an
EC , even if its target program is currently blocked due to a pending enforcement
decision or has been terminated due to a policy violation.

The enforcement of security properties with CliSeAu is both effective and
efficient. In this article, we illustrate the use of CliSeAu at the example of dis-
tributed file storage services. As example policy, we use a Chinese wall policy
[7]. This is a prominent example of a security policy that cannot be enforced
in a purely local, decentralized fashion [6] and, hence, the communication and
coordination between ECs is essential for enforcing this policy. We also provide
results of an experimental evaluation using three different distributed file stor-
age services as target programs. Our evaluation indicates that the performance
overhead caused by CliSeAu is moderate. Preliminary reports on further case
studies with CliSeAu in the area of social networks, version control systems, and
e-mail clients can be found in the student theses [8], [9], and [10], respectively.

In summary the three main novel contributions of this article are the descrip-
tion of the architecture and implementation of CliSeAu (Sections 3 and 5), the
explanation of how CliSeAu combines ECs with the components of a target pro-
gram (Section 4), and the report on the case study and experimental evaluation
with distributed file storage systems (Sections 6 and 7).

CliSeAu’s source code is available under MIT License at http://www.mais.
informatik.tu-darmstadt.de/CliSeAu.html.

CliSeAu: Securing Distributed Java Programs 3

2 Scope of Applications for CliSeAu

Programs are often developed without having a full understanding yet of the
security concerns that might arise when these programs are used. Moreover, even
if security aspects have been addressed during program development, a user of
the program might not be convinced that this has been done with sufficient rigor.
Finally, security requirements might arise from a particular use of a program,
while being irrelevant for other uses. In general, it is rather difficult for software
engineers to anticipate all security desires that forthcoming users of a program
might possibly have. Moreover, being overly conservative during system design
regarding security aspects is problematic because security features might be in
conflict with other requirements, e.g., regarding functionality or performance
and, moreover, can lead to substantial increases of development costs.

Hence, there is a need for solutions that harden programs for given security
requirements. This was our motivation for developing CliSeAu as a tool that
enables one to force properties onto existing, possibly distributed programs.

CliSeAu can be used by both software developers and software users. In
order to apply CliSeAu, one must be able to express security requirements
by a Java program (see Section 6 for more details on how this works) and the
architecture of the distributed target program must be static.

The class of properties that can be enforced with CliSeAu falls into the class
of safety/liveness properties [11,12]. These are properties that can be expressed
in terms of individual possible runs of a system, such that a property is either
satisfied or violated by an individual program run. Security requirements that
can be expressed by properties within this spectrum are, for instance, “A file
may only be read by a user who is permitted to read this file.” (confidentiality),
“Only programs that are authorized to write a given channel may send messages
on this channel.” (integrity), and “A payment may only be released if different
users from two given groups have confirmed the payment.” (separation of duty).
Security properties that are outside this spectrum are now commonly referred
to as hyper-properties [13] and include, for instance, many information flow
properties, as already pointed out in [14]. The limitation to properties falling into
the safety/liveness spectrum is shared by many other generic tools for dynamic
enforcement, including the aforementioned tools SASI and Polymer.

In order to enforce a given property, a dynamic enforcement mechanism needs
certain capabilities. Firstly, it must be able to anticipate the next action of
the target program. Secondly, it must be able to block this action until it is
clear whether this action is permissible. Thirdly, it must be able to unblock the
action – if the action is permissible – and to impose suitable countermeasures
on the target program – if the next action would lead to a violation of the
desired property. As mentioned before, CliSeAu encapsulates each component
of a target program by an EC . Each of these EC s runs at a single agent and
can observe, block, and unblock the method calls of the target’s component that
this EC supervises. An EC can also impose countermeasures on the supervised
component. The implementation technique that CliSeAu uses for combining

4 R. Gay, J. Hu, H. Mantel

Figure 1: Architecture of a distributed file service.

a target program with the enforcement code ensures that each EC has these
capabilities (see Section 4 for details on this technique).

Consider, for instance, a file storage service that provides large storage ca-
pacities to users. The functionality of a file storage service includes the uploading
and downloading of files by users as well as the controlled sharing of files among
users. A well known example of such a file storage service is DropBox.2

Figure 1 depicts the architecture of a distributed realization of a file storage
service. The service is deployed on a collection of distributed machines, each of
which hosts a file server program. Users interact with an interface that mitigates
their input to the appropriate servers and that communicates the outputs of
each file server to the respective users. The mapping of files to servers might be
based on criteria like, e.g., geographic proximity in order to ensure low latency.
The concrete mapping of files to servers might be hidden from the user.

CliSeAu can be used to secure such a distributed file storage service by
encapsulating each file server program with an EC . Each EC is tailored to a
security policy that captures the user’s security requirements. An individual EC
could be tailored, e.g., to a policy requiring that users access files stored at the
supervised server only if they are authorized to do so. Moreover, an individual
EC could also be used to control the sharing of files stored at the given server.
However, there are also security requirements that cannot be enforced locally
by an individual EC . This is the case when the EC does not have sufficient
information to decide whether an action is permissible or not. For instance, if one
wants to limit how much data a user shares within a particular time period then
an EC needs to know how much data stored at other servers has been shared by
this user. Another example are conflicts of interest, where if a user has accessed
some file A then he must not access some other file B afterwards, even if in
principle she is authorized to access both files. In order to decide whether file B
may be accessed, an EC needs to know whether the user has already accessed
file A at some other server. Conflicts of interest must be respected, e.g., within
companies that work for other companies who are competitors.

In our case study and experimental evaluation, we show how CliSeAu can
be used to prevent conflicts of interests, expressed by a Chinese Wall policy, in a
distributed file storage service. The ability of CliSeAu’s EC s to communicate
2 https://www.dropbox.com/

CliSeAu: Securing Distributed Java Programs 5

with each other and to coordinate their actions is essentail for CliSeAu’s ability
to enforce such a Chinese wall policy in a decentralized fashion.

3 Design of CliSeAu

CliSeAu is designed in a modular fashion, following principles of object-oriented
design [15,16]. The ECs generated by CliSeAu are modeled by UML diagrams
that capture different views on CliSeAu. Design patterns employed in the design
of CliSeAu include the factory pattern and the strategy pattern [16]. Objects
are used to capture the actions of a target program as well as an EC ’s reactions
to such actions.

An EC ’s reaction to an action is captured by a decision object, which corre-
sponds to a particular decision of how to influence the behavior of the target.
For example, decisions could range over a fixed set of decision objects that rep-
resent the permission or the suppression of a program action, the insertion of
additional program actions, or the termination of the program. Decision objects
can also be more fine-grained and specify further details such as the reason why
a decision is made or how the program should be terminated.

An action of a target program is represented by an event object, which cor-
responds to a particular method call by the target program. The fields of such
an object capture information about the method call, like actual parameters or
the object on which the method is called. How much detail about a method call
is stored in the corresponding object, can be chosen by a user of CliSeAu. This
allows the user to abstract from details of a method call that are not relevant
for her security requirements. For instance, one might represent the program
action of sending a particular file by an event object that captures the name of
the file and the identifier of the receiver in fields, while abstracting from other
information like the name of the protocol by which the file shall be transferred.

In the following, we call an action of the target program (i.e., a method
call) security relevant if its occurrence might result in a security violation. We
also call an action security relevant if whether this actions occurs or doesn’t
occur affects whether possible future events are deemed security-relevant or not.
When applying CliSeAu, one can specify the subset of a program’s actions that
are security relevant. CliSeAu exploits this information to choose which of a
program’s actions need to be guarded or tracked.

The abstraction from a target program’s security-irrelevant actions and from
security-irrelevant details of security-relevant actions both reduce conceptional
complexity. This simplifies the specification of security policies and improves
performance. Memory is needed only for storing the security-relevant details of
security-relevant actions and only security-relevant actions needed to be super-
vised by CliSeAu.

In the following, we show different views on CliSeAu’s ECs, focusing on the
ECs’ activities (Section 3.1), the high-level architecture (Section 3.2), and the
parametric low-level architecture (Section 3.3). We conclude this section with
the architecture of CliSeAu itself (Section 3.4).

6 R. Gay, J. Hu, H. Mantel

EC activities

intercept action enforce decisiondecide cooperativelyprogram action

event object decision object

Figure 2: Activities of an EC (UML activity diagram)

ECs deciding cooperatively
event object

delegation response
to EC-1

delegation request
to EC-1

can decide? can decide?

delegate
decide
locally

decide
locally

extract
decision

decision object

delegation response
to EC-2

delegation request
to EC-2

delegation request

delegation requestevent object

delegation response

decision
object

delegation
request

delegation
response

decision
object

[yes] [yes][no][no]

EC-2 EC-2

[EC-1 != EC-2] [EC-1 != EC-2]

Figure 3: Cooperative deciding by ECs (UML activity diagram)

3.1 Activity View of an EC

At runtime, an EC performs three main activities (Figure 2): intercepting the
next security-relevant actions of the program, deciding about such actions, and
enforcing the decisions. Intercepting consists of observing the execution of a
target program, blocking security-relevant actions until a decision about them
has been made, and capturing the respective next security-relevant action by an
event object. Enforcing consists either of enabling the currently blocked action of
the target program or, alternatively, of forcing a countermeasure on the target.

The ECs generated by CliSeAu can cooperate with each other when making
decisions. We capture the individual activities belonging to cooperative deciding
in detail in Figure 3. Essentially, four cases can be distinguished:

1. locally making a decision for a locally intercepted event. This case occurs
when an event object (top box) is given to the deciding activity by the
intercepting activity of Figure 2 and the check whether the EC itself can
decide succeeds. Then the EC decides locally and returns the result as a
decision object (bottom box).

2. remotely making a decision for a locally intercepted event. This case also
occurs when an event object is given to the deciding activity. However, in
this case, the check whether the EC can decide fails and the EC delegates the
decision-making to an EC -2 by signalling a delegation request to EC-2. This

CliSeAu: Securing Distributed Java Programs 7

<<component>>
EC

<<component>>

interceptor

<<component>>

coordinator

<<component>>

enforcer

<<component>>

local policy

event delivery

decision
delivery

<<component>>

target program

observation
and blocking

unblocking
and intervention

remote
request

local
request

cooperation
with other EC

cooperation
with other EC

Figure 4: High-level architecture of CliSeAu’s ECs (UML component diagram)

case leads to a decision object when a delegation response to EC (top left)
is signalled and the EC extracts the decision from the delegation response.

3. locally making a decision for a remotely intercepted event. This case occurs
when a delegation request is signalled to the EC and the check whether the
EC itself can decide succeeds. Then the EC locally decides and signals the
decision as a delegation response to an EC -2.

4. remotely making a decision for a remotely intercepted event. This case also
occurs when a delegation request is signalled to the EC . However, in this
case, the check whether the EC itself can decide fails and the EC -2 delegates
the decision-making to an EC -2 by signalling a delegation request to EC -2.

Note that the cooperative deciding activity ends when the EC delegated the
decision-making for an event object. That is, the activity does not block until
a response is signalled, which enables the EC to cooperate with remote ECs in
the meantime.

3.2 High-level Architecture of ECs
The high-level architecture of the ECs generated by CliSeAu follows the con-
cept of service automata [6], according to which a service automaton is an EC
that features a modular architecture consisting of four particular components:
the interceptor, the coordinator, the local policy, and the enforcer. Each of the
components is responsible to perform particular activities of the EC (see Sec-
tion 3.1) and uses particular interfaces to interact with the other components
of the EC . The UML component diagram in Figure 4 visualizes the high-level
architecture of CliSeAu’s EC .

In CliSeAu, the interceptor is a component that performs the activity of
intercepting attempts of the program to perform security-relevant actions. Fur-
thermore, its purpose is to generate event objects. The component requires an
interface to the program by which it observes and blocks the program’s attempts
to perform actions. How this interface is established by combining the EC with
the target program is the focus of Section 4. The component also requires an
interface for the event delivery.

The enforcer of CliSeAu is a component that enforces decisions. The com-
ponent provides an interface for the delivery of enforcement decisions. It requires
an interface for unblocking and intervening the program execution.

8 R. Gay, J. Hu, H. Mantel

<<component>>
EC

<<component>>

interceptor

<<component>>

coordinator

<<component>>

enforcer
<<component>>

local policy

event delivery

decision delivery

<<component>>

target program

observation
and blocking

unblocking
and intervention

remote
request

local
request

cooperation
with other EC

cooperation
with other EC

<<component>>

event factory

<<component>>

enforcer factory

enforcer object
creation

event object
creation

Figure 5: Low-level architecture of an EC (UML component diagram)

The local policy of CliSeAu is a component that performs the activities
of (i) checking in which cases it can make a local decision, (ii) making local
decisions, (iii) delegating the decision-making for events, and (iv) extracting
decision objects from delegation responses. The component provides an interface
for processing local requests – in the form of events capturing local program
actions – as well as remote requests – in the form of delegation requests or
delegation responses.

The coordinator of CliSeAu is a component that connects the components
within one EC as well as ECs with each other. The component provides an
interface for the delivery of events that are to be decided. It requires interfaces
for the delivery of enforcement decisions, the delivery of local requests, and the
delivery of remote requests. For the cooperation with other ECs, an EC provides
one interface and requires one interface of each other EC .

3.3 Parametric Low-Level Architecture of ECs

CliSeAu provides a generic EC , that is, an EC that is parametric in the security
policy that the EC enforces. The parametricity of CliSeAu’s ECs is manifested
in two kinds of entities: data structures (event objects, decision objects, delega-
tion requests, and delegation responses) as well as active components. The re-
fined architecture of ECs in Figure 5 pinpoints the parametric activities to three
components (solid white boxes in the figure): the event factory (enabling para-
metric events), the enforcer factory (enabling parametric countermeasures), and
the local policy (enabling parametric deciding and delegation). The remaining
components (shaded boxes) are fixed by the EC .

Parametric events. An event object corresponds to a particular attempt of the
target program to perform a security-relevant action. The concrete type of event
objects can be chosen by the user of CliSeAu. That allows the user of CliSeAu

CliSeAu: Securing Distributed Java Programs 9

to choose how much detail about a program action is stored in the corresponding
event object.

Closely related to event objects in an EC is the event factory component, a
component that creates event objects. It encapsulates functionality that trans-
forms the details of a program action to the content of an event object. The
parametric event factory allows a user of CliSeAu to specify how the informa-
tion that an event object captures is obtained from a concrete program action.
The use of the factory design pattern [16] allows the EC architecture to integrate
varying concrete event factories despite the fixed interceptor component.

For an example, consider again the actions of sending a file. To create the
event objects for the action of sending a file, the factory could access the actual
parameters to the method call of the action and read the needed information
from the arguments. Suppose that two sending actions share the same file name
and recipient, but differ in the protocol used for the file transfer (e.g., FTP vs.
HTTP) and in the access time-stamp. In this case, the factory could transform
the two actions to the same event object, which contains only the fields file name
and recipient identifier.

Parametric deciding and delegation. A decision object corresponds to a par-
ticular decision of how to influence the behavior of the target program. The
concrete type of decision objects can be chosen by the user of CliSeAu. That
allows the user of CliSeAu to choose how much technical details about concrete
countermeasures must be known when making decisions.

When an EC cannot make a decision about an event on its own, it delegates
the decision-making to another EC . In this process, the ECs exchange delegation
requests and delegation responses. A delegation request is an object that captures
enough information for the delegate EC to make a decision or to further delegate
the request. Analogously, a delegation response is an object that captures a
decision for the receiving EC . The concrete types of delegation requests and
delegation responses can be chosen by the user of CliSeAu. That allows the
user of CliSeAu to choose what information is exchanged between the ECs.
For instance, a delegation request corresponding to an event object could, in
addition to the event object to be decided upon, carry partial information about
the delegating EC ’s state.

The local policy is the active component of an EC that encapsulates the EC ’s
functionality for deciding and delegating decision-making. The parametric local
policy allows a user of CliSeAu to specify for the respective security policy how
decisions shall be made and when cooperation between ECs shall take place. The
use of the strategy design pattern [16] allows the EC architecture to integrate
varying concrete local policies despite the fixed coordinator component.

Parametric countermeasures. CliSeAu captures countermeasures, i.e., actions
that the EC performs to prevent security violations, by enforcer objects in the
EC . An enforcer object is an object that encapsulates concrete code whose ex-
ecution results in actions that prevent the security violations. For instance, an
enforcer object can encapsulate code for suppressing an action of the program,

10 R. Gay, J. Hu, H. Mantel

<<component>>

configuration reader

<<component>>
CliSeAu

<<component>>

EC instantiator

<<component>>

EC combiner

<<use>>

<<use>>

configuration
element
access

instantiation
of ECs 1..n

<<artifact>>

code of
agents 1..n

<<artifact>>

generic EC implementation

<<artifact>>

<<use>>

encapsulated
agents 1..n

<<artifact>>
<<produce>>

instantiated
EC access

Figure 6: Architecture of CliSeAu (UML component diagram)

for terminating the program, for replacing an action of the program by other
actions like the display of an error message, or for allowing an action to exe-
cute. The concrete set of possible enforcer objects can be chosen by the user of
CliSeAu. This allows one to tailor countermeasures to the concrete target.

Closely related to decision objects and enforcer objects inside an EC is the
enforcer factory component. An enforcer factory is an object that generates en-
forcer objects. The factory takes a decision object as input and returns enforcers
whose execution could achieve the effect intended by the decision. Being a para-
metric component, the enforcer factory allows a user of CliSeAu to tailor which
decisions result in which countermeasures specificly for the application scenario.
For example, for a decision object “permit”, the factory could return an enforcer
that permits the execution of program actions. For the decision “terminate”, the
factory could return an enforcer that executes “System.exit(1)”.

Instantiation of parameters. The parametric components of an EC must be
instantiated, i.e., substituted by concrete instances of the components, before
the EC can be used for enforcing a concrete security policy on a concrete target.
That is, before one can use CliSeAu, one must define a concrete instance for
each parametric component of the EC .

When using CliSeAu to enforce a security policy in a distributed target pro-
gram, one must instantiate an EC for each of the target’s agents. All ECs for the
target must share at least the same instantiation of the delegation request and
delegation response objects, such the ECs can cooperate with each other. The
remaining parameters of the ECs can be instantiated tailored to the respective
agents of the target. For instance, decisions may be enforced differently at the
individual agents. In this case, the instantiated ECs would comprise different
enforcer factories and enforcer objects. However, for a distributed target consist-
ing of replications of one and the same agent, all parameter instances may also
be shared among the individual ECs.

3.4 Architecture of CliSeAu

Figure 6 shows the high-level architecture of CliSeAu. This architecture con-
sists of three main components. The configuration reader consumes as input

CliSeAu: Securing Distributed Java Programs 11

the instantiations of the EC parameters. It passes these parameters to the EC
instantiator. The EC instantiator takes CliSeAu’s generic EC as well as the
parameters of the EC and instantiates the EC based on the parameters. The EC
combiner takes an instantiated EC as well as the code of an agent and combines
the two. This combination establishes the interfaces between the program and
the interceptor and enforcer that are described in Section 3.2. The technique for
combining the code of an agent with an EC is described in Section 4.

When using CliSeAu to enforce a security policy on a distributed target,
each agent of the distributed target is combined with an EC . This EC intercepts
the security-relevant events of the agent, participates in cooperatively deciding
for security-relevant events, and enforces decisions on the agent. To enforce a
security policy on a distributed target, CliSeAu therefore takes instantiations
of the EC parameters for each agent and all agents of the target as input.

The result of applying CliSeAu to a distributed target with a given instan-
tiation of the ECs is a set of encapsulated agents. The ECs at the encapsulated
agents then together enforce the security policy encoded by the instantiation.

4 Technique for Combining ECs with Targets

For combining the components of a distributed target program with ECs gener-
ated by CliSeAu, CliSeAu applies a technique that we describe in the follow-
ing. The combination of an EC with an agent consists of two parts: rewriting
the code of the agent as well as creating a separate program that shall, at the
runtime of the agent, run in parallel to the agent.

Rewriting the code of the agent serves the purpose of making security-
relevant program action’s guarded. Being guarded here means that the EC makes
a check against the policy before the action occurs and runs a countermeasure
against the action in case the action would violate the policy. For this rewriting,
CliSeAu takes as input a specification of the security-relevant program actions.

As part of the rewriting, CliSeAu places code into the agent that corre-
sponds to the EC components for intercepting and the acting. That is, the
interceptor, the event factory, the event objects, the enforcer, the enforcer fac-
tory, the enforcer objects, and the decisions objects are placed into the code
of the agent. In the rewritten code of the agent, the code of the interceptor is
placed before each security-relevant action and the enforcer is placed “around”
the action in the style of a conditional. The remaining components are added to
the code of the agent at a place where they can be invoked by the interceptor
or enforcer executor.

The separate program that is created by CliSeAu as part of combining an
EC with an agent covers the EC components for deciding. That is, the separate
program contains the coordinator, the local policy, the delegation request/re-
sponse, and the event and decision objects.3

3 CliSeAu provides a base implementation of the delegation request/response; one
can also supply one’s own implementation.

12 R. Gay, J. Hu, H. Mantel

Placing the interceptor and the enforcer executor into the code of the agent as
guards of code for security-relevant actions serves the purpose of enabling an ef-
ficient enforcement of security policies that are expressed at the level of program
actions. Alternatives such as intercepting and enforcing within the operating sys-
tem may allow the ECs to enforce the same security policies but incurs overhead
for reconstructing program-level actions from operating system-level actions.

Placing the event factory and the enforcer factory into the code of the agent
mainly serves the purpose of efficiency: event objects are supposed to be smaller
in size than all agent’s data related to a program action (e.g., large data struc-
tures on which the action operates); hence, transmitting an event object from
the agent to the separate program requires less time. A similar argument applies
to the placement of the enforcer factory, because decision objects are smaller
in size than the enforcer objects. A beneficial, more technical side-effect of this
placement of the factory components is that this placement eliminates or reduces
the dependency of the separate program on agent-specific data structures.

Placing the coordinator and the local policy into a separate program serves
the purpose of effectiveness and efficiency: the separate program runs in parallel
to the agent; hence, it remains responsive even when the agent is blocked due to
a pending enforcement decision or has been terminated due to a policy violation.
More concretely, even in these cases the separate program can receive delegation
requests and make decisions or delegate further with the coordinator and local
policy. If a blocked agent would delay the operation of the coordinator and local
policy, this would impact the efficiency of the enforcement. Worse, if a terminated
agent would prevent the coordinator and local policy from operating, then this
could prevent an effective enforcement in cases when cooperation is required to
make precise decisions.

5 Implementation

The CliSeAu implementation consists of two parts: an implementation of generic
ECs following the architecture in Figure 5, called SeAu, and a command-line
tool following the architecture in Figure 6, called Cli, for instantiating ECs and
combining the instantiated ECs with target agents. The SeAu implementation
consists of Java classes for the fixed components of CliSeAu’s ECs and Java
interfaces and abstract classes for the parametric components. Cli takes as in-
put the instantiation of the SeAu ECs in the form of a configuration file and
produces instantiated ECs. An example configuration is given in Section 6. For
modifying the Java bytecode of the agents of a target program according to the
technique presented in Section 4, Cli uses AspectJ [17] as a back-end.

6 Case Study

We have applied CliSeAu to a distributed file storage service.We built the
service by ourselves, following the architecture of distributed programs depicted
in Figure 1 of Section 2. Our service uses off-the-shelf file servers: DRS [18],

CliSeAu: Securing Distributed Java Programs 13

(a
)
ac
tio

ns
,e

ve
nt
s

an
d
ev
en
t
fa
ct
or
y

1 pointcut FileAccess(ftpdControl control, File file > boolean):
2 call(boolean eventDownloadFilePre(File))
3 && target(control) && args(file);
4 class AccessEvent implements AbstractEvent {
5 String user, company, COI; }
6 class AccessEventFactory {
7 AccessEvent fromFileAccess(ftpdControl control, File file) {
8 return new AccessEvent(getUser(control),
9 getCompany(file), getCOI(file)); } }

(b
)
lo
ca
l

po
lic
y class ChineseWallPolicy extends LocalPolicy {

PolicyResult decideEvent(AccessEvent event) {
if (locallyResponsibleFor(event)) return getChineseWallDecision(event);
else return new Delegation(whoIsResponsible(event), event); } }

(c
)
de

ci
si
on

s
an

d
en

fo
rc
er

fa
ct
or
y 1 enum BinaryDecision implements AbstractDecision { PERMIT, REJECT }

2 class SuppressionEnforcerFactory implements EnforcerFactory{
3 Enforcer fromDecision(final AbstractDecision d) {
4 BinaryDecision bd = (BinaryDecision) d;
5 switch (bd.decision) {
6 case PERMIT: return new PermittingEnforcer();
7 case REJECT: return new SuppressingEnforcer(); } } }

(d
)

C
li

Se
A

u
co
nfi

gu
ra
tio

n

1 cfg. agents = srv1, srv2 , srv3 , ...
2 srv1 . code = AnomicFTPD.jar
3 srv1 . address = srv1.example.com
4 srv1 . localPolicy = ChineseWallPolicy
5 srv1 . pointcuts = FileAccess. pc
6 srv1 . eventFactory = AccessEventFactory
7 srv1 . enforcerFactory = SuppressionEnforcerFactory
8 # parameters for srv2 , ... are defiend similarly and are omitted here

Figure 7: An instantiation of CliSeAu

AnomicFTPD [19], and Simple-ftpd [20]. Function-wise, our service allows users
to upload, download, and share files.

Security-wise, our service only supports user authentication. However, other
more specific security requirements may also arise. Consider for instance that
the storage service is used in an enterprise setting like in a bank. According to
[21], an employee of the bank may not access files from the bank’s two client
companies that have conflicts of interests. In general, such a requirement is
captured by Chinese Wall policies [7]: no single user may access files that belong
to two companies bearing conflicts of interests.

To enforce a security requirement that is not obeyed in our service, like a
Chinese Wall policy, we need to employ some security mechanism. CliSeAu
can be used to generate such a mechanism by performing the following steps:
(1) define security-relevant actions, event objects, and event factory; (2) define

14 R. Gay, J. Hu, H. Mantel

the ECs’ local policies; (3) define decision objects, enforcer objects, and enforcer
factory; (4) assemble the above to a configuration for CliSeAu.

Following these 4 steps, we actually provide an instantiation for CliSeAu.
In turn, CliSeAu uses this instantiation to generate ECs and combine them
with the file servers of our service. In this way, our service is hardened with
the enforcement of the Chinese Wall policy. Now we explain in detail how to
construct an instantiation for our service with AnomicFTPD as the file servers.

Security-relevant actions, event objects, and event factory. In order to enforce
a security requirement on a program, we first identify the program’s security-
relevant actions. For the Chinese Wall policy that we want to enforce on our
service, the actions are method calls whose execution corresponds to users’ file
accesses. For the AnomicFTPD file server, we find that file download boils down
to a call of the method eventDownloadFilePre of an ftpdControl class with a File
parameter. Therefore we use the pointcut in Figure 7 (a) (Lines 1-3) to spec-
ify that calls of the method eventDownloadFilePre are security-relevant and shall
be intercepted.4 From an intercepted method call, an event object shall be cre-
ated. Observe that the Chinese Wall policy shall define which company each
file belongs to and a COI (conflicts-of-interests) relation on the set of com-
panies. As such, the event object should capture the user who attempts to
access a file, the company that the file belongs to, and the involved COI re-
lationships. Figure 7 (a) (Lines 4-5) shows the event object AccessEvent, which
has three fields: user, company and COI. In order to construct AccessEvents, we
use the AccessEventFactory in Figure 7 (a) (Lines 6-9). In this event factory, the
fromFileAccess method uses the actual parameters of the intercepted method call
and extracts the needed information to create an object of AccessEvent.

Local policy. Next we define the local policy component of an EC . The local
policy shall make decisions about security-relevant actions and about delegation
of decision-making. For our service, we construct the local policy component
named ChineseWallPolicy in Figure 7 (b). ChineseWallPolicy checks whether it should
decide upon an input event by the method locallyResponsibleFor. If it is the case,
then a decision is computed by the method getChineseWallDecision. Otherwise
ChineseWallPolicy delegates the decision-making for the event to a remote EC by
the method whoIsResponsible. We implement the methods locallyResponsibleFor and
whoIsResponsible with the guarantee that accesses to conflicting files are always
decided by the same EC (i.e., its local policy component). The implementation
of getChineseWallDecision checks whether or not a user trying to access a file
has already accessed a conflicting file before. A method for deciding delegation
requests is defined analogously to decideEvent and thus omitted here.

4 The security-relevant actions depend on the interpretation of “access”: users access
files by (1) only downloading them or (2) by either downloading or uploading. Fig-
ure 7 (a) (Lines 1-3) is defined for case (1). In case (2), we could define a similar
specification but with the pointcut extended to match method calls for file uploads.

CliSeAu: Securing Distributed Java Programs 15

Decision objects, enforcer objects, and enforcer factory. We choose a decision
for enforcing the Chinese Wall policy to be either permitting an access or re-
jecting the access; the BinaryDecision object in Figure 7 (c) (Line 1) captures this
choice of decision. Corresponding to the two decision values are two enforcers:
PermittingEnforcer and SuppressingEnforcer, which allows an intercepted method
call to execute and suppresses the call, respectively. These two enforcers are
provided by CliSeAu. The SuppressionEnforcerFactory of Figure 7 (c) (Lines 2-7)
turns a reject decision into a SuppressingEnforcer object and a permit decision into
a PermittingEnforcer object.

Configurations. Finally, we provide the configuration in Figure 7 (d) for CliSeAu.
The configuration declares which agents exit (Line 1), which programs the agents
run (Line 2), and the agents’ addresses (Line 3). The configuration also assembles
references to the previously described parts of the instantiation (Lines 4-7).

Figure 7 constitutes an instantiation of CliSeAu, which hardens our file
storage service with a system-wide enforcement of Chinese Wall policy. CliSeAu
allows us to address individually the aspects of an instantiation: how to intercept
security-relevant actions, how to decide and possibly delegate, and how to enforce
decisions. When using CliSeAu, we can focus on these aspects and, for instance,
we need not be concerned about exchanging messages between distributed ECs
or instrumenting the executables of the program. In particular, the deciding can
be defined at a more abstract level (here based on AccessEvents) than the level
of program actions (here involving the program-specific data type ftpdControl).

7 Performance Evaluation

Securing a program with CliSeAu necessarily results in some reduction on the
program’s runtime performance. Our evalution focuses on the run-time overhead
of the enforcement.

Experimental setup. We evaluated CliSeAu with the distributed file storage
service introduced in Section 6. The service has 3 variants, depending on which
file servers are used. In our experiments, the service consisted of 10 file servers,
all of which are either DRS [18], AnomicFTPD [19], or Simple-ftpd [20]. We
refer to them as DRS service, AnomicFTPD service, and Simple-ftpd service,
respectively. We used CliSeAu to enforce the Chinese Wall policy (i.e., no single
user may access files bearing conflicts of interest), as described in Section 6.

We conducted all experiments on a 2.5 GHz dual CPU laptop running Gentoo
Linux with Kernel 3.6.11, OpenJDK 6, and AspectJ 1.6.12. All servers of each
service were run on the same machine. We chose this setup because in our exper-
iments, we are interested in the overhead introduced by the implementation of
CliSeAu. By using local network connections, we factor out the overhead intro-
duced by a real network, as this overhead originates from CliSeAu-independent
aspects such as network topology and network load distribution. We leave ex-
periments in real network settings as future work.

16 R. Gay, J. Hu, H. Mantel

20 40 60 80 100
200

205

210

215

220

file size [KB]

fi
le

d
ow

n
lo

a
d

ti
m

e
[m

s] variations of local decisions

unmodified service

service with CliSeAu
(incl. runtime overhead)

0 5 10
200

205

210

215

220

path length [hops]

fi
le

d
ow

n
lo

a
d

ti
m

e
[m

s] effect of distance

Figure 8: AnomicFTPD runtime evaluation

Run-time overhead. We evaluated the impact of CliSeAu on the services’ run-
time performance of file downloads from the perspective of a service user: we
measured the duration from the moment the user made a file download request
till the moment the user obtained the file. For DRS, we used a modified DRS
client to access files and measured inside the client the durations of the accesses;
the modification was done to measure the time. For AnomicFTPD and Simple-
ftpd, we accessed files and measured durations with a self-written FTP client
implemented based on the Apache Commons Net library. In both clients, time
was taken using the System.nanoTime API method of Java.

For each service, we varied both the size of the requested files and the number
of hops taken in the cooperation between the ECs for making enforcement deci-
sions. Figures 8–10 show the results, which are averaged over the measurements
of 2500 independent experiments.

The diagram on the left-hand side of Figure 8 shows the absolute time re-
quired for downloading files of different size from the AnomicFTPD service.
With the unmodified service, downloads took from about 203.5 ms to 206 ms,
depending on the file size. As Figure 8 (lhs) shows, the time is roughly linear in
the file size. On the other hand, the service secured with CliSeAu used time
ranging from about 206 ms to 208.5 ms. Still, download time remains linear in
the file size (see Figure 8, lhs). As Figure 9 (lhs) shows, the absolute runtime
overhead caused by CliSeAu ranged from about 2.5 ms to 2.75 ms. This cor-
responds to a relative overhead of about 1.3%. We consider this performance
overhead reasonable for the security enforcement it is traded for.

We conducted the same experiments on the DRS service and the Simple-ftpd
service as on the AnomicFTPD service. Figure 9 shows the results. The absolute
overhead is less than 3 ms. For Simple-ftpd and AnomicFTPD, the overhead is
roughly constant regardless of the changes in file size. For DRS, the overhead
was relatively more unstable; the reason for this remains unclear to us. Still, the
variation stays in a limited range from 1.9 ms to 2.8 ms.

Figure 8 (rhs) shows the absolute time required for downloading files of 10
kilobytes from the AnomicFTPD service when varying the number of hops taken
in the cooperation between the ECs. We obtained up to 10 hops by letting the
local policy implementations to not directly delegate to the responsible EC but

CliSeAu: Securing Distributed Java Programs 17

20 40 60 80 100
0

1

2

3

file size [KB]

a
b

so
lu

te
ov

er
h

ea
d

[m
s] AnomicFTPD

20 40 60 80 100
0

1

2

3

file size [KB]

a
b

so
lu

te
ov

er
h

ea
d

[m
s] DRS

20 40 60 80 100
0

1

2

3

file size [KB]

a
b

so
lu

te
ov

er
h

ea
d

[m
s] Simple-ftpd

Figure 9: Absolute runtime overhead for different file sizes

0 5 10
0

5

10

15

20

path length [hops]

a
b
so
lu
te

ov
er
h
ea
d
[m

s] AnomicFTPD

0 5 10
0

5

10

15

20

path length [hops]

a
b
so
lu
te

ov
er
h
ea
d
[m

s] DRS

0 5 10
0

5

10

15

20

path length [hops]
a
b
so
lu
te

ov
er
h
ea
d
[m

s] Simple-ftpd

Figure 10: Absolute runtime overhead for different path lengths (effect of distance)

delegate to a number of other ECs before. This setting reflects the cases where
responsible ECs are not directly reachable from a delegating EC or where more
than one EC share the information for deciding about an event. In our exper-
iments, the download time ranged from about 206 ms to 220 ms, corresponding
to overhead between about 2.7 ms and 16.1 ms (see Figure 10, lhs). The overhead
grows almost linearly with the number of hops at approximately 1.34 ms per hop.
Our experiments with DRS and Simple-ftpd show very similar results; see the
diagrams in the middle of and on the right hand side of Figure 10, respectively.

Summary. The ECs gengerated by CliSeAu caused moderate runtime overhead
for our file storage service: For file download, the overhead was about 3 ms when
the ECs could make decisions locally. When coopeerative decision-making was
needed, the overhead increased linearly with the number of the hops between
the ECs involved in the cooperation. This linearity is encouraging for deploy-
ing CliSeAu-generated ECs in a real-world setting like the Internet where a
distributed program may have a larger number of agents and thus of hops for
cooperation among ECs.

18 R. Gay, J. Hu, H. Mantel

8 Related Work

As described in the introduction, CliSeAu follows the line of SASI [4] and Poly-
mer [5]. SASI is a tool for generating ECs for Java bytecode programs as well as
for x86 executables. The ECs generated by SASI either permit the occurrence of
a security-relevant action or terminate the target otherwise. CliSeAu also al-
lows one to specify enforcers that use termination as a countermeasure. However,
CliSeAu additionally allows one to specify countermeasures corresponding to
the suppression, insertion or replacement of security-relevant actions.

Polymer is a tool for generating ECs for Java bytecode programs. The poli-
cies that a user provides to Polymer can define so-called abstract actions, Java
classes whose instances can match a set of program instructions. Furthermore,
Polymer allows a policy to be composed from several subordinate policies; in
such a composition, the superior policy queries its subordinate policies for their
policy suggestions and combines these to obtain its own suggestion. Only when
a suggestion is accepted, its corresponding countermeasure is executed. For the
countermeasures, Polymer supports the insertion and replacement of actions,
throwing a security exception, as well as to termination of the target. Con-
sidering a non-distributed setting, Polymer and CliSeAu support the same
observable program operations (method calls), the same expressiveness in the
decision-making (Java code), and the same kind of countermeasures. Therefore,
the class of properties enforceable with CliSeAu is the same as for Polymer.
Conceptually, Polymer’s abstract actions are very similar to the combination
of CliSeAu’s event objects and event factories. Polymer’s suggestions, in turn
bear a similarity to CliSeAu’s decision objects. However, in Polymer the layer
between suggestions and their corresponding countermeasures serves the pur-
pose of policy composition while CliSeAu’s layer between decision objects and
countermeasures (as enforcer objects) reduces the dependency between the local
policy and technical details of the target program.

Further tools for generating ECs for Java bytecode programs include, for ex-
ample, JavaMOP [22]. A particular characteristic of JavaMOP is the generation
of efficient ECs for properties on parametric program actions. The focus of Java-
MOP’s efficiency efforts is enforcing properties on individual Java objects of the
target program, which are realized by binding the objects of the target program
to individual monitors for the decision-making. In contrast, with CliSeAu, we
sacrifice this kind of optimization for the sake of an abstraction layer that maps
program entities to entities at the policy-level. The latter shall then be usable by
a distributed EC in the decision-making for system-wide security requirements.

Tools that are specifically tailored to distributed systems include, for ex-
ample, Moses [23], DiAna [24], and Porscha [25]. Moses is a tool for dynamic
enforcement for distributed Java programs. Technically, Moses is implemented as
a middleware that is to be used by the agents of target programs for the coordi-
nation among themselves. Moses aims at enforcing properties, called laws, on the
coordination between agents. The policies of Moses enforce such properties at the
level of agent communication by delivering, blocking, or modifying exchanged
messages. CliSeAu differs from Moses in two main directions. First, CliSeAu

CliSeAu: Securing Distributed Java Programs 19

can intercept and intervene not only communication operations of agents but
also computation operations of a single agent, like the file accesses in our ex-
ample of a distributed file storage service. Second, CliSeAu can be applied to
arbitrary Java programs and does not rely on the program to be built upon a
particular middleware. This allows CliSeAu to enforce security requirements
also on programs that have not been designed with an enforcement by CliSeAu
in mind, such as the targets of our experimental evaluation (Section 7).

DiAna is a tool for monitoring temporal properties on the state of distributed
Java programs. These programs are assumed to be built on a monitoring library.
In this sense, DiAna is similar to Moses. DiAna’s ECs intercept the communi-
cation operations between the agents of the target and exchange information
among each other by piggy-backing the information on the messages exchanged
between the agents. That is, DiAna’s ECs perform coordinated decentralized
monitoring. CliSeAu differs from DiAna in two main directions: first, CliSeAu
does not rely on the target to be built upon a particular library and, second, a
EC generated by CliSeAu is able to intercept and coordinate its enforcement
for program actions beyond agent communication.

Porscha [25] is an EC for enforcing digital rights management policies on
Android smart phones. Porscha ECs are placed in the runtime environment of
the target. Also, the ECs exchange information about the policy that affects
the data exchanged by the agents of the target. Porscha and CliSeAu have
in common that they support coordinated decentralized enforcement. However,
a key difference is that the ECs generated by CliSeAu can coordinate their
enforcement by themselves, without relying on the intercepted communication
actions of agents. That is, the ECs communicate and cooperate in a proactive
way, regardless of whether and when the agents of a distributed program com-
municate with each other. This allows the ECs to enforce security in the scenario
of Section 6, in which cooperation is required also for file access events that do
not correspond to data exchange between agents of the storage service.

9 Conclusion

We presented the tool CliSeAu for securing distributed Java programs. CliSeAu
uses cooperative dynamic mechanisms to enforce system-wide security require-
ments and allows to instantiate the mechanism for different programs and se-
curity requirements. We showed a case study of CliSeAu on a distributed file
storage service and performed experimental evaluation on the example service.
The experimental results demonstrate that the enforcement mechanisms pro-
vided by CliSeAu incur moderate runtime overhead.

Acknowledgments We thank Sarah Ereth, Steffen Lortz, and Artem Starostin for
their feedback on our research. We are also grateful to Cédric Fournet and Joshua
Guttman for inspiring discussions at early stages of our research project. This work
was partially funded by CASED (www.cased.de) and by the DFG (German research
foundation) under the project FM-SecEng in the Computer Science Action Program
(MA 3326/1-3).

20 R. Gay, J. Hu, H. Mantel

References
[1] Schneider, F.B.: Enforceable Security Policies. Transactions on Information and

System Security 3(1) (2000) 30–50
[2] Fong, P.W.L.: Access Control By Tracking Shallow Execution History. In: IEEE

Symposium on Security and Privacy, IEEE Computer Society (2004) 43–55
[3] Ligatti, J., Bauer, L., Walker, D.: Edit Automata: Enforcement Mechanisms for

Run-time Security Policies. IJIS 4(1–2) (2005) 2–16
[4] Erlingsson, U., Schneider, F.B.: SASI Enforcement of Security Policies: A Retro-

spective. In: Proceedings of the 2nd NSPW, ACM (2000) 87–95
[5] Bauer, L., Ligatti, J., Walker, D.: Composing Expressive Runtime Security Poli-

cies. Transactions on Software Engineering and Methodology 18(3) (2009)
[6] Gay, R., Mantel, H., Sprick, B.: Service Automata. In: Proceedings of the 8th

International Workshop on Formal Aspects of Security and Trust. LNCS 7140,
Springer (2012) 148–163

[7] Brewer, D.F., Nash, M.J.: The Chinese Wall Security Policy. In: Proceedings of
the IEEE Symposium on Security and Privacy. (1989) 206–214

[8] Mazaheri, S.: Race conditions in distributed enforcement at the example of online
social networks. Bachelor thesis, TU Darmstadt (2012)

[9] Scheurer, D.: Enforcing Datalog Policies with Service Automata on Distributed
Version Control Systems. Bachelor thesis, TU Darmstadt (2013)

[10] Wendel, F.: An evaluation of delegation strategies for coordinated enforcement.
Bachelor thesis, TU Darmstadt (2012)

[11] Lamport, L.: Proving the Correctness of Multiprocess Programs. IEEE Transac-
tions on Software Engineering 3(2) (1977) 125–143

[12] Alpern, B., Schneider, F.B.: Defining Liveness. Information Processing Letters
21 (1985) 181–185

[13] Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Security
18(6) (2010) 1157–1210

[14] McLean, J.D.: Security Models. In Marciniak, J., ed.: Encyclopedia of Software
Engineering. John Wiley & Sons, Inc. (1994)

[15] Booch, G., Maksimchuk, R.A., Engle, M.W., Young, B.J., Connallen, J., Houston,
K.A.: Object-oriented Analysis and Design with Applications. third edn. (2007)

[16] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (1995)

[17] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
Overview of AspectJ. In: Proceedings of the 15th ECOOP. LNCS 2072, Springer
(2001) 327–353

[18] : DRS. http://www.octagonsoftware.com/home/mark/DRS/ (1999)
[19] : AnomicFTPD v0.94. http://anomic.de/AnomicFTPServer/ (2009)
[20] : simple-ftpd. https://github.com/rath/simple-ftpd (2010)
[21] : PUBLIC LAW 107 - 204 - SARBANES-OXLEY ACT OF 2002
[22] Chen, F., Roşu, G.: MOP: An Efficient and Generic Runtime Verification Frame-

work. In: Proceedings of the 22nd OOPSLA, ACM (2007) 569–588
[23] Minsky, N.H., Ungureanu, V.: Law-governed Interaction: a Coordination and

Control Mechanism for Heterogeneous Distributed Systems. ACM Transactions
on Software Engineering Methodology 9(3) (2000) 273–305

[24] Sen, K., Vardhan, A., Agha, G., Roşu, G.: Efficient Decentralized Monitoring of
Safety in Distributed Systems. In: Proceedings of the 26th ICSE. (2004) 418–427

[25] Ongtang, M., Butler, K.R., McDaniel, P.D.: Porscha: Policy Oriented Secure
Content Handling in Android. In: ACSAC. (2010) 221–230

CliSeAu: Securing Distributed Java Programs 21

config ::= keyvalue | config keyvalue
keyvalue ::= cfg.agents = agentnames | agentname.address = DomainOrIP

| agentname.classkey = JavaClassName | agentname.filekey = FileName
agentnames ::= agentname | agentnames , agentname
classkey ::= eventFactory | enforcerFactory | localPolicy
filekey ::= intActComp | decComp | code | pointcuts

Figure 11: Syntax of CliSeAu configurations in BNF

1 interface AbstractEvent extends Serializable {}
2 interface AbstractDecision extends Serializable,PolicyResult {}
3 interface DelegationReqResp extends Serializable,PolicyResult {}
4 interface EventFactory {}
5 interface EnforcerFactory {
6 static Enforcer fromDecision(AbstractDecision ad); }
7 interface Enforcer {
8 boolean suppress();
9 void before();

10 void after();
11 Object getReturnValue(Class c); }
12 abstract class LocalPolicy {
13 /∗ fields, getters, setters, and constructor omitted ∗/
14 abstract PolicyResult decideEvent(AbstractEvent ev);
15 abstract PolicyResult decideRequest(DelegationReqResp dr); }

Listing 1: Interfaces for the Java parameters of CliSeAu configurations

A CliSeAu Implementation Details

In this section, we provide additional details about the implementation of CliSeAu.
This serves as a reference for the configuration of CliSeAu in concrete settings.

The syntax of configuration files is shown in Figure 11. The cfg.agents key
declares a list of unique names for agents. Each EC of an agent is configured
by eight keys, prefixed by the instance’s name: (1) address defines the net-
work address through which an EC ’s coordinator can be reached by other ECs;
(2) eventFactory defines the class name of the event factory; (3) enforcerFactory
defines the class name of the enforcer factory; (4) localPolicy defines the class
name of the local policy; (5) pointcuts specifies the name of a file, in which
security-relevant actions are specified; (6) intActComp specifies the name of a
JAR file that holds the compiled code of the parametric components for inter-
cepting and acting; (7) decComp specifies the name of a JAR file that holds the
compiled code of the parametric components for deciding; (8) code specifies the
name of a JAR file that holds the bytecode of the agent’s original implementa-
tion.

The parametric components of SeAu (see Figure 5) must be Java classes im-
plementing the interfaces and base classes of Listing 1. AbstractEvents, AbstractDecisions,
and DelegationReqResps – i.e., the datatypes exchanged between the components,

22 R. Gay, J. Hu, H. Mantel

must implement the Serializable interface as they are serialized for transmission
via network connections. An EventFactory must provide one factory method for
each method whose call corresponds to a security-relevant action of the target
agent. An EnforcerFactory uses a single factory method, fromDecision, for produc-
ing enforcers corresponding to decisions. An Enforcer must implement whether a
security-relevant action shall be suppressed, must specify code to execute before
and after the security-relevant action, and must provide an alternate return value
for suppressed method calls. Instantiations of the local policy parameter must
extend the abstract LocalPolicy class of Listing 1. That is, a local policy com-
ponent of an EC must implement two methods: The decideEvent method takes
an event object and must return a decision object or a delegation request (both
derived from PolicyResult). The decideRequest method takes a delegation request
or delegation response and must return a decision object, a delegation request,
or a delegation response.

