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Abstract 

 
In the area of sequential computing the RAM 

(Random Access Machine) has successfully provided 
model of computation, in the realm of parallel computing 
there has been no similar success. The need for such 
unifying parallel model is growing by the demand for 
performance and the diversity among machines. 

This survey is trying briefly to describe models of 
parallel computation and the different roles they serve in 
algorithm, language and machine design. In the end I tried 
to write in more details about the PRAM programming 
model and mentioned some fundamental algorithms used 
in it. 

1. Introduction 
Modeling complex phenomena is old as science itself. 

Choosing the right characteristic to model and 
incorporating requires as much artistic creativity as 
scientific methodology. Today models are ubiquitous-
controlling large portions of financial markets, routing our 
air and space traffic, explaining the nature of our genetic 
make-up, tracking our weather, helping us to understand 
mystery of our universe and predicting our overall 
economic health. 

Computer scientists use models to help design 
efficient problem solving tools. These tools include fast 
algorithms effective programming environments and 
powerful executions engines. Modeling can be used 
interactively with implementation in a symbolic process of 
problem solution, which is far more efficient than using 
either approach separately. 

The survey is presented with a simple logical 
framework. This framework allows the wide array of 
models to be viewed somewhat systematically [1]. 

Computation model. 
The solution to any given task begins with the design 

of a set of steps (an algorithm), which will realize the 
computational solution to an abstract problem 
specification. The problem can come from many different 
areas such as: mathematics, physics, biology, astrophysics 
etc.  

In each domain the translation from problem to 
computational algorithm requires a model of computation. 
Development of serial computing produced among others, 
the widely accepted Von Neumann model expressed in the 

Random Access Machine model (RAM) [2]. Such 
computational model must clearly define an execution 
engine powerful enough to produce a solution to a relevant 
class of problems. Moreover such models need to reflect to 
the computing characteristics of practical computing 
platforms. These objectives enable the translation from an 
abstract formulation to an algorithm, which gives the 
desired solution. 

Programming model. 
 An algorithmic specification is then translated into a 

sequence of machine-independent software instruction. 
The programming model facilitates the translation. The 
programming model provides a set of rules or relationships 
that defines the meaning of a set of programming 
abstractions. These abstractions are manifested in a 
programming language and architecture, which are an 
instantiation of that programming model.  

Architectural models. 
Architectural models describe a class of models used 

for a range of design purposes such as language 
implementation and machine design. Then models need to 
reflect the detailed execution characteristics of the actual 
computer. These models cover a wide range form high 
level representation or an architectural level to instruction 
execution models. 

These models are primarily used in machine design 
and are commonly used in parallel computing to compare 
alternative architectures.  

Performance analysis using these models expressed 
the design characteristics and concerns of evolving 
technologies and provides feedback onto many aspects of 
task solutions. 

Serial vs. Parallel Models of Computation. 
Using an abstract machine model we can facilitate 

consistency by providing clear and simple rendering of 
execution engine. Unfortunately the search for such a 
unifying parallel model has been less successful. The 
natural analog, the parallel random access machine meets 
this standard, but it is no so accurate as RAM. An example 
for unmodeled characteristics is the cost of non-local 
memory reference, which has a great impact on 
performance. The RAM is accurate enough to be used at 
least for asymptotic performance measures.   

 



2. Computational Models 
The RAM model of sequential computation 
A common abstract view of a computer is the von 

Neumann model, which is a device consisting of a 
memory unit that holds data to be operated on, a program 
stored either in memory or in special program memory, 
and a central processing unit (CPU), which carries out the 
instructions of the program one after another [3]. The 
memory is divided into words. The central processing unit 
(CPU) consists of an ALU and a set of registers. The 
purpose of the registers is to store intermediate results. The 
instruction can be divided into three categories: Memory 
access instructions, Arithmetic logical instructions, and 
Conditional instructions. 

Memory access instructions, which are used for 
loading the contents of a memory into a registers of the 
CPU, or for storing word into the memory. 

Arithmetic logical instructions operate on words 
stored in registers in the processing unit, such as adding 
two words, forming the bitwise AND of two words, or 
shifting a word by given number of the position; there may 
also be an instruction for getting a random number [3]. 

Conditional instructions are used for controlling of the 
flow of operations including the halting instruction when 
computation is over. 

In the CPU there is special register called PC(program 
counter). Each time unit this register is either advanced to 
the next instruction in the program, or changed due to the 
execution of a conditional instruction to point to some 
other instruction in the program. 

 This model is called RAM (see in Figure 1).  

 
Fig. 1   The random access machine 

 
The PRAM models 
The PRAM model is natural generalization of the 

RAM model [3]. The PRAM model uses an unspecified 
number of identical processing units, which operate under 
the control of a common clock. All processors use a 
common shared memory. Each processor has its own 
number (ID), which uniquely identifies the processor. The 
processors perform instructions in unit time according to a 
stored program. The program may reside either in shared 

memory, or as will be assumed here in separate program 
memories that are private to each processor [3]. A PRAM 
models is depicted in Figure 2.  

 
Fig. 2   The PRAM 

 
The processor perform exactly one instruction each 

time step. We are not assuming that processors all have the 
same program. We assume that the PRAM is always in a 
consistent state, which can be described by the contents of 
the shared memory and the value of the program counter 
for each processor. According to Flynn’s taxonomy we 
consider the PRAM as a multiple instruction multiple data 
(MIMD) machine [4]. 

 In one program step all active processors 
simultaneously perform an instruction, not necessarily the 
same for each processor, which can be either type of 
memory access, arithmetic logical, or conditional. 

Depending on what happens in such cases, we have 
several variants of PRAM model. It is common to 
distinguish between the following three main PRAM 
cases: 

EREW. 
Exclusive read, exclusive write, which means no two 

processors may read nor write to the same memory cell 
within the same memory cell within the same tome step. 

CREW. 
Concurrent read, exclusive write means that 

concurrent reading is allowed, that is more than one 
processor can read the contents of a memory cell in the 
same time step, but simultaneous writing to the same cell 
is not allowed. 

CRCW. 
Concurrent read, concurrent write provides both 

simultaneous reading and writing to a cell by several 
processors, although reading and writing the same cell in 
the same step is not allowed. There are some mechanisms 
[3], in order to resolve conflicts, if several processors 
simultaneously write to the same cell. 



3. Quality for parallel algorithm 
Measures of efficiency of PRAM algorithms are one 

of the most important things of parallel programming, 
since one can evaluate the quality of a parallel algorithms. 
Therefore the performance of a parallel algorithm for a 
given computational problem is measured relatively to a 
sequential algorithm for the same problem. 

Let us first set up some basic symbols and definitions 
[7]. 

Symbols used in text. 
• tA(n) = time needed by parallel algorithm A 

i.e., number of steps with input of size n (worst 
case)  

• ts(n) = time needed by the best sequential 
algorithm worst case, input of size n 

• wA(n) = work 
    i.e., number of operations to be performed by A 

• pA(n) = number of processors 
• pA(n) . tA(n) = cost of the parallel algorithm 

 
Definition 4.1 (work and time optimality) Let S be 

either an optimal or a currently best-known sequential 
algorithm for problem P, and let n denote the size of an 
instance of P. 

A parallel algorithm A is work-optimal for P if wA(n) 
= O(ts(n)). 

A parallel algorithm A is time-optimal for P if any 
other parallel algorithm would require at least Ω( tA(n)) 
time steps. 

A parallel algorithm A is work time-optimal for P if 
any other work-optimal algorithm would require Ω( tA(n))  
time steps. 

[3] 
Definition 4.2 (work efficiency) Let S be either an 

optimal or a currently best-known sequential algorithm for 
problem P, and let n denote the size of an instance of P. 

A parallel algorithm A is work-efficient for P if 
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Theorem. 
Brent’s theorem: Any PRAM algorithm A which runs 

in tA(n) time step and performs wA(n) work can be 
implemented to run on a p-processor PRAM in 
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Brent’s Theorem states that for an algorithm A which 
performs work wA(n) an algorithm A‘ exists with the same 
cost, that is cA‘(n)=wA(n)+ pA’(n) . tA(n). Thus we can 

avoid in principle a situation where the cost of parallel 
algorithm is higher than the work it performs. 

The theorem just assumes that we can identify the 
active processors. Thus we can relocate their work among 
the p available processors. 

Speedup. 
The speedup of the parallel algorithm is the 

improvement in runtime that a parallel algorithm is able to 
produce over a sequential algorithm for the same problem. 

For a given problem, which we denote P, let us 
consider A as a parallel algorithm, and let S be an 
asymptotically optimal or currently best-known sequential 
algorithm for P. 

We use the term absolute, when comparing the 
parallel runtime of A to an optimal sequential algorithm 
[3], whereas relative speedup is measured relatively to the 
sequential algorithm obtained from running A with only 
one processor.  

Let tA(n) denote the runtime of A on an instance of P 
of size n. Let ts(n) be the runtime of S. 

Definition 4.1 (asymptotic absolute speedup) The 
asymptotic absolute speedup of parallel algorithm A 
relative to a best (known) sequential algorithm S in the 
ratio 
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Definition 4.2 (Absolute speedup) The absolute 

speedup of a parallel algorithm A is the ratio  
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Definition 4.3 (Relative speedup) The asymptotic 
relative speedup of parallel algorithm A is the ratio. 
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Definition 4.4 (relative efficiency) the relative 

efficiency of parallel algorithm A is the ratio: 
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4. Fundamental PRAM algorithms 
We are going to consider two important problems, 

whose solution illustrate issues and techniques that come 
up in the design of efficient PRAM algorithm. 



4.1. The prefix-sum problem. 
The idea of the prefix-sum problem is quite simple. 

There is a sequence of n numbers and we want to calculate 
their sum. Sequentially the problem is trivial to solve. One 
solution can be as follows: we store numbers in an array 
and scan the array from left to right, summing up the 
numbers as we go along. 

We formulate the prefix-sums problem as follows. 
Given a set S, a binary associative operator ⊕ on S, and a 
sequence of n items x0,….xn-1 elements of S, compute the 
sequence y of prefix-sums defined by[3]. 
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Solving the prefix-sums problem using a sequential 
algorithm is quite natural. Parallel algorithm considers that 
the ⊕-operator is associative, thus prefix sum x0⊕x1⊕…xi 
can be computed from partial sums (x0⊕x1)⊕..(xi-1⊕xi), 
and these partial sums can all be computed 
simultaneously. Since we computed the partial sums in 
parallel, the original problem of calculating its prefix sum 
has reduced to similar problem of half size. 

Now we are able to generalize our problem and 
extract an abstract algorithm from our observation.  

Let a sequence x0,….xn-1   of numbers be given. We 
want to compute the sequence y of prefix-sums of the x 
sequence. We are going to solve our prefix-sums problem 
recursively.  

First we compute a new sequence z of length (n/2) by 
summing the elements of xi pair wise in parallel. 

 2/0122 niforxxz iii <≤⊕= +  
Then we continue solving the problem recursively on 

the z sequence, giving back a sequence y‘ of prefix sums. 
Then we obtain [3]: 
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We can return y2i+1 =y’i   for   2/ni <≤0 . The even 
prefix sums can be obtained y2i =y’i-1 ⊕  x2i for  

 2/0 ni <≤  and y0 = x0. 
This solution of the prefix-sum is much more suitable 

for parallel implementation. In recursive invocation with a 
sequence of length n ,n/2 partial sum can be computed in 
parallel, and on return again n/2  sum computation must 
be done to compute the prefix sums for even-numbered 
elements of given sequence [3].  

Let us consider an example, which is going to 
illustrate the solution of the prefix-sums problem. As input 
data x we consider the sequence of numbers 1,…,8. The 
data flow can be seen on Figure 3. 

 
Fig. 3   Data flow of prefix-sum algorithm 

Let us consider a concrete implementation using a 
PRAM programming language. 

Let us have a recursive function prefix_rec (x,n,d), 
which takes an array of integer x of n elements and 
calculate prefix-sums. Parameter d is auxiliary variable. 

We are assuming that all processors have the code in 
their local memories. Variable ID is used for storing ID of 
particular processor. A Fork program could look as 
follows [3]: 

 

 

void prefix_rec (sh int x[], sh int n, sh int d) 
{ 
   int dd; 

j and d =dd/2 for recursive call  level j 
   dd=dd*2; 
  if (dd>=n) return; //done 
  if (ID<n/dd) 
    //only processor 0 to n/2^j perform computations 
  x[(ID+1)*dd-1]=x[(ID+1)*dd-1-d]+x[(ID+1)*dd-1]; 
  prefix_rec(x,n,dd); // all processors call recursively 
  if (ID<n/dd-d) 
    //only processor 0 to n/2^j-d perform computations 
  x[(ID+1)*dd-1+d]=x[(ID+1)*dd-1]+x[(ID+1)*dd+d]; 
} 

   // dd=2^

Figure 4 illustrates algorithm with an example. Input 
data is sequence of numbers from 1 till 8. The outlined 
array indicates the sum computations done before the 
recursive call and dotted array show sum computations 
done on return from the recursive call. Each step is 
numbered. 

  



 

Fig. 4   Example of prefix-sum algorithm 
 

Let us evaluate the algorithm mentioned above.  
Time. 
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Work. 
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The parallel algorithm can run on EREW PRAM. 
4.2. Divide-and-Conquer 
Sequential Divide-and-Conquer 
Divide-and-Conquer is a basic algorithmic technique 

in sequential algorithm design. This algorithm technique 
can solve a problem of size n by dividing it into k≥1 
subproblems of smaller size. Then solves subproblems 
recursively and finally merges the solution of original 
problem from the solutions of the k subproblems. The 
algorithm finishes recursion when the problem size is 
below a given threshold. This means, when solving the 
problem becomes trivial. Divide and Conquer can be 
described by a recursive function. 

 Let us define Divide-and-Conquer algorithms in 
general [5]. 

Let V(n) be a solution, which we obtain by applying 
by algorithm A for problem instance of the input data 
P(n), n∈ N. 

I. Divide a problem instance of  P(n) to 
subproblem  

.,...2,1,)(),( kiPnPnP iii ==U  
II. Apply algorithm A to subproblems P(ni). By 

this we obtain solutions V(ni). 
III. Assembling solutions V(ni) we get solution 

V(n) 
Then we are recursively repeating I till III until we get 

trivial problem instances, which are solved directly. 
There are two assumptions, which we have to 

consider. First, we are able to assemble solution. Second 

the final solution of P(n) can be obtained by assembling 
particular subsolutions of subproblems P(ni).  

Parallel Divide-and-Conquer 
The k subproblems are independent, that is why they 

may be computed concurrently by different processors. In 
order to obtain a fully parallel divide-and-conquer 
implementation, also divide and conquer steps must be 
parallelized if possible [3]. 

To illustrate this strategy in a parallel setting, we 
consider the planar convex hull problem [6]. We are given 
a set S = {p1, . . . , pn} of points, where each point pi is an 
ordered pair of coordinates (xi, yi). We further assume that 
points are sorted by x-coordinate. (If not, this can be done 
as a preprocessing step with low enough complexity 
bounds.) We are asked to determine the convex hull 
CH(S), i.e., the smallest convex polygon containing all the 
points of S, by enumerating the vertices of this polygon in 
clockwise order. Figure 5 shows an instance of this 
problem. The sequential complexity of this problem is ts(n) 
= Θ(n log n)[6]. Any of several well-known algorithms [6] 
for this problem establishes the upper bound. A reduction 
from comparison-based sorting establishes the lower 
bound. See Figure 5. 

 

Fig. 5 Determining the convex hull of the set of points 
  
We first note that p1 and pn belong to CH(S) by virtue 

of the sortedness of S, and partition the convex hull 
into an upper hull UH(S) and a lower hull LH(S). 
Without loss of generality, we will show how to compute 
UH(S). The division step is: we partition S into S1 = {p1, . . 
. , pn/2} and S2 = {pn/2+1, . . . , pn}. We then recursively 
obtain UH(S1) =< p1 = q1, . . . , qs> and UH(S2) = <r1, . . . , 
rt = pn>. Assume that for n ≤ 4, we solve the problem by 



brute force. This gives us the termination condition for the 
recursion. 

The combination step is nontrivial. Let the upper 
common tangent (UCT) be the common tangent to 
UH(S1) and UH(S2) such that both UH(S1) and UH(S2) 
are below it. Thus, this tangent consists of two points, one 
each from UH(S1) and UH(S2). Let UCT(S1, S2) = (qi, rj). 
Assume the existence of an O(log n) time sequential 
algorithm for determining UCT(S1, S2) [6]. Then UH(S) = 
<q 1, . . . , qi, rj, . . . , rt>, and contains (i + t - j + 1) 
points. Given s, t, i, and j, we can obtain UH(S) in Θ(1) 
steps and O(n) work as follows. 
forall k ∈ 1 : i + t - j + 1 do 
  UH(S)k ← if k ≤ i then qk else rk+j-i-1 endif 
enddo 
 
 

This algorithm requires model of a CREW PRAM. To 
analyze its complexity, we note that: 

Time 
)(log)()(log)2/()( 2 nOntnOntnt AAA =⇒+=   

Work 
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5. Conclusion 
The computational models presented above were 

chosen to be representative subset of the numerous 
proposed abstract models of parallel computation. 

There are other parallel models, which I didn’t 
mention above. Let us have a brief overview of some other 
models. 

Distributed models 
The perceived technical infeasibility of constant time 

access to a global address space led to development of 
many PRAM variants. As an example, we can mention the 
Distributed Memory Model (DMM). It posits private 
memory modules associated with processors in a bounded 
degree network. Computation and nearest neighbor 
communication require one time step. 

Postal Model deriving its name from an analogy to the 
US mail system In this model to accomplish a non-local 
memory access a processor posts a message into the 
network and goes about its business posting other 
messages while the first being delivered. 

Low-Level models  
Many abstract models have been recently developed 

which incorporate a more detailed view of the machine 
components and behavior The objective of these Low-
level models is often to assess the feasibility and 
efficiency of a particular machine or component design 
sometimes for a particular class of algorithms or to 
understand which particular algorithm or implementation 
may be most efficient on a given machine or component 
design. For example There was developed detailed model 

of the CM-2 by Thinking Machines Inc. hypercube 
connected massively parallel computer, in order to better 
understand which sorting algorithms and implementations 
perform best on this platform. 

Network models 
The class of model discussed above ignores the 

possible impacts of the topology of the communication 
network. Network models of parallel computation reflect a 
focus of concern in the early generation of parallel 
computers. These computers tended to be fine-grained 
composed of a large number of relatively small processors. 
Network models generally ascribe some amount of local 
memory to each processor. The cost of a remote memory 
access is a function. 

Bridging models 
The notion of a bridging model was captured by 

Valiant when he described the von Neumann model as „a 
connecting bridge that enables programs to run efficiently 
on machines from the diverse and chaotic world of 
hardware“ [9]. 

Valiant‘s own bulk Synchronous Parallel (BSP) 
Model posits a distributed memory with three parameters. 
The model provides P processors with local memory a 
router and facilities for periodic global synchronization.  
Computation can be synchronized at most every l steps 
and the ratio of local units of computation to the steps 
required to transmit or receive a message is a parameter g. 

These three parameters serve several functions. First 
the parameter l reflects the cost of invoking a 
synchronization operation. It also implies communication 
latency because remote memory accesses do not take 
effect until after the execution of synchronization. Second 
the parameter g enforces bandwidth limitations. It requires 
that messages be sent at most once every g arithmetic 
operations. 

Another example of a bridging model, which has 
focused on, more accurately reflecting existing machine 
attributes is the LogP model [10]. 
 
Appendix 
 

Definitions. 
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