
 PRAM PROGRAMMING MODEL AND ALGORITHMS

Jan Liguš
Linköping University

584 34 Linköping, Sweden

Abstract

In the area of sequential computing the RAM

(Random Access Machine) has successfully provided
model of computation, in the realm of parallel computing
there has been no similar success. The need for such
unifying parallel model is growing by the demand for
performance and the diversity among machines.

This survey is trying briefly to describe models of
parallel computation and the different roles they serve in
algorithm, language and machine design. In the end I tried
to write in more details about the PRAM programming
model and mentioned some fundamental algorithms used
in it.

1. Introduction
Modeling complex phenomena is old as science itself.

Choosing the right characteristic to model and
incorporating requires as much artistic creativity as
scientific methodology. Today models are ubiquitous-
controlling large portions of financial markets, routing our
air and space traffic, explaining the nature of our genetic
make-up, tracking our weather, helping us to understand
mystery of our universe and predicting our overall
economic health.

Computer scientists use models to help design
efficient problem solving tools. These tools include fast
algorithms effective programming environments and
powerful executions engines. Modeling can be used
interactively with implementation in a symbolic process of
problem solution, which is far more efficient than using
either approach separately.

The survey is presented with a simple logical
framework. This framework allows the wide array of
models to be viewed somewhat systematically [1].

Computation model.
The solution to any given task begins with the design

of a set of steps (an algorithm), which will realize the
computational solution to an abstract problem
specification. The problem can come from many different
areas such as: mathematics, physics, biology, astrophysics
etc.

In each domain the translation from problem to
computational algorithm requires a model of computation.
Development of serial computing produced among others,
the widely accepted Von Neumann model expressed in the

Random Access Machine model (RAM) [2]. Such
computational model must clearly define an execution
engine powerful enough to produce a solution to a relevant
class of problems. Moreover such models need to reflect to
the computing characteristics of practical computing
platforms. These objectives enable the translation from an
abstract formulation to an algorithm, which gives the
desired solution.

Programming model.
 An algorithmic specification is then translated into a

sequence of machine-independent software instruction.
The programming model facilitates the translation. The
programming model provides a set of rules or relationships
that defines the meaning of a set of programming
abstractions. These abstractions are manifested in a
programming language and architecture, which are an
instantiation of that programming model.

Architectural models.
Architectural models describe a class of models used

for a range of design purposes such as language
implementation and machine design. Then models need to
reflect the detailed execution characteristics of the actual
computer. These models cover a wide range form high
level representation or an architectural level to instruction
execution models.

These models are primarily used in machine design
and are commonly used in parallel computing to compare
alternative architectures.

Performance analysis using these models expressed
the design characteristics and concerns of evolving
technologies and provides feedback onto many aspects of
task solutions.

Serial vs. Parallel Models of Computation.
Using an abstract machine model we can facilitate

consistency by providing clear and simple rendering of
execution engine. Unfortunately the search for such a
unifying parallel model has been less successful. The
natural analog, the parallel random access machine meets
this standard, but it is no so accurate as RAM. An example
for unmodeled characteristics is the cost of non-local
memory reference, which has a great impact on
performance. The RAM is accurate enough to be used at
least for asymptotic performance measures.

2. Computational Models
The RAM model of sequential computation
A common abstract view of a computer is the von

Neumann model, which is a device consisting of a
memory unit that holds data to be operated on, a program
stored either in memory or in special program memory,
and a central processing unit (CPU), which carries out the
instructions of the program one after another [3]. The
memory is divided into words. The central processing unit
(CPU) consists of an ALU and a set of registers. The
purpose of the registers is to store intermediate results. The
instruction can be divided into three categories: Memory
access instructions, Arithmetic logical instructions, and
Conditional instructions.

Memory access instructions, which are used for
loading the contents of a memory into a registers of the
CPU, or for storing word into the memory.

Arithmetic logical instructions operate on words
stored in registers in the processing unit, such as adding
two words, forming the bitwise AND of two words, or
shifting a word by given number of the position; there may
also be an instruction for getting a random number [3].

Conditional instructions are used for controlling of the
flow of operations including the halting instruction when
computation is over.

In the CPU there is special register called PC(program
counter). Each time unit this register is either advanced to
the next instruction in the program, or changed due to the
execution of a conditional instruction to point to some
other instruction in the program.

 This model is called RAM (see in Figure 1).

Fig. 1 The random access machine

The PRAM models
The PRAM model is natural generalization of the

RAM model [3]. The PRAM model uses an unspecified
number of identical processing units, which operate under
the control of a common clock. All processors use a
common shared memory. Each processor has its own
number (ID), which uniquely identifies the processor. The
processors perform instructions in unit time according to a
stored program. The program may reside either in shared

memory, or as will be assumed here in separate program
memories that are private to each processor [3]. A PRAM
models is depicted in Figure 2.

Fig. 2 The PRAM

The processor perform exactly one instruction each

time step. We are not assuming that processors all have the
same program. We assume that the PRAM is always in a
consistent state, which can be described by the contents of
the shared memory and the value of the program counter
for each processor. According to Flynn’s taxonomy we
consider the PRAM as a multiple instruction multiple data
(MIMD) machine [4].

 In one program step all active processors
simultaneously perform an instruction, not necessarily the
same for each processor, which can be either type of
memory access, arithmetic logical, or conditional.

Depending on what happens in such cases, we have
several variants of PRAM model. It is common to
distinguish between the following three main PRAM
cases:

EREW.
Exclusive read, exclusive write, which means no two

processors may read nor write to the same memory cell
within the same memory cell within the same tome step.

CREW.
Concurrent read, exclusive write means that

concurrent reading is allowed, that is more than one
processor can read the contents of a memory cell in the
same time step, but simultaneous writing to the same cell
is not allowed.

CRCW.
Concurrent read, concurrent write provides both

simultaneous reading and writing to a cell by several
processors, although reading and writing the same cell in
the same step is not allowed. There are some mechanisms
[3], in order to resolve conflicts, if several processors
simultaneously write to the same cell.

3. Quality for parallel algorithm
Measures of efficiency of PRAM algorithms are one

of the most important things of parallel programming,
since one can evaluate the quality of a parallel algorithms.
Therefore the performance of a parallel algorithm for a
given computational problem is measured relatively to a
sequential algorithm for the same problem.

Let us first set up some basic symbols and definitions
[7].

Symbols used in text.
• tA(n) = time needed by parallel algorithm A

i.e., number of steps with input of size n (worst
case)

• ts(n) = time needed by the best sequential
algorithm worst case, input of size n

• wA(n) = work
 i.e., number of operations to be performed by A

• pA(n) = number of processors
• pA(n) . tA(n) = cost of the parallel algorithm

Definition 4.1 (work and time optimality) Let S be

either an optimal or a currently best-known sequential
algorithm for problem P, and let n denote the size of an
instance of P.

A parallel algorithm A is work-optimal for P if wA(n)
= O(ts(n)).

A parallel algorithm A is time-optimal for P if any
other parallel algorithm would require at least Ω(tA(n))
time steps.

A parallel algorithm A is work time-optimal for P if
any other work-optimal algorithm would require Ω(tA(n))
time steps.

[3]
Definition 4.2 (work efficiency) Let S be either an

optimal or a currently best-known sequential algorithm for
problem P, and let n denote the size of an instance of P.

A parallel algorithm A is work-efficient for P if

))(((log).()(ntOntnw s
k

sA =
for some constant k≥1.

[3]
Theorem.
Brent’s theorem: Any PRAM algorithm A which runs

in tA(n) time step and performs wA(n) work can be
implemented to run on a p-processor PRAM in

))()((
p

nwntO A
A +

time steps
[8]

Brent’s Theorem states that for an algorithm A which
performs work wA(n) an algorithm A‘ exists with the same
cost, that is cA‘(n)=wA(n)+ pA’(n) . tA(n). Thus we can

avoid in principle a situation where the cost of parallel
algorithm is higher than the work it performs.

The theorem just assumes that we can identify the
active processors. Thus we can relocate their work among
the p available processors.

Speedup.
The speedup of the parallel algorithm is the

improvement in runtime that a parallel algorithm is able to
produce over a sequential algorithm for the same problem.

For a given problem, which we denote P, let us
consider A as a parallel algorithm, and let S be an
asymptotically optimal or currently best-known sequential
algorithm for P.

We use the term absolute, when comparing the
parallel runtime of A to an optimal sequential algorithm
[3], whereas relative speedup is measured relatively to the
sequential algorithm obtained from running A with only
one processor.

Let tA(n) denote the runtime of A on an instance of P
of size n. Let ts(n) be the runtime of S.

Definition 4.1 (asymptotic absolute speedup) The
asymptotic absolute speedup of parallel algorithm A
relative to a best (known) sequential algorithm S in the
ratio

)(
)(

nt
nt

A

s

[3]
Definition 4.2 (Absolute speedup) The absolute

speedup of a parallel algorithm A is the ratio

),(
)(),(
npt

ntnpSU
A

s
abs =

[3]

Definition 4.3 (Relative speedup) The asymptotic
relative speedup of parallel algorithm A is the ratio.

),(
),1(),(

npt
ntnpSU

A

A
rel =

[3]
Definition 4.4 (relative efficiency) the relative

efficiency of parallel algorithm A is the ratio:

),(.
),1(),(
nptp

ntnpEF
A

A=

[3]

4. Fundamental PRAM algorithms
We are going to consider two important problems,

whose solution illustrate issues and techniques that come
up in the design of efficient PRAM algorithm.

4.1. The prefix-sum problem.
The idea of the prefix-sum problem is quite simple.

There is a sequence of n numbers and we want to calculate
their sum. Sequentially the problem is trivial to solve. One
solution can be as follows: we store numbers in an array
and scan the array from left to right, summing up the
numbers as we go along.

We formulate the prefix-sums problem as follows.
Given a set S, a binary associative operator ⊕ on S, and a
sequence of n items x0,….xn-1 elements of S, compute the
sequence y of prefix-sums defined by[3].

niforxy j

i

ji <≤⊕=
=

0
0

Solving the prefix-sums problem using a sequential
algorithm is quite natural. Parallel algorithm considers that
the ⊕-operator is associative, thus prefix sum x0⊕x1⊕…xi
can be computed from partial sums (x0⊕x1)⊕..(xi-1⊕xi),
and these partial sums can all be computed
simultaneously. Since we computed the partial sums in
parallel, the original problem of calculating its prefix sum
has reduced to similar problem of half size.

Now we are able to generalize our problem and
extract an abstract algorithm from our observation.

Let a sequence x0,….xn-1 of numbers be given. We
want to compute the sequence y of prefix-sums of the x
sequence. We are going to solve our prefix-sums problem
recursively.

First we compute a new sequence z of length (n/2) by
summing the elements of xi pair wise in parallel.

 2/0122 niforxxz iii <≤⊕= +
Then we continue solving the problem recursively on

the z sequence, giving back a sequence y‘ of prefix sums.
Then we obtain [3]:

 2/0)(12200
niforxxzy jj

i

ji

i

ji <≤⊕⊕=⊕=′
+==

We can return y2i+1 =y’i for  2/ni <≤0 . The even
prefix sums can be obtained y2i =y’i-1 ⊕ x2i for

 2/0 ni <≤ and y0 = x0.
This solution of the prefix-sum is much more suitable

for parallel implementation. In recursive invocation with a
sequence of length n ,n/2 partial sum can be computed in
parallel, and on return again n/2 sum computation must
be done to compute the prefix sums for even-numbered
elements of given sequence [3].

Let us consider an example, which is going to
illustrate the solution of the prefix-sums problem. As input
data x we consider the sequence of numbers 1,…,8. The
data flow can be seen on Figure 3.

Fig. 3 Data flow of prefix-sum algorithm

Let us consider a concrete implementation using a
PRAM programming language.

Let us have a recursive function prefix_rec (x,n,d),
which takes an array of integer x of n elements and
calculate prefix-sums. Parameter d is auxiliary variable.

We are assuming that all processors have the code in
their local memories. Variable ID is used for storing ID of
particular processor. A Fork program could look as
follows [3]:

void prefix_rec (sh int x[], sh int n, sh int d)
{
 int dd;

j and d =dd/2 for recursive call level j
 dd=dd*2;
 if (dd>=n) return; //done
 if (ID<n/dd)
 //only processor 0 to n/2^j perform computations
 x[(ID+1)*dd-1]=x[(ID+1)*dd-1-d]+x[(ID+1)*dd-1];
 prefix_rec(x,n,dd); // all processors call recursively
 if (ID<n/dd-d)
 //only processor 0 to n/2^j-d perform computations
 x[(ID+1)*dd-1+d]=x[(ID+1)*dd-1]+x[(ID+1)*dd+d];
}

 // dd=2^

Figure 4 illustrates algorithm with an example. Input
data is sequence of numbers from 1 till 8. The outlined
array indicates the sum computations done before the
recursive call and dotted array show sum computations
done on return from the recursive call. Each step is
numbered.

Fig. 4 Example of prefix-sum algorithm

Let us evaluate the algorithm mentioned above.
Time.

)(log)()1()2/()(nntntnt AAA Θ=⇒Θ+=
Work.

)()()1()2/()(nnwnwnw AAA Θ=⇒Θ+=
The parallel algorithm can run on EREW PRAM.
4.2. Divide-and-Conquer
Sequential Divide-and-Conquer
Divide-and-Conquer is a basic algorithmic technique

in sequential algorithm design. This algorithm technique
can solve a problem of size n by dividing it into k≥1
subproblems of smaller size. Then solves subproblems
recursively and finally merges the solution of original
problem from the solutions of the k subproblems. The
algorithm finishes recursion when the problem size is
below a given threshold. This means, when solving the
problem becomes trivial. Divide and Conquer can be
described by a recursive function.

 Let us define Divide-and-Conquer algorithms in
general [5].

Let V(n) be a solution, which we obtain by applying
by algorithm A for problem instance of the input data
P(n), n∈ N.

I. Divide a problem instance of P(n) to
subproblem

.,...2,1,)(),(kiPnPnP iii ==U
II. Apply algorithm A to subproblems P(ni). By

this we obtain solutions V(ni).
III. Assembling solutions V(ni) we get solution

V(n)
Then we are recursively repeating I till III until we get

trivial problem instances, which are solved directly.
There are two assumptions, which we have to

consider. First, we are able to assemble solution. Second

the final solution of P(n) can be obtained by assembling
particular subsolutions of subproblems P(ni).

Parallel Divide-and-Conquer
The k subproblems are independent, that is why they

may be computed concurrently by different processors. In
order to obtain a fully parallel divide-and-conquer
implementation, also divide and conquer steps must be
parallelized if possible [3].

To illustrate this strategy in a parallel setting, we
consider the planar convex hull problem [6]. We are given
a set S = {p1, . . . , pn} of points, where each point pi is an
ordered pair of coordinates (xi, yi). We further assume that
points are sorted by x-coordinate. (If not, this can be done
as a preprocessing step with low enough complexity
bounds.) We are asked to determine the convex hull
CH(S), i.e., the smallest convex polygon containing all the
points of S, by enumerating the vertices of this polygon in
clockwise order. Figure 5 shows an instance of this
problem. The sequential complexity of this problem is ts(n)
= Θ(n log n)[6]. Any of several well-known algorithms [6]
for this problem establishes the upper bound. A reduction
from comparison-based sorting establishes the lower
bound. See Figure 5.

Fig. 5 Determining the convex hull of the set of points

We first note that p1 and pn belong to CH(S) by virtue

of the sortedness of S, and partition the convex hull
into an upper hull UH(S) and a lower hull LH(S).
Without loss of generality, we will show how to compute
UH(S). The division step is: we partition S into S1 = {p1, . .
. , pn/2} and S2 = {pn/2+1, . . . , pn}. We then recursively
obtain UH(S1) =< p1 = q1, . . . , qs> and UH(S2) = <r1, . . . ,
rt = pn>. Assume that for n ≤ 4, we solve the problem by

brute force. This gives us the termination condition for the
recursion.

The combination step is nontrivial. Let the upper
common tangent (UCT) be the common tangent to
UH(S1) and UH(S2) such that both UH(S1) and UH(S2)
are below it. Thus, this tangent consists of two points, one
each from UH(S1) and UH(S2). Let UCT(S1, S2) = (qi, rj).
Assume the existence of an O(log n) time sequential
algorithm for determining UCT(S1, S2) [6]. Then UH(S) =
<q 1, . . . , qi, rj, . . . , rt>, and contains (i + t - j + 1)
points. Given s, t, i, and j, we can obtain UH(S) in Θ(1)
steps and O(n) work as follows.
forall k ∈ 1 : i + t - j + 1 do
 UH(S)k ← if k ≤ i then qk else rk+j-i-1 endif
enddo

This algorithm requires model of a CREW PRAM. To
analyze its complexity, we note that:

Time
)(log)()(log)2/()(2 nOntnOntnt AAA =⇒+=

Work
)log.()()2/(2)(nnOwnOnwnw AAA =⇒+=

5. Conclusion
The computational models presented above were

chosen to be representative subset of the numerous
proposed abstract models of parallel computation.

There are other parallel models, which I didn’t
mention above. Let us have a brief overview of some other
models.

Distributed models
The perceived technical infeasibility of constant time

access to a global address space led to development of
many PRAM variants. As an example, we can mention the
Distributed Memory Model (DMM). It posits private
memory modules associated with processors in a bounded
degree network. Computation and nearest neighbor
communication require one time step.

Postal Model deriving its name from an analogy to the
US mail system In this model to accomplish a non-local
memory access a processor posts a message into the
network and goes about its business posting other
messages while the first being delivered.

Low-Level models
Many abstract models have been recently developed

which incorporate a more detailed view of the machine
components and behavior The objective of these Low-
level models is often to assess the feasibility and
efficiency of a particular machine or component design
sometimes for a particular class of algorithms or to
understand which particular algorithm or implementation
may be most efficient on a given machine or component
design. For example There was developed detailed model

of the CM-2 by Thinking Machines Inc. hypercube
connected massively parallel computer, in order to better
understand which sorting algorithms and implementations
perform best on this platform.

Network models
The class of model discussed above ignores the

possible impacts of the topology of the communication
network. Network models of parallel computation reflect a
focus of concern in the early generation of parallel
computers. These computers tended to be fine-grained
composed of a large number of relatively small processors.
Network models generally ascribe some amount of local
memory to each processor. The cost of a remote memory
access is a function.

Bridging models
The notion of a bridging model was captured by

Valiant when he described the von Neumann model as „a
connecting bridge that enables programs to run efficiently
on machines from the diverse and chaotic world of
hardware“ [9].

Valiant‘s own bulk Synchronous Parallel (BSP)
Model posits a distributed memory with three parameters.
The model provides P processors with local memory a
router and facilities for periodic global synchronization.
Computation can be synchronized at most every l steps
and the ratio of local units of computation to the steps
required to transmit or receive a message is a parameter g.

These three parameters serve several functions. First
the parameter l reflects the cost of invoking a
synchronization operation. It also implies communication
latency because remote memory accesses do not take
effect until after the execution of synchronization. Second
the parameter g enforces bandwidth limitations. It requires
that messages be sent at most once every g arithmetic
operations.

Another example of a bridging model, which has
focused on, more accurately reflecting existing machine
attributes is the LogP model [10].

Appendix

Definitions.
)}),(.)()(.0(0,,:)({))((021021 nnngcnfngcnccnfng ≥∀≤≤≤>∃=Θ

)}),(.)(0(0,:)({))((00 nnngcnfncnfngO ≥∀≤≤>∃=
)}),()(.0(0,:)({))((00 nnnfngcncnfng ≥∀≤≤>∃=Ω

References

[1] Snyder,L.,“ Type Architectures, Shared Memory and

the Corollary of Modest Potential“, Annual Review of
Computer Scince, Annual Review Inc. pp 289-318
(1986).

[2] Cook,S.,and Reckhow,R.,“Time Bounded Random
Access Machines“, Journal of Computer and Systems
Sciences,Vol. 7. pp. 354-375,(1973).

[3] Keller, Jörg, Kessler, Christoph, Träff,

Jesper,”Practical PRAM Programming”,John
Wiley&SONS,INC., (2001)

[4] Flynn,M.,J.”Some Computer organization and their

effectivenes”, IEEE Trans. Computer, C-21:948-
960,1972.

[5] Hudec, Bohuslav.“Programming techniques“. Czech

Technical University, Praha, 1996, 234 p.

[6] Preparata, F. P. and M. I. Shamos,“Computational
Geometry“ An Introduction, Spinger-Verlag, New
York,(1985).

[7] Kolar,Josef,“Teoretical Information Science“,Česká
informatická společnost, Praha,1996,168 p.

[8] R.,P.,Brent,“The parallel evaluation of general
arithmetic expressions“, j. ACM,21(2):201-206,1974.

[9] Valiant,L.,”A Bridging Model for Parallel

Computation”.Comunications of the ACM, Vol. 33,pp.
103-111,(1990).

[10]

 Culler,P.,Karp,R.Patterson,D.,Sahay,A.,Schauser,K.,Sa
ntos,E.von Eiken,T.,“LogP: Towards a Realistic Model
of Parllel Computation“, Proc.of the ASM SIGPLAN
Symposium on Principles and Practices of Parallel
Programming, pp. 1-12, (1993).

