
Benchmark problems in stability and design ofswitched systems�Daniel Liberzon and A. Stephen MorseDepartment of Electrical EngineeringYale UniversityNew Haven, CT 06520-8267fliberzon, morseg@sysc.eng.yale.eduJanuary 4, 1999AbstractA switched system is a hybrid dynamical system consisting of a family of continuous-timesubsystems and a rule that governs the switching between them. This paper surveys recentdevelopments in three basic problems regarding stability and design of switched systems. Theseproblems are: stability for arbitrary switching sequences, stability for certain useful classesof switching sequences, and construction of stabilizing switching sequences. We also providemotivation for studying these problems by discussing how they arise in connection with variousquestions of interest in control theory and applications.1 IntroductionBy a switched system we mean a hybrid dynamical system consisting of a family of continuous-timesubsystems and a rule that orchestrates the switching between them. Many systems encountered inpractice exhibit switching between several subsystems that is dependent on various environmentalfactors. Some examples of such systems are discussed in [7, 54]. Another source of motivationfor studying switched systems comes from the rapidly developing area of intelligent control. Themethods of intelligent control design are based on the idea of switching between di�erent controllers.These control techniques have been applied extensively in recent years, particularly in the adaptivecontext, where they have been shown to achieve stability and improve transient response (see,among many references, [21, 31, 34]). The importance of such control methods also stems in partfrom the existence of systems that cannot be asymptotically stabilized by a single smooth feedbackcontrol law [5].Mathematically, a switched system can be described by a di�erential equation of the form_x = f�(x) (1)�This research was supported by ARO DAAH04-95-1-0114, NSF ECS 9634146, and AFOSR F49620-97-1-0108.1



where ffp : p 2 Pg is a family of su�ciently regular functions from Rn to Rn that is parameterizedby some index set P, and � : [0;1) ! P is a piecewise constant switching signal. In speci�csituations, the value of � at a given time t might just depend on t or x(t) or both, or may begenerated using more sophisticated techniques such as hybrid feedback with memory in the loop.The set P is typically a compact (often �nite) subset of a normed linear vector space.In the particular case when all the individual subsystems are linear, we obtain a switched linearsystem _x = A�x: (2)This class of systems is the one most commonly treated in the literature. In this paper, wheneverpossible, problems will be formulated and discussed in the more general context of the switchedsystem (1).The �rst basic problem that we will consider can be formulated as follows.Problem A. Find conditions that guarantee that the switched system (1) is asymptotically stablefor any switching signal.Clearly, a necessary condition for (asymptotic) stability under arbitrary switching is that all ofthe individual subsystems are (asymptotically) stable. Indeed, if the p-th system is unstable, theswitched system will be unstable if we set �(t) � p. To see that this condition is not su�cient,consider two second-order asymptotically stable systems whose trajectories are sketched in the toprow of Figure 1. Depending on a particular switching signal, the trajectories of the switched systemmight look as shown in the bottom left corner (asymptotically stable) or as shown in the bottomright corner (unstable).
Figure 1: Possible trajectories of a switched systemThe above example shows that Problem A is not trivial in the sense that it is possible to getinstability by switching between asymptotically stable systems.1 If this happens, one may ask1However, there are certain limitations as to what kind of instability one can have in this case. For example, itis easy to see that the trajectories of such a switched system cannot escape to in�nity in �nite time.2



whether the switched system will be asymptotically stable for certain useful classes of switchingsignals. This leads to the following problem.Problem B. Identify those classes of switching signals for which the switched system (1) is asymp-totically stable.Since it is usually unreasonable to exclude constant switching signals of the form �(t) � p, Prob-lem B will be considered under the assumption that all the individual subsystems are asymptoticallystable. However, in many applications it is di�cult to ensure that this assumption is satis�ed. Amore realistic goal might be to �nd a particular switching signal that drives the state of the systemto zero in spite of the fact that some (or all) of the individual subsystems are unstable. In otherwords, we can formulate the following problem.Problem C. Construct a switching signal that makes the switched system (1) asymptotically stable.Of course, if at least one of the individual subsystems is asymptotically stable, the above problemis trivial (just keep �(t) � p where p is the index of this stable system). Therefore, in the context ofProblem C it will be understood that none of the individual subsystems are asymptotically stable.The last problem is more of a design problem than a stability problem, but the above discussionillustrates that all three problems are closely related. In what follows, we will give an exposition ofrecent results that address these problems. We will also try to motivate the study of these problemsby discussing how they are related to di�erent areas of control theory and applications. To make thepaper more accessible, we present many ideas and results on the intuitive level and refer the readerto the literature for technical details. Open questions are pointed out throughout. The Appendixprovides proofs of two results whose sources were not readily available at the time when this paperwas written.2 Stability for arbitrary switchingOne situation in which Problem A is of great importance is when a given process is being controlledby means of switching among a family of stabilizing controllers, each of which is designed for aspeci�c task. Stability of the switched system can usually be ensured by keeping each controller inthe loop for a long enough time, so as to allow the transient e�ects to dissipate (cf. Section 3 below).However, modern computer-controlled systems are capable of very fast switching rates, which createsthe need to be able to test stability of the switched system for arbitrarily fast switching signals.It is well known that if the family of systems_x = fp(x); p 2 P (3)has a common Lyapunov function, then the switched system (1) is asymptotically stable for anyswitching signal �. Hence, one possible approach to Problem A is to �nd conditions under whichthere exists a common Lyapunov function for the family (3).In the next two subsections we discuss various results on common Lyapunov functions andstability for arbitrary switching. The last subsection is devoted to converse Lyapunov theorems.Our discussion throughout the paper is restricted to state space methods. For some frequency3



domain results the reader may consult [10, Chapter 3] where it is shown that if a linear process anda family of linear controllers are given by their transfer matrices, then there always exist realizationssuch that the family of feedback connections of the process with the controllers possesses a quadraticcommon Lyapunov function.2.1 Lie-algebraic conditionsLet us start by considering the family of linear systems_x = Apx; p 2 P (4)such that the matricesAp are stable (i.e., with eigenvalues in the open left half of the complex plane)and the set fAp : p 2 Pg is compact in Rn�n. If all the systems in this family share a quadraticcommon Lyapunov function, then the switched linear system (2) is globally uniformly exponentiallystable (the word \uniform" is used here to describe uniformity with respect to switching signals).This means that if there exist two symmetric positive de�nite matrices P and Q such that we haveATpP + PAp � �Q 8p 2 Pthen there exist positive constants c and � such that the solution of (2) for any initial state x(0)and any switching signal � satis�eskx(t)k � ce��tkx(0)k 8t � 0: (5)In this subsection we present su�cient conditions for the existence of a quadratic common Lyapunovfunction that involve the Lie algebra fAp : p 2 PgLA generated by the individual matrices Ap. Firstwe recall some de�nitions. Given a Lie algebra g, the sequence g(k) is de�ned inductively as follows:g(1) := g, g(k+1) := [g(k); g(k)] � g(k). If g(k) = 0 for k su�ciently large, then g is called solvable.Similarly, one de�nes the sequence gk by g1 := g, gk+1 := [g; gk] � gk, and calls g nilpotent ifgk = 0 for k su�ciently large. For example, if g is a Lie algebra generated by two matrices A1 andA2, i.e., g = fA1; A2gLA, then we have: g(1) = g1 = g = spanfA1; A2; [A1; A2]; [A1; [A1; A2]]; : : :g,g(2) = g2 = spanf[A1; A2]; [A1; [A1; A2]]; : : :g, g(3) = spanf[[A1; A2]; [A1; [A1; A2]]]; : : :g � g3 =spanf[A1; [A1; A2]]; [A2; [A1; A2]]; : : :g, and so on. Every nilpotent Lie algebra is solvable, but theconverse is not true.The simplest case is when P is a �nite set (say, P = f1; : : : ;mg) and the matrices in the family(4) commute pairwise, i.e., the Lie bracket [Ap; Aq] := ApAq �AqAp equals zero for all p; q 2 P. Itis well known and easy to show that in this case the system (2) is asymptotically stable for anyswitching signal �. An explicit construction of a quadratic common Lyapunov function for a �nitecommuting family of linear systems is given in [33].Proposition 1 [33] Let P1, : : : , Pm be the unique symmetric positive de�nite matrices that satisfythe Lyapunov equations AT1P1 + P1A1 = �I;ATpPp + PpAp = �Pp�1; p = 2; : : : ;m:Then the function V (x) := xTPmx is a common Lyapunov function for the systems _x = Aix,i = 1; : : : ;m. 4



The matrix Pm is given by the formulaPm = Z 10 eATmtm : : :�Z 10 eAT1 t1eA1t1dt1� : : : eAmtmdtmSince the matrices Ai commute, for each i 2 f1; : : : ;mg we can rewrite this in the formPm = Z 10 eATi ti Qi eAiti dtiwith Qi > 0, which makes the statement of Proposition 1 obvious.The connection between asymptotic stability of a switched linear system and the properties ofthe corresponding Lie algebra was apparently discussed for the �rst time by Gurvits in [9]. Thatpaper is concerned with the discrete-time counterpart of (2) which takes the formx(k + 1) = A�(k)x(k): (6)where � is a function from nonnegative integers to a �nite index set P. Gurvits conjectured that ifthe Lie algebra fAp : p 2 PgLA is nilpotent then (6) is asymptotically stable for any such switchingsignal �. He used the Baker-Campbell-Hausdor� formula to prove this conjecture for the particularcase when P = f1; 2g, the matrices A1 and A2 are nonsingular, and their third-order Lie bracketsvanish: [A1; [A1; A2]] = [A2; [A1; A2]] = 0.It was recently shown in [22] that if the Lie algebra fAp : p 2 PgLA is solvable, then the family(4) possesses a quadratic common Lyapunov function. One can derive the corresponding statementfor the discrete-time case in a similar fashion, thereby con�rming and directly generalizing the aboveconjecture because every nilpotent Lie algebra is solvable. The proof of the result given in [22] isbased on the following well known fact that can be found in most textbooks on the theory of Liealgebras (see, e.g., [43]).Proposition 2 (Lie's Theorem) Let g be a solvable Lie algebra over an algebraically closed �eld,and let � be a representation of g on a vector space V of �nite dimension n. Then there existsa basis fv1; : : : ; vng of V such that for each X 2 g the matrix of �(X) in that basis takes theupper-triangular form 0BB@�1(X) : : : �... . . . ...0 : : : �n(X)1CCA(�1(X); : : : ; �n(X) being its eigenvalues).In our context this means that if fAp : p 2 PgLA is solvable, then there exists a nonsingular complexmatrix T such that for each p 2 P we have Ap = T�1BpT where Bp is a complex upper-triangularmatrix. It is a relatively simple matter to show that a family of linear systems with stable upper-triangular matrices possesses a quadratic common Lyapunov function|see, e.g., [22, 46, 47] fordetails (in particular, one can construct a common Lyapunov function that takes the form xTDxwhere D is a diagonal matrix). We thus obtain the following result which incorporates the onesmentioned before as special cases.Theorem 3 [22] If fAp : p 2 Pg is a compact set of stable matrices and the Lie algebra fAp : p 2PgLA is solvable, then the switched linear system (2) is globally uniformly exponentially stable.5



Note that while it is a nontrivial matter to �nd a basis in which all matrices take the triangularform or even decide whether such a basis exists, the Lie-algebraic condition given by Theorem 3 isformulated in terms of the original data and can always be checked in a �nite number of steps if Pis a �nite set. We now brie
y discuss implications of this result for switched nonlinear systems ofthe form (1). Consider, together with the family (3), the corresponding family of linearized systems_x = Fpx; p 2 Pwhere Fp = @fp@x (0). Assume that the matrices Fp are stable, that P is a compact set, and that@fp@x (x) depends continuously on p for each x 2 D. A straightforward application of Theorem 3 andthe Lyapunov's �rst method gives the following result.Corollary 4 [22] If the Lie algebra fFp : p 2 PgLA is solvable, then the system (1) is locallyuniformly exponentially stable2.Recent work reported in [44] directly generalizes the result and the proof technique of [33] toswitched nonlinear systems. Namely, suppose that P = f1; : : : ;mg, and denote by 'p(t; z) thesolution of the system _x = fp(x) starting at a point z when t = 0. If all these systems areexponentially stable and the corresponding vector �elds commute pairwise, i.e., [fp; fq](x) = 0 forall p; q 2 P, then a common Lyapunov function can be constructed by the following iterativeprocedure: V1(x) := Z T0 j'1(s; x)j2ds;Vp(x) := Z T0 Vp�1('p(s; x))ds; p = 2; : : : ;m:The function Vm is a common Lyapunov function for the family (3) locally in a neighborhood of zero(unless all the functions fp are globally Lipschitz in which case Vm is a global common Lyapunovfunction). One therefore has the following statement.Proposition 5 [44] If all the systems in the family (3) are exponentially stable, P is a �niteset, and the vector �elds fp(x), p 2 P commute pairwise, then the switched system (1) is locallyasymptotically stable for any switching signal �.Note that, unlike the condition of Corollary 4, the above commuting condition is formulated interms of the Lie algebra generated by the original nonlinear vector �elds, which opens interesting newpossibilities. It remains to be seen whether Lie-algebraic su�cient conditions for global asymptoticstability under arbitrary switching can be found in the general case.Finally, we comment on the issue of robustness. Both exponential stability and existence of aquadratic common Lyapunov function are robust properties in the sense that they are not destroyedby su�ciently small perturbations of the systems' parameters. Regarding perturbations of upper-triangular matrices, one can obtain explicit bounds that have to be satis�ed by the elements belowthe diagonal so that the quadratic common Lyapunov function for the unperturbed systems remainsa commonLyapunov function for the perturbed ones [30]. Unfortunately, the condition of Theorem 3is not robust, which indicates one direction in which one might try to improve it.2This is to say that the estimate (5) holds for all trajectories starting in a certain neighborhood of the origin.6



2.2 Matrix pencil conditionsWe now turn to some recently obtained su�cient, as well as necessary and su�cient, conditions forthe existence of a quadratic common Lyapunov function for a pair of second-order asymptoticallystable linear systems _x = Aix; Ai 2 R2�2; i = 1; 2: (7)These conditions, presented in [45, 46], are given in terms of eigenvalue locations of suitable linearcombinations of the matricesA1 and A2. We refer the reader to [35, 36] for some su�cient conditionsfor the existence of a quadratic common Lyapunov function that involve Lyapunov matrix operators.Given two matrices A and B, the matrix pencil 
�(A;B) is de�ned as the one-parameter familyof matrices �A+ (1� �)B, � 2 [0; 1]. One has the following result.Proposition 6 [45] If A1 and A2 have real distinct eigenvalues and all the matrices in 
�(A1; A2)have negative real eigenvalues, then the pair of linear systems (7) has a quadratic common Lyapunovfunction.In [46] Shorten and Narendra considered, together with the matrix pencil 
�(A1; A2), the matrixpencil 
�(A1; A�12 ). This allowed them to obtain, apparently for the �rst time, a necessary andsu�cient condition for the existence of a common Lyapunov function.Proposition 7 [46] The pair of linear systems (7) has a quadratic common Lyapunov function ifand only if all the matrices in 
�(A1; A2) and 
�(A1; A�12 ) are stable.The above results are limited to a pair of second-order linear systems. It is interesting to notethat the conditions of Propositions 6 and 7 are in general robust in the sense speci�ed at the endof Section 2.1. Indeed, the property that all eigenvalues of a matrix have negative real parts ispreserved under su�ciently small perturbations. Moreover, if these eigenvalues are real, they willremain real under small perturbations, providing that they are distinct (because eigenvalues of areal matrix come in conjugate pairs).2.3 Converse Lyapunov theoremsIn the preceding subsections we have relied on the fact that the existence of a common Lyapunovfunction implies asymptotic stability for arbitrary switching signals. The question arises whetherthe converse holds. A converse Lyapunov theorem for di�erential inclusions proved by Molchanovand Pyatnitskiy in [29] gives a positive answer to this question. Their result can be adapted to thepresent setting as follows.Theorem 8 [29] If the switched linear system (2) is asymptotically stable for all switching signals,then the family of linear systems (4) has a strictly convex, homogeneous (of second order) commonLyapunov function of a quasi-quadratic formV (x) = xTL(x)xwhere L(x) = LT (x) = L(�x) for all nonzero x and � .7



The construction of such a Lyapunov function given in [29] (see also [7]) proceeds in the samespirit as the classical one that is used to prove standard converse Lyapunov theorems (cf. [19,Theorem 4.5]), except that supremum over all indices p 2 P needs to be taken. It is also shown in[29] that one can �nd a common Lyapunov function that takes the piecewise quadratic formV (x) = max1�i�khli; xi2where li, i = 1; : : : ; k are constant vectors.Interestingly, a quadratic common Lyapunov function does not always exist. In [7] Dayawansaand Martin give an example of two second-order linear systems which do not share any quadraticcommon Lyapunov function, yet the switched system is asymptotically stable for arbitrary switch-ing. They also generalize Theorem 8 to a class of switched nonlinear systems as follows.Theorem 9 [7] If the switched system (1) is globally asymptotically stable and in addition locallyexponentially stable for all switching signals, then the family (3) has a common Lyapunov function.Some technical properties of this common Lyapunov function are discussed in [7]. However,the problem of determining the speci�c form of this function remains largely open. The paper [7]announces that the above converse Lyapunov theorem is actually valid without the exponentialstability assumption, although the proof is more involved.3 Stability for slow switchingWe have seen above that a switched systemmight become unstable for certain switching signals evenif all the individual subsystems are asymptotically stable. Thus, if the goal is to achieve stability ofthe switched system, one often has to restrict the class of admissible switching signals. This leadsus to Problem B posed in the Introduction. As we already mentioned, one way to address thisproblem is to make sure that the intervals between consecutive switching times are long enough.Such slow switching assumptions greatly simplify the stability analysis and are, in one form oranother, ubiquitous in the switching control literature3 (see, e.g., [15, 37, 51]).Below we discuss multiple Lyapunov function tools that are useful in analyzing stability of slowlyswitched systems. We then present stability results for such systems. Some of these results parallelthe more familiar ones on stability of slowly time-varying systems (cf. [48] and references therein).3.1 Multiple Lyapunov functionsIn Section 2 we discussed various situations in which asymptotic stability of a switched system forarbitrary switching signals can be established by means of showing that the family of individualsubsystems possesses a common Lyapunov function. We also know (Section 2.3) that the existenceof a common Lyapunov function is necessary for asymptotic stability under arbitrary switching.However, if the class of switching signals is restricted, this converse result might not hold. In otherwords, the properties of admissible switching signals can sometimes be used to prove asymptoticstability of the switched system even in the absence of a common Lyapunov function.3Another reason for slow switching is to avoid chattering.8



One tool for proving stability in such cases employs multiple Lyapunov functions [39, 3, 4, 16].Fix a switching signal � with switching times t0 < t1 < : : : and assume for concreteness that it iscontinuous from the right everywhere: �(ti) = limt!t+i �(t) for each i. Since the individual membersof the family (3) are assumed to be asymptotically stable, there is a family of Lyapunov functionsfVp : p 2 Pg such that the value of Vp decreases on each interval where the p-th subsystem is active.If the value of Vp at the end of each such interval exceeds the value at the beginning of the nextone (see Figure 2), then the switched system can be shown to be asymptotically stable.Lemma 10 [39] If there exists a constant � > 0 such thatV�(ti+1)(x(ti+2))� V�(ti)(x(ti+1)) � ��jx(ti+1)j2; i = 0; 1; : : : (8)then the switched system (1) is globally asymptotically stable.To see why this is true, observe that the sequence V�(ti)(x(ti+1)), i = 0; 1; : : : is decreasing andpositive, and therefore has a limit L � 0 as i! +1. We have0 = L� L = limi!+1 V�(ti+1)(x(ti+2))� limi!+1 V�(ti)(x(ti+1))= limi!+1[V�(ti+1)(x(ti+2))� V�(ti)(x(ti+1))] � limi!+1[��jx(ti+1)j2] � 0which implies that x(ti) converges to zero. As pointed out in [4], Lyapunov stability should andcan be checked via a separate argument.V�(t)(t) tFigure 2: Two Lyapunov functionsSome variations and generalizations of this result are discussed in [3, 4, 16, 40], while the basicidea seems to go back at least to [38]. We will return to multiple Lyapunov function techniques inSection 4. A closely related problem of computing such Lyapunov functions numerically by meansof LMIs is addressed in [18, 40].3.2 Dwell timeThe simplest way to specify slow switching is to introduce a number � > 0 and restrict the classof admissible switching signals to signals with the property that the interval between any twoconsecutive switching times is no smaller than � . This number � is sometimes called the dwell time(because � \dwells" on each of its values for at least � units of time). It is well known that whenall the linear systems in the family (4) are asymptotically stable, the switched linear system (2) isglobally exponentially stable if the dwell time � is large enough. In fact, the required lower bound9



on � can be explicitly calculated from the parameters of the individual subsystems. For details, see[31, Lemma 2] or [17, Theorem 3.3].What is perhaps less well known is that under suitable assumptions a su�ciently large dwelltime guarantees asymptotic stability of the switched system in the nonlinear case as well. Arguablythe best way to prove most general results of this kind is by using multiple Lyapunov functions. Wewill not discuss the precise assumptions that are needed here (in fact, there is considerable workstill to be done in that regard) but will present the general idea instead. Assume for simplicity thatall the systems in the family (3) are globally exponentially stable. Then for each p 2 P there existsa Lyapunov function Vp that for some positive constants ap, bp and cp satis�esapjxj2 � Vp(x) � bpjxj2 (9)and rVp(x)fp(x) � �cpjxj2 (10)(see, e.g., [19, Theorem 4.5]). Combining (9) and (10), we obtainrVp(x)fp(x) � ��pVp(x); p 2 Pwhere �p = cp=bp. This implies thatVp(x(t0 + � )) � e��p�Vp(x(t0)) (11)providing that �(t) = p for almost all t 2 [t0; t0+� ]. To simplify the next calculation, let us considerthe case when P = f1; 2g and � takes on the value 1 on [t0; t1) and 2 on [t1; t2), where ti+1� ti � � ,i = 0; 1. From the above inequalities one hasV2(t1) � b2a1V1(t1) � b2a1 e��1�V1(t0)and furthermore V1(t2) � b1a2V2(t2) � b1a2 e��2�V2(t1) � b1b2a1a2e�(�1+�2)�V1(t0):We see that V1(t2) < V1(t0) if � is large enough. In fact, it is not hard to compute an explicitlower bound on � that ensures that the hypotheses of Lemma 10 are satis�ed, which means thatthe switched system is globally asymptotically stable.We do not discuss possible extensions and re�nements here because a more general result willbe stated in the next subsection. Note, however, that the exponential stability assumption is notnecessary; for example, the above reasoning would still be valid if the quadratic estimates in (9)and (10) were replaced by, say, quartic ones. In essence, all we used was the fact that� := sup�Vp(x)Vq(x) : x 2 Rn; p; q 2 P� <1: (12)If this inequality does not hold globally in the state space, only local asymptotic stability can beestablished. 10



3.3 Average dwell timeFor each T > 0, let N(T ) denote the number of discontinuities of a given switching signal � on theinterval [0; T ). We will say that � has the average dwell time property if there exist two nonnegativenumbers a and b such that for all T > 0 we have N(T ) � a + bT . This terminology is promptedby the observation that, if we discard the �rst a switchings, the average time between consecutiveswitchings is at least 1=b. Dwell time switching signals considered in the previous subsection satisfythis de�nition with a = 0 and b = 1=� .Now consider the family of nonlinear systems (3), and assume that all the systems in thisfamily are globally asymptotically stable. Then for each p 2 P there exist positive de�nite, radiallyunbounded C1 functions Vp and Dp such that rVp(x)fp(x) � �Dp(x) for all x. As explained in [42],there is no loss of generality in taking Dp(x) = �pVp(x) for some �p > 0 (changing Vp if necessary).In addition, we need the following mild technical assumption4:8� > 0 9� > 0 such that if jVp(x)j < � for some p 2 P then jxj < �: (13)When P is a �nite set, (13) is automatic. When P is in�nite but compact, (13) is easily achieved ifthe family fVp : p 2 Pg is continuously parameterized. In either of these cases we can also assumethat the numbers �p are the same for all p 2 P, so that we haverVp(x)fp(x) � ��Vp(x); � > 0: (14)The following result was recently proved by Hespanha in [11] with the help of Lyapunov functiontechniques similar to the ones we alluded to in the previous subsection. The complete proof is givenin the Appendix.Theorem 11 [11] If (12){(14) hold, then the switched system (1) is globally asymptotically stablefor any switching signal that has the average dwell time property with b < �= log �.The study of average dwell time switching signals is motivated by the following considerations.Stability problems for switched systems arise naturally in the context of intelligent control. Switch-ing control techniques employing a dwell time have been successfully applied to linear systems withimprecise measurements or modeling uncertainty (cf. [31, 6, 15, 37]). However, in the nonlinearsetting these methods are often unsuitable because of the possibility of �nite escape time. Namely,if a \wrong" controller has to remain in the loop with an imprecisely modeled system for a speci�edamount of time, the solution to the system might escape to in�nity before we switch to a di�erentcontroller (of course, this will not happen if all the controllers are stabilizing, but when the systemis not completely known such an assumption is not realistic).An alternative to dwell time switching for intelligent control of nonlinear systems is providedby the so-called hysteresis switching proposed in [32] and its scale-independent versions which wererecently introduced and analyzed in [10, 13] and applied to control of uncertain nonlinear systems in[12, 14]. When the uncertainty is purely parametric and there is no measurement noise, switchingsignals generated by scale-independent hysteresis have the property that the switching stops in�nite time, while in the presence of noise under suitable assumptions they can be shown to havethe average dwell time property. Thus Theorem 11 opens the door to provably correct stabilizationalgorithms for uncertain nonlinear systems corrupted by noise, which is the subject of ongoingresearch e�orts.4If exponential stability of the switched system is desired, one needs to replace (13) by more speci�c growthbounds on the functions Vp. 11



4 Stabilizing switching signalsSince some switching signals lead to instability, it is natural to ask, given a family of systems,whether it is possible to �nd a switching signal that renders the switched system asymptoticallystable. Such stabilizing switching signals may exist even in the extreme situation when all the indi-vidual subsystems are unstable. For example, consider two second-order systems whose trajectoriesare sketched in Figure 3, left and Figure 3, center. If we switch in such a way that the �rst systemis active in the 2nd and 4th quadrants while the second one is active in the 1st and 3rd quadrants,then the switched system will be asymptotically stable (see Figure 3, right).
Figure 3: A stabilizing switching signalIn this section we present various methods for constructing stabilizing switching signals in thecase when none of the individual subsystems are asymptotically stable (Problem C). We also discusshow these ideas apply to the problem of stabilizing a linear system with �nite-state hybrid outputfeedback. Although we only address stabilizability here, there are other interesting questions suchas attainability and optimal control via switching (cf. [25, 26]).4.1 Single Lyapunov function techniquesIn this subsection and the next one we assume that P = f1; 2g and that we are switching betweentwo linear systems _x = A1x (15)and _x = A2x (16)of arbitrary dimension n. When the number of individual subsystems is larger than two, one wouldexpect the stabilizing switching signals to be easier to construct. Interestingly, however, we are notaware of any explicit results that employ switching signals with more than two distinct values.As demonstrated by Wicks, Peleties and DeCarlo in [53, 54], one assumption that leads to anelegant construction of a stabilizing switching signal is the following one.Assumption 1. The matrix pencil 
�(A1; A2) contains a stable matrix.According to the de�nition of a matrix pencil given in Section 2.2, this means that for some� 2 (0; 1) the convex combinationA := �A1+(1��)A2 is stable (the endpoints 0 and 1 are excludedbecause A1 and A2 are not stable). Thus there exist symmetric positive de�nite matrices P and Qsuch that we have ATP + PA = �Q:12



This can be rewritten as �(AT1P + PA1) + (1� �)(AT2 P + PA2) = �Qor �xT (AT1P + PA1)x+ (1 � �)xT (AT2P + PA2)x = �xTQx < 0 8x 2 Rn n f0g:Since 0 < � < 1, it follows that for each nonzero x 2 Rn at least one of the quantities xT (AT1P +PA1)x and xT (AT2P + PA2)x is negative. In other words, Rn n f0g is covered by the union of twoopen conic regions 
1 := fx : xT (AT1P + PA1)x < 0g and 
2 := fx : xT (AT2P + PA2)x < 0g. Thefunction V (x) := xTPx decreases along solutions of the system (15) in the region 
1 and decreasesalong solutions of the system (16) in the region 
2. Using this property, it is possible to constructa switching signal such that V decreases along solutions of the switched system, which impliesasymptotic stability. The precise result is this.Theorem 12 [53, 54] If Assumption 1 is satis�ed, then there exists a piecewise constant switchingsignal which makes the switched system quadratically stable5.This stabilizing switching signal takes the state feedback form, i.e., the value of � at any giventime t � 0 depends on x(t). An interesting observation due to Feron is that Assumption 1 is notonly su�cient but also necessary for quadratic stabilizability via switching.Proposition 13 [8] If there exists a quadratically stabilizing switching signal in the state feedbackform, then the matrices A1 and A2 satisfy Assumption 1.The proof of this result is given in the Appendix; it relies on the following well known fact (see,e.g., [2]).Proposition 14 (S-procedure) Let T0, T1 be n� n symmetric matrices. The conditionT0 � �T1 > 0 for some � � 0 (17)implies that xTT0x > 0 for all x 6= 0 such that xTT1x � 0: (18)Moreover, (18) implies (17) providing that there is some x0 such that xT0 T1x0 > 0.One can gain insight into the issue of quadratic stabilizability with the help of the followingexample. TakeA1 :=  0:1 �12 0:1! andA2 :=  0:1 �21 0:1!. The trajectories of the systems (15) and (16)will then look, at least qualitatively, as depicted in Figure 3, left and center, respectively. We haveexplained at the beginning of Section 4 how to construct a stabilizing switching signal that yieldsthe switched system with trajectories as shown in Figure 3, right. This system is asymptoticallystable, in fact, we see that the function V (x1; x2) := x21 + x22 decreases along solutions. However, itis easy to check that no convex combination of A1 and A2 is stable, and Proposition 13 tells us thatthe switched system cannot be quadratically stable. Indeed, on the coordinate axes (which formthe set where the switching occurs) we have _V = 0.The above example suggests that even when Assumption 1 does not hold and thus quadraticstabilization is impossible, asymptotic stabilization may be quite easy to achieve by using heuristicideas that can be applied to general systems, not necessarily linear ones. This is an interesting areafor future work.5Quadratic stability means that there exists a positive � such that _V < ��xTx.13



4.2 Multiple Lyapunov function techniquesIn the previous subsection we explained how to carry out the stability analysis with the help of asingle Lyapunov function that decreases along the trajectories of the switched system. There aresituations when one cannot �nd a switching signal such that the resulting switched system possessesa quadratic Lyapunov function. In view of the results presented in Section 3.1, it might still be pos-sible to �nd a stabilizing switching signal and prove stability by using multiple Lyapunov functions.Although this line of thinking does not seem to lead to such a simple and constructive procedureas the one described in [53, 54], some preliminary ideas have been explored in the literature. Theseare discussed next.The method proposed in [39] is to associate to the system (15) a candidate quadratic Lyapunovfunction V1(x) = xTP1x that decreases along solutions in an appropriate region 
1. This is alwayspossible unless A1 is a nonnegative multiple of the identity matrix. Similarly, associate to thesystem (16) a candidate quadratic Lyapunov function V2(x) = xTP2x that decreases along solutionsin an appropriate region 
2. If the union of the regions 
1 and 
2 covers Rn n f0g, then one cantry to orchestrate the switching in such a way that the conditions of Lemma 10 are satis�ed. Thepaper [39] contains an example that illustrates how this stabilizing switching strategy works.In a more recent paper [52] this investigation is continued with the goal to put the above idea ona more solid ground, by means of formulating precise algebraic su�cient conditions for a switchingstrategy based on multiple Lyapunov functions to exist. Consider the situation when the followingcondition holds:Condition 1. xT (P1A1 + AT1P1)x < 0 whenever xT (P1 � P2)x � 0 and x 6= 0, and xT (P2A2 +AT2P2)x < 0 whenever xT (P2 � P1)x � 0 and x 6= 0.If this condition is satis�ed, then a stabilizing switching signal can be de�ned by �(t) :=arg maxfVi(x(t)) : i = 1; 2g. Indeed, the function V� will then be continuous and will decreasealong solutions of the switched system, which guarantees asymptotic stability.Condition 1 holds if the following condition is satis�ed (by virtue of the S-procedure, the twoconditions are equivalent provided that there exist x1; x2 2 Rn such that xT1 (P1 � P2)x1 > 0 andxT2 (P2 � P1)x2 > 0).Condition 2. There exist �1; �2 � 0 such that �P1A1 � AT1P1 + �1(P2 � P1) > 0 and �P2A2 �AT2P2 + �2(P1 � P2) > 0.Alternatively, if �1; �2 � 0, then a stabilizing switching signal can be de�ned by �(t) :=arg minfVi(x(t)) : i = 1; 2g. This leads to the following result.Proposition 15 [52] If there exist two numbers �1 and �2, either both nonnegative or both nonpos-itive, such that the inequalities � P1A1 �AT1P1 + �1(P2 � P1) > 0 (19)and � P2A2 �AT2P2 + �2(P1 � P2) > 0 (20)are satis�ed for some symmetric positive de�nite matrices P1 and P2, then there exists an asymp-totically stabilizing switching signal. 14



In [52] the hypotheses of Proposition 15 are further reformulated in terms of eigenvalue locationsof certain matrix operators. Note that the algebraic matrix inequalities (19){(20) are not LMIs sincethey contain products of the unknowns �i and Pi, i = 1; 2.Techniques that are quite similar to the ones described above have been developed independentlyin [27] in a more general, nonlinear context. That paper shows how they �nd application to theinteresting problem of stabilizing an inverted pendulum via a switching control strategy.4.3 Stabilization with �nite-state hybrid output feedbackAn interesting source of motivation for pursuing the above ideas comes from the following problem.Suppose that we are given a linear time-invariant control system_x = Ax+Buy = Cx (21)that is stabilizable and detectable, i.e., there exist matrices F and K such that the eigenvalues ofA + BF and the eigenvalues of A + KC have negative real parts. Then, as is well known, thereexists a continuous dynamic output feedback that asymptotically stabilizes the system. In practice,however, such a continuous dynamic feedback might not be implementable, and a suitable discreteversion of the controller is often desired. Recent references [6, 17, 24, 28, 49] discuss some issuesrelated to control of continuous plants by various types of discontinuous feedback.In particular, in [24] it is shown that the system (21) admits a stabilizing hybrid output feedbackthat uses a countable number of discrete states. A logical question to ask next is whether it ispossible to stabilize (21) by using a hybrid output feedback with only a �nite number of discretestates. Artstein explicitly raised this question in [1] and discussed it in the context of a simpleexample (cf. below). This problem seems to require a solution that is signi�cantly di�erent fromthe ones mentioned above because a �nite-state stabilizing hybrid feedback is unlikely to be obtainedfrom a continuous one by means of any discretization process.One approach to the problem of stabilizing (21) via �nite-state hybrid output feedback isprompted by the following observation. Suppose that we are given a collection of gain matricesK1, : : : , Km of suitable dimensions. Setting u = Kiy for some i 2 f1; : : : ;mg, we obtain the system_x = (A+BKiC)x:Thus the stabilization problem for the original system (21) will be solved if we can orchestrate theswitching between the systems in the above form in such a way as to achieve asymptotic stability.Denoting A+BKiC by Ai for each i 2 f1; : : : ;mg, we are led to the following question: using themeasurements of the output y = Cx, can we �nd a switching signal � such that the switched system_x = A�x is asymptotically stable? The value of � at a given time t might just depend on t and/ory(t), or a more general hybrid feedback may be used. We are assuming, of course, that none of thematrices Ai are stable, as the existence of a matrix K such that the eigenvalues of A+BKC havenegative real parts would render the problem trivial.First of all, observe that the existence of a stable convex combination A := �Ai + (1 � �)Ajfor some i; j 2 f1; : : : ;mg and � 2 (0; 1) would imply that the system (21) can be stabilized bythe linear static output feedback u = Ky with K := �Ki + (1 � �)Kj , contrary to the assumptionthat we just made. In view of Proposition 13, this implies that a quadratically stabilizing switching15



signal does not exist. However, it might still be possible to construct an asymptotically stabilizingswitching signal and even base a stability proof on a single Lyapunov function (cf. remarks at theend of Section 4.1).As an example that illustrates this point, we discuss a modi�ed version of the stabilizing switch-ing strategy for the harmonic oscillator with position measurements described in [1]. Consider thesystem ddt  x1x2! =  0 1�1 0! x1x2!+  01!uy = x1Although this system is both controllable and observable, it cannot be stabilized by (even discontin-uous) output feedback. On the other hand, it can be stabilized by hybrid output feedback; severalways to do this were presented in [1]. We will now sketch one possible stabilizing strategy. Lettingu = �y we obtain the system ddt  x1x2! =  0 1�2 0! x1x2! (22)while letting u = 12y we obtain the systemddt  x1x2! =  0 1�12 0! x1x2! : (23)De�ne V (x) := x21 + x22. This function decreases along the solutions of (22) when x1x2 > 0 anddecreases along the solutions of (23) when x1x2 < 0. Therefore, if the system (22) is active in the 1stand 3rd quadrants while the system (23) is active in the 2nd and 4th quadrants, we will have _V < 0whenever x1x2 6= 0, hence the switched system is asymptotically stable. (This situation is similarto the one shown in Figure 3, except that here the individual subsystems are critically stable.) It isimportant to notice that, since both systems being switched are linear time-invariant, the times atwhich the state trajectory crosses the x1-axis can be explicitly calculated from the times at whichit crosses the x2-axis. This means that the above switching strategy can be implemented via hybridfeedback based just on the measurements of the output; see [1, 23] for details.Another possibility, exploited in [23], is to employ multiple Lyapunov functions. Assume forsimplicity that m = 2, so that we are only given two matrices,A1 = A+BK1C and A2 = A+BK2C.Note that in the present context the given data is not the matrices A1 and A2, but rather thematrices A, B and C. The problem will be solved if we can �nd output feedback gains K1 and K2such that the resulting matrices A1 = A + BK1C and A2 = A + BK2C satisfy the hypotheses ofProposition 15. We can rewrite the inequalities (19){(20) as�P1A�ATP1 + �1(P2 � P1)� P1BK1C � CTKT1 BTP1 > 0and �P2A�ATP2 + �2(P1 � P2)� P2BK2C �CTKT2 BTP2 > 0:Using the procedure for elimination of matrix variables described in [2, Section 2.6.2], one can showthat the above inequalities are satis�ed if and only if for some 
1; 
2 2 R we have� P1A�ATP1 + �1(P2 � P1)� 
1P1BBTP T1 > 0� P1A�ATP1 + �1(P2 � P1)� 
1CTC > 0 (24)16



and � P2A�ATP2 + �2(P1 � P2)� 
2P2BBTP T2 > 0� P2A�ATP2 + �2(P1 � P2)� 
2CTC > 0 (25)Thus we have the following statement.Proposition 16 [23] If there exist two numbers �1 and �2, either both nonnegative or both nonposi-tive, and two numbers 
1 and 
2 such that the inequalities (24){(25) are satis�ed for some symmetricpositive de�nite matrices P1 and P2, then the system (21) can be asymptotically stabilized by usinghybrid output feedback with two discrete states.The fact that the individual gains can be chosen as part of the design introduces considerable
exibility into the problem and is to be explored further. Note that when �1 = �2 = 0, we recoverLMIs that express conditions for stabilizability of (21) by static output feedback (and are equivalentto the ones given, e.g., in [50, Theorem 3.8]). It would be interesting to compare the above bilinearmatrix inequalities with the ones obtained in [41] as a characterization of stabilizability via switchedstate feedback.5 Concluding remarksWe have surveyed recent developments in three basic problems regarding switched dynamical sys-tems: stability for arbitrary switching signals, stability for slow switching signals, and constructionof stabilizing switching signals. We have aimed at providing an overview of general results and ideasinvolved. For technical details, the reader may consult the references cited below. These referencesalso address many issues that are relevant to switched systems but fell outside the scope of thissurvey. In spite of a number of interesting results presented here, it is safe to say that the subjectis still largely unexplored. Various open questions, some of which we have mentioned in the paper,remain to be investigated.The three problems studied here are very general and address fundamental issues concerningstability and design of switched systems. As we have pointed out throughout the paper, specialcases of these problems arise frequently in various contexts associated with control design. In suchsituations, speci�c structure of a problem at hand can sometimes be utilized to obtain satisfactoryresults even in the absence of a general theory. Examples of results that use such additionalstructure include the conditions for existence of a common Lyapunov function given in [20] whichexploit positive realness and the so-called Switching Theorem proved in [31] which plays a rolein the supervisory control of uncertain linear systems . It is our opinion that to make signi�cantfurther progress one needs to stay in close contact with particular applications that motivate thestudy of switched systems.AcknowledgmentWe would like to thank Jo~ao Hespanha for illuminating discussions on many topics related to thematerial of this paper. 17



AppendixProof of Theorem 11. Let t0 := 0, t1, : : : , tN(T ) be the discontinuities of � on [0; T ). De�ne thefunction W (t) := e�tV�(t)(x(t)):This function is piecewise di�erentiable along solutions to (1), and on any interval [ti; ti+1) we have_W = �W + e�trV�(x)f�(x) � 0by virtue of (14). Therefore,W (t) � W (ti); t 2 [ti; ti+1); i 2 f0; 1; : : : ; N(T )� 1g: (26)This together with (12) impliesW (ti+1) = e�ti+1V�(ti+1)(x(ti+1)) � �e�ti+1V�(ti)(x(ti+1))= � limt!t�i+1 W (t) � �W (ti):Iterating this inequality from i = 0 to i = N(T )� 1, we haveW (tN(T )) � �N(T )W (0)and, using (26), limt!T�W (t) � �N(T )W (0):It follows from the de�nition of W thate�TV�(T�)(x(T )) � �N(T )V�(0)(x(0))which according to the hypotheses can be rewritten asV�(T�)(x(T )) � e��T+(a+bT ) log�V�(0)(x(0)) = ea log�e(b log���)TV�(0)(x(0)) = ce���TV�(0)(x(0))where c := ea log� and �� := �� b log �. Note that log � > 0 because � > 1 in view of the interchange-ability of p and q in (12). Thus c > 0, and �� > 0 by virtue of the inequality b < �= log �. Now it iseasy to conclude from (13) that x(T ) converges to zero as T ! +1.Proof of Proposition 13. Suppose that the switched system is quadratically stable, i.e., there existsa Lyapunov function V (x) = xTPx whose derivative along solutions of the switched system satis�es_V < ��xTx for some � > 0. Since the switching signal takes the state feedback form, this impliesthat for any nonzero x we must have eitherxT (AT1P + PA1)x < ��xTxor xT (AT2P + PA2)x < ��xTx:We can restate this as follows:xT (�AT1P � PA1 � �I)x > 0 whenever xT (AT2P + PA2 + �I)x � 0 (27)18



and xT (�AT2P � PA2 � �I)x > 0 whenever xT (AT1P + PA1 + �I)x � 0: (28)If xT (AT1P+PA1+�I)x � 0 for all x 6= 0, then the matrixA1 is stable and there is nothing to prove.Similarly, if xT (AT2P + PA2 + �I)x � 0 for all x 6= 0, then A2 is stable. Discarding these trivialcases, we can apply the S-procedure to one of the last two conditions, say, to (27), and concludethat for some � � 0 we haveAT1P + PA1 + �(AT2P + PA2) < �(1 + �)�xTxor, equivalently, (A1 + �A2)T1 + � P + P (A1 + �A2)1 + � < ��xTx:Therefore, the matrix (A1 + �A2)=(1 + �) 2 
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