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Abstract

A switched system is a hybrid dynamical system consisting of a family of continuous-time
subsystems and a rule that governs the switching between them. This paper surveys recent
developments in three basic problems regarding stability and design of switched systems. These
problems are: stability for arbitrary switching sequences, stability for certain useful classes
of switching sequences, and construction of stabilizing switching sequences. We also provide
motivation for studying these problems by discussing how they arise in connection with various
questions of interest in control theory and applications.

1 Introduction

By a switched system we mean a hybrid dynamical system consisting of a family of continuous-time
subsystems and a rule that orchestrates the switching between them. Many systems encountered in
practice exhibit switching between several subsystems that is dependent on various environmental
factors. Some examples of such systems are discussed in [7, 54]. Another source of motivation
for studying switched systems comes from the rapidly developing area of intelligent control. The
methods of intelligent control design are based on the idea of switching between different controllers.
These control techniques have been applied extensively in recent years, particularly in the adaptive
context, where they have been shown to achieve stability and improve transient response (see,
among many references, [21, 31, 34]). The importance of such control methods also stems in part
from the existence of systems that cannot be asymptotically stabilized by a single smooth feedback
control law [5].

Mathematically, a switched system can be described by a differential equation of the form

&= [o(2) (1)
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where {f, : p € P} is a family of sufficiently regular functions from R” to R” that is parameterized
by some index set P, and o : [0,00) — P is a piecewise constant switching signal. In specific
situations, the value of o at a given time ¢ might just depend on ¢ or x(¢) or both, or may be
generated using more sophisticated techniques such as hybrid feedback with memory in the loop.
The set P is typically a compact (often finite) subset of a normed linear vector space.

In the particular case when all the individual subsystems are linear, we obtain a switched linear
system

z=A,x. (2)

This class of systems is the one most commonly treated in the literature. In this paper, whenever
possible, problems will be formulated and discussed in the more general context of the switched
system (1).

The first basic problem that we will consider can be formulated as follows.

Problem A. Find conditions that guarantee that the switched system (1) is asymptotically stable
for any switching signal.

Clearly, a necessary condition for (asymptotic) stability under arbitrary switching is that all of
the individual subsystems are (asymptotically) stable. Indeed, if the p-th system is unstable, the
switched system will be unstable if we set o(f) = p. To see that this condition is not sufficient,
consider two second-order asymptotically stable systems whose trajectories are sketched in the top
row of Figure 1. Depending on a particular switching signal, the trajectories of the switched system
might look as shown in the bottom left corner (asymptotically stable) or as shown in the bottom
right corner (unstable).

N

Figure 1: Possible trajectories of a switched system

The above example shows that Problem A is not trivial in the sense that it is possible to get
instability by switching between asymptotically stable systems.! If this happens, one may ask

THowever, there are certain limitations as to what kind of instability one can have in this case. For example, it
1s easy to see that the trajectories of such a switched system cannot escape to infinity in finite time.



whether the switched system will be asymptotically stable for certain useful classes of switching
signals. This leads to the following problem.

Problem B. [dentify those classes of switching signals for which the switched system (1) is asymp-
totically stable.

Since it is usually unreasonable to exclude constant switching signals of the form o(¢) = p, Prob-
lem B will be considered under the assumption that all the individual subsystems are asymptotically
stable. However, in many applications it is difficult to ensure that this assumption is satisfied. A
more realistic goal might be to find a particular switching signal that drives the state of the system
to zero in spite of the fact that some (or all) of the individual subsystems are unstable. In other
words, we can formulate the following problem.

Problem C. Construct a switching signal that makes the switched system (1) asymptotically stable.

Of course, if at least one of the individual subsystems is asymptotically stable, the above problem
is trivial (just keep o(t) = p where p is the index of this stable system). Therefore, in the context of
Problem C it will be understood that none of the individual subsystems are asymptotically stable.

The last problem is more of a design problem than a stability problem, but the above discussion
illustrates that all three problems are closely related. In what follows, we will give an exposition of
recent results that address these problems. We will also try to motivate the study of these problems
by discussing how they are related to different areas of control theory and applications. To make the
paper more accessible, we present many ideas and results on the intuitive level and refer the reader
to the literature for technical details. Open questions are pointed out throughout. The Appendix
provides proofs of two results whose sources were not readily available at the time when this paper
was written.

2 Stability for arbitrary switching

One situation in which Problem A is of great importance is when a given process is being controlled
by means of switching among a family of stabilizing controllers, each of which is designed for a
specific task. Stability of the switched system can usually be ensured by keeping each controller in
the loop for a long enough time, so as to allow the transient effects to dissipate (cf. Section 3 below).
However, modern computer-controlled systems are capable of very fast switching rates, which creates
the need to be able to test stability of the switched system for arbitrarily fast switching signals.

It is well known that if the family of systems

&= fylz), peP (3)

has a common Lyapunov function, then the switched system (1) is asymptotically stable for any
switching signal o. Hence, one possible approach to Problem A is to find conditions under which
there exists a common Lyapunov function for the family (3).

In the next two subsections we discuss various results on common Lyapunov functions and
stability for arbitrary switching. The last subsection is devoted to converse Lyapunov theorems.
Our discussion throughout the paper is restricted to state space methods. For some frequency



domain results the reader may consult [10, Chapter 3] where it is shown that if a linear process and
a family of linear controllers are given by their transfer matrices, then there always exist realizations
such that the family of feedback connections of the process with the controllers possesses a quadratic
common Lyapunov function.

2.1 Lie-algebraic conditions

Let us start by considering the family of linear systems
&= Apx, peP (4)

such that the matrices A, are stable (i.e., with eigenvalues in the open left half of the complex plane)
and the set {A, : p € P} is compact in R"*". If all the systems in this family share a quadratic
common Lyapunov function, then the switched linear system (2) is globally uniformly exponentially
stable (the word “uniform” is used here to describe uniformity with respect to switching signals).
This means that if there exist two symmetric positive definite matrices P and () such that we have

ATP 4y PA,<—Q Vpe?P

then there exist positive constants ¢ and g such that the solution of (2) for any initial state x(0)
and any switching signal o satisfies

lz(®)]] < ce™2(0)]] ¥t =0. (5)

In this subsection we present sufficient conditions for the existence of a quadratic common Lyapunov
function that involve the Lie algebra {A, : p € P}ra generated by the individual matrices A,. First
we recall some definitions. Given a Lie algebra ¢, the sequence ¢*) is defined inductively as follows:
gV = g, gt = [¢) ¢W] c ¢ TIf ¢V = 0 for k sufficiently large, then g is called solvable.
Similarly, one defines the sequence ¢* by ¢! := ¢, ¢**! := [g,¢"] C ¢*, and calls g nilpotent if
¢* = 0 for k sufficiently large. For example, if ¢ is a Lie algebra generated by two matrices A; and
Ay, de., g = {A, Ay}pa, then we have: ¢(V) = ¢' = g = span{Ay, Ay, [Ay, Ag], [AL, [Ar, A, ... 0,
9(2) = 92 = Span{[Alv A2]7 [Alv [Alv AQ]]? e '}7 9(3) = Span{[[Alv A2]7 [Alv [Alv AQ]H? e } - 93 =
spanq{[Ay, [A1, A2]], [A2, [A1, A3]], ... }, and so on. Every nilpotent Lie algebra is solvable, but the
converse is not true.

The simplest case is when P is a finite set (say, P = {l,...,m}) and the matrices in the family
(4) commute pairwise, i.e., the Lie bracket [A,, A,]:= A,A, — A;A, equals zero for all p,q € P. It
is well known and easy to show that in this case the system (2) is asymptotically stable for any
switching signal . An explicit construction of a quadratic common Lyapunov function for a finite
commuting family of linear systems is given in [33].

Proposition 1 [33] Let Py, ..., P, be the unique symmelric positive definite matrices that satisfy
the Lyapunov equations

A?P1—|—P1A1:—[,
AgPp—l—PpAp:— =1 p=2,...,m.

Then the function V(z) := 2T P,z is a common Lyapunov function for the systems & = Az,
1=1,...,m.



The matrix P,, is given by the formula
P, = /Oo eAmim (/Oo eAthleAltldtl) Cedmtmdy
0 0

Since the matrices A; commute, for each ¢ € {1,...,m} we can rewrite this in the form
Pm = / €A’Tti QZ €Aiti dti
0

with @); > 0, which makes the statement of Proposition 1 obvious.

The connection between asymptotic stability of a switched linear system and the properties of
the corresponding Lie algebra was apparently discussed for the first time by Gurvits in [9]. That
paper is concerned with the discrete-time counterpart of (2) which takes the form

rk 1) = Agguyalh). (6)

where o is a function from nonnegative integers to a finite index set P. Gurvits conjectured that if
the Lie algebra {A, : p € P} is nilpotent then (6) is asymptotically stable for any such switching
signal o. He used the Baker-Campbell-Hausdorff formula to prove this conjecture for the particular
case when P = {1,2}, the matrices A; and A, are nonsingular, and their third-order Lie brackets
vanish: [Aq, [A1, A3]] = [Ag, [A1, A2]] = 0.

It was recently shown in [22] that if the Lie algebra {A, : p € P}pa is solvable, then the family
(4) possesses a quadratic common Lyapunov function. One can derive the corresponding statement
for the discrete-time case in a similar fashion, thereby confirming and directly generalizing the above
conjecture because every nilpotent Lie algebra is solvable. The proof of the result given in [22] is
based on the following well known fact that can be found in most textbooks on the theory of Lie
algebras (see, e.g., [43]).

Proposition 2 (Lie’s Theorem) Let g be a solvable Lie algebra over an algebraically closed field,
and let p be a representation of g on a vector space V' of finite dimension n. Then there exists
a basis {vy,...,v,} of V such that for each X € g the matriz of p(X) in that basis takes the

upper-triangular form

(A (X), ..., A\ (X) being its eigenvalues).

In our context this means that if {A, : p € P}p4 is solvable, then there exists a nonsingular complex
matrix 7' such that for each p € P we have A, = T™'B,T where B, is a complex upper-triangular
matrix. It is a relatively simple matter to show that a family of linear systems with stable upper-
triangular matrices possesses a quadratic common Lyapunov function—see, e.g., [22, 46, 47] for
details (in particular, one can construct a common Lyapunov function that takes the form z? Dz
where D is a diagonal matrix). We thus obtain the following result which incorporates the ones
mentioned before as special cases.

Theorem 3 [22] If {A, : p € P} is a compact set of stable matrices and the Lie algebra {A, : p €
Plra is solvable, then the switched linear system (2) is globally uniformly exponentially stable.
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Note that while it is a nontrivial matter to find a basis in which all matrices take the triangular
form or even decide whether such a basis exists, the Lie-algebraic condition given by Theorem 3 is
formulated in terms of the original data and can always be checked in a finite number of steps if P
is a finite set. We now briefly discuss implications of this result for switched nonlinear systems of
the form (1). Consider, together with the family (3), the corresponding family of linearized systems

t=Iyr, peP

where I, = %

dx
%(:p) depends continuously on p for each # € D. A straightforward application of Theorem 3 and
x

0). Assume that the matrices F, are stable, that P is a compact set, and that
P 9 p 9

the Lyapunov’s first method gives the following result.

Corollary 4 [22] If the Lie algebra {F, : p € P}ra is solvable, then the system (1) is locally
uniformly exponentially stable?.

Recent work reported in [44] directly generalizes the result and the proof technique of [33] to
switched nonlinear systems. Namely, suppose that P = {1,...,m}, and denote by ¢,(t,z) the
solution of the system & = f,(x) starting at a point z when t = 0. If all these systems are
exponentially stable and the corresponding vector fields commute pairwise, i.e., [f,, fy](z) = 0 for
all p,g € P, then a common Lyapunov function can be constructed by the following iterative
procedure:

V)= [ el )l

T
Va)i= [ Vislep(sadds,  p=2em,

The function V;, is a common Lyapunov function for the family (3) locally in a neighborhood of zero
(unless all the functions f, are globally Lipschitz in which case V,, is a global common Lyapunov
function). One therefore has the following statement.

Proposition 5 [44] If all the systems in the family (3) are exponentially stable, P is a finite
set, and the vector fields f,(x), p € P commute pairwise, then the switched system (1) is locally
asymptotically stable for any switching signal o.

Note that, unlike the condition of Corollary 4, the above commuting condition is formulated in
terms of the Lie algebra generated by the original nonlinear vector fields, which opens interesting new
possibilities. It remains to be seen whether Lie-algebraic sufficient conditions for global asymptotic
stability under arbitrary switching can be found in the general case.

Finally, we comment on the issue of robustness. Both exponential stability and existence of a
quadratic common Lyapunov function are robust properties in the sense that they are not destroyed
by sufficiently small perturbations of the systems’ parameters. Regarding perturbations of upper-
triangular matrices, one can obtain explicit bounds that have to be satisfied by the elements below
the diagonal so that the quadratic common Lyapunov function for the unperturbed systems remains
a common Lyapunov function for the perturbed ones [30]. Unfortunately, the condition of Theorem 3
is not robust, which indicates one direction in which one might try to improve it.

2This is to say that the estimate (5) holds for all trajectories starting in a certain neighborhood of the origin.



2.2 Matrix pencil conditions

We now turn to some recently obtained sufficient, as well as necessary and sufficient, conditions for
the existence of a quadratic common Lyapunov function for a pair of second-order asymptotically
stable linear systems

T = Ail', A; € szz, = 1,2 (7)

These conditions, presented in [45, 46], are given in terms of eigenvalue locations of suitable linear
combinations of the matrices A; and A,. We refer the reader to [35, 36] for some sufficient conditions
for the existence of a quadratic common Lyapunov function that involve Lyapunov matrix operators.

Given two matrices A and B, the matriz pencil 4,(A, B) is defined as the one-parameter family
of matrices A 4 (1 — a)B, a € [0,1]. One has the following result.

Proposition 6 [45] If Ay and Ay have real distinet eigenvalues and all the matrices in v,( A1, Az)
have negative real eigenvalues, then the pair of linear systems (7) has a quadratic common Lyapunov
function.

In [46] Shorten and Narendra considered, together with the matrix pencil v,( A1, A2), the matrix
pencil v,(A;, Ay"). This allowed them to obtain, apparently for the first time, a necessary and
sufficient condition for the existence of a common Lyapunov function.

Proposition 7 [46] The pair of linear systems (7) has a quadratic common Lyapunov function if
and only if all the matrices in v,(A1, Ay) and v,(Ay, A7') are stable.

The above results are limited to a pair of second-order linear systems. It is interesting to note
that the conditions of Propositions 6 and 7 are in general robust in the sense specified at the end
of Section 2.1. Indeed, the property that all eigenvalues of a matrix have negative real parts is
preserved under sufficiently small perturbations. Moreover, if these eigenvalues are real, they will
remain real under small perturbations, providing that they are distinct (because eigenvalues of a
real matrix come in conjugate pairs).

2.3 Converse Lyapunov theorems

In the preceding subsections we have relied on the fact that the existence of a common Lyapunov
function implies asymptotic stability for arbitrary switching signals. The question arises whether
the converse holds. A converse Lyapunov theorem for differential inclusions proved by Molchanov
and Pyatnitskiy in [29] gives a positive answer to this question. Their result can be adapted to the
present setting as follows.

Theorem 8 [29] If the switched linear system (2) is asymptotically stable for all switching signals,
then the family of linear systems (4) has a strictly convex, homogeneous (of second order) common
Lyapunov function of a quasi-quadratic form

Viz) = :I;TL(:I;):I;

where L(x) = LT (x) = L(rx) for all nonzero x and .
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The construction of such a Lyapunov function given in [29] (see also [7]) proceeds in the same
spirit as the classical one that is used to prove standard converse Lyapunov theorems (cf. [19,
Theorem 4.5]), except that supremum over all indices p € P needs to be taken. It is also shown in
[29] that one can find a common Lyapunov function that takes the piecewise quadratic form

V(z) = max(l;,z)?

1<i<k

where [;, 2 =1,...,k are constant vectors.

Interestingly, a quadratic common Lyapunov function does not always exist. In [7] Dayawansa
and Martin give an example of two second-order linear systems which do not share any quadratic
common Lyapunov function, yet the switched system is asymptotically stable for arbitrary switch-
ing. They also generalize Theorem 8 to a class of switched nonlinear systems as follows.

Theorem 9 [7] If the switched system (1) is globally asymptotically stable and in addition locally
exponentially stable for all switching signals, then the family (3) has a common Lyapunov function.

Some technical properties of this common Lyapunov function are discussed in [7]. However,
the problem of determining the specific form of this function remains largely open. The paper [7]
announces that the above converse Lyapunov theorem is actually valid without the exponential
stability assumption, although the proof is more involved.

3 Stability for slow switching

We have seen above that a switched system might become unstable for certain switching signals even
if all the individual subsystems are asymptotically stable. Thus, if the goal is to achieve stability of
the switched system, one often has to restrict the class of admissible switching signals. This leads
us to Problem B posed in the Introduction. As we already mentioned, one way to address this
problem is to make sure that the intervals between consecutive switching times are long enough.
Such slow switching assumptions greatly simplify the stability analysis and are, in one form or
another, ubiquitous in the switching control literature® (see, e.g., [15, 37, 51]).

Below we discuss multiple Lyapunov function tools that are useful in analyzing stability of slowly
switched systems. We then present stability results for such systems. Some of these results parallel
the more familiar ones on stability of slowly time-varying systems (cf. [48] and references therein).

3.1 Multiple Lyapunov functions

In Section 2 we discussed various situations in which asymptotic stability of a switched system for
arbitrary switching signals can be established by means of showing that the family of individual
subsystems possesses a common Lyapunov function. We also know (Section 2.3) that the existence
of a common Lyapunov function is necessary for asymptotic stability under arbitrary switching.
However, if the class of switching signals is restricted, this converse result might not hold. In other
words, the properties of admissible switching signals can sometimes be used to prove asymptotic
stability of the switched system even in the absence of a common Lyapunov function.

3Another reason for slow switching is to avoid chattering.



One tool for proving stability in such cases employs multiple Lyapunov functions [39, 3, 4, 16].
Fix a switching signal o with switching times #; < ¢; < ... and assume for concreteness that it is
continuous from the right everywhere: o(¢;) = lim,_,,+ o(t) for each ¢. Since the individual members

of the family (3) are assumed to be asymptotically stable, there is a family of Lyapunov functions
{V, : p € P} such that the value of V, decreases on each interval where the p-th subsystem is active.
If the value of V, at the end of each such interval exceeds the value at the beginning of the next
one (see Figure 2), then the switched system can be shown to be asymptotically stable.

Lemma 10 [39] If there exists a constant p > 0 such that

Vit (@ (tiz2)) = Vo (2(tin)) < —pla(tin) [, i=0,1,... (8)

then the switched system (1) is globally asymptotically stable.

To see why this is true, observe that the sequence V,(y(#(ti41)), ¢+ = 0,1,... is decreasing and
positive, and therefore has a limit L. > 0 as 1 — +o00. We have

0 = L — L = hm ‘/cr(t,‘+1)(x(ti-|—2)) — hm ‘/C,(tl)(x(t2+1))

i—+00 i—+00
= lim [V (2(tize)) = Vo (2(tign))] < lim [—pla(tiy) )] <0

i—+00 T i—=+oo

which implies that x(¢;) converges to zero. As pointed out in [4], Lyapunov stability should and
can be checked via a separate argument.

Vcr(t) (t)

! \
\ \ \
\ N \
A
N N \
N ~

Figure 2: Two Lyapunov functions

t

Some variations and generalizations of this result are discussed in [3, 4, 16, 40], while the basic
idea seems to go back at least to [38]. We will return to multiple Lyapunov function techniques in
Section 4. A closely related problem of computing such Lyapunov functions numerically by means

of LMIs is addressed in [18, 40].

3.2 Dwell time

The simplest way to specify slow switching is to introduce a number 7 > 0 and restrict the class
of admissible switching signals to signals with the property that the interval between any two
consecutive switching times is no smaller than 7. This number 7 is sometimes called the dwell time
(because o “dwells” on each of its values for at least 7 units of time). It is well known that when
all the linear systems in the family (4) are asymptotically stable, the switched linear system (2) is
globally exponentially stable if the dwell time 7 is large enough. In fact, the required lower bound



on 7 can be explicitly calculated from the parameters of the individual subsystems. For details, see
[31, Lemma 2] or [17, Theorem 3.3].

What is perhaps less well known is that under suitable assumptions a sufficiently large dwell
time guarantees asymptotic stability of the switched system in the nonlinear case as well. Arguably
the best way to prove most general results of this kind is by using multiple Lyapunov functions. We
will not discuss the precise assumptions that are needed here (in fact, there is considerable work
still to be done in that regard) but will present the general idea instead. Assume for simplicity that
all the systems in the family (3) are globally exponentially stable. Then for each p € P there exists
a Lyapunov function V, that for some positive constants «a,, b, and ¢, satisfies

aple* < Vy(x) < bylef? (9)
and
VVo(@) (@) < —cplz? (10)
(see, e.g., [19, Theorem 4.5]). Combining (9) and (10), we obtain
VVp(@)fpla) < =AVp(a),  peP
where A, = ¢,/b,. This implies that
Vp(a(to+ 1)) < eV (x(to)) (11)

providing that o(t) = p for almost all ¢ € [to, {9+ 7]. To simplify the next calculation, let us consider
the case when P = {1,2} and o takes on the value 1 on [tg,¢;) and 2 on [t1,t2), where t,41 —t; > T,
1 =0,1. From the above inequalities one has
by by _»»
Vz(h) < —V1(t1) < —e V1(to)

a1 a1

and furthermore

b b bib
Vity) < —=Va(ty) < —e V(1) < ——e~ 2071 (1),
a9 a9 a1y

We see that Vi(tz2) < Vi(to) if 7 is large enough. In fact, it is not hard to compute an explicit
lower bound on 7 that ensures that the hypotheses of Lemma 10 are satisfied, which means that
the switched system is globally asymptotically stable.

We do not discuss possible extensions and refinements here because a more general result will
be stated in the next subsection. Note, however, that the exponential stability assumption is not
necessary; for example, the above reasoning would still be valid if the quadratic estimates in (9)
and (10) were replaced by, say, quartic ones. In essence, all we used was the fact that

V()
/,L::sup{ :xER”,p,qEP}<oo. 12
V(o) )

If this inequality does not hold globally in the state space, only local asymptotic stability can be
established.

10



3.3 Average dwell time

For each T' > 0, let N(T') denote the number of discontinuities of a given switching signal o on the
interval [0, 7). We will say that o has the average dwell time property if there exist two nonnegative
numbers @ and b such that for all T' > 0 we have N(T') < a 4 bT. This terminology is prompted
by the observation that, if we discard the first a switchings, the average time between consecutive
switchings is at least 1/b. Dwell time switching signals considered in the previous subsection satisfy
this definition with ¢« =0 and b= 1/7.

Now consider the family of nonlinear systems (3), and assume that all the systems in this
family are globally asymptotically stable. Then for each p € P there exist positive definite, radially
unbounded C* functions V, and D, such that VV,(z)f,(z) < —D,(z) for all z. As explained in [42],
there is no loss of generality in taking D,(x) = A, V,(x) for some A, > 0 (changing V,, if necessary).
In addition, we need the following mild technical assumption®:

Ve >0 36 > 0 such that if |V,(z)] < § for some p € P then |z| <. (13)

When P is a finite set, (13) is automatic. When P is infinite but compact, (13) is easily achieved if
the family {V, : p € P} is continuously parameterized. In either of these cases we can also assume
that the numbers A, are the same for all p € P, so that we have

VV(@)f(e) < —AVp(a) A= 0. (14)

The following result was recently proved by Hespanha in [11] with the help of Lyapunov function
techniques similar to the ones we alluded to in the previous subsection. The complete proof is given
in the Appendix.

Theorem 11 [11] If (12)-(14) hold, then the switched system (1) is globally asymptotically stable
for any switching signal that has the average dwell time property with b < X/ log .

The study of average dwell time switching signals is motivated by the following considerations.
Stability problems for switched systems arise naturally in the context of intelligent control. Switch-
ing control techniques employing a dwell time have been successfully applied to linear systems with
imprecise measurements or modeling uncertainty (cf. [31, 6, 15, 37]). However, in the nonlinear
setting these methods are often unsuitable because of the possibility of finite escape time. Namely,
if a “wrong” controller has to remain in the loop with an imprecisely modeled system for a specified
amount of time, the solution to the system might escape to infinity before we switch to a different
controller (of course, this will not happen if all the controllers are stabilizing, but when the system
is not completely known such an assumption is not realistic).

An alternative to dwell time switching for intelligent control of nonlinear systems is provided
by the so-called hysteresis switching proposed in [32] and its scale-independent versions which were
recently introduced and analyzed in [10, 13] and applied to control of uncertain nonlinear systems in
[12, 14]. When the uncertainty is purely parametric and there is no measurement noise, switching
signals generated by scale-independent hysteresis have the property that the switching stops in
finite time, while in the presence of noise under suitable assumptions they can be shown to have
the average dwell time property. Thus Theorem 11 opens the door to provably correct stabilization
algorithms for uncertain nonlinear systems corrupted by noise, which is the subject of ongoing
research efforts.

4If exponential stability of the switched system is desired, one needs to replace (13) by more specific growth
bounds on the functions V.
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4 Stabilizing switching signals

Since some switching signals lead to instability, it is natural to ask, given a family of systems,
whether it i1s possible to find a switching signal that renders the switched system asymptotically
stable. Such stabilizing switching signals may exist even in the extreme situation when all the indi-
vidual subsystems are unstable. For example, consider two second-order systems whose trajectories
are sketched in Figure 3, left and Figure 3, center. If we switch in such a way that the first system
is active in the 2nd and 4th quadrants while the second one is active in the 1st and 3rd quadrants,
then the switched system will be asymptotically stable (see Figure 3, right).

A A

Figure 3: A stabilizing switching signal

In this section we present various methods for constructing stabilizing switching signals in the
case when none of the individual subsystems are asymptotically stable (Problem C). We also discuss
how these ideas apply to the problem of stabilizing a linear system with finite-state hybrid output
feedback. Although we only address stabilizability here, there are other interesting questions such
as attainability and optimal control via switching (cf. [25, 26]).

4.1 Single Lyapunov function techniques

In this subsection and the next one we assume that P = {1,2} and that we are switching between
two linear systems

and

of arbitrary dimension n. When the number of individual subsystems is larger than two, one would
expect the stabilizing switching signals to be easier to construct. Interestingly, however, we are not
aware of any explicit results that employ switching signals with more than two distinct values.

As demonstrated by Wicks, Peleties and DeCarlo in [53, 54], one assumption that leads to an
elegant construction of a stabilizing switching signal is the following one.
ASSUMPTION 1. The matrix pencil 7,(A;, A2) contains a stable matrix.

According to the definition of a matrix pencil given in Section 2.2, this means that for some
a € (0,1) the convex combination A:= aA;+(1—«)A; is stable (the endpoints 0 and 1 are excluded

because A; and A, are not stable). Thus there exist symmetric positive definite matrices P and @
such that we have

ATP 4+ PA=—Q.
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This can be rewritten as
a(ATP + PA) + (1 —a)(ALP 4+ PAy) = —Q

or
azt (ATP + PADz + (1 —a)aT(ALP 4 PAY)z = —27Qx < 0 Ve e R™\ {0}.

Since 0 < a < 1, it follows that for each nonzero * € R™ at least one of the quantities (AT P +
PA )z and 2T (AL P + PAy)z is negative. In other words, R" \ {0} is covered by the union of two
open conic regions 0 := {z : 2T (ATP + PA;)z < 0} and Qy:= {z : 2T(A]P + PAy)x < 0}. The
function V(z):= 2T Px decreases along solutions of the system (15) in the region ©; and decreases
along solutions of the system (16) in the region 5. Using this property, it is possible to construct
a switching signal such that V decreases along solutions of the switched system, which implies
asymptotic stability. The precise result is this.

Theorem 12 [53, 54| If Assumption 1 is satisfied, then there exists a piecewise constant switching
signal which makes the switched system quadratically stable®.

This stabilizing switching signal takes the state feedback form, i.e., the value of o at any given
time ¢t > 0 depends on x(?). An interesting observation due to Feron is that Assumption 1 is not
only sufficient but also necessary for quadratic stabilizability via switching.

Proposition 13 [8] If there exists a quadratically stabilizing switching signal in the state feedback
form, then the matrices Ay and A, satisfy Assumption 1.

The proof of this result is given in the Appendix; it relies on the following well known fact (see,
e.g., [2]).
Proposition 14 (S-procedure) Let Ty, Ty be n x n symmetric matrices. The condition
To— 011 > 0 for some 3 >0 (17)
implies that
T Tox > 0 for all x # 0 such that 27 Tyxz > 0. (18)
Moreover, (18) implies (17) providing that there is some xg such that xITizq > 0.

One can gain insight into the issue of quadratic stabilizability with the help of the following
d =1 d =2 ) :

example. Take A;:= (02 0 1) and Ay := (01 01} The trajectories of the systems (15) and (16)
will then look, at least qualitatively, as depicted in Figure 3, left and center, respectively. We have
explained at the beginning of Section 4 how to construct a stabilizing switching signal that yields
the switched system with trajectories as shown in Figure 3, right. This system is asymptotically
stable, in fact, we see that the function V(zy,xq):= 2% + 25 decreases along solutions. However, it
is easy to check that no convex combination of A; and A, is stable, and Proposition 13 tells us that
the switched system cannot be quadratically stable. Indeed, on the coordinate axes (which form
the set where the switching occurs) we have V = 0.

The above example suggests that even when Assumption 1 does not hold and thus quadratic
stabilization is impossible, asymptotic stabilization may be quite easy to achieve by using heuristic
ideas that can be applied to general systems, not necessarily linear ones. This is an interesting area
for future work.

> Quadratic stability means that there exists a positive ¢ such that V< —cxTe.
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4.2 Multiple Lyapunov function techniques

In the previous subsection we explained how to carry out the stability analysis with the help of a
single Lyapunov function that decreases along the trajectories of the switched system. There are
situations when one cannot find a switching signal such that the resulting switched system possesses
a quadratic Lyapunov function. In view of the results presented in Section 3.1, it might still be pos-
sible to find a stabilizing switching signal and prove stability by using multiple Lyapunov functions.
Although this line of thinking does not seem to lead to such a simple and constructive procedure
as the one described in [53, 54], some preliminary ideas have been explored in the literature. These
are discussed next.

The method proposed in [39] is to associate to the system (15) a candidate quadratic Lyapunov
function V;(z) = 7 Pyz that decreases along solutions in an appropriate region €;. This is always
possible unless A; is a nonnegative multiple of the identity matrix. Similarly, associate to the
system (16) a candidate quadratic Lyapunov function V(z) = T Py that decreases along solutions
in an appropriate region {y. If the union of the regions ; and €, covers R™\ {0}, then one can
try to orchestrate the switching in such a way that the conditions of Lemma 10 are satisfied. The
paper [39] contains an example that illustrates how this stabilizing switching strategy works.

In a more recent paper [52] this investigation is continued with the goal to put the above idea on
a more solid ground, by means of formulating precise algebraic sufficient conditions for a switching
strategy based on multiple Lyapunov functions to exist. Consider the situation when the following
condition holds:
ConNDITION 1. 2T(P A} + ATP)z < 0 whenever z7(P, — Py)x > 0 and = # 0, and 27 (P A, +
AT P))z < 0 whenever 27(P, — Py)z > 0 and = # 0.

If this condition is satisfied, then a stabilizing switching signal can be defined by o(t) :=
argmax{V;(x(?)) : 1 = 1,2}. Indeed, the function V, will then be continuous and will decrease
along solutions of the switched system, which guarantees asymptotic stability.

Condition 1 holds if the following condition is satisfied (by virtue of the S-procedure, the two
conditions are equivalent provided that there exist x{,x, € R”™ such that :L'IT(Pl — Py)x; > 0 and
2l (P — P)xy > 0).

CONDITION 2. There exist (31,32 > 0 such that — P A; — AITP1 + B1(Pe — P1) > 0 and —PAs —
ATPy + 3,(Py — Py) > 0.

Alternatively, if (1,8, < 0, then a stabilizing switching signal can be defined by o(t) :=
arg min{ V;(x(?)) : « = 1,2}. This leads to the following result.

Proposition 15 [52] If there exist two numbers 31 and (5, either both nonnegative or both nonpos-
itive, such that the inequalities

— PLA — ATP 4+ 8P, — P) >0 (19)
and
— Py Ay — ALP + B5(Py — Py) > 0 (20)

are satisfied for some symmetric positive definite matrices Py and Py, then there exists an asymp-
totically stabilizing switching signal.
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In [52] the hypotheses of Proposition 15 are further reformulated in terms of eigenvalue locations
of certain matrix operators. Note that the algebraic matrix inequalities (19)—(20) are not LMIs since
they contain products of the unknowns 3; and F;, 1 =1, 2.

Techniques that are quite similar to the ones described above have been developed independently
in [27] in a more general, nonlinear context. That paper shows how they find application to the
interesting problem of stabilizing an inverted pendulum via a switching control strategy.

4.3 Stabilization with finite-state hybrid output feedback

An interesting source of motivation for pursuing the above ideas comes from the following problem.
Suppose that we are given a linear time-invariant control system

x = Ax + Bu

e (21)

that is stabilizable and detectable, i.e., there exist matrices F' and K such that the eigenvalues of
A 4 BF and the eigenvalues of A + KC have negative real parts. Then, as is well known, there
exists a continuous dynamic output feedback that asymptotically stabilizes the system. In practice,
however, such a continuous dynamic feedback might not be implementable, and a suitable discrete
version of the controller is often desired. Recent references [6, 17, 24, 28, 49] discuss some issues
related to control of continuous plants by various types of discontinuous feedback.

In particular, in [24] it is shown that the system (21) admits a stabilizing hybrid output feedback
that uses a countable number of discrete states. A logical question to ask next is whether it is
possible to stabilize (21) by using a hybrid output feedback with only a finite number of discrete
states. Artstein explicitly raised this question in [1] and discussed it in the context of a simple
example (cf. below). This problem seems to require a solution that is significantly different from
the ones mentioned above because a finite-state stabilizing hybrid feedback is unlikely to be obtained
from a continuous one by means of any discretization process.

One approach to the problem of stabilizing (21) via finite-state hybrid output feedback is
prompted by the following observation. Suppose that we are given a collection of gain matrices
Ky, ..., K,, of suitable dimensions. Setting u = K;y for some ¢ € {1,...,m}, we obtain the system

# = (A+ BK,C)a.

Thus the stabilization problem for the original system (21) will be solved if we can orchestrate the
switching between the systems in the above form in such a way as to achieve asymptotic stability.
Denoting A4+ BK;C by A; for each 1 € {1,...,m}, we are led to the following question: using the
measurements of the output y = C'z, can we find a switching signal o such that the switched system
& = A,z is asymptotically stable? The value of o at a given time ¢ might just depend on ¢ and/or
y(1), or a more general hybrid feedback may be used. We are assuming, of course, that none of the
matrices A; are stable, as the existence of a matrix A such that the eigenvalues of A + BKC' have
negative real parts would render the problem trivial.

First of all, observe that the existence of a stable convex combination A := aA; + (1 — a)A,
for some 1,5 € {l,...,m} and o € (0,1) would imply that the system (21) can be stabilized by
the linear static output feedback v = Ky with K:= ak; + (1 — o) K, contrary to the assumption
that we just made. In view of Proposition 13, this implies that a quadratically stabilizing switching

15



signal does not exist. However, it might still be possible to construct an asymptotically stabilizing

switching signal and even base a stability proof on a single Lyapunov function (cf. remarks at the
end of Section 4.1).

As an example that illustrates this point, we discuss a modified version of the stabilizing switch-
ing strategy for the harmonic oscillator with position measurements described in [1]. Consider the

()= (5 o) () 0)

Yy=a

system

Although this system is both controllable and observable, it cannot be stabilized by (even discontin-
uous) output feedback. On the other hand, it can be stabilized by hybrid output feedback; several
ways to do this were presented in [1]. We will now sketch one possible stabilizing strategy. Letting

a)= (%62 (22)

while letting u = %y we obtain the system

a ()=o) () o

Define V(z) := 2} + 3. This function decreases along the solutions of (22) when zy25 > 0 and
decreases along the solutions of (23) when xy29 < 0. Therefore, if the system (22) is active in the 1st
and 3rd quadrants while the system (23) is active in the 2nd and 4th quadrants, we will have V<0
whenever x5 # 0, hence the switched system is asymptotically stable. (This situation is similar

u = —y we obtain the system

to the one shown in Figure 3, except that here the individual subsystems are critically stable.) It is
important to notice that, since both systems being switched are linear time-invariant, the times at
which the state trajectory crosses the xj-axis can be explicitly calculated from the times at which
it crosses the xg-axis. This means that the above switching strategy can be implemented via hybrid
feedback based just on the measurements of the output; see [1, 23] for details.

Another possibility, exploited in [23], is to employ multiple Lyapunov functions. Assume for
simplicity that m = 2, so that we are only given two matrices, Ay = A4+ BK;C and Ay = A+ BK,C'.
Note that in the present context the given data is not the matrices A; and A,, but rather the
matrices A, B and C. The problem will be solved if we can find output feedback gains K; and K,
such that the resulting matrices Ay = A+ BK,C and Ay = A + BK,C satisfy the hypotheses of
Proposition 15. We can rewrite the inequalities (19)—(20) as

—PLA— AP+ 3(Py,— P)— PLBK,C — CTKIB"P, >0
and
—PyA — ATPy + Bo( Py — Py) — PLBK,C — CTKIBTP, > 0.

Using the procedure for elimination of matrix variables described in [2, Section 2.6.2], one can show
that the above inequalities are satisfied if and only if for some ~;,v, € R we have

— PLA—ATP 4 (P, — P)— P BBTPl >0

24
—PlA—ATP1—|—ﬁ1(P2—P1)—’}/10TC>0 ( )
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and

— PyA— ATP, 4 3)(P, — P)) — 2w P,BB"P} >0

25
—PQA—ATPQ—FﬁQ(Pl—PQ)—’}/QCTC>O ( )

Thus we have the following statement.

Proposition 16 [23] If there exist two numbers 31 and [35, either both nonnegative or both nonposi-
tive, and two numbers vy and vz such that the inequalities (24)—(25) are satisfied for some symmetric
positive definite matrices Py and P, then the system (21) can be asymptotically stabilized by using
hybrid output feedback with two discrete states.

The fact that the individual gains can be chosen as part of the design introduces considerable
flexibility into the problem and is to be explored further. Note that when 3; = 33 = 0, we recover
LMIs that express conditions for stabilizability of (21) by static output feedback (and are equivalent
to the ones given, e.g., in [50, Theorem 3.8]). It would be interesting to compare the above bilinear
matrix inequalities with the ones obtained in [41] as a characterization of stabilizability via switched
state feedback.

5 Concluding remarks

We have surveyed recent developments in three basic problems regarding switched dynamical sys-
tems: stability for arbitrary switching signals, stability for slow switching signals, and construction
of stabilizing switching signals. We have aimed at providing an overview of general results and ideas
involved. For technical details, the reader may consult the references cited below. These references
also address many issues that are relevant to switched systems but fell outside the scope of this
survey. In spite of a number of interesting results presented here, it is safe to say that the subject
is still largely unexplored. Various open questions, some of which we have mentioned in the paper,
remain to be investigated.

The three problems studied here are very general and address fundamental issues concerning
stability and design of switched systems. As we have pointed out throughout the paper, special
cases of these problems arise frequently in various contexts associated with control design. In such
situations, specific structure of a problem at hand can sometimes be utilized to obtain satisfactory
results even in the absence of a general theory. Examples of results that use such additional
structure include the conditions for existence of a common Lyapunov function given in [20] which
exploit positive realness and the so-called Switching Theorem proved in [31] which plays a role
in the supervisory control of uncertain linear systems . It is our opinion that to make significant
further progress one needs to stay in close contact with particular applications that motivate the
study of switched systems.
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Appendix

Proof of Theorem 11. Let 1o:= 0, ty1, ..., ty(ry be the discontinuities of o on [0,7"). Define the
function

W(t):= eV, (2(1)).

This function is piecewise differentiable along solutions to (1), and on any interval [t;,?;11) we have
W =AW + MVV,(2)f,(z) <0
by virtue of (14). Therefore,
Wi(t) < W(t), t € [titipr), 1 €{0,1,...,N(T) - 1}. (26)

This together with (12) implies

W(tip1) = M Vo (@(tinn)) < pe Vo (2(tizr))

=u lim W) < uW(t)).

t—>tl._+1

[terating this inequality from ¢ = 0 to 1 = N(T') — 1, we have
W (twe) < g OW(0)
and, using (26),
lim W(t) < DWW (0).

t—T—

It follows from the definition of W that
Vo (@(T)) < 1V, (2(0))
which according to the hypotheses can be rewritten as
‘/cr(T—)(l'(T)) < e—/\T-l—(a-l—bT)logu‘/g(O)(x(o)) — ealogue(blogu—/\)T‘/g(o)(x(o)) — CG_Z\T‘/U(O)(J}(O))

where ¢:= ¢*1°6# and A:= X\ —blog . Note that log ¢ > 0 because ¢ > 1 in view of the interchange-
ability of p and ¢ in (12). Thus ¢ > 0, and A > 0 by virtue of the inequality b < A/log . Now it is
easy to conclude from (13) that x(7T') converges to zero as T' — +oo. O

Proof of Proposition 13. Suppose that the switched system is quadratically stable, i.e., there exists
a Lyapunov function V(z) = 27 Pz whose derivative along solutions of the switched system satisfies
V < —caTx for some ¢ > 0. Since the switching signal takes the state feedback form, this implies
that for any nonzero & we must have either

:L'T(AlTP + PAj)x < —caly

or

:L'T(AQTP + PAy)x < —exly.

We can restate this as follows:
:L'T(—AlTP — PA; — el)x > 0 whenever :L'T(AQTP + PAy+el)a >0 (27)
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and
:L'T(—AQTP — PAy — el )x > 0 whenever :L'T(AlTP + PA; + el)x > 0. (28)

If :L'T(AITP—I—PAl +el)a <0 for all # # 0, then the matrix A; is stable and there is nothing to prove.
Similarly, if 27 (ATP 4+ PAy + el)x < 0 for all # # 0, then A, is stable. Discarding these trivial
cases, we can apply the S-procedure to one of the last two conditions, say, to (27), and conclude
that for some > 0 we have

ATP 4+ PA, + B(ATP + PAy) < —(1 + B)ex’x

or, equivalently,

T
—(Al + 6142) + ]37(141 + 5142) < —cexly.

1+ 1+
Therefore, the matrix (A; + GA2)/(1 + ) € v4(A1, Ag) is stable, and Assumption 1 is satisfied. O
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